
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RTOP-K: ULTRA-FAST ROW-WISE TOP-K SELECTION
FOR NEURAL NETWORK ACCELERATION ON GPUS

Anonymous authors
Paper under double-blind review

ABSTRACT

Top-k selection algorithms are fundamental in a wide range of applications, from
high-performance computing and information retrieval to big data processing and
neural network model training. In this paper, we present RTop-K, a highly effi-
cient parallel row-wise top-k selection algorithm specifically designed for GPUs.
RTop-K leverages a binary search-based approach to optimize row-wise top-k se-
lection, providing a scalable and accelerated solution. We conduct a detailed anal-
ysis of early stopping in our algorithm, showing that it effectively maintains the
testing accuracy of neural network models while substantially improving perfor-
mance. Our GPU implementation of RTop-K demonstrates superior performance
over state-of-the-art row-wise top-k GPU implementations, achieving speed-ups
ranging from 4.25× to 9.51× with early stopping, and 3.94× without early stop-
ping. Moreover, RTop-K is capable of accelerating the overall training workflow
of MaxK-GNNs, delivering an average speed-up of 9.76% to 31.53% across dif-
ferent models and datasets.
The GPU implementation can be found on Github1.

1 INTRODUCTION

Top-k selection is a classic algorithmic challenge that involves identifying the k largest or small-
est elements from n input elements based on some predefined ranking criteria. The top-k selection
algorithm has been widely applied in many traditional scenarios, such as high-performance comput-
ing (HPC) (Muneer, 2021), information retrieval (IR) (Ding & Suel, 2011), big data (Gaihre et al.,
2019), and data mining (Malkov & Yashunin, 2018). Today, the top-k algorithm is increasingly ap-
plied in the training and inference of neural network models. For example, the Avg-TopK (Özdemir,
2023) pooling method has achieved more successful results in image classification accuracy and
transfer learning models compared to traditional methods. TopK-SGD (Shi et al., 2019) applied to
gradient sparsification techniques significantly reduces the communication traffic without obvious
impact on the model accuracy. Combining top-k with sparse training (Jayakumar et al., 2021) can
maintain constant sparsity and perform well while reducing resource requirements. In a study (Cui
et al., 2021), a top-k attention loss function was introduced to address the top-k ranking prediction
problem.

Graph Neural Networks (GNNs) have drawn tremendous attention in the past years due to their
unique ability to extract latent information from graph data (Hu et al., 2020). In the design and
acceleration of GNN training and inference, GPU platforms have become the prevalent choice due
to their multiple advantages. Firstly, compared to other processing hardware, GPUs provide superior
processing power and memory throughput (Li et al., 2018). For example, the NVIDIA A6000 GPU
boasts an impressive computation capability of 38.7 Tera FLOPS and a memory throughput 768
GB/s. Secondly, many leading supercomputers (such as Aurora and Eagle (LiveScience, 2023))
use GPUs as their primary computing resource. Thirdly, many applications and services related to
deep learning and neural networks are developed and deployed on GPU platforms. However, GNN
training and inference still typically pose strict challenges on latency and throughput (Xie et al.,
2023).

1https://anonymous.4open.science/r/RTopK-4DE7

1

https://anonymous.4open.science/r/RTopK-4DE7

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1. Top-k Selection

2. Feature aggregation

=

Output
1 2

43

6 7 8

5 +

Row-wise
Top-k

Feature

Figure 1: The core operation of MaxK-
GNN, which introduces row-wise top-k se-
lection into the GNN workflow to provide
non-linearity and acceleration.

Recently, MaxK-GNN (Peng et al., 2024) has
achieved great success in the acceleration and opti-
mization of GNN training and inference on GPUs.
As shown in Figure 1, this work introduces row-
wise top-k selection before the feature aggregation
step in GNNs, which not only provides nonlinearity
in GNNs to optimize the model’s expressive ability
but also demonstrates that performing SPMM oper-
ations in GNNs with the row-wise top-k-processed
right hand matrix can achieve several times speedup
over traditional workflows while maintaining good
model accuracy. The top-k selection operation
in Max-GNN necessitates performing a large-scale
row-wise top-k computation, i.e., executing top-k
operations simultaneously across a batch of vectors
on GPUs.

