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Abstract

Hedges play an important role in the manage-001
ment of conversational interaction. In peer-002
tutoring, they are notably used by tutors in003
dyads (pairs of interlocutors) experiencing low004
rapport to tone down the impact of instructions005
and negative feedback. Pursuing the objective006
of building a tutoring agent that manages rap-007
port with students in order to improve learning,008
we used a multimodal peer-tutoring dataset to009
construct a computational framework for iden-010
tifying hedges. We compared approaches re-011
lying on pre-trained resources with others that012
integrate insights from the social science litera-013
ture. Our best performance involved a hybrid014
approach that outperforms the existing base-015
line while being easier to interpret. We employ016
a model explainability tool to explore the fea-017
tures that characterize hedges in peer-tutoring018
conversations, and we identify some novel fea-019
tures, and the benefits of such a hybrid model020
approach.021

1 Introduction022

Rapport, most simply defined as the “. . . relative023

harmony and smoothness of relations between peo-024

ple . . . ” (Spencer-Oatey, 2005), has been shown to025

play a role in the success of activities as varied as026

psychotherapy (Leach, 2005) and survey interview-027

ing (Lune and Berg, 2017). In peer-tutoring, rap-028

port, as measured by the annotation of thin slices of029

video, has been shown to be beneficial for learning030

outcomes (Zhao et al., 2014; Sinha and Cassell,031

2015). The level of rapport rises and falls with032

conversational strategies deployed by tutors and033

tutees at appropriate times, and as a function of the034

content of prior turns. These strategies include self-035

disclosure, referring to shared experience, and, on036

the part of tutors, giving instructions in an indirect037

manner. Some work has attempted to automatically038

detect these strategies in the service of intelligent039

tutors (Zhao et al., 2016a), but only a few strate-040

gies have been attempted. Other work has con-041

centrated on a "social reasoning module" (Romero 042

et al., 2017) to decide which strategies should be 043

generated in a given context, but indirectness was 044

not among the strategies targeted. In this paper, we 045

focus on the automatic classification of one spe- 046

cific strategy that is particularly important for the 047

tutoring domain, and therefore important for intel- 048

ligent tutors: hedging, a sub-part of indirectness 049

that "softens" what we say. This work is part of 050

a larger research program with the long-term goal 051

of generating indirectness behaviors for a tutoring 052

agent.

Figure 1: A mock conversation displaying each type of
hedged formulation.

053

According to Brown and Levinson (1987), 054

hedges are part of the linguistic tools that interlocu- 055

tors use to produce politeness, by limiting the face 056

threat to the interlocutor (basically by limiting the 057

extent to which the interlocutor might experience 058

embarrassment because of some kind of poor per- 059

formance). An example is "that’s kind of a wrong 060

answer". Hedges are also found when speakers 061

wish to avoid losing face themselves, for exam- 062

ple when saying ("I think I might have to add 6."). 063

Madaio et al. (2017) found that in a peer-tutoring 064

task, when rapport between interlocutors is low, tu- 065

tees attempted more problems and correctly solved 066

more problems when their tutors hedged instruc- 067
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tions, which likewise points towards a "mitigation068

