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ABSTRACT
Preference-based reinforcement learning (RL) has shown great po-
tential for scaling human feedback to deep RL settings, enabling
agents to solve complex tasks without access to a pre-defined re-
ward function. Many state-of-the-art preference-based RL meth-
ods use off-policy learning to allow the agent to reuse previously
collected experiences to improve learning efficiency. However, pas-
sively reusing prior data can limit the generality since the dataset of
recent experiences is typically limited and not sufficiently diverse.
This data limitation problem, on the other hand, has recently been
addressed by using diffusion generative models to upsample agent
experiences in the context of offline and online RL. Inspired by
this success, we introduce PRIDE: Preference-based Reinforcement
learning using dIffusion moDEl, a novel approach that integrates
diffusion models into preference-based RL to improve both sample
and feedback efficiency. PRIDE continually trains a diffusion model
to approximate the RL agent’s online behavioral distribution. The
trained diffusion model then generates a large quantity of novel and
diverse synthetic experiences, which are used to augment limited
real data, enabling better generalization while reducing reliance on
real data. We evaluate PRIDE on a variety of locomotion and robotic
manipulation tasks. Empirical results demonstrate that PRIDE out-
performs state-of-the-art preference-based RLmethod in most tasks
tested and achieves comparable or superior performance with a 50%
reduction in human feedback. The novel use of diffusion models in
our approach presents a promising direction for improving sample
and feedback efficiency in preference-based RL.
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1 INTRODUCTION
Deep reinforcement learning (RL) has made significant strides in
recent years, enabling computers and robots to tackle increasingly
complex and challenging tasks [1, 18, 22–24, 34, 40, 49, 52]. Despite
the progress, deep RL has not been widely deployed to real-world
systems. One central obstacle is that many real-world tasks involve
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goals that are complex, poorly defined, or unspecified. This makes
it challenging to design a good reward function that closely aligns
with the long-term goals of the system, which is critical for the
success of any RL system.

To solve complex RL tasks without access to a pre-defined reward
function, reinforcement learning from human feedback (RLHF), also
known as human-in-the-loop reinforcement learning [6, 15, 21, 30,
33, 46, 48], has emerged as a compelling approach. Compared to
reward engineering or other reward learning methods [36], RLHF
allows us to learn a reward model from human feedback, which can
more closely capture the complex behaviors preferred by humans.
By optimizing against this reward model using deep RL, we can
closely align the agent’s behaviors with complex human values
and preferences. With RLHF, the agent’s objectives can be defined
and dynamically refined by a human in the loop, overcoming the
limitations of classical RL methods.

Much of the early work on RLHF has focused on solving tabular
RL problems and investigating how to better interpret and model
human feedback to extract more useful information and improve
learning efficiency [21, 31, 33, 46]. One of the early work that scales
human feedback up to deep RL is conducted by Christiano et al.
[6], which enables agents to solve complex deep RL tasks with
high-dimensional state and/or action spaces using human feedback.
In their approach, humans are asked to provide online feedback in
the form of binary preferences between pairs of agent trajectory
segments (i.e., sequences of state-action pairs). This preference-
based online feedback has been shown to be easy and practical for
humans to provide, scalable to deep RL settings, and effective in
mitigating reward exploitation.

Following their work, significant progress has been made in
preference-based reinforcement learning. Many state-of-the-art
preference-based RL algorithms [5, 14, 25, 27, 38] use off-policy
learning to enable the agent to reuse previously collected experi-
ences during training to improve sample and feedback efficiency.
While reusing prior data in preference-based RL has shown strong
results, a common issue with these approaches is that the dataset
of recent agent experiences is typically limited–suitable data for
specific agent behaviors may not be available and thus limits the
generality. Additionally, it is still expensive for humans to supervise
the RL learning process, as it requires a large number of samples for
the agent to learn a good policy. Therefore, it is crucial to improve



Figure 1: Illustration of our approach, which consists of two phases: unsupervised pre-training and main learning. In the first
phase, the agent is encouraged to explore the environment and learn diverse behaviors through maximising intrinsic rewards
(the state entropy), without extrinsic rewards. In the main learning phase, humans are queried to provide binary preferences
between pairs of agent trajectory segments, which are then used to train a reward model to predict human preferences. A
diffusion model is periodically trained to approximate the agent’s online behavioral distribution, using experiences sampled
from the real replay buffer. Once trained, the diffusion model generates a large number of novel and diverse synthetic
experiences, which are stored in a separate synthetic replay buffer. We then train the RL agent using experiences sampled from
both the real and synthetic replay buffers, leading to improved sample and feedback efficiency.

the sample efficiency of preference-based RL methods and reduce
the amount of human effort required for efficient learning.

