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Abstract

In order to deploy deep neural networks on edge devices, compressed (resource1

efficient) networks need to be developed. While established compression methods,2

such as quantization, pruning, and architecture search are designed for conventional3

hardware, further gains are possible if compressed architectures are coupled with4

novel hardware designs. In this work, we propose EuclidNet, a compressed network5

designed to be implemented on hardware which replaces multiplication, wx, with6

squared difference (x � w)2. EuclidNet allows for a low precision hardware7

implementation which is about twice as efficient (in term of logic gate counts) as8

the comparable conventional hardware, with acceptably small loss of accuracy.9

Moveover, the network can be trained and quantized using standard methods,10

without requiring additional training time. Codes and pre-trained models are11

available at http://github.com/anonymous/.12

1 Introduction13

While the majority of deep neural networks are designed to be implemented on GPUs, they are14

increasingly being deployed on edge devices, such as mobile phones. These edge devices require15

compressed (more efficient), hardware aware architectures, due to memory and power constraints16

[7, 11], which seeks to compress the architecture for a given hardware design (e.g. GPU or lower17

precision chips). However, special-purpose hardware is being designed with neural network inference18

in mind. This leads to a new problem formulation which we study here: design an efficient hardware19

architecture which allows networks to be trained on GPUs, then implemented on the hardware.20

The combined problem of hardware and network design is complex, and the precise measurement21

of efficiency is both device and problem specific, taking into account latency, memory, energy22

consumption. Here we deliberately oversimplify the problem in order to make it tractable, by23

addressing a fundamental element of hardware cost. As a coarse surrogate efficiency, we use the24

number of logic gates required to implement an arithmetic operation on chip . While this is very25

coarse, and full costs will depend on other aspects of hardware implementation, it nevertheless26

represents a fundamental unit of cost in hardware design [23].27

In a standard architecture, weights are multiplied by inputs, so the fundamental operation is multi-28

plication Sconv(x,w) = wx. In our work, we replace multiplication with the EuclidNet operator,29

30

Seuclid(x,w) = �1

2
|x� w|2. (1)

which combines a difference with a squaring operator. We will refer to the family of networks that use31

(1) as EuclidNets. EuclidNets are a compromise between standard architecture, and AdderNets[9],32

which remove multiplication entirely, but at the cost of a significant loss of accuracy as well as33

difficulty training. Replacing multiplication with squaring is about half the cost (on chip), depending34
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(right).

Figure 1: Feature representation of traditional convolution with S(x,w) = xw (left), AdderNet
S(x,w) = �|x� w| (middle), EuclidNet S(x,w) = � 1

2 |x� w|2

on the number of bits used to represent the integer. The feature representation of each of the35

architectures is illustrated in Figure 1. EuclidNets can be implemented on 8-bit precision without36

loss of accuracy, see Table 1.37

The squaring operator is cheaper (in terms of logic gates) than multiplication and can be reduced38

to a tiny look up table if run on integer values. [5, 14] prove replacing look up table can replace39

actual float computing, but results in practice do not translate to inference speed-up [28]. Works40

such as LookNN in [38] take the first step in designing hardware for look up table use. On a low41

precision chip, we can compute Seuclid for about half the cost as Sconv, because hardware efficiencies42

for squaring two a fixed precision integer more than offsets the additional cost of a difference. At the43

same time, the network does not lose expressivity, as explained below. To summarize, we make the44

following contributions45

• We design an architecture based on replacing the multiplication Sconv(x,w) = wx by the46

squared difference (1). Quantized networks using this operation require about half the cost47

(measured by gate operators) on a custom chipset.48

• These networks are just as expressive as convolutional networks. In practice, they have49

comparable accuracy (drop of less than 1 percent on ImageNet on ResNet50 going from full50

precision convolutional to 8-bit Euclid).51

• In contrast to other network compression techniques, we can train and quantize these52

networks on GPUs without additional cost or difficulty.53

Table 1: Euclid-Net Accuracy with full precision and 8-bit quantization: Results on ResNet-20 with
Euclidian similarity for CIFAR10 and CIFAR100, and results on ResNet-18 for ImageNet. Euclid-Net
achieves comparable or better accuracy with 8-bit precision, compared to the standard full precision
convolutional network.

