
EuclidNets: combining hardware and architecture
design for efficient training and inference

Anonymous Author(s)
Affiliation
Address
email

Abstract

In order to deploy deep neural networks on edge devices, compressed (resource1

efficient) networks need to be developed. While established compression methods,2

such as quantization, pruning, and architecture search are designed for conventional3

hardware, further gains are possible if compressed architectures are coupled with4

novel hardware designs. In this work, we propose EuclidNet, a compressed network5

designed to be implemented on hardware which replaces multiplication, wx, with6

squared difference (x � w)2. EuclidNet allows for a low precision hardware7

implementation which is about twice as efficient (in term of logic gate counts) as8

the comparable conventional hardware, with acceptably small loss of accuracy.9

Moveover, the network can be trained and quantized using standard methods,10

without requiring additional training time. Codes and pre-trained models are11

available at http://github.com/anonymous/.12

1 Introduction13

While the majority of deep neural networks are designed to be implemented on GPUs, they are14

increasingly being deployed on edge devices, such as mobile phones. These edge devices require15

compressed (more efficient), hardware aware architectures, due to memory and power constraints16

[7, 11], which seeks to compress the architecture for a given hardware design (e.g. GPU or lower17

precision chips). However, special-purpose hardware is being designed with neural network inference18

in mind. This leads to a new problem formulation which we study here: design an efficient hardware19

architecture which allows networks to be trained on GPUs, then implemented on the hardware.20

The combined problem of hardware and network design is complex, and the precise measurement21

of efficiency is both device and problem specific, taking into account latency, memory, energy22

consumption. Here we deliberately oversimplify the problem in order to make it tractable, by23

addressing a fundamental element of hardware cost. As a coarse surrogate efficiency, we use the24

number of logic gates required to implement an arithmetic operation on chip . While this is very25

coarse, and full costs will depend on other aspects of hardware implementation, it nevertheless26

represents a fundamental unit of cost in hardware design [23].27

In a standard architecture, weights are multiplied by inputs, so the fundamental operation is multi-28

plication Sconv(x,w) = wx. In our work, we replace multiplication with the EuclidNet operator,29

30

Seuclid(x,w) = �1

2
|x� w|2. (1)

which combines a difference with a squaring operator. We will refer to the family of networks that use31

(1) as EuclidNets. EuclidNets are a compromise between standard architecture, and AdderNets[9],32

which remove multiplication entirely, but at the cost of a significant loss of accuracy as well as33

difficulty training. Replacing multiplication with squaring is about half the cost (on chip), depending34

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

http://github.com/anonymous/

(right).

Figure 1: Feature representation of traditional convolution with S(x,w) = xw (left), AdderNet
S(x,w) = �|x� w| (middle), EuclidNet S(x,w) = � 1

2 |x� w|2

on the number of bits used to represent the integer. The feature representation of each of the35

architectures is illustrated in Figure 1. EuclidNets can be implemented on 8-bit precision without36

loss of accuracy, see Table 1.37

The squaring operator is cheaper (in terms of logic gates) than multiplication and can be reduced38

to a tiny look up table if run on integer values. [5, 14] prove replacing look up table can replace39

actual float computing, but results in practice do not translate to inference speed-up [28]. Works40

such as LookNN in [38] take the first step in designing hardware for look up table use. On a low41

precision chip, we can compute Seuclid for about half the cost as Sconv, because hardware efficiencies42

for squaring two a fixed precision integer more than offsets the additional cost of a difference. At the43

same time, the network does not lose expressivity, as explained below. To summarize, we make the44

following contributions45

• We design an architecture based on replacing the multiplication Sconv(x,w) = wx by the46

squared difference (1). Quantized networks using this operation require about half the cost47

(measured by gate operators) on a custom chipset.48

• These networks are just as expressive as convolutional networks. In practice, they have49

comparable accuracy (drop of less than 1 percent on ImageNet on ResNet50 going from full50

precision convolutional to 8-bit Euclid).51

• In contrast to other network compression techniques, we can train and quantize these52

networks on GPUs without additional cost or difficulty.53

Table 1: Euclid-Net Accuracy with full precision and 8-bit quantization: Results on ResNet-20 with
Euclidian similarity for CIFAR10 and CIFAR100, and results on ResNet-18 for ImageNet. Euclid-Net
achieves comparable or better accuracy with 8-bit precision, compared to the standard full precision
convolutional network.