Traditional top-k algorithms and their GPU imple-
mentations (Gaihre et al., 2021; Zhang et al., 2023; Li et al., 2024) are typically optimized for single
queries or limited batched queries, that is, for a large vector or a small batch of large vectors (typi-
cally with a batch size not exceeding 100). However, the optimization focus for traditional scenarios
differs from the row-wise top-k algorithm required for GNN training and inference. Implementing
and optimizing row-wise top-k algorithms on GPUs pose challenges in terms of dispersion, paral-
lelism, and efficiency. Since row-wise top-k involves performing top-k operations on a large batch
of vectors simultaneously, and each vector’s length corresponds to the hidden dimension of the neu-
ral network layer (which usually does not exceed 1024), it is crucial to allocate only a small and
appropriate amount of GPU resources for each vector. Under these limited resource constraints, the
various optimization methods proposed for large vectors in traditional top-k implementations may
be overly complex and inefficient. We should seek simple and efficient algorithms tailored to this
scenario.

Additionally, we must consider the requirements and characteristics of applying row-wise top-k in
neural networks. We only need to select the values of the top-k elements in each row and their
indices in the vector. We do not need to perform sorting at all; neither the k selected elements
in each row nor the remaining elements require sorting. Furthermore, given the neural network’s
tolerant and robust nature, we can explore the feasibility of approximate top-k to further accelerate
the overall algorithm.

To efficiently implement row-wise top-k on GPUs for neural network applications, we introduce
RTop-K, a highly efficient parallel top-k selection algorithm designed for a large batch of limited-
size vectors, with the capability of approximation to further enhance the speed of the row-wise top-k
algorithm without compromising the accuracy of the neural network model.

We summarize our contributions as follows:

• We provide a comprehensive summary of GPU top-k selection algorithms and analyze
the performance limitations of state-of-the-art GPU implementations in the row-wise top-k
selection scenario.

• We propose a binary search-based top-k selection algorithm and provide a theoretical anal-
ysis of the effects of early stopping.

• We implement the binary search-based top-k selection algorithm on the GPU and con-
duct comprehensive tests, demonstrating that it outperforms state-of-the-art row-wise top-k
GPU implementations, with early stopping having minimal impact on testing accuracy.

2 PRELIMINARY AND RELATED WORKS

2.1 TOP-K ALGORITHMS

The heap-based top-k algorithm (Cormen et al., 2009) uses a min-heap to maintain the top-k ele-
ments by comparing and replacing the heap root when a larger element is encountered. QuickSelect

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(Dashti et al., 2013) leverages a partition-based approach similar to quicksort to find the k-th largest
element. The bucket-based algorithm (Yang et al., 2024) divides data into buckets, sorting only rel-
evant ones to find the top-k elements, which is effective for uniformly distributed data. RadixSelect
(Alabi et al., 2012) uses digit-wise sorting to identify the top-k elements efficiently. The bitonic top-
k algorithm (Shanbhag et al., 2018) employs bitonic sorting to merge and find the top-k elements in
parallel.

When considering these algorithms, we must take into account their suitability for GPU implementa-
tion and the optimization requirements for specific problem scenarios. For example, the heap-based
top-k algorithm is not well-suited for parallelization on GPUs because it relies on complex tree
structure operations and element-wise comparisons and swaps. Although QuickSelect, RadixSelect,
and the bitonic top-k algorithm can be successfully implemented on GPUs, they still require con-
siderable data access and resource demands when operating on a vector. This makes it difficult to
optimize for row-wise top-k scenarios, where a large batch of limited size vectors requires top-k
selection simultaneously, necessitating simplified operations and limited resource usage per vector.
The bucket-based top-k algorithm is more friendly to row-wise top-k scenarios but still requires
further simplification to enhance performance.

2.2 GPU ARCHITECTURE

The architecture of NVIDIA GPUs consists of an array of multithreaded Streaming Multiprocessors
(SMs) designed to execute thousands of threads concurrently. A function that runs on a GPU is
called a kernel.