Network Quantization Chip Efficiency
Top-1 accuracy

CIFAR10 CIFAR100 ImageNet

Sconv
Full precision 7 92.97 68.14 69.56

8-bit 3 92.07 68.02 69.59

Seuclid
Full precision 7 93.32 68.84 69.69

8-bit 3 93.30 68.78 68.59

Sadder
Full precision 7 91.84 67.60 67.0

8-bit 3 91.78 67.60 68.8
BNN 1-bit 3 84.87 54.14 51.2

2 Context and related work54

Neural compression comes at the cost of a loss of accuracy, and may also increase training time (to55

a greater extent on quantized networks) [19, 12]. Part of the drop in accuracy comes simply from56
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decreasing model size, which is required for IoT and edge devices [42]. Some of the most common57

neural compression methods include pruning [39], quantization [21], knowledge distillation [24], and58

efficient design [27, 25, 47, 41]. Here we focus on a small, unorganized sub-field of compression,59

that optimizes mathematical operations in the network. This approach can be combined successfully60

with common other compression methods like quantization [44].61

The most natural approach is low bit quantization [21]. The inference gains improves with lowering62

bit size, at the cost of accuracy drop and longer training. In the extreme case of binary networks,63

operations have negligible cost at inference but exhibits a considerable accuracy drop [26].64

Knowledge distillation [24] consists of transferring information form a larger teacher network to a65

smaller student network. The idea is easily extended by thinking of information transfer between66

different similarity measures, which [44] explore in the context of AdderNets. Knowledge distillation67

is an uncommon training procedure and requires extra implementation effort. EuclidNet keeps the68

accuracy without knowledge distillation. We suggest a straightforward training using a smooth69

transition between common convlotution and Euclid operation.70

3 Network architecture and similarity operators71

Consider an intermediate layer of a neural network with input x 2 RH⇥W⇥cin and output72

y 2 RH⇥W⇥cout where H,W are the dimensions of the input feature, and cin, cout the num-73

ber of input and output channels, respectively. For a standard convolutional network, represent the74

transformation from input to output via weights w 2 Rd⇥d⇥cin⇥cout as75

ymnl =
m+dX

i=m

n+dX

j=n

cinX

k=0

xijkwijkl (2)

Setting d = 1 recovers the fully-connected layer. We can abstract the multiplication of the weights
wijkl by xijkl in the equation above by using a similarity measure S : R⇥R ! R. The convolutional
layer corresponds to

Sconv(x,w) = xw.

In our work, we replace Sconv with Seuclid, given by (1). A number of works have also replaced the76

multiplication operator in a neural network. The most relevant work is the AdderNet of [9], which77

instead uses78

Sadder(x,w) = �|x� w|. (3)
replacing multiplication by the absolute value of the difference. This operation can be implemented79

very efficiently on a custom chipset: subtraction and absolute value of a different of n-bit integers80

cost order n gate operations, compared to order n2 for multiplication Sconv(x,w) = xw. However,81

AdderNet comes with a significant loss in accuracy, and is difficult to train.82

3.1 Other Measures of similarity in neural network architectures83

The idea of replacing multiplication operations to save resources within the context of neural networks84

dates back to 1990s. Equally motivated by computational speed-up and hardware requirement85

minimization, [17] define perceptrons that use the synapse similarity,86

Ssynapse(x,w) = sign(x) · sign(w) ·min(|x|, |w|), (4)

which is cheaper than multiplication.87

Although (4) has not been experimented with in modern models and datasets, [2] introduced a slight88

variation, the multiplication-free operator,89

Smfo(x,w) = sign(x) · sign(w) · (|x|+ |w|)). (5)

Note that both (4) and (5) induce the l1-norm. [32] explains that the updated design choice allows90

contributions from both operands x and w. [1] studies the similarity in image classification on91

CIFAR10. Other applications of (5) include [4, 36].92

[46] further combines this similarity with a bit-shift, and claims an improved accuracy with negligible93

added cost. However, the plotted results for AdderNet appear lower than those reported in [9].94
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Another follow-up work uses knowledge distillation to further improve the accuracy of AdderNets95

[44].96

Instead of simply replacing the similarity on the summation, there is also the possibility to replace the97

full expression on (2). [30, 31] approximate the activation of a given layer with an exponential term.98

Unfortunately, it only leads to speed-up in certain cases and, in particular, it does not improve CPU99

inference time. Reported accuracy on benchmark problems is also lower than the typical baseline.100

In a recent work, [34] used three layer morphological neural networks for image classification.101

Morphological neural networks were introduced in 1990s by [15, 40] and use the notion of erosion102

and dilation to replace (2):103

Erosion(x,w) = min
j

S(xj , wj) = min
j

(xj � wj),

Dilation(x,w) = max
j

S(xj , wj) = max
j

(xj + wj).