Meanwhile, rather than passively reusing prior data during RL
training, recent work [32] has shown that diffusion generative mod-
els [13, 42] can be used to upsample agent experiences, leading to
significant improvements in sample efficiency in both offline and
online RL settings. It is shown that, compared to other generative
models such as VAEs [19] and GANs [10], diffusion models can gen-
erate synthetic data that is more dynamically accurate and diverse
[32]. The large quantity of new, diverse synthetic experiences gen-
erated by the diffusion model can be used to augment limited real
data as if they were real experiences. This can significantly broaden
the training data available to the RL agent and thus improve sample
efficiency and final performance.

Inspired by the success of diffusion models in augmenting tra-
ditional datasets in RL [32], our work aims to integrate diffusion
generative models into online preference-based RL methods to im-
prove both sample and feedback efficiency. To this end, we present
PRIDE: Preference-based Reinforcement learning using dIffusion
moDEl. Like PEBBLE [25], a popular state-of-the-art preference-
based RL algorithm, our approach uses unsupervised pre-training
and off-policy learning to learn from human feedback. However,
during off-policy learning, PRIDE continually trains a diffusion
model to approximate the RL agent’s behavioral distribution as it
interacts with the environment and collects new experiences. The
diffusion model learns this distribution based on the real experi-
ences stored in the replay buffer. Once trained, the diffusion model
generates a large quantity of new synthetic experiences that mimic
real agent-environment interactions. These synthetic experiences
are then stored in a separate synthetic replay buffer. When training
the RL agent, PRIDE samples from both real and synthetic replay
buffer to get a mixture of real and synthetic data, leveraging the

diverse and novel synthetic experiences to boost learning efficiency.
The diverse synthetic data also allows our approach to achieve bet-
ter generalization while reducing reliance on real data. See Figure
1 for an illustration of our approach.

We remark that the novelty of our work lies in the novel integra-
tion of diffusion models into online preference-based RL to improve
both sample and feedback efficiency. Our approach unlocks new,
efficient, and general training strategies for preference-based RL
methods. To summarize, the contributions of this paper are:
• We propose PRIDE, a new preference-based RL algorithm
that leverages a diffusion model to generate a large number
of novel and diverse synthetic experiences, augmenting real
data to boost learning efficiency.
• We show that PRIDE outperforms PEBBLE in various com-
plex locomotion and robotic manipulation tasks from Deep-
MindControl Suite (DMControl) [43, 44] andMeta-world [50].
• We also show that PRIDE achieves comparable or superior
performance to PEBBLEwith significantly fewer human feed-
back queries, demonstrating improved feedback efficiency
through the use of novel and diverse synthetic experiences.

2 RELATEDWORK
Learning from Human Feedback. There exists a large body of

work on learning from human feedback. In the context of RL, the
goal is typically to solve a learning problem in which an agent is
situated in an environment described by a Markov Decision Process
(MDP), with rewards generated by a human teacher instead of from
a stationary MDP reward function. Much work in the past has
focused on solving tabular RL problems and investigating how to
better interpret and model human feedback to extract more useful
information and learn more efficiently. Human feedback has been
interpreted in many different ways, such as numerical rewards



[16, 21], shaping rewards [45], discrete positive or negative signals
[29, 31], and advantage functions [33].

More recently, human feedback has been scaled up to deep RL
to solve more complex tasks with high-dimensional state and/or
action spaces [6, 15, 48]. Christiano et al. [6] demonstrates the effec-
tiveness of using preference-based human feedback to help solve
complex deep RL tasks, where humans provide online feedback in
the form of binary preferences between pairs of agent trajectory
segments. Following their work, significant progress has been made
in preference-based RL. Most state-of-the-art preference-based RL
methods [5, 14, 25, 27, 38] use off-policy learning to reuse previ-
ously collected experiences during training to improve sample and
feedback efficiency. However, passively reusing prior data can limit
the generality since the dataset of recent experiences is typically
limited and not sufficiently diverse. Different from these methods,
our approach makes use of a diffusion model to generate a large
quantity of novel and diverse synthetic experiences to augment
limited real data to improve learning in preference-based RL.

Generative Models in RL. Generative models, such as genera-
tive adversarial networks (GANs) [9] and variational autoencoders
(VAEs) [20], have been widely used in RL to improve agent explo-
ration capability and sample efficiency. For example, Gao et al. [8]
propose to integrate Deep Q-Networks [35] with GANs to improve
interactive recommendation systems. Their approach addresses the
issue of sparse positive feedback in recommendation systems by
using GANs to generate synthetic negative feedback. Baucum et al.
[2] apply RL in healthcare by utilizing VAEs to generate additional
patient trajectories, improving the model’s ability to explore and
learn from diverse patient data. More recent work has seen diffusion
models emerge as a powerful generative tool in RL [17, 47, 53]. For
instance, Ni et al.[37] introduce MetaDiffuser, a task-oriented con-
ditioned diffusion planner for offline meta-RL, which enables the
generation of task-oriented trajectories to improve generalization
across diverse tasks.