of face threat" function. Hedges can also be asso-069

ciated with a nonverbal component, for example070

averted eye gaze during criticism (Burgoon and071

Koper, 1984). Hedges are not, however, always ap-072

propriate, as in "I kind of think it’s raining today."073

when the interlocutors can both see rain (although074

it might be taken as humorous). These facts about075

hedges motivate a way to automatically detect them076

and, ultimately (although not in the current work)077

also generate them. In both cases we first have078

to be able to characterize them using interpretable079

linguistic features, which is what we address here.080

Thus, in the work described here, based on linguis-081

tic descriptions of hedges (Brown and Levinson,082

1987; Fraser, 2010), we built a rule-based classi-083

fier. We show that this classifier in combination084

with additional multimodal interpretable context-085

dependent features significantly improves the per-086

formance of a machine learning model for hedges,087

compared to a less interpretable deep learning base-088

line from Goel et al. (2019) using word embeddings.089

We also relied on a machine learning model expla-090

nation tool (Lundberg and Lee, 2017) to investigate091

the linguistic features related to hedges in the con-092

text of peer-tutoring, primarily to see if we could093

discover surprising features that the classification094

model would associate to hedges in this context,095

and we describe those below. We release the code096

of the models described in the paper. 1097

2 Related work098

Hedges: According to Fraser (2010), hedging is099

a rhetorical strategy that attenuates the strength100

of a statement. One way to produce an hedge is101

by altering the full semantic value of a particu-102

lar expression through Propositional hedges (also103

called Approximators in Prince et al. (1982)), as in104

"You are kind of wrong," that reduce prototypical-105

ity (i.e accuracy of the correspondence between the106

proposition and the reality that the speaker seeks107

to describe). Propositional hedges are related to108

fuzzy language (Lakoff, 1975), and therefore to the109

production of vagueness (Williamson, 2002) and110

uncertainty (Vincze, 2014).111

A second kind are Relational Hedges (also called112

Shields in Prince et al. (1982)), such as “I think113

that you are wrong.” or “The doctor wants you to114

stop smoking.”, conveying that the proposition is115

considered by the speaker as subjective. In a further116

1https://github.com/AnonymousHedges/HedgeDetection

sub-division, Attribution Shields, as in "The doc- 117

tor wants you ...", the involvement of the speaker 118

in the truth value of the proposition is not made 119

explicit, which allows speakers not to take a stance. 120

As described above, Madaio et al. (2017) found 121

that tutors who showed lower rapport with their 122

tutees used more hedged instructions (they also em- 123

ployed more positive feedback), however this was 124

only the case for tutors with a greater belief in their 125

ability to tutor. Tutees in this context did solve 126

more problems correctly when their tutors hedged 127

instructions. No effect of hedging was found for 128

dyads (pairs of interlocutors) with greater social 129

closeness. However, the authors did not look at the 130

specific linguistic forms these teenagers used. 131

Rowland (2007) also describes the role that hedg- 132

ing plays in this age group, showing that students 133

use both relational ("I think that John is smart.") 134

and propositional ("John is kind of smart.") hedges 135

for much the same shielding function of demon- 136

strating uncertainty to save them from the risk 137

of embarrassment if they are wrong. The author 138

observed that teens used few Adaptors (kind of, 139

somewhat) and preferred to use Rounders (around, 140

close to). However, this study was performed with 141

an adult and two children, possibly biasing the 142

results due to the participation of the adult inves- 143

tigator. Hedges have been included in virtual tu- 144

toring agents before now. (Howard et al., 2015) 145

integrated hedges in a tutor agent for undergradu- 146

ates in CS, as a way to encourage the student to 147

take initiatives. Hedges were also used as a way of 148

integrating Brown and Levinson’s politeness frame- 149

work (Wang et al., 2008; Schneider et al., 2015) in 150

virtual tutoring agents. Results were not broken out 151

by strategy, but politeness in general was shown 152

to positively influence motivation and learning, in 153

certain conditions. 154

Computational methods for hedge detection: 155

A number of studies have targeted the detection 156

of hedges and uncertainty in text (Medlock and 157

Briscoe, 2007; Ganter and Strube, 2009; Tang et al., 158

2010; Velldal, 2011; Szarvas et al., 2012), partic- 159

ularly following the CoNLL 2010 dataset release 160

(Farkas et al., 2010). However, this work is not 161

as related to hedges in conversation, as it focuses 162

on a formal and academic language register (Hy- 163

land, 1998; Varttala, 1999). As noted by Prokofieva 164

and Hirschberg (2014), the functions of hedges are 165

domain- and genre-dependent, therefore this bias 166

towards formality implies that the existing work 167
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may not adapt well to the detection of hedges in168