Network Quantization Chip Efficiency
Top-1 accuracy

CIFAR10 CIFAR100 ImageNet

Sconv
Full precision 7 92.97 68.14 69.56

8-bit 3 92.07 68.02 69.59

Seuclid
Full precision 7 93.32 68.84 69.69

8-bit 3 93.30 68.78 68.59

Sadder
Full precision 7 91.84 67.60 67.0

8-bit 3 91.78 67.60 68.8
BNN 1-bit 3 84.87 54.14 51.2

2 Context and related work54

Neural compression comes at the cost of a loss of accuracy, and may also increase training time (to55

a greater extent on quantized networks) [19, 12]. Part of the drop in accuracy comes simply from56

2

decreasing model size, which is required for IoT and edge devices [42]. Some of the most common57

neural compression methods include pruning [39], quantization [21], knowledge distillation [24], and58

efficient design [27, 25, 47, 41]. Here we focus on a small, unorganized sub-field of compression,59

that optimizes mathematical operations in the network. This approach can be combined successfully60

with common other compression methods like quantization [44].61

The most natural approach is low bit quantization [21]. The inference gains improves with lowering62

bit size, at the cost of accuracy drop and longer training. In the extreme case of binary networks,63

operations have negligible cost at inference but exhibits a considerable accuracy drop [26].64

Knowledge distillation [24] consists of transferring information form a larger teacher network to a65

smaller student network. The idea is easily extended by thinking of information transfer between66

different similarity measures, which [44] explore in the context of AdderNets. Knowledge distillation67

is an uncommon training procedure and requires extra implementation effort. EuclidNet keeps the68

accuracy without knowledge distillation. We suggest a straightforward training using a smooth69

transition between common convlotution and Euclid operation.70

3 Network architecture and similarity operators71

Consider an intermediate layer of a neural network with input x 2 RH⇥W⇥cin and output72

y 2 RH⇥W⇥cout where H,W are the dimensions of the input feature, and cin, cout the num-73

ber of input and output channels, respectively. For a standard convolutional network, represent the74

transformation from input to output via weights w 2 Rd⇥d⇥cin⇥cout as75

ymnl =
m+dX

i=m

n+dX

j=n

cinX

k=0

xijkwijkl (2)

Setting d = 1 recovers the fully-connected layer. We can abstract the multiplication of the weights
wijkl by xijkl in the equation above by using a similarity measure S : R⇥R ! R. The convolutional
layer corresponds to

Sconv(x,w) = xw.

In our work, we replace Sconv with Seuclid, given by (1). A number of works have also replaced the76

multiplication operator in a neural network. The most relevant work is the AdderNet of [9], which77

instead uses78

Sadder(x,w) = �|x� w|. (3)
replacing multiplication by the absolute value of the difference. This operation can be implemented79

very efficiently on a custom chipset: subtraction and absolute value of a different of n-bit integers80

cost order n gate operations, compared to order n2 for multiplication Sconv(x,w) = xw. However,81

AdderNet comes with a significant loss in accuracy, and is difficult to train.82

3.1 Other Measures of similarity in neural network architectures83

The idea of replacing multiplication operations to save resources within the context of neural networks84

dates back to 1990s. Equally motivated by computational speed-up and hardware requirement85

minimization, [17] define perceptrons that use the synapse similarity,86

Ssynapse(x,w) = sign(x) · sign(w) ·min(|x|, |w|), (4)

which is cheaper than multiplication.87

Although (4) has not been experimented with in modern models and datasets, [2] introduced a slight88

variation, the multiplication-free operator,89

Smfo(x,w) = sign(x) · sign(w) · (|x|+ |w|)). (5)

Note that both (4) and (5) induce the l1-norm. [32] explains that the updated design choice allows90

contributions from both operands x and w. [1] studies the similarity in image classification on91