Despite the widespread use of generative models in offline and
online RL settings, very little work has applied them to online
preference-based RL. One notable example is the recent work by
Zhan et al. [51], who train a GAN to predict human preferences in
preference-based RL. In their approach, a low-dimensional GAN
is trained on human feedback data and then used to label trajec-
tory segments in place of humans. Unlike their work, our approach
integrates diffusion models into preference-based RL to generate
novel and diverse synthetic experiences, augmenting the limited
real data collected by the agent to improve both sample and feed-
back efficiency. This is inspired by the recent work of Lu et al.[32],
who propose to train diffusion models to upsample agent expe-
riences, leading to significant improvements in sample efficiency
in both offline and online RL settings. They show that the quality
of the synthetic samples generated by the diffusion model is sig-
nificantly better than that of previous generative models such as
VAEs [19] and GANs [10], exhibiting higher diversity and better
alignment with the real data distribution. Inspired by their success,
our approach trains diffusion models to generate synthetic experi-
ences in a similar manner, but with a focus on integrating diffusion
models into online preference-based RL, which, to the best of our
knowledge, has not been explored before.

3 BACKGROUND
3.1 Reinforcement Learning
In standard reinforcement learning settings, an agent interacts
with an uncertain environment and tries to maximize its long-
term expected cumulative reward. The underlying decision-making
problem can be modelled as a Markov decision process (MDP),
which can be represented by a tuple < 𝑆,𝐴, 𝑃, 𝑅,𝛾 >. At each
timestep 𝑡 , the agent is in an environment state 𝑠𝑡 ∈ 𝑆 and se-
lects an action 𝑎𝑡 ∈ 𝐴 to take to influence the environment. Af-
ter taking action 𝑎𝑡 , the agent moves to the next environment
state 𝑠𝑡+1 with some probability defined by the transition function
𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) : 𝑆 ×𝐴×𝑆 → [0, 1]. 𝑅(𝑠, 𝑎) : 𝑆 ×𝐴→ R is the reward
function specifying the numeric reward 𝑟𝑡 the agent receives for
taking action 𝑎𝑡 in state 𝑠𝑡 and transitioning to state 𝑠𝑡+1. 𝛾 ∈ [0, 1]
is a discount factor specifying how much immediate rewards are
preferred to future rewards. The goal of the agent is to find the
optimal policy 𝜋∗ (𝑎 |𝑠) that maximizes the expected cumulative
discounted reward 𝑅𝑡 =

∑∞
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 .

3.2 Reward Learning from Preferences
In this work, we consider RL tasks without access to a pre-defined
reward function. This means that, in our problem setting–unlike in
standard RL settings–the environment does not provide a reward
signal to the agent as it interacts with the environment. Instead, we
assume that there is a human teacher who can provide feedback as
the agent acts in the environment. We can then learn the reward
function from human feedback. We adopt a reward learning from
preference framework, where the reward function is learned from
human feedback in the form of binary preferences between pairs
of trajectory segments [6]. A trajectory segment is a sequence of
states and actions,𝜎 = ((𝑠0, 𝑎0), (𝑠1, 𝑎1), ..., (𝑠𝑘−1, 𝑎𝑘−1)) ∈ (𝑆×𝐴)𝑘 .
Given two trajectory segments 𝜎0 and 𝜎1, 𝜎0 ≻ 𝜎1 indicates that
the human prefers trajectory segment 𝜎0 over trajectory segment
𝜎1. We assume that 𝜎0 ≻ 𝜎1 if the sum of rewards of trajectory seg-
ments satisfies

∑𝑘−1
𝑖=0 𝑟 (𝑠0𝑖 , 𝑎

0
𝑖
) > ∑𝑘−1

𝑖=0 𝑟 (𝑠1𝑖 , 𝑎
1
𝑖
). The human prefer-

ence is stored as a triplet (𝜎0, 𝜎1, 𝜇) in a datasetD, where 𝜇 ∈ {0, 1},
with 𝜇 = 0 indicating 𝜎0 is preferred and 𝜇 = 1 indicating 𝜎1 is
preferred. Following the Bradley-Terry model [4], the reward func-
tion estimator 𝑟 predicts the reward value for each state-action pair
in both 𝜎0 and 𝜎1, and the probability of 𝜎0 ≻ 𝜎1 is modeled as
depending exponentially on the total reward over each trajectory
segment. This can be formalized as:

𝑃 [𝜎0 ≻ 𝜎1] =
exp

∑𝑘−1
𝑖=0 𝑟 (𝑠0𝑖 , 𝑎

0
𝑖
)

exp
∑𝑘−1
𝑖=0 𝑟 (𝑠0𝑖 , 𝑎

0
𝑖
) + exp∑𝑘−1

𝑖=0 𝑟 (𝑠1𝑖 , 𝑎
1
𝑖
)

(1)

This formulation reflects the intuition that the probability of prefer-
ring a trajectory segment increases exponentially with the cumula-
tive reward over the segment, as in [6]. The higher the total reward
for a segment, the more likely it is to be preferred over another
segment with a lower total reward. The reward model is trained
using a binary classification loss, where the objective is to match
real human preferences with the model’s predicted preferences.



The loss function is defined as:

L𝑝𝑟𝑒 𝑓 = − E
(𝜎0,𝜎1,𝜇 ) ∈D

[𝜇 (0) log 𝑃 [𝜎0 ≻ 𝜎1] +𝜇 (1) log 𝑃 [𝜎1 ≻ 𝜎0]]

(2)

3.3 PEBBLE
PEBBLE [25] is a state-of-the-art preference-based RL algorithm
that uses human preferences to train an agent to solve complex RL
tasks without access to the reward function. It leverages unsuper-
vised pre-training and off-policy learning to improve both sample
and feedback efficiency for preference-based RL.

Unsupervised Pre-training. PEBBLE employs unsupervised pre-
training to improve the efficiency of the human teacher’s initial
feedback. Through pre-training with unsupervised exploration, the
agent is encouraged to explore a wide range of states and learn
diverse behaviors. Compared to the random and limited trajectory
samples generated by a random policy, the diverse trajectories
generated through unsupervised pre-training can enable humans
to provide more meaningful and informative initial feedback.

During unsupervised pre-training, PEBBLE uses state entropy
as the intrinsic reward to motivate the agent to explore and col-
lect diverse experiences. The entropyH(s) = −Es∼𝑝 (s) [log 𝑝 (s)]
encourages the agent to explore less-visited states by rewarding
it for discovering states that it has not frequently encountered
[12, 25, 26, 28, 39]. However, calculating state entropy directly is of-
ten intractable, PEBBLE thus approximates entropy using a particle-
based estimator based on 𝑘-nearest neighbors (k-NN) [3, 41]. The
intrinsic reward is defined as [25]:

𝑟 𝑖𝑛𝑡 (s𝑡 ) = log( | |s𝑡 − s𝑘𝑡 | |), (3)

where the reward is based on the distance between the current state
s𝑡 and its 𝑘-th nearest neighbor s𝑘𝑡 . By maximizing the distance
between states and their nearest neighbors, the agent is encouraged
to explore less-visited regions of the environment.

Off-Policy Learning and Reward Relabeling. After unsupervised
pre-training, PEBBLE uses an off-policy RL algorithm to enable the
agent to reuse previously collected experiences to achieve more
efficient learning. In particular, it adopts Soft Actor-Critic (SAC)[11]
as the underlying RL algorithm. During training, the agent inter-
acts with the environment and collects new experiences, which are
stored in the replay buffer. Human feedback is then provided in the
form of binary preferences between pairs of trajectory segments,
which are sampled from the replay buffer. These human preferences
are used to train a reward model, which then guides the agent’s
learning process. An essential aspect of PEBBLE is its reward rela-
beling mechanism: each time the reward model is updated with new
human feedback, all experiences in the replay buffer are relabeled
using the updated reward model. This ensures that the agent learns
stably from data that more accurately reflects human preferences,
leading to improved performance.

3.4 Diffusion Model
Diffusion models [7, 13, 32, 42] are a class of generative models that
learn to generate complex, realistic data by gradually transforming
simple structured noise into more intricate patterns. These models

consist of two key processes: forward process and reverse process.