The authors propose two methods of stacking layers to expand networks, but admit the possibility of104

over-fitting and difficult training issues, casting doubt on scalability of the method.105

4 Theoretical Results for EuclidNets106

4.1 Expressivity of the EuclidNet network107

Networks using the EuclidNet operation as just as expressive as those using multiplication, thanks to108

the polarization identity,109

Sconv(x,w) = Seuclid(x,w)� Seuclid(x, 0)� Seuclid(0, w)

which means that any multiplication operation can be expressed using only Euclid operations.110

4.2 Logic Gate Cost for EuclidNet compared to ConvNet (multipication)111

The above similarity may not come across immediately as an improved choice on the cost of112

convolutions. It requires personalized hardware to obtain gains in inference speed like the other113

similarities. For example, in a typical architecture, the cost of addition is very close to multiplication,114

and squaring is usually not considered distinctly from multiplication [30, Table III]. Hence, first we115

discuss what these gains are theoretically. As for training, unlike other competitors such as AdderNet116

that embodies a considerable slow training, we implement the Euclid similarity in a way that is only117

slightly slower than Sconv.118

Figure 2: Comparison of the number of logic gates
(y-axis) as a function of the number of bits (x-axis)
EuclidNet compared with the standard ConvNet.

Here we provide a brief theoretical analysis of119

basic binary operations on custom hardware that120

is optimized for model inference. Assuming121

equal cost between AND, XOR and OR gates,122

we first compute the cost of gate-level integer123

operations, defined in Appendix A.1. See Fig-124

ure 2125

The following formula gives the gate count of126

n-bit operations:127

Sconv = 6n2 � 8n+ 3

Seuclid = 3n2 + n/2� 3

(with a minor modification to the second for-128

mula to 3n2 + n/2� 3/2 when n is odd), refer129

to Table A.4.130

The hardware implementation of an n-bit adder131

is implemented using one half-adder and n� 1132

full-adders. A half-adder circuit is made up of 1133

XOR gate and 1 AND gate, while the full-adder circuit requires 2 XOR gates, 2 AND gates and 1 OR134

gate. Therefore, the cost of an n bit addition is 5n� 3.135
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Table 2: Time (seconds) and maximum training batch-size that can fit in a signle GPU Tesla V100-
SXM2-32GB, during ImageNet training. In parenthesis is the slowdown with respect to the Sconv

baseline. We do not show times for AdderNet, which is much slower than both, because it is not
implemented in CUDA

Model Method Maximum Batch-size Time per step
power of 2 integer Training Testing

ResNet-18 Sconv 1024 1439 0.149 0.066
Seuclid 512 869 (1.7⇥) 0.157 (1.1⇥) 0.133 (2⇥)

ResNet-50 Sconv 256 371 0.182 0.145
Seuclid 128 248 (1.5⇥) 0.274 (1.5⇥) 0.160 (1.1⇥)

There are n
2 AND gates for n-bit element wise multiplications. A common architecture usually136

include (n � 1) n-bit adders besides the n
2 AND gates. One n-bit adders is composed of one137

half-adder and n� 1 full-adders. Hence the cost of multiplication is 6n2 � 8n+ 3.138

In the case of squaring, there are less AND gates representing element-wise multiplication. We139

consider two different cases: i) if n is even the cost of squaring is 3n2 � 9
2n ii) if n is odd, the cost140

of squaring is 3n2 � 9
2n+ 3

2 ,141

5 Training EuclidNets142

Training EuclidNets are much easier compared with other competitors such as AdderNets. This143

makes EuclidNet attractive for complex tasks such as image segmentation, and object detection144

where training compressed networks are challenging and causes large accuracy drop. However,145

EuclidNets are more expensive than AdderNets on floating points, but their quantization behavior146

unlike AdderNets resembles traditional convolution to a great extent. In another words EuclidNets147

are easiy to quantize.148

While training a network, it is more appropriate to use the identity149

Seuclid(x,w) = �x
2

2
� w

2

2
+ xw, (6)

and use this equation while training EuclidNets on GPUs which are optimized for inner product.150

Therefore training EuclidNets doesn’t require additional CUDA core [35] implementation unlike151

AdderNets. The official implementation of AdderNet [9] reflects order of 20⇥ slower training than152

the traditional convolution on Pytorch. This is specially problematic for large networks and complex153

tasks that even traditional convolution training takes few days or even weeks. EuclidNet training154

is 2⇥ in the worst case and their implementation is natural in deep learning frameworks such as155