conversation between teenagers. A consequence is169

that the existing work does not consider terms like170

"I think," since opinions rarely appear in an aca-171

demic writing dataset. Instructions are also almost172

absent ("I think you have to add ten to both sides."),173

a strong limitation for the study of conversational174

hedges since it is in requests (including tutoring in-175

structions) that indirect formulations mostly occur,176

according to Blum-Kulka (1987). Prokofieva and177

Hirschberg (2014) also note that it is difficult to178

detect hedges because the word patterns associated179

with them have other semantic and pragmatic func-180

tions: considering "I think that you have to add x181

to both sides." vs "I think that you are an idiot.",182

it is not clear that the second use of "I think that"183

is an hedge marker. They advocate using machine184

learning approaches to deal with the ambiguity of185

these markers. Working on a conversational dataset,186

Ulinski et al. (2018) built a computational system187

to assess speaker commitment (i.e. at which point188

the speaker seems convinced by the truth value189

of a statement), in particular by relying on a rule-190

based detection system for hedges. Compared to191

that work, our rule-based classification model is192

directly detecting hedge classes, and we employ193

the predictions of the rule-based model as a feature194

for stronger machine learning models, designed to195

lessen the impact of the imbalance between classes.196

We also consider apologies when they serve a mit-197

igation function (we then call them Apologizers),198

as was done by the authors of our corpus, and we199

also use the term subjectivizers as defined below,200

to be able to compare directly with the previous201

work carried out on this corpus. As far as we know,202

only Goel et al. (2019) have worked with a peer-203

tutoring dataset (the one that we also use), and they204

achieved their best classification result by employ-205

ing an Attention-CNN model, inspired by Adel and206

Schütze (2016).207

3 Problem statement208

We consider a set D of conversations D =209

(c1, c2, ..., c|D|), where each conversation is com-210

posed of a sequence of independent syntactic211

clauses ci = (u1, u2, ..., uM ), where M is the212

number of clauses in the conversation. Note213

that two consecutive clauses can be produced214

by the same speaker. Each clause is associated215

with a unique label corresponding to the differ-216

ent hedge classes described in Table 1: yi ∈ C217

= {Propositional Hedges, Apologizers, Subjec- 218

tivizers, Not hedged}. Finally, an utterance ui 219

can be represented as a vector of features X = 220

(x1, x2, ..., xN ), where N represents the number of 221

features we used to describe a clause. Our first 222

goal is to design a model that predicts correctly the 223

label yi associated to ui. It can be understood as 224

the following research question: 225

RQ1: "Which models and features can be used 226

to automatically characterize hedges in a peer- 227

tutoring interaction?" 228

Our second goal is to identify, for each hedge class, 229

the set of features Fclass = {fk}, k ∈ [1, N ] sorted 230

by feature importance in the classification of class. 231

It corresponds to the following research question: 232

RQ2: "What are the most important linguistic 233

features that characterize our hedge classes in a 234

peer-tutoring setting?" 235

236

4 Methodology 237

4.1 Corpus 238

Data collection: The dialogue corpus used here 239

was collected as part of a larger study on the effects 240

of rapport-building on reciprocal peer tutoring. 24 241

American teenagers (mean age = 13.5, min = 12, 242

max = 15), half male and half female, came to a 243

lab where half of the participants were paired with 244

a same-age, same-gender friend, and the other half 245

with a stranger. The participants were assigned 246

to a total of 12 dyads that alternated tutoring one 247

another in linear algebra equation solving for 5 248

weekly hour-long sessions, for a total corpus of 249

nearly 60 hours of face-to-face interactions. Each 250

session was structured such that the students en- 251

gaged in brief social chitchat in the beginning, then 252

one of the students was randomly assigned to tutor 253

the other for 20 minutes. They then engaged in 254

another social period, and concluded with a second 255

tutoring period where the other student was as- 256

signed the role of tutor. Audio and video data were 257

recorded, transcribed, and segmented for clause- 258

level dialogue annotation, providing nearly 24 000 259

clauses. Non-speech segments (notably fillers and 260

laughter) were maintained. Because of temporal 261

misalignment for parts of the corpus, many par- 262

averbal phenomena, such as prosody, were unfortu- 263

nately not available to us. Since our access to the 264

dataset is covered by a Non-Disclosure Agreement, 265

it cannot be released publicly. However the original 266

experimenters’ Institutional Review Board (IRB) 267
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approval allows us to view, annotate, and use the268