In the forward process, given a data distribution 𝑞(x(0) ) (repre-
senting the original, uncorrupted data), the data is progressively
corrupted by adding Gaussian noise over multiple steps. At each
time step 𝑡 , a noised version x(𝑡 ) is generated from the previous
step x(𝑡−1) by applying a small amount of noise. The corrupted
data at each step becomes increasingly noisy until it approximates
a simple noise distribution. This forward process is modeled as:

𝑞(x(𝑡 ) |x(𝑡−1) ) = N(x(𝑡 ) ;
√︁
1 − 𝛽𝑡x(𝑡−1) , 𝛽𝑡 I), 𝑡 ∈ {1, ...,𝑇 } (4)

𝑞(x(0:𝑇 ) ) = 𝑞(x(0) )
𝑇∏
𝑡=1

𝑞(x(𝑡 ) |x(𝑡−1) ) (5)

where 𝛽𝑡 is a variance schedule controlling the amount of noise
added at each step, andN denotes a normal distribution with mean√︁
1 − 𝛽𝑡x(𝑡−1) and variance 𝛽𝑡 I that produces x(𝑡 ) . The forward

process results in a sequence of increasingly noisy versions of the
data, x(1) , x(2) , ..., x(𝑇 ) , with the final step x(𝑇 ) being almost in-
distinguishable from pure noise.

In the reverse process, the model is able to generate new sam-
ples from the data distribution 𝑞(x(0) ) by starting with a sample
𝑥 (𝑇 ) ∼ N(0, I) (a standard normal distribution). The reverse pro-
cess progressively removes noise from this initial noisy sample,
step by step, following a learned distribution

𝑝𝜃 (x(𝑡−1) |x(𝑡 ) ) = N(x(𝑡−1) ; 𝝁𝜃 (x(𝑡 ) , 𝑡), Σ𝜃 (x(𝑡 ),𝑡 )) (6)

𝑝𝜃 (x(0:𝑇 ) ) = 𝑝 (x(𝑇 ) )
𝑇∏
𝑡=1

𝑝𝜃 (x(𝑡−1) |x(𝑡 ) ) (7)

where 𝜃 represents the parameters of the model, which predict
the mean 𝝁𝜃 (x(𝑡 ) , 𝑡) and the covariance Σ𝜃 (x(𝑡 ),𝑡 ). This reverse
process gradually denoises x(𝑡 ) , reconstructing the original data as
it progresses through the time steps from 𝑇 to 0.

The neural network of the model is trained by minimizing the
following loss function:

L𝑑𝑖 𝑓 𝑓 = − log 𝑝𝜃 (x(0) |x(1) ) + 𝐾𝐿(𝑞(x(𝑇 ) |x(0) )∥𝑝 (x(𝑇 ) )

+
∑︁
𝑡>1

𝐾𝐿(𝑞(x(𝑡−1) |x(𝑡 ) , x(0) )∥𝑝𝜃 (x(𝑡−1) |x(𝑡 ) )
(8)

where KL represents the Kullback-Leibler divergence between two
probability distributions.The first term maximizes the likelihood
of reconstructing the original data, while the KL divergence terms
ensure that the generated data matches the true data distribution
at each time step.

4 METHODOLOGY
In this section, we propose a new preference-based RL approach
calledPreference-basedReinforcement learning using dIffusionmoDEl
(PRIDE). Our method builds upon PEBBLE [25], which uses unsu-
pervised pre-training and off-policy learning to learn from human
feedback. However, by integrating a diffusion generative model into
preference-based RL training, our approach achieves more efficient
learning with significantly less human feedback.



Algorithm 1 PRIDE

Require: the ratio 𝑢 ∈ [0, 1] of synthetic to real data, diffusion
model training interval 𝑅, human feedback interval𝑀 , number
of queries 𝐾 per feedback session, maximum feedback queries
𝑄

1: Initialize real replay buffer B𝑟𝑒𝑎𝑙 ← ∅, synthetic replay buffer
B𝑠𝑦𝑛 ← ∅, a dataset of preferences D ← ∅, agent policy 𝜋 ,
reward model 𝑟 , diffusion model 𝐹 , and the number of feedback
collected 𝑇 ← 0

2: // Unsupervised pre-training phase
3: pre-train policy 𝜋 by using intrinsic reward 𝑟 𝑖𝑛𝑡
4: for each timestep do
5: // Reward learning phase
6: if 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 %𝑀 == 0 and 𝑇 < 𝑄 then
7: // Determine the number of feedback queries to collect
8: 𝑞𝑢𝑒𝑟𝑖𝑒𝑠_𝑡𝑜_𝑐𝑜𝑙𝑙𝑒𝑐𝑡 ← min(𝐾,𝑄 −𝑇 )
9: for 𝑘 = 1 to 𝑞𝑢𝑒𝑟𝑖𝑒𝑠_𝑡𝑜_𝑐𝑜𝑙𝑙𝑒𝑐𝑡 do
10: Sample (𝜎0, 𝜎1) from B𝑟𝑒𝑎𝑙
11: Query human for a preference label 𝜇
12: D ← D ∪ {(𝜎0, 𝜎1, 𝜇)}
13: end for
14: 𝑇 ← 𝑇 + 𝑞𝑢𝑒𝑟𝑖𝑒𝑠_𝑡𝑜_𝑐𝑜𝑙𝑙𝑒𝑐𝑡
15: for each gradient step do
16: Sample a minibatch from D
17: Update reward model 𝑟 by optimizing L𝑝𝑟𝑒 𝑓
18: end for
19: // Replay buffer relabeling phase
20: Relabel all data in B𝑟𝑒𝑎𝑙 with reward values using 𝑟
21: end if
22: // Diffusion model training phase
23: if timestep % R == 0 then
24: for each gradient step do
25: Sample a minibatch from B𝑟𝑒𝑎𝑙
26: Update diffusion model 𝐹 by optimizing L𝑑𝑖 𝑓 𝑓
27: end for
28: // Synthetic data generation phase
29: Generate synthetic samples from diffusion model 𝐹 and