PyTorch and Tensorflow.156

A common method in training neural networks is fine-tuning, initializing with weights trained on157

different data but with a similar nature. Here, we introduce the idea of using a weight initialization158

from a model trained on a related similarity.159

Rather than training from scratch, we wish to fine-tune EuclidNet starting from accurate CNN weights.160

This is achieved by an “architecture homotopy" where we change hyperparameters to convert a regular161

convolution to an Euclid operation162

S(x,w;�k) = xw � �k

x
2 + w

2

2
, with �k = �0 +

1� �0

n
· k, (7)

where n is the total number of epochs and 0 < �0 < 1 is the initial transition phase. Note that163

S(x,w, 0) = Sconv(x,w) and S(x,w, 1) = Seuclid(x,w) and equation 7 is the convex combination164

of the two similarities. One may interpret �k as a schedule for the homotopy parameter, similar to165

how a schedule is defined for the learning rate in training a deep network. We found that a linear166

schedule above is effective empirically.167

Transformations like (7) are commonly used in scientific computing [3]. The idea of using homotopy168

in training neural networks can be traced back to [13]. Recently, homotopy was used in deep learning169

in the context of activation functions [37, 8, 33, 18], loss functions [20], compression [10] and transfer170

learning [6]. Here, we use homotopy in the context of transforming network operations.171
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Figure 3: Training schema of EuclidNet using Homotopy, i.e. transitioning from traditional convolu-
tion S(x,w) = xw towards EuclidNet S(x,w) = � 1

2 |x� w|2 through equation (7).

Fine-tuning method in (7) is inspired by continuation methods in partial differential equations.172

Assume S is a solution for a differential equation with the initial condition S(x, 0) = S0(x). In173

certain situations, solving this differential equation for S(x, t) and then evaluating at t = 1 might be174

simpler than solving directly for S1. One may think of this homotopy method as an evolving neural175

network over time. At time zero the neural network consists of regular convolutional layers, but at176

time one transforms to Euclidean layers.177

The homotopy method can be interpreted as a sort of of knowledge distillation. Whereas knowledge178

distillation methods tries to match a student network to a teacher network, the homotopy can be seen179

as a slow transformation from the teacher network into a student network. Figure 3 shows a scheme180

of the idea. Curiously, problems that have been solved with homotopic approaches have also been181

tackled by knowledge distillation. For example, removing blocks or layers from a network [24, 10]182

along with transfer learning [45, 6].183

6 Experiments184

We consider try our proposed method on image classification task. Future work could be extended to185

other domains of application such as natural language and speech.186

6.1 CIFAR10187

First, we consider the CIFAR10 dataset, consisting of 32 ⇥ 32 RGB images with 10 possible188

classifications [29]. We normalize and augment the dataset with random crop and random horizontal189

flip. We consider two ResNet models [22], ResNet-20 and ResNet-32.190

We train EuclidNet using the optimizer from [9], which we will refer to as AdderSGD, to evaluate191

EuclidNet under a similar setup. We use initial learning rate 0.1 with cosine decay, momentum 0.9192

and weight decay 5⇥ 10�4. We follow [9] in setting the learning-rate scaling parameter ⌘. However,193

we use a batch-size of 128 for memory reasons. For traditional convlution network, we use the same194

hyper-parameters with stochastic gradient descent optimizer.195

In Table 3 we provide the details of classification accuracy. We consider two different weight196

initialization for EuclidNets. First, we initialize randomly and second, we initialize from weights197

pre-trained on a convolutional network. The accuracy for EuclidNets is approximately the same as for198

a standard ResNet. We see that for CIFAR10 training from scratch achieves even a higher accuracy,199

while initializing with convolution network and using linear Homotopy training improves it even200

further.201

During training, EuclidNets are unstable, despite careful choice of the optimizer. In Figure 4202

we compare with training the corresponding convolutional network. Fine-tuning directly from203

6



Table 3: Results on CIFAR10. The initial learning rate is adjusted for non-random initialization.

Model Similarity Initialization Homotopy Epochs Top-1 accuracy
CIFAR10 CIFAR100

ResNet-20

Sconv Random None 400 92.97 69.29

Seuclid

Random None 450 93.00 68.84

Conv None 100 90.45 64.62
Linear 100 93.32 68.84

ResNet-32

Sconv Random None 400 93.93 71.07

Seuclid

Random None 450 93.28 71.22
Conv None 150 91.28 66.58

Linear 100 92.62 68.42

Table 4: Full precision results on ResNet-20 for CIFAR10 for different multiplication-free similarities.