CIFAR10. Other applications of (5) include [4, 36].92

[46] further combines this similarity with a bit-shift, and claims an improved accuracy with negligible93

added cost. However, the plotted results for AdderNet appear lower than those reported in [9].94

3

Another follow-up work uses knowledge distillation to further improve the accuracy of AdderNets95

[44].96

Instead of simply replacing the similarity on the summation, there is also the possibility to replace the97

full expression on (2). [30, 31] approximate the activation of a given layer with an exponential term.98

Unfortunately, it only leads to speed-up in certain cases and, in particular, it does not improve CPU99

inference time. Reported accuracy on benchmark problems is also lower than the typical baseline.100

In a recent work, [34] used three layer morphological neural networks for image classification.101

Morphological neural networks were introduced in 1990s by [15, 40] and use the notion of erosion102

and dilation to replace (2):103

Erosion(x,w) = min
j

S(xj , wj) = min
j

(xj � wj),

Dilation(x,w) = max
j

S(xj , wj) = max
j

(xj + wj).

The authors propose two methods of stacking layers to expand networks, but admit the possibility of104

over-fitting and difficult training issues, casting doubt on scalability of the method.105

4 Theoretical Results for EuclidNets106

4.1 Expressivity of the EuclidNet network107

Networks using the EuclidNet operation as just as expressive as those using multiplication, thanks to108

the polarization identity,109

Sconv(x,w) = Seuclid(x,w)� Seuclid(x, 0)� Seuclid(0, w)

which means that any multiplication operation can be expressed using only Euclid operations.110

4.2 Logic Gate Cost for EuclidNet compared to ConvNet (multipication)111

The above similarity may not come across immediately as an improved choice on the cost of112

convolutions. It requires personalized hardware to obtain gains in inference speed like the other113

similarities. For example, in a typical architecture, the cost of addition is very close to multiplication,114

and squaring is usually not considered distinctly from multiplication [30, Table III]. Hence, first we115

discuss what these gains are theoretically. As for training, unlike other competitors such as AdderNet116

that embodies a considerable slow training, we implement the Euclid similarity in a way that is only117

slightly slower than Sconv.118

Figure 2: Comparison of the number of logic gates
(y-axis) as a function of the number of bits (x-axis)
EuclidNet compared with the standard ConvNet.

Here we provide a brief theoretical analysis of119

basic binary operations on custom hardware that120

is optimized for model inference. Assuming121

equal cost between AND, XOR and OR gates,122

we first compute the cost of gate-level integer123

operations, defined in Appendix A.1. See Fig-124

ure 2125

The following formula gives the gate count of126

n-bit operations:127

Sconv = 6n2 � 8n+ 3

Seuclid = 3n2 + n/2� 3

(with a minor modification to the second for-128

mula to 3n2 + n/2� 3/2 when n is odd), refer129

to Table A.4.130

The hardware implementation of an n-bit adder131

is implemented using one half-adder and n� 1132

full-adders. A half-adder circuit is made up of 1133

XOR gate and 1 AND gate, while the full-adder circuit requires 2 XOR gates, 2 AND gates and 1 OR134

gate. Therefore, the cost of an n bit addition is 5n� 3.135

4

Table 2: Time (seconds) and maximum training batch-size that can fit in a signle GPU Tesla V100-
SXM2-32GB, during ImageNet training. In parenthesis is the slowdown with respect to the Sconv

baseline. We do not show times for AdderNet, which is much slower than both, because it is not
implemented in CUDA

Model Method Maximum Batch-size Time per step
power of 2 integer Training Testing

ResNet-18 Sconv 1024 1439 0.149 0.066
Seuclid 512 869 (1.7⇥) 0.157 (1.1⇥) 0.133 (2⇥)

ResNet-50 Sconv 256 371 0.182 0.145
Seuclid 128 248 (1.5⇥) 0.274 (1.5⇥) 0.160 (1.1⇥)

There are n
2 AND gates for n-bit element wise multiplications. A common architecture usually136

include (n � 1) n-bit adders besides the n
2 AND gates. One n-bit adders is composed of one137

half-adder and n� 1 full-adders. Hence the cost of multiplication is 6n2 � 8n+ 3.138