add them to B𝑠𝑦𝑛
30: end if
31: Gather data 𝑑 using policy 𝜋 in the environment
32: B𝑟𝑒𝑎𝑙 = B𝑟𝑒𝑎𝑙 ∪ 𝑑
33: // Agent learning phase
34: for each gradient step do
35: Sample data from B𝑟𝑒𝑎𝑙 and B𝑠𝑦𝑛 according to ratio 𝑢
36: Train policy 𝜋 on the sampled data
37: end for
38: end for

While PEBBLE has shown promising results in learning complex
behaviors that are difficult to specify with standard reward func-
tions, its reliance on reusing prior agent experiences stored in the
replay buffer limits its generalization capability. The data collected
through agent-environment interactions during training may not
always cover a sufficiently diverse set of agent behaviors. Suit-
able data for specific agent behaviors might simply be unavailable,
which can hinder exploration and reduce learning efficiency.

To address this issue, inspired by the recent success of using
diffusion models to augment traditional datasets in RL [32], we
propose to integrate diffusion models into the training process of
preference-based RL to improve feedback and sample efficiency. In
our approach, unsupervised pre-training enables the agent to accu-
mulate valuable experiences in the replay buffer, which can later
be used to train the diffusion model and provide diverse synthetic
experiences for the agent during policy learning. Specifically, in
our approach PRIDE, the diffusion model operates in two phases:
• Model Training Phase: Periodically, the diffusion model
is trained to approximate online behavioral distribution as
the agent interacts with the environment and gathers new
experiences, using batches of experiences sampled from the
real replay buffer. The model is optimized using the loss func-
tion shown in Eq. (8) to learn a distribution over behavioral
experiences of agent, capturing the underlying dynamics of
the environment and the agent’s behavior.
• Synthetic Data Generation Phase: Following each train-
ing phase, the diffusion model generates a large set of syn-
thetic experience data, which is diverse, novel, and dynami-
cally accurate. The generated synthetic experiences are then
stored in a separate synthetic replay buffer. These synthetic
experiences simulate interactions between the agent and the
environment, and are used to augment limited real data as if
they were real experiences during policy training.

When training the RL agent, PRIDE samples from both the real
and synthetic replay buffers to create a mixture of real and syn-
thetic data. A predefined ratio of synthetic to real data is main-
tained throughout training to ensure that the agent benefits from
both authentic and diverse synthetic experiences, which allows
the agent to explore more efficiently. Compared to relying solely
on limited real data, using a mixture of real and synthetic data in-
creases the diversity of training data available to the agent, leading
to improved sample efficiency and reducing the need for excessive
human feedback. The novel and diverse synthetic data also enables
our approach to achieve better generalization while minimizing
dependence on real data.

Our approach PRIDE consists of the following key steps:
• Step 0 (unsupervised pre-training): We pre-train the policy 𝜋
using intrinsic rewards to encourage the agent to explore a
wide range of states within the environment.
• Step 1 (reward learning): Human feedback, in the form of
preferences between pairs of trajectory segments, is collected
and used to train a reward model 𝑟 , which predicts human
preferencees for different agent behaviors.
• Step 2 (replay buffer relabeling): The current reward model 𝑟
is used to relabel the rewards of all agent experiences in the
real replay buffer B𝑟𝑒𝑎𝑙 .
• Step 3 (diffusionmodel training): The diffusionmodel is trained
using batches of experiences sampled from the real replay
buffer B𝑟𝑒𝑎𝑙 to approximate the agent’s online behavioral
distribution.
• Step 4 (synthetic data generation): The trained diffusionmodel
generates a large set of new and diverse synthetic experi-
ences, which are then stored in a separate synthetic replay
buffer B𝑠𝑦𝑛 .
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Figure 2: Mean episode return for PRIDE and PEBBLE on different locomotion tasks from the DMControl Suite. The mean
across 5 random seeds is plotted and the standard deviation is shown shaded.