Similarity Sconv Seuclid Sadder Smfo Ssynapse

Accuracy 92.97 93.00 91.84 82.05 73.08

convolutional weights is more stable than training from scratch as expected. However, accuracy is204

lower but the convergence is faster when we use homotopy training and the accuracy is improved.205

Pre-trained convolution weights are commonly available in the most of neural compression tasks, so206

initializing EuclidNets with pre-trained convolution is more natural and preferable.207

Figure 4: Evolution of testing accuracy during
training of ResNet-20 on CIFAR10, initialized
with random weights, or initialized from convo-
lution pre-trained network. Initializing from a pre-
trained convolution network speeds up the conver-
gence. EuclidNet is harder to train compared with
convolution network when both initialized from
random weights.

EuclidNets are not only faster to train compared208

with other competitors, but also stand superior in209

terms of accuracy. AdderNet performs slightly210

worse but is much slower to train. The accu-211

racy is significantly lower for the synapse and212

the multiplication-free operator. In Table 4 we213

record top-1 accuracy obtained in which Adder-214

Net results are borrowed from [44], that use215

knowledge distillation to close the gap with the216

full precision but still falls short compared with217

EuclidNet.218

Training a quantized Seuclid is very similar sim-219

ilar to convolution. This allows a wider use of220

such networks for lower resource devices. Quan-221

tization of the Euclid model to 8bits keeps accu-222

racy drop within the range of one percent [43]223

similar to traditional convolution so they are224

like convolution when run on lower bits. Table 1225

shows 8-bit quantization of EuclidNet where the226

accuracy drop remains negligible. Similar to tra-227

ditional convolution, EuclidNets on CIFAR100228

exhibit a larger accuracy drop compared to CI-229

FAR10, probably due to the complexity of the230

classification problem.231

6.2 ImageNet232

Next, we consider EuclidNet classifier built on ImageNet, a more challenging task ImageNet [16].233

We train our baseline with standard augmentations of random resized crop and horizontal flip and234

normalization. We consider ResNet-18 and ResNet-50 models. Hyper-parameters tuning follows235

Section 6.1.236

Table 5 shows top-1 and top-5 classification accuracies. The accuracy from while EuclidNet is trained237

from scratch is lower, showing the importance of homotopy training. We believe that the accuracy238

drop with no homotopy is the difficulty of tuning training hyper-parameters for a large dataset such as239

ImageNet. Even though hyper-parameters that achieve equivalent accuracy from random initialization240
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exist, they are too difficult to find. It is much easier to use the existing hyperparameters of traditional241

convolution, and transfer the geometry through homotopy training.242

Table 5: Full precision results on ImageNet. Best result for each model is in bold.

Model Similarity Initialization Homotopy Epochs Top-1 Accuracy Top-5 Accuracy

ResNet-18

Sconv Random None 90 69.56 89.09

Seuclid

Random None 90 64.93 86.46

Conv

None 90 68.52 88.79

Linear
10 65.36 86.71
60 69.21 89.13
90 69.69 89.38

ResNet-50

Sconv Random None 90 75.49 92.51

Seuclid

Random None 90 37.89 63.99

Conv

None 90 75.12 92.50

Linear
10 70.66 90.10
60 74.93 92.52
90 75.64 92.86

7 Conclusion243

Euclid networks are obtained from typical neural models by replacing multiplication in convolutional244

layers by the Euclidean similarity. They are designed to be implemented on a custom designed low245

precision chipset, with the idea that subtraction and squaring can be implemented using approximately246

half the logic gates, compared to multiplication.247

While other efficient architectures can be difficult to train in low precision, EuclideNets are easily248

trained in low precisions. EuclidNets can be initialized with weights trained on the correspondent249

ConvNet to save training time, so on may regard them as a fine tuning convolutiuonal networks for a250

cheaper inference. The homotopy method further improves training in such scenarios and training251

using this method sometimes surpass regular convolution accuracy. Future work may focus on252

developing hardware that can realize the expected inference time losses and try similar experiments253

on down stream vision tasks like object detection and segmentation.254

7.1 Limitations255

While gate counts provide a fundamental method for assessing the cost of a chip, they are a crude256

estimate, and the real costs (in terms of power usage, inference time, and memory) of a chipset and257

architecture combination are much more complex to estimate. True final costs can require a hardware258

simulator or implementation. At the same time, the gate count provides a first approximation to the259

cost, and the fact that we can train and match accuracy in eight bit precision is promising.260

7.2 Societal Impact261

Deep Neural Network inference is costly in terms of power usage. If we can design and implement262

efficient architectures, this will reduce the societal cost of running these models on edge devices.263
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