data to train models. This also allows us to provide269

a link to a pixelated video example in an online270

appendix to the paper.271

Data annotation: This dataset was annotated by272

Madaio et al. (2017), using hedge classes derived273

from Rowland (2007) (see Table 1). Comparing274

the annotations with the classes mentioned in the275

related work section, Subjectivizers would corre-276

spond to Relational hedges (Fraser, 2010), Propo-277

sitional hedges and Extenders correspond to Ap-278

proximators (Prince et al., 1982) with the addition279

of some discourse markers such as just. Apolo-280

gizers are mentioned as linguistic tools related to281

negative politeness in Brown and Levinson (1987).282

Krippendorff’s alpha for all four codes was over283

0.7 (denoting an acceptable inter-coder reliability284

according to Krippendorff (2004)). Only the task285

periods of the interactions were annotated. The286

dataset is widely imbalanced, with more than 90%287

of the utterances belonging to the Not hedged class.288

Utterances labeled with Extenders class were con-289

sidered here as Propositional hedges, because the290

annotation of Extenders class was not precise and291

reliable enough and both classes carry a similar292

semantic function. Some other instances were re-293

annotated when they clearly did not match the de-294

scription of the class given in the coding manual295

provided by the original authors of the corpus.296

4.2 Features297

Label from rule-based classifier (Label RB): We298

use the class label predicted by the rule-based clas-299

sifier described in Section 4.3 as a feature. Our300

hypothesis is that the machine learning model can301

use this information to counterbalance the class302

imbalance. To take into account the fact that some303

rules are more efficient than others, we weighted304

the class label resulting from the rule-based model305

by the precision of the rule that generated it.306

Unigram and bigram: We count the number of307

occurrences of unigrams and bigrams of the corpus308

in each clause. We used the lemma of the words for309

unigrams and bigrams using the nltk lemmatizer310

(Loper, 2002) and selected unigrams and bigrams311

that occurred in the training dataset at least fifty312

times. The goal was to investigate, with a bottom-313

up approach, to what extent the use of certain words314

characterizes hedge classes in tutoring. In Section315

5 we examine the overlap between these words and316

those a priori identified by the rules.317

Part-of-speech (POS): Hedge classes seem to be 318

associated with different syntactic patterns: for ex- 319

ample, subjectivizers most often contain a personal 320

pronoun followed by a verb, as in "I guess", "I 321

believe", "I think". We therefore considered the 322

number of occurrences of POS-Tag n-grams (n=1, 323

2, 3) as features. We used the spaCy POS-tagger 324

and considered POS unigrams, bigrams and tri- 325

grams that occur at least 10 times in the training 326

dataset. 327

LIWC: Linguistic Inquiry and Word Count 328

(LIWC) (Pennebaker et al., 2015) is standard soft- 329

ware for extracting the count of words belonging to 330

specific psycho-social categories (e.g., Emotions, 331

Religion). It has been successfully used in the 332

detection of conversational strategies (Zhao et al., 333

2016a). We therefore count the number of occur- 334

rences of all the 73 categories from LIWC. 335

Tutoring moves (TM): Intelligent tutoring sys- 336

tems rely on specific tutoring moves to success- 337

fully convey content (as do human tutors). We 338

therefore looked at the link between the tutoring 339

moves, as annotated in Madaio et al. (2017), and 340

hedges. For tutors, these moves are (1) instruc- 341

tional directives and suggestions, (2) feedback, and 342

(3) affirmations, mostly explicit reflections on their 343

partners’comprehension, while for tutees, they are 344

(1) questions, (2) feedbacks, and (3) affirmations, 345

mostly tentative answers. 346

Nonverbal and paraverbal behaviors: As in Goel 347

et al. (2019), we included the nonverbal and par- 348

averbal behaviors that are related to hedges. Specif- 349

ically, we consider laughter and smiles, that have 350

been shown to be effective methods of mitiga- 351

tion (Warner-Garcia, 2014), cut-offs indicating self- 352

repairs, fillers like "Um", gaze shifts (annotated 353

as Gaze at Partner, Gaze at the math worksheet, 354

and Gaze elsewhere), and head nods. Each fea- 355

ture was present twice in the feature vector, one 356

time for each interlocutor. Inter-rater reliability 357

for nonverbal behavior was 0.89 (as measured by 358

Krippendorff’s alpha) for eye gaze, 0.75 for smile 359

count, 0.64 for smile duration and 0.99 for head 360

nod. Laughter is also reported in the transcript at 361

the word level. We separate behaviors from the 362

tutor from that of the tutee. The collection process 363

for these behaviors is detailed further in Zhao et al. 364

(2016b). 365

The clause-level feature vector was normalized by 366

the length of the clause (except for the rule-based 367

label). This length was also added as a feature. 368
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Class Definition Example

Subjectivizers Words that reduce intensity or certainty “So then I would divide by two.”
Apologizers Apologies used to soften direct speech acts “Oh sorry six b.”

Propositional hedges Qualifying words to reduce intensity or certainty of utterances “It’s actually eight.”
Extenders Words used to indicate uncertainty by referring to vague categories “It’ll be the number x or whatever variable you have.”

Table 1: Definition of the classes

Prop. hedges Apologizers Subjectivizers Not hedged Total

1073 138 592 21858 23661

Table 2: Distribution of the classes

Features name Automatic extraction Vector size

Rule-based label Yes 4
Unigram Yes ~250
Bigram Yes ~250

POS Yes ~1200
LIWC Yes 73

Nonverbal No 24
Tutoring moves No 6

Total ~1800

Table 3: List of automatically extracted and manually
annotated features with their size.

Table 3 presents an overview of the final feature369

vector.370

4.3 Classification models371

The classification models used are presented here372

according to their level of integration of external373

linguistic knowledge.374

Rule-based model: On the basis of the annotation375

manual used to construct the dataset from Madaio376

et al. (2017), and with descriptions of hedges from377

Rowland (2007), Fraser (2010) and Brown and378

Levinson (1987), we constructed a rule-based clas-379

sifier that matches regular expressions indicative380

of hedges. The rules are detailed in Table 7 in the381

Appendix.382

LGBM: Since hedges are characterized by explicit383

lexical markers, we tested the assumption that a ma-384

chine learning model with a knowledge-driven rep-385

resentation for clauses could compete with a BERT386

model in performance, while being much more in-387

terpretable. We relied on LightGBM, an ensemble388

of decision trees trained with gradient boosting (Ke389

et al., 2017). This model was selected because of390

its performance with small training datasets and391

because it can ignore uninformative features, but392

also for its training speed compared to alternative393

implementations of gradient boosting methods.394

Multi-layer perceptron (MLP): As a simple base-395

line, we built a multi-layer perceptron using three 396

sets of features: a pre-trained contextual repre- 397

sentation of the clause (SentBERT; Reimers and 398

Gurevych (2019)) ; the concatenation of this con- 399

textual representation of the clause and a rule-based 400

label (not relying on the previous clauses) ; and 401

finally the concatenation of all the features men- 402

tioned in section 4.2, without the contextualized 403

representation. 404

LSTM over a sequence of clauses: Since 405

we are working with conversational data, we 406

also wanted to test whether taking into ac- 407

count the previous clauses helps to detect 408

the type of hedge class in the next clause. 409

Formally, we want to infer yi using yi = 410

maxy∈Classes P (y|X(ui), X(ui−1), ..., X(ui−K)), 411

where K is the number of previous clauses 412

that the model will take into account. The 413

MLP model presented above infers yi using 414

yi = maxy∈Classes P (y|X(ui)), therefore a 415

difference of performance between the two models 416

would be a sign that using information from the 417

previous clauses could help to detect the hedged 418

formulation in the current clause. We tested a 419

LSTM model with the same representations for 420

clauses as for the MLP model. 421

CNN with attention: Goel et al. (2019) estab- 422

lished their best performance on hedge detec- 423

tion using a CNN model with additive attention 424

over word (and not clause) embeddings. Con- 425

trary to the MLP and LSTM models mentioned 426

above, this model tries to infer yi using yi = 427

maxy∈Classes P (y|g(w0), g(w1), ..., g(wL)), with 428

L representing the maximum clause length we al- 429

low, and g representing a function that turns the 430

word wj , j ∈ [0, L] into a vector representation 431

(for more details, please see Adel and Schütze 432

(2016)). 433

BERT: To benefit from deep semantic and con- 434

textual representations of the utterances, we also 435

fine-tuned BERT (Devlin et al., 2018) on our clas- 436

sification task. BERT is a pre-trained Transformers 437

encoder (Vaswani et al., 2017) that has significantly 438

improved the state of the art on a number of NLP 439
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tasks, including sentiment analysis. It produces a440