(a) (b)

(c) (d)

Figure 3: Success rate for PRIDE and PEBBLE on different robotic manipulation tasks from the Meta-world. The mean across 5
random seeds is plotted and the standard deviation is shown shaded.

• Step 5 (agent learning): The agent’s policy 𝜋 is updated using
an off-policy RL algorithm, which samples experiences from
both the real replay buffer B𝑟𝑒𝑎𝑙 and the synthetic replay
buffer B𝑠𝑦𝑛 .
• Repeat Step 1 to Step 5.

By training a diffusion model, PRIDE generates synthetic experi-
ences that mimic online agent-environment interactions, but with
added variability. The large number of new and diverse synthetic
experiences enriches the replay buffer, broadening the training data
available to the agent. This allows the agent to be trained with a

much higher update-to-data ratio and thus learn more efficiently.
The full procedure of PRIDE is summarized in Algorithm 1.

5 EXPERIMENTS
We design our experiments to investigate the following questions:

• Does the use of a diffusion model in preference-based RL
improve sample efficiency?
• How does PRIDE compare to PEBBLE, after integrating dif-
fusion models into the training process, in terms of overall
performance?
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Figure 4: Mean episode return for PRIDE and PEBBLE under conditions where PEBBLE uses significantly more human feedback.
The mean across 5 random seeds is plotted and the standard deviation is shown shaded.

• What is the impact of using synthetic replay experiences in
preference-based RL on feedback efficiency?

We would like to highlight that, in our experiments, we only com-
pare PRIDE against PEBBLE since our method is built upon PEBBLE
and our aim is to demonstrate that integrating diffusion models
into the preference-based RL training process can yield superior
performance compared to PEBBLE.

5.1 Experimental Setups
We conduct experiments on a variety of complex locomotion and
robotic manipulation tasks from two benchmarks: the DeepMind
Control Suite (DMControl) [43, 44] and Meta-world [50]. Both
benchmarks are commonly used for evaluating preference-based
RL algorithms.

DeepMind Control Suite: DMControl provides a collection of
continuous control tasks designed to simulate real-world physics,
focusing on both locomotion and robotic manipulation. These tasks
serve as a benchmark for evaluating the learning efficiency of RL
algorithms. Each task involves controlling a physical system, such
as making a quadruped walk or manipulating a robotic arm to
perform precise tasks like item placement. The tasks in DMControl
can be used to test an agent’s ability to learn and adapt to complex,
dynamic environments, making it a crucial tool for developing and
evaluating RL methods.

Meta-world: Meta-World is a widely-used benchmark for eval-
uating robotic manipulation tasks in RL. It consists of a variety of
challenging tasks that require precise control and coordination of a

robotic arm to interact with different objects. These tasks simulate
real-world environments, such as pressing buttons, opening doors,
and moving objects, making Meta-World a valuable platform for
testing the generalization and performance of learning algorithms
in high-dimensional, real-world-like settings.

In our experiments, following prior works [6, 15, 25], human
feedback is provided by a scripted teacher, who provides preferences
between pairs of agent trajectory segments according to the ground
truth reward function. For all experiments, we present the mean
and standard deviation across five runs.

5.2 Hyperparameter Settings
In our experiments, we compare PRIDE against PEBBLE [25], using
the same underlying RL algorithm (SAC) and hyperparameter set-
tings as in the original paper. 1 One key hyperparameter in PEBBLE
is the total amount of human feedback collected. Human feedback
is provided in batches at regular timesteps, and the reward model
is updated after each batch until the maximum number of feedback
queries is reached.

The main distinction in PRIDE lies in the introduction of two
additional hyperparameters: synthetic-to-real sampling ratio and
diffusion model retraining interval. The synthetic-to-real sampling
ratio determines the proportion of synthetic experiences to real
experiences used when training the agent, while the diffusion model

1We adopt the same batch sizes in SAC as used in PEBBLE: a batch size of 1024 for
DMControl tasks and 512 for Meta-World tasks.



retraining interval defines the number of timesteps after which the
diffusion model is retrained to generate new synthetic experiences.

5.3 Main Results
Figure 2 shows the mean episode return for PRIDE and PEBBLE on
the Quadruped-walk, Cheetah-run, and Walker-walk tasks, with
2000 human feedback queries for the Quadruped-walk task and
1000 human feedback queries for theWalker-walk and Cheetah-run
tasks. In each task, PEBBLE and PRIDE use the same number of
feedback queries for fair comparison. We can see that PRIDE outper-
forms PEBBLE on all three locomotion tasks. In both Quadruped-
walk andWalker-walk, PRIDE performs better than PEBBLE both in
terms of absolute performance and learning speed, demonstrating
the advantages of using the diverse synthetic data generated by the
diffusion model. In the Cheetah-run task, PRIDE achieves similar
asymptotic performance to PEBBLE but is more sample efficient.