In the case of squaring, there are less AND gates representing element-wise multiplication. We139

consider two different cases: i) if n is even the cost of squaring is 3n2 � 9
2n ii) if n is odd, the cost140

of squaring is 3n2 � 9
2n+ 3

2 ,141

5 Training EuclidNets142

Training EuclidNets are much easier compared with other competitors such as AdderNets. This143

makes EuclidNet attractive for complex tasks such as image segmentation, and object detection144

where training compressed networks are challenging and causes large accuracy drop. However,145

EuclidNets are more expensive than AdderNets on floating points, but their quantization behavior146

unlike AdderNets resembles traditional convolution to a great extent. In another words EuclidNets147

are easiy to quantize.148

While training a network, it is more appropriate to use the identity149

Seuclid(x,w) = �x
2

2
� w

2

2
+ xw, (6)

and use this equation while training EuclidNets on GPUs which are optimized for inner product.150

Therefore training EuclidNets doesn’t require additional CUDA core [35] implementation unlike151

AdderNets. The official implementation of AdderNet [9] reflects order of 20⇥ slower training than152

the traditional convolution on Pytorch. This is specially problematic for large networks and complex153

tasks that even traditional convolution training takes few days or even weeks. EuclidNet training154

is 2⇥ in the worst case and their implementation is natural in deep learning frameworks such as155

PyTorch and Tensorflow.156

A common method in training neural networks is fine-tuning, initializing with weights trained on157

different data but with a similar nature. Here, we introduce the idea of using a weight initialization158

from a model trained on a related similarity.159

Rather than training from scratch, we wish to fine-tune EuclidNet starting from accurate CNN weights.160

This is achieved by an “architecture homotopy" where we change hyperparameters to convert a regular161

convolution to an Euclid operation162

S(x,w;�k) = xw � �k

x
2 + w

2

2
, with �k = �0 +

1� �0

n
· k, (7)

where n is the total number of epochs and 0 < �0 < 1 is the initial transition phase. Note that163

S(x,w, 0) = Sconv(x,w) and S(x,w, 1) = Seuclid(x,w) and equation 7 is the convex combination164

of the two similarities. One may interpret �k as a schedule for the homotopy parameter, similar to165

how a schedule is defined for the learning rate in training a deep network. We found that a linear166

schedule above is effective empirically.167

Transformations like (7) are commonly used in scientific computing [3]. The idea of using homotopy168

in training neural networks can be traced back to [13]. Recently, homotopy was used in deep learning169

in the context of activation functions [37, 8, 33, 18], loss functions [20], compression [10] and transfer170

learning [6]. Here, we use homotopy in the context of transforming network operations.171

5

Figure 3: Training schema of EuclidNet using Homotopy, i.e. transitioning from traditional convolu-
tion S(x,w) = xw towards EuclidNet S(x,w) = � 1

2 |x� w|2 through equation (7).

Fine-tuning method in (7) is inspired by continuation methods in partial differential equations.172

Assume S is a solution for a differential equation with the initial condition S(x, 0) = S0(x). In173

certain situations, solving this differential equation for S(x, t) and then evaluating at t = 1 might be174

simpler than solving directly for S1. One may think of this homotopy method as an evolving neural175

network over time. At time zero the neural network consists of regular convolutional layers, but at176

time one transforms to Euclidean layers.177

The homotopy method can be interpreted as a sort of of knowledge distillation. Whereas knowledge178

distillation methods tries to match a student network to a teacher network, the homotopy can be seen179

as a slow transformation from the teacher network into a student network. Figure 3 shows a scheme180

of the idea. Curiously, problems that have been solved with homotopic approaches have also been181

tackled by knowledge distillation. For example, removing blocks or layers from a network [24, 10]182

along with transfer learning [45, 6].183

6 Experiments184

We consider try our proposed method on image classification task. Future work could be extended to185

other domains of application such as natural language and speech.186

6.1 CIFAR10187

First, we consider the CIFAR10 dataset, consisting of 32 ⇥ 32 RGB images with 10 possible188

classifications [29]. We normalize and augment the dataset with random crop and random horizontal189

flip. We consider two ResNet models [22], ResNet-20 and ResNet-32.190

We train EuclidNet using the optimizer from [9], which we will refer to as AdderSGD, to evaluate191