contextual representation of each word in a sen-441

tence, making it capable of disambiguating the442

meaning of words like "think" or "just" that are443

representative of certain classes of hedges. BERT,444

however, is notably hard to interpret.445

4.4 Analysis tools446

Looking at which features improve the perfor-447

mance of our classification models tells us whether448

these features are informative or not, but does not449

explain how these features are used by the mod-450

els to make a given prediction. We therefore pro-451

duced a complementary analysis using an inter-452

pretability tool. As demonstrated by (Lundberg453

and Lee, 2017), LightGBM internal feature impor-454

tance scores are inconsistent with both the model455

behavior and human intuition, so we instead used456

a model-agnostic tool. SHAP (Lundberg and Lee,457

2017) assigns to each feature an importance value458

(called Shapley values) for a particular prediction459

depending on the extent of its contribution (a de-460

tailed introduction to Shapley values and SHAP461

can be found in Molnar (2020)). SHAP is a model-462

agnostic framework, therefore the values associ-463

ated with a set of features can be compared across464

models. It should be noted that SHAP produces465

explanations on a case-by-case basis, therefore it466

can both provide local and global explanations. For467

the Gradient Boosting model, we use an adapted468

version of SHAP (Lundberg et al., 2018), called469

TreeSHAP.470

5 Experiments and results471

5.1 Experimental setting472

To detect the best set of features, we used Light-473

GBM and proceeded incrementally, by adding the474

group of features we thought to be most likely asso-475

ciated with hedges. We did not consider the risk of476

relying on a sub-optimal set of features through this477

procedure because of the strong ability of Light-478

GBM to ignore uninformative features. We use this479

incremental approach as a way to test our intuition480

about the performativity of groups of features (i.e.481

does adding a feature improve the performance of482

the model) with regard to the task of classifica-483

tion. To compare our models, we trained them on484

the 4-class task, and looked at the average of the485

weighted F1-scores for the three hedge classes (i.e.486

how well the models infer minority classes) that we487

report here as "3-classes", and at the average of the488

weighted F1-scores for the 4 classes, that we report 489

as "4-classes". Details of the hyperparameters and 490

experimental settings are provided in Appendix A. 491

5.2 Model comparison and feature analysis 492

Overall results: Table 4 presents the results ob- 493

tained by the 6 models presented in Section 4.3 494

for the multi-class problem. Best performance (F1- 495

score of 74.4) is obtained with LightGBM leverag- 496

ing all the features. In the appendix (see Table 8 497

and Table 9) we indicate the confidence intervals 498

to represent the significance of the differences be- 499

tween the models. 500

First, and perhaps surprisingly, we notice that 501

the use of "Knowledge-Driven" features based on 502

rules built from linguistic knowledge of hedges 503

in the LightGBM model outperforms the use of 504

pre-trained embeddings within a fine-tuned BERT 505

model (74.4 vs. 65.9), and in the neural baseline 506

from (Goel et al., 2019) (74.4 vs 58.9). 507

The low scores obtained by the LGBM, LSTM 508

and MLP models with pre-trained sentence em- 509

beddings versus Knowledge-Driven features might 510

signal that the word patterns characterizing hedges 511

are not salient in these representations (i.e. the 512

distance between "I think you should add 5." and 513

"You should add 5." is short.). KD Features seem 514

to provide a better separability of the classes. The 515

combination of KD features and Pre-trained em- 516

beddings does not significantly improve the perfor- 517

mance of the models compared to the KD Features 518

only, which suggests that the information from the 519

Pre-trained embeddings is redundant with the one 520

from the KD Features. This result may be due to 521

the high dimensionality of the input vector (868 522

with PCA on the KD Features; 2500 otherwise). 523

A second finding is that the use of gradient boost- 524

ing models on top of rule-based classifiers better 525

models the hedge classes. The other machine learn- 526

ing models did not prove to be as effective, except 527

for BERT. 528

Feature analysis using LightGBM: Using the best 529

performing model, Table 5 shows the role of each 530

feature set in the prediction task. The significance 531

of the differences is shown in Table 10 and Table 11. 532

Compared to the rule-based model, the introduction 533

of n-grams significantly improved the performance 534

of our classifier, suggesting that some lexical and 535

syntactic information describing the hedge classes 536

was not present in the rule-based model. Looking 537

at Table 5, we do not observe significant differ- 538
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Models KD Feat. (KDF) Pre-Trained Emb. (PTE) KDF + PTE

Rule-based (3-classes) 61.9 ∅ ∅
MLP (3-classes) 62.6 (1.7) 36.0 (2.8) 62.1 (0.8)

Attention-CNN (3-classes) ∅ 58.9 (2.4) ∅
LSTM (3-classes) 59.8 (8.9) 34.3 (5.8) 61.0 (3.3)
BERT (3-classes) ∅ 65.9 (2.9) ∅
LGBM (3-classes) 74.4 (1.3) 43.0 (0.6) 73.8 (1.9)

Rule-based (4-classes) 94.3 ∅ ∅
MLP (4-classes) 94.3 (0.3) 90.9 (0.3) 94.1 (0.2)