Figure 3 shows the success rate for PRIDE and PEBBLE on the
Button Press, Door Open, Sweep Into, and Drawer-open tasks from
Meta-world. The results show that PRIDE demonstrates faster learn-
ing in some tasks compared to PEBBLE. In Button Press, PRIDE con-
verges significantly faster than PEBBLE, reaching a higher success
rate much earlier in training. Similarly, in Door Open, compared to
PEBBLE, PRIDE achieves a higher success rate ( close to 100%) with
lower variance across seeds. In other two tasks, both PRIDE and
PEBBLE achieve similar performance with high variance.

5.4 Feedback Efficiency Analysis
To further evaluate the feedback efficiency of our approach, we
compare the performance of PRIDE to PEBBLE under conditions
where PEBBLE receives significantly more human feedback. As
shown in Figure 4, PRIDE achieves comparable or superior perfor-
mance to PEBBLE with significantly fewer human feedback queries
on all four tasks tested. This demonstrates the ability of PRIDE to
reduce reliance on human feedback by leveraging the novel and
diverse synthetic experiences generated by the diffusion model. In
Quadruped-walk, PRIDE converges significantly faster than PEB-
BLE, achieving similar asymptotic performance. In Cheetah-run,
PRIDE requires only 25% of the human feedback compared to PEB-
BLE while still achieving similar final performance. Our experi-
mental results show that PRIDE not only matches but can surpass
PEBBLE in terms of final performance, even when using at least 50%
less human feedback. This validates both the sample efficiency and
feedback efficiency of our method, and its potential in significantly
reducing the burden of human supervision in preference-based RL.

5.5 The Effect of the Synthetic-to-Real
Sampling Ratio

To further demonstrate the benefits of leveraging synthetic expe-
riences in training the agent with PRIDE, we evaluate the per-
formance of PRIDE on the Quadruped-walk task with varying
synthetic-to-real sampling ratio 𝑟 . For instance, a sampling ratio of
𝑟 = 0.3 indicates that 30% of the training experiences are sampled
from the synthetic replay buffer, while 70% are sampled from the
real replay buffer. As shown in Figure 5, PRIDE is sensitive to the
hyperparameter 𝑟 . Sampling a small percentage of synthetic expe-
riences (𝑟 = 0.3) or relying entirely on the synthetic experiences

Figure 5: Mean episode return for PRIDE on Quadruped-
walk with different synthetic-to-real sampling ratio values.
The mean across 5 random seeds is plotted and the standard
deviation is shown shaded.

(𝑟 = 1) both result in poor absolute performance and slow learning
speed. There exists some intermediate value (𝑟 = 0.5) that provides
the best trade-off, demonstrating the importance of utilising both
real and synthetic data with the right balance to maximize learning
efficiency in PRIDE. If the sampling ratio is too low, the additional
synthetic data might not significantly improve the diversity of the
training data, thereby limiting its impact on learning performance.
On the other hand, if the sampling ratio is too high, the algorithm
may overfit to the synthetic data, some of which may deviate from
the real data.

6 CONCLUSION
In this work, we proposed PRIDE, a novel preference-based RL
approach that integrates diffusion models into the training process
to improve both sample and feedback efficiency. PRIDE continually
trains a diffusion model to generate a large number of synthetic
experiences that mimic real agent-environment interactions. These
synthetic experiences are novel and diverse, which can be used to
augment the limited real agent experiences to broaden the training
data available to the agent, leading to improved sample efficiency
and final performance.

Through extensive experiments on locomotion tasks from the
DeepMind Control Suite and robotic manipulation tasks from Meta-
world, we demonstrated that PRIDE outperforms PEBBLE in most
of the scenarios tested. Furthermore, PRIDE achieves comparable
or superior performance with at least 50% less human feedback
compared to PEBBLE in some tasks, demonstrating the benefits
of using diffusion models to reduce the amount of human effort
required for efficient learning. Our integration of diffusion models
into preference-based RL opens up new possibilities for human-
in-the-loop RL research, offering a promising direction for future
work on learning from limited human feedback.

For future work, we aim to explore strategies to better trade-off
between learning performance and the cost of continually training
the diffusion model. Additionally, we will develop an approach to
dynamically adjust the synthetic-to-real sampling ratio based on
the agent’s learning progress to further improve performance.
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