EuclidNet under a similar setup. We use initial learning rate 0.1 with cosine decay, momentum 0.9192

and weight decay 5⇥ 10�4. We follow [9] in setting the learning-rate scaling parameter ⌘. However,193

we use a batch-size of 128 for memory reasons. For traditional convlution network, we use the same194

hyper-parameters with stochastic gradient descent optimizer.195

In Table 3 we provide the details of classification accuracy. We consider two different weight196

initialization for EuclidNets. First, we initialize randomly and second, we initialize from weights197

pre-trained on a convolutional network. The accuracy for EuclidNets is approximately the same as for198

a standard ResNet. We see that for CIFAR10 training from scratch achieves even a higher accuracy,199

while initializing with convolution network and using linear Homotopy training improves it even200

further.201

During training, EuclidNets are unstable, despite careful choice of the optimizer. In Figure 4202

we compare with training the corresponding convolutional network. Fine-tuning directly from203

6

Table 3: Results on CIFAR10. The initial learning rate is adjusted for non-random initialization.

Model Similarity Initialization Homotopy Epochs Top-1 accuracy
CIFAR10 CIFAR100

ResNet-20

Sconv Random None 400 92.97 69.29

Seuclid

Random None 450 93.00 68.84

Conv None 100 90.45 64.62
Linear 100 93.32 68.84

ResNet-32

Sconv Random None 400 93.93 71.07

Seuclid

Random None 450 93.28 71.22
Conv None 150 91.28 66.58

Linear 100 92.62 68.42

Table 4: Full precision results on ResNet-20 for CIFAR10 for different multiplication-free similarities.

Similarity Sconv Seuclid Sadder Smfo Ssynapse

Accuracy 92.97 93.00 91.84 82.05 73.08

convolutional weights is more stable than training from scratch as expected. However, accuracy is204

lower but the convergence is faster when we use homotopy training and the accuracy is improved.205

Pre-trained convolution weights are commonly available in the most of neural compression tasks, so206

initializing EuclidNets with pre-trained convolution is more natural and preferable.207

Figure 4: Evolution of testing accuracy during
training of ResNet-20 on CIFAR10, initialized
with random weights, or initialized from convo-
lution pre-trained network. Initializing from a pre-
trained convolution network speeds up the conver-
gence. EuclidNet is harder to train compared with
convolution network when both initialized from
random weights.

EuclidNets are not only faster to train compared208

with other competitors, but also stand superior in209

terms of accuracy. AdderNet performs slightly210

worse but is much slower to train. The accu-211

racy is significantly lower for the synapse and212

the multiplication-free operator. In Table 4 we213

record top-1 accuracy obtained in which Adder-214

Net results are borrowed from [44], that use215

knowledge distillation to close the gap with the216

full precision but still falls short compared with217

EuclidNet.218

Training a quantized Seuclid is very similar sim-219

ilar to convolution. This allows a wider use of220

such networks for lower resource devices. Quan-221

tization of the Euclid model to 8bits keeps accu-222

racy drop within the range of one percent [43]223

similar to traditional convolution so they are224

like convolution when run on lower bits. Table 1225

shows 8-bit quantization of EuclidNet where the226

accuracy drop remains negligible. Similar to tra-227

ditional convolution, EuclidNets on CIFAR100228

exhibit a larger accuracy drop compared to CI-229

FAR10, probably due to the complexity of the230

classification problem.231

6.2 ImageNet232

Next, we consider EuclidNet classifier built on ImageNet, a more challenging task ImageNet [16].233

We train our baseline with standard augmentations of random resized crop and horizontal flip and234

normalization. We consider ResNet-18 and ResNet-50 models. Hyper-parameters tuning follows235

Section 6.1.236

Table 5 shows top-1 and top-5 classification accuracies. The accuracy from while EuclidNet is trained237

from scratch is lower, showing the importance of homotopy training. We believe that the accuracy238

drop with no homotopy is the difficulty of tuning training hyper-parameters for a large dataset such as239

ImageNet. Even though hyper-parameters that achieve equivalent accuracy from random initialization240

7

exist, they are too difficult to find. It is much easier to use the existing hyperparameters of traditional241

convolution, and transfer the geometry through homotopy training.242

Table 5: Full precision results on ImageNet. Best result for each model is in bold.