Attention-CNN (4-classes) ∅ 94.3 (0.2) ∅
LSTM (4-classes) 93.0 (2.7) 89.8 (1.8) 93.7 (0.7)
BERT (4-classes) ∅ 94.5 (0.8) ∅
LGBM (4-classes) 96.3 (0.2) 92.1 (0.1) 96.2 (0.3)

Table 4: Averaged weighted F1-scores (and standard
deviation) for the three minority classes and for the 4
classes, for all models. "KD" stands for "Knowledge-
Driven", meaning that the features are derived from
lexicon, n-gram models and annotations.

ences between the LGBM model using only the539

label rule based + (1-grams and 2-grams) and the540

models incorporating more features. To our sur-541

prise, neither the tutoring moves nor the nonverbal542

features significantly improved the performance of543

the model. The 2 features were included to index544

the specific peer tutoring context of these hedges,545

so this indicates that in future work we might wish546

to apply the current model to another context of547

use to see if this model of hedges is more generally548

applicable than we originally thought. By combin-549

ing this result with the better performance of the550

model using Knowledge-Driven (i.e. explicit) fea-551

tures compared to pre-trained embeddings, it would552

seem that hedged formulations is above all a lex-553

ical phenomena (i.e. produced by specific lexical554

elements).555

5.3 In-depth analysis of the informative556

features557

We trained the SHAP explanation models on Light-558

GBM with all features. The most informative fea-559

tures (in absolute value) for each class are shown in560

Table 6, and the plots by class are presented in the561

Appendix. The most important features seem to be562

the rule-based labels, which appear in at least the563

third position for three classes (see Table 6), and564

in the first position for Propositional Hedges and565

Not hedged classes. Unigrams (Oh, Sorry, just,566

Would, and I) are also present in the 5 top-ranked567

features. This confirms the findings mentioned in568

related work for the characterization of the differ-569

ent hedge classes (just with Propositional Hedges,570

sorry with Apologizer, I with Subjectivizers). The571

presence of Oh also has high importance for the572

characterization of Apologizer (n=7, see Figure 4),573

as illustrated in examples such as "Oh sorry, that’s574

nine.". We note that the occurrences of "Oh sorry" 575

as a clause were excluded by our rule-based model 576

because they do not correspond to an apologizer 577

(they cannot mitigate the content of a proposition 578

if there is no proposition associated). This exam- 579

ple illustrates the interest of a machine learning 580

model approach to disambiguate the function of 581

conventional non-propositional phrases like "Oh 582

sorry". 583

In addition, SHAP highlights the importance of 584

novel features that were not already identified by 585

the literature: (i) what LIWC classifies as infor- 586

mal words but that are mostly interjections like 587

ah and oh are strongly associated with Apologizer, 588

as are disfluencies; (ii) the use of POS tags seems 589

to be very relevant for characterizing the different 590

classes (POS tag features2 occur in the top-ranked 591

features of all the classes (see Figures in the Ap- 592

pendix). It means that there are some recurring 593

syntactic patterns in each class; (iii) Regarding the 594

utterance size, a clause shorter than the mean is 595

associated with directness while a longer clause 596

suggests that it contains a Subjectivizer (n=4); 597

(iv) Tutoring moves are not strong predictors of 598

any classes: "Affirmation from tutor" is the only 599

feature appearing as a predictor of Propositional 600

hedges (n=19). This is consistent with the feature 601

analysis in Table 5, suggesting that tutoring moves 602

do not significantly improve the performance of the 603

classifier; (v) Nonverbal behaviors do not appear 604

as important features for the classification. This 605

is coherent with results from (Goel et al., 2019). 606

Note that prosody might play a role in detecting 607

instructions that trail off, but, as described, paraver- 608

bal features were not available; (vi) Would plays an 609

important role in the data classification process, as 610

it is strongly associated to Propositional hedges 611

(n=2). We can see in Figure 6 that if the clauses 612

containing the form (PRONOUN, VERB) are more 613

likely to be Subjectivizers (n=13), some clauses 614

are positively associated with the class because 615

they do not contain "I would". It may mean that "I 616

would" is a 2-gram that corresponds to the (PRO- 617

NOUN, VERB) pattern, but that is not as much 618

associated to the class as the rest of the instances 619

of that pattern. It is interesting to note that, when 620

designing the rule-based classifier, we saw it reach 621

a limit in performance when we started to include 622

2Note that there is strong redundancy between some fea-
tures of LIWC and the spaCy POS tagger that both produce
a "Pronoun" category, using a lexicon in the first case, and a
neural inference in the second.
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Models Label RB + 1-gram and 2-gram + POS + LIWC + TM + Nonverbal

3-classes 63.2 (1.3) 75.0 (0.7) 74.0 (1.0) 74.0 (1.4) 75.1 (1.6) 74.4 (1.3)

4-classes 94.6 (0.2) 96.3 (0.1) 96.2 (0.2) 96.2 (0.1) 96.3 (0.3) 96.3 (0.2)

Table 5: Averaged weighted F1-scores for the three classes of hedges and the four classes, with an additive
integration of features in the LightGBM model. The standard deviation is computed across five folds.

Rank Apologizer Subjectivizers Prop. Hedges Not hedged

1 Affect (LIWC) Yeah Class label Class label
2 Disfluencies (LIWC) I Would Would
3 Sorry Class label Just Yeah
4 Sad (LIWC) Clause length (higher) Function word (LIWC) Insight (LIWC)
5 Focus present (LIWC) Cognitive process (LIWC) Actually (Interject°, Interject°)

Table 6: Most important clause-level features for LightGBM according to the SHAP analysis.

Would in our regular expression patterns, proba-623

bly because the form is hard to disambiguate for a624

deterministic system.625

While exploring the Shapley values associated to626

each clause, we observed that features like tutoring627

moves are extremely informative for a very small628

number of clauses (therefore not significantly influ-629

encing the overall performance of the prediction),630

and more or less not informative for the rest. Infer-631

ring the global importance of a feature as a mean632

across the shapley values in the dataset may not633

be the only way to explore the behavior of gradi-634

ent boosting methods. It might be more useful to635

cluster clauses based on the importance that SHAP636

gives to that feature in its classification, as this637

could help discover sub-classes of hedges that are638

differentiated from the rest by their interaction with639

a specific feature (in the way that some Apologiz-640

ers are characterized by an "oh"). We also note641

that the explanation model is sensitive to spurious642

correlations in the dataset, caused by the small rep-643

resentation of some class: for example, "nine" is a644

positive predictor (n=8) of Apologizers.645

6 Conclusion and future work646

Through our classification performance experi-647

ments, we showed that it is possible to use ma-648

chine learning methods to diminish the ambigu-649

ity of hedges, and that the hybrid approach of us-650

ing rule-based label features derived from social651

science (including linguistics) literature within a652

machine learning model helped significantly to in-653

crease the model’s performance. Nonverbal behav-654

iors and tutoring moves did not provide informa-655

tion at the sentence level; both the performance656

of the model and the feature contribution analy-657

sis suggested that their impact on the model out- 658

put was not strong. This is consistent with results 659

from Goel et al. (2019). However, in future work 660

we would like to investigate the potential of multi- 661

modal patterns when we are able to better model 662

sequentiality (e.g., negative feedback followed by 663

a smile). Regarding the SHAP analysis, most of 664

the features that are considered as important are 665

coherent with the definition of the classes (I for 666

subjectivizers, sorry for apologizers, just for propo- 667

sitional hedges). However, we discovered that fea- 668

tures like utterance size can serve as indicator of 669

certain classes of hedges. A limitation of SHAP is 670

that it makes a feature independence assumption, 671

which prompts the explanatory model to underesti- 672

mate the importance of redundant features (like pro- 673

nouns in our work). In the future we will explore 674

explanatory models capable of taking into account 675

the correlation between features in the dataset like 676

SAGE (Covert et al., 2020), but suited for very im- 677

balanced datasets. In the domain of peer-tutoring, 678

we would like to be able to further test the link 679

between hedges and rapport, and the link between 680

hedges and learning gains in the subject being tu- 681

tored. As noted above, this kind of study requires a 682

fine-grained control of the language produced by 683

one of the interlocutors, which is difficult to control 684

in a human-human experience. The hedge classifier 685

can be used not just to classify, but also to work 686

towards improving their generation for tutor agents. 687

In future work we will explore using the classifier 688

to re-rank generation outputs, taking advantage of 689

the recurring syntactic patterns (see (ii) in Section 690

5.3) to improving the generation process of hedges, 691

and re-generating clauses that don’t contain one of 692

these syntactic patterns. 693
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A Additional information on the885

experimental settings886

We used PyTorch (Paszke et al., 2019) to imple-887

ment the neural models. For each set of features,888

hyperparameters were selected using Optuna889

(Akiba, 2019), a parameter search framework. We890

re-implemented the Attention-CNN with Glove891

(Pennington et al., 2014) 300-D words embeddings892

as the vector representation. For each models,893

the results are cross-validated using 5 folds (we894

chose 5 instead of 10 to avoid having folds with895

too few samples per class). We corrected the loss896

function for class imbalance to force the model897

to adapt more to the less frequent classes. The898

strength of this correction depended on the model,899

and was selected because it provided a satisfying900

compromise between favoring recall and precision901

in the classification results of that model. For902

LightGBM, a "square root of the square root of the903

inverse class proportion" correction was selected.904

Neural models were trained using AdamW as905

an optimizer (Loshchilov and Hutter, 2017), and906

used a reduced feature vector, obtained with907

the application of PCA (dinit = 1800; d = 100908

; 99.8 % of the information is conserved). No909

significant performance differences were observed910

between the original vector and the reduced vector911

for training the models. To compute the SHAP912

values mentioned in the paper, we kept one split913

to perform the 5-split of the dataset, and leave 1914

split to validate and early stop the model, in order915

to avoid overfitting. A complete configuration of916

hyperparameters used for each model is reported in917

the GitHub repository with the code of the paper:918

https://github.com/AnonymousHedges/HedgeDetection.919

The BERT model was fine-tuned on a Nvidia920

Quadro RTX 8000 GPU.921

B Tables922
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Class Rule (regexp)

Subj. (?!what).*(i|we) ?(don’t|didn’t|did)? ?(not)?
(guess|guessed|thought|think|believe|believed|suppose|supposed)