Model Similarity Initialization Homotopy Epochs Top-1 Accuracy Top-5 Accuracy

ResNet-18

Sconv Random None 90 69.56 89.09

Seuclid

Random None 90 64.93 86.46

Conv

None 90 68.52 88.79

Linear
10 65.36 86.71
60 69.21 89.13
90 69.69 89.38

ResNet-50

Sconv Random None 90 75.49 92.51

Seuclid

Random None 90 37.89 63.99

Conv

None 90 75.12 92.50

Linear
10 70.66 90.10
60 74.93 92.52
90 75.64 92.86

7 Conclusion243

Euclid networks are obtained from typical neural models by replacing multiplication in convolutional244

layers by the Euclidean similarity. They are designed to be implemented on a custom designed low245

precision chipset, with the idea that subtraction and squaring can be implemented using approximately246

half the logic gates, compared to multiplication.247

While other efficient architectures can be difficult to train in low precision, EuclideNets are easily248

trained in low precisions. EuclidNets can be initialized with weights trained on the correspondent249

ConvNet to save training time, so on may regard them as a fine tuning convolutiuonal networks for a250

cheaper inference. The homotopy method further improves training in such scenarios and training251

using this method sometimes surpass regular convolution accuracy. Future work may focus on252

developing hardware that can realize the expected inference time losses and try similar experiments253

on down stream vision tasks like object detection and segmentation.254

7.1 Limitations255

While gate counts provide a fundamental method for assessing the cost of a chip, they are a crude256

estimate, and the real costs (in terms of power usage, inference time, and memory) of a chipset and257

architecture combination are much more complex to estimate. True final costs can require a hardware258

simulator or implementation. At the same time, the gate count provides a first approximation to the259

cost, and the fact that we can train and match accuracy in eight bit precision is promising.260

7.2 Societal Impact261

Deep Neural Network inference is costly in terms of power usage. If we can design and implement262

efficient architectures, this will reduce the societal cost of running these models on edge devices.263

References264

[1] Arman Afrasiyabi, Diaa Badawi, Baris Nasir, Ozan Yildi, Fatios T Yarman Vural, and A Enis Çetin.265

Non-euclidean vector product for neural networks. In 2018 IEEE International Conference on Acoustics,266

Speech and Signal Processing (ICASSP), pages 6862–6866. IEEE, 2018.267

[2] C. E. Akbaş, A. Bozkurt, A. E. Çetin, R. Çetin-Atalay, and A. Üner. Multiplication-free neural networks.268

In 2015 23nd Signal Processing and Communications Applications Conference (SIU), pages 2416–2418,269

2015.270

[3] Eugene L Allgower and Kurt Georg. Introduction to numerical continuation methods. SIAM, 2003.271

8

[4] Diaa Badawi, Ece Akhan, Ma’en Mallah, Ayşegül Üner, Rengül Çetin-Atalay, and A Enis Çetin. Multipli-272

cation free neural network for cancer stem cell detection in h-and-e stained liver images. In Compressive273

Sensing VI: From Diverse Modalities to Big Data Analytics, volume 10211, page 102110C. International274

Society for Optics and Photonics, 2017.275

[5] Shumeet Baluja, David Marwood, Michele Covell, and Nick Johnston. No multiplication? no floating276

point? no problem! training networks for efficient inference. arXiv preprint arXiv:1809.09244, 2018.277

[6] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In278

Proceedings of the 26th annual international conference on machine learning, pages 41–48, 2009.279

[7] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and280

Naigang Wang. A comprehensive survey on hardware-aware neural architecture search. arXiv preprint281

arXiv:2101.09336, 2021.282

[8] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. Hashnet: Deep learning to hash by283

continuation. In Proceedings of the IEEE international conference on computer vision, pages 5608–5617,284

2017.285

[9] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, and Chang Xu. Addernet: Do we286

really need multiplications in deep learning? In Proceedings of the IEEE/CVF Conference on Computer287

Vision and Pattern Recognition, pages 1468–1477, 2020.288

[10] Qipin Chen and Wenrui Hao. An efficient homotopy training algorithm for neural networks. 2019.289

[11] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration for290

deep neural networks. arXiv preprint arXiv:1710.09282, 2017.291

[12] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep neural292

networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 35(1):126–136,293

2018.294

[13] J Chow, L Udpa, and SS Udpa. Homotopy continuation methods for neural networks. In 1991., IEEE295

International Sympoisum on Circuits and Systems, pages 2483–2486. IEEE, 1991.296

[14] Michele Covell, David Marwood, Shumeet Baluja, and Nick Johnston. Table-based neural units: Fully297

quantizing networks for multiply-free inference. arXiv preprint arXiv:1906.04798, 2019.298

[15] Jennifer L Davidson and Gerhard X Ritter. Theory of morphological neural networks. In Digital Optical299

Computing II, volume 1215, pages 378–388. International Society for Optics and Photonics, 1990.300

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image301

Database. In CVPR09, 2009.302

[17] Radu Dogaru and Leon O Chua. The comparative synapse: A multiplication free approach to neuro-303

fuzzy classifiers. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,304

46(11):1366–1371, 1999.305

[18] Farnoush Farhadi, Vahid Nia, and Andrea Lodi. Activation adaptation in neural networks. In Proceedings of306

the 9th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,,307

pages 249–257. INSTICC, SciTePress, 2020.308

[19] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural309

networks. arXiv preprint arXiv:1803.03635, 2018.310

[20] Caglar Gulcehre, Marcin Moczulski, Francesco Visin, and Yoshua Bengio. Mollifying networks. arXiv311

preprint arXiv:1608.04980, 2016.312

[21] Yunhui Guo. A survey on methods and theories of quantized neural networks. arXiv preprint313

arXiv:1808.04752, 2018.314

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.315

corr abs/1512.03385 (2015), 2015.316

[23] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.317

[24] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv318

preprint arXiv:1503.02531, 2015.319

9

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco320

Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision321

applications. arXiv preprint arXiv:1704.04861, 2017.322

[26] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized neural323

networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural324

Information Processing Systems, volume 29. Curran Associates, Inc., 2016.325

[27] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer.326

Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint327

arXiv:1602.07360, 2016.328

[28] Martin Kersner. Convolutional network without multiplication operation, Mar 2019.329

[29] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.330

[30] Elena Limonova, Daniil Alfonso, Dmitry Nikolaev, and Vladimir V Arlazarov. Resnet-like architecture331

with low hardware requirements. arXiv preprint arXiv:2009.07190, 2020.332

[31] Elena Limonova, Daniil Matveev, Dmitry Nikolaev, and Vladimir V Arlazarov. Bipolar morphological333

neural networks: convolution without multiplication. In Twelfth International Conference on Machine334

Vision (ICMV 2019), volume 11433, page 114333J. International Society for Optics and Photonics, 2020.335

[32] Maen Mallah. Multiplication free neural networks. PhD thesis, Bilkent University, 2018.336

[33] Hossein Mobahi. Training recurrent neural networks by diffusion. arXiv preprint arXiv:1601.04114, 2016.337

[34] Ranjan Mondal, Sanchayan Santra, and Bhabatosh Chanda. Dense morphological network: An universal338

function approximator, 2019.339

[35] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89, 2020.340

[36] Hongyi Pan, Diaa Badawi, Xi Zhang, and Ahmet Enis Cetin. Additive neural network for forest fire341

detection. Signal, Image and Video Processing, pages 1–8, 2019.342

[37] Harsh Nilesh Pathak and Randy Paffenroth. Parameter continuation methods for the optimization of deep343

neural networks. In 2019 18th IEEE International Conference On Machine Learning And Applications344