?(whether|if|is|that|it|this)?.*
Subj. .*(i|i’m|we) ?(was|am|wasn’t)? ?(not)? (sure|certain).*
Subj. .*(i feel like you).*
Subj. .*(you (might|may) (believe|think)).*
Subj. .*(according to|presumably).*
Subj. .*(i|you|we) have to (check|look|verify).*
Subj. .*(if i’m not wrong|if i’m right|if that’s true).*
Subj. .*(unless i).*
Apol. .*(i’m|i|we’re) (am|are)? ?(apologize|sorry).*
Apol. (?!.*(be|been|was) like excuse me)((excuse me|sorry)[w ,’]+|[w ,’]+(excuse me|sorry))
Prop. .*(just|a little|maybe|actually|sort of|kind of|pretty

much|somewhat|exactly|almost|little bit|quite|
regular|regularly|actually|almost|as it were|basically|

probably|can be view as|crypto-|especially|essentially|
exceptionally|for the most part|in a manner of speaking|

in a real sense|in a sense|in a way|largely|literally|
loosely speaking|kinda|more or less|mostly|often|

on the tall side|par excellence|particularly|
pretty much|principally|pseudo-|quintessentially|

relatively|roughly|so to say|strictly speaking|
technically|typically|virtually|approximately|

something between|essentially|only).*
Prop. .*(i|i’m|you|it’s) (am|are) (apparently|surely)[ ,]?.*
Prop. .*(it) (looks|seems|appears)[ ,]?.*", ".* (or|and) (that|something|stuff|so forth)

Table 7: Regexp rules used for the classifier.

Models RB MLP (KDF) MLP (PTE) MLP (KDF/PTE) CNN (PTE) LSTM (KDF) LSTM(PTE) LSTM (KDF/PTE) BERT (PTE) LGBM (KDF) LGBM (PTE) LGBM (KDF/PTE)

Rule-based No Yes No Yes No Yes No Yes Yes Yes Yes
MLP (KDF) No Yes No Yes Yes Yes No Yes Yes Yes Yes
MLP (PTE) Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes

MLP (KDF + PTE) No No Yes Yes Yes Yes No Yes Yes Yes Yes
Attention-CNN (PTE) Yes Yes Yes Yes No Yes No Yes Yes Yes Yes

LSTM (KDF) No Yes Yes Yes No Yes No Yes Yes Yes Yes
LSTM(PTE) Yes Yes No Yes Yes Yes Yes Yes Yes Yes Yes

LSTM (KDF + PTE) No No Yes No No No Yes Yes Yes Yes Yes
BERT (PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

LGBM (KDF) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No
LGBM (PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

LGBM (KDF + PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Table 8: Significance table for the 3-classes part of Table 4. "Yes" means that the difference is statistically significant.

Models RB MLP (KDF) MLP (PTE) MLP (KDF/PTE) CNN (PTE) LSTM (KDF) LSTM(PTE) LSTM (KDF/PTE) BERT (PTE) LGBM (KDF) LGBM (PTE) LGBM (KDF/PTE)

Rule-based No Yes No No Yes Yes Yes No Yes Yes Yes
MLP (KDF) No Yes No No Yes Yes Yes No Yes Yes Yes
MLP (PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

MLP (KDF + PTE) No No Yes No Yes Yes Yes Yes Yes Yes Yes
Attention-CNN (PTE) No No Yes No Yes Yes Yes No Yes Yes Yes

LSTM (KDF) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
LSTM(PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

LSTM (KDF + PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
BERT (PTE) No No Yes Yes No Yes Yes Yes Yes Yes Yes

LGBM (KDF) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No
LGBM (PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

LGBM (KDF + PTE) Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Table 9: Significance table for the 4-classes part of Table 4. "Yes" means that the difference is statistically significant.

Models Label RB + 1-gram and 2-gram + POS + LIWC + TM + Nonverbal

Label RB Yes Yes Yes Yes Yes
+ 1-gram and 2-gram Yes No No No No

+ POS Yes No No No No
+ LIWC Yes No No No No

+ TM Yes No No No No
+ Nonverbal Yes No No No No

Table 10: Significance table for the 3-classes part of Table 5. "Yes" means that the difference is statistically
significant.
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Figure 2: Absolute averaged feature contribution, as indicated by SHAP. The longer the bar is for one color, the
more the feature is associated with the class represented by that color.

Figure 3: Averaged contribution of features to the detection of the "Not indirect" class, as indicated by SHAP. Each
dot corresponds to a classified clause. A red dot indicates that the feature is present in the clause, while a blue
dot indicates that the feature is absent. The farther on the right the dot is, the more the feature contributed to its
classification as a hedge.
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Figure 4: Averaged contribution of features to the detection of "Apologizers", as indicated by SHAP.

Figure 5: Averaged contribution of features to the detection of "Propositional hedges", as indicated by SHAP.
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Figure 6: Averaged contribution of features to the detection of "Subjectivizers", as indicated by SHAP.

Models Label RB + 1-gram and 2-gram + POS + LIWC + TM + Nonverbal

Label RB Yes Yes Yes Yes Yes
+ 1-gram and 2-gram Yes No No No No

+ POS Yes No No No No
+ LIWC Yes No No No No

+ TM Yes No No No No
+ Nonverbal Yes No No No No

Table 11: Significance table for the 4-classes part of Table 5. "Yes" means that the difference is statistically
significant.
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