(ICMLA), pages 1637–1643. IEEE, 2019.345

[38] Mohammad Samragh Razlighi, Mohsen Imani, Farinaz Koushanfar, and Tajana Rosing. Looknn: Neural346

network with no multiplication. In Design, Automation & Test in Europe Conference & Exhibition (DATE),347

2017, pages 1775–1780. IEEE, 2017.348

[39] Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):740–747, 1993.349

[40] Gerhard X Ritter and Peter Sussner. An introduction to morphological neural networks. In Proceedings of350

13th International Conference on Pattern Recognition, volume 4, pages 709–717. IEEE, 1996.351

[41] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural networks.352

arXiv preprint arXiv:1905.11946, 2019.353

[42] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury, Marat Dukhan, Kim Hazel-354

wood, Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learning at facebook: Understanding inference at355

the edge. In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA),356

pages 331–344. IEEE, 2019.357

[43] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization for358

deep learning inference: Principles and empirical evaluation, 2020.359

[44] Yixing Xu, Chang Xu, Xinghao Chen, Wei Zhang, Chunjing Xu, and Yunhe Wang. Kernel based360

progressive distillation for adder neural networks. arXiv preprint arXiv:2009.13044, 2020.361

[45] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A gift from knowledge distillation: Fast362

optimization, network minimization and transfer learning. In Proceedings of the IEEE Conference on363

Computer Vision and Pattern Recognition, pages 4133–4141, 2017.364

[46] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao Liu, Zhangyang Wang,365

and Yingyan Lin. Shiftaddnet: A hardware-inspired deep network. In Hugo Larochelle, Marc’Aurelio366

Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information367

Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS368

2020, December 6-12, 2020, virtual, 2020.369

10

[47] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional370

neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern371

recognition, pages 6848–6856, 2018.372

Checklist373

1. For all authors...374

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s375

contributions and scope? [Yes]376

(b) Did you describe the limitations of your work? [Yes] , see subsection 7.1.377

(c) Did you discuss any potential negative societal impacts of your work? [Yes] , see378

subsection 7.2.379

(d) Have you read the ethics review guidelines and ensured that your paper conforms to380

them? [Yes]381

2. If you are including theoretical results...382

(a) Did you state the full set of assumptions of all theoretical results? [Yes]383

(b) Did you include complete proofs of all theoretical results? [Yes]384

3. If you ran experiments...385

(a) Did you include the code, data, and instructions needed to reproduce the main experi-386

mental results (either in the supplemental material or as a URL)? [Yes]387

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they388

were chosen)? [Yes]389

(c) Did you report error bars (e.g., with respect to the random seed after running exper-390

iments multiple times)? [No] . It was too costly to train multiple times, we just ran391

once.392

(d) Did you include the total amount of compute and the type of resources used (e.g., type393

of GPUs, internal cluster, or cloud provider)? [No] , but we gave standard training394

details in section 6.395

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...396

(a) If your work uses existing assets, did you cite the creators? [Yes]397

(b) Did you mention the license of the assets? [N/A]398

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]399

400

(d) Did you discuss whether and how consent was obtained from people whose data you’re401

using/curating? [N/A]402

(e) Did you discuss whether the data you are using/curating contains personally identifiable403

information or offensive content? [N/A]404

5. If you used crowdsourcing or conducted research with human subjects...405

(a) Did you include the full text of instructions given to participants and screenshots, if406

applicable? [N/A]407

(b) Did you describe any potential participant risks, with links to Institutional Review408

Board (IRB) approvals, if applicable? [N/A]409

(c) Did you include the estimated hourly wage paid to participants and the total amount410

spent on participant compensation? [N/A]411

11

	Introduction
	Context and related work
	Network architecture and similarity operators
	Other Measures of similarity in neural network architectures

	Theoretical Results for EuclidNets
	Expressivity of the EuclidNet network
	Logic Gate Cost for EuclidNet compared to ConvNet (multipication)

	Training EuclidNets
	Experiments
	CIFAR10
	ImageNet

	Conclusion
	Limitations
	Societal Impact

	Appendix
	Hardware Details
	Addition
	Multiplication
	Squaring