Thread and Memory Hierarchy. NVIDIA GPUs organize threads into warps, with each warp
containing 32 threads that execute the same instruction simultaneously. Warps are grouped into
blocks, which reside on the same Streaming Multiprocessor (SM) and can communicate via shared
memory, a fast on-chip memory space. Blocks are further grouped into grids for specific kernel
launches. Threads access data from multiple memory spaces: device memory (large but slower,
accessible by all threads), shared memory (low-latency, for communication within a block), and
registers (fastest, partitioned among threads on an SM). The usage of registers can affect the number
of blocks that can be active on an SM.

Warp-Level Primitives. Warp-level primitives are a set of operations that allow threads within a
warp to cooperate and communicate efficiently. These include:

• Synchronization primitive: Ensures that all threads reach the same point in execution
before proceeding.

• Shuffle primitive: Allows threads to exchange values within a warp.

• Ballot primitive: Enables threads to collectively determine which threads meet a specified
condition by generating a mask representing the threads that satisfy the condition.

• Counting primitive: Counts the number of set bits in a given mask, often used in conjunc-
tion with the ballot primitive.

The flexible use of warp-level primitives is crucial for designing high-performance kernels, as the
efficiency of information sharing through these primitives can even surpass that of using shared
memory.

2.3 GPU TOP-K IMPLEMENTATIONS

Dr. Top-k(Gaihre et al., 2021) is a delegate-centric system that helps reduce the workload of GPU
top-k computations, including Radix Select, Bucket Select, and Bitonic Select. It achieves this by
dividing the input into sub-ranges and selecting delegates from them, along with performing multi-
GPU optimizations. A work(Zhang et al., 2023) proposed two optimization methods, AIR Top-k
and GridSelect. AIR Top-k employs an iteration-fused design and adaptive strategy to minimize
CPU-GPU communication and memory traffic, while GridSelect uses a shared queue and parallel
two-step insertion to decrease costly operations, enhancing parallel top-k efficiency on GPUs. A re-
cent RadixSelect implementation RadiK(Li et al., 2024) utilizes an optimization framework tailored

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

for high memory bandwidth and resource utilization, along with an adaptive scaling technique for
enhanced robustness, that supports larger k values with high efficiency.

However, the above state-of-the-art GPU implementations are optimized for limited batches of large
vectors. For instance, Dr. Top-k, AIR Top-k, and RadiK are designed for scenarios where the vector
size is on the order of 220 (about one million elements), and the batch size does not exceed 100.
This is not suitable for row-wise top-k applications, where the typical vector size is less than 1024,
and the batch size can reach millions.

PyTorch’s top-k implementation (Pytorch, 2024) is suitable for row-wise top-k operations. It uses
RadixSelect as the underlying method, which, as analyzed in Section 2.1, is overly complex for each
limited-size vector. Moreover, its selection results are sorted, which is also unnecessary. Although
it can handle large batch sizes, its efficiency is suboptimal in scenarios where a minimalistic top-k
selection is critical for each single vector.

Algorithm 1 Binary Search-based Top-k Se-
lection Algorithm
Require: Vector v of size M , integer k
Ensure: Top-k largest elements and their in-

dices in v
1: min← min(v)
2: max← max(v)
3: ϵ← ϵ′ ·max
4: thres, cnt← 0
5: while max−min > ϵ do
6: thres← min+max

2
7: cnt← |{i | vi ≥ thres}|
8: if cnt < k then
9: max← thres

10: else if cnt > k then
11: min← thres
12: else
13: break
14: end if
15: end while
16: if cnt = k then
17: elems, indices ← {(vi, i) | vi ≥

thres}
18: else
19: elems, indices ← {(vi, i) | vi >

thres+ ϵ}
20: Append the first k − |elems| pairs of

{(vi, i) | thres− ϵ ≤ vi ≤ thres+ ϵ}
to elems, indices

21: end if
22: return elems, indices

3 RTOP-K FRAMEWORK

The row-wise top-k operation involves finding the
largest (or smallest) k elements and their indices
in each row of a matrix. Without loss of gener-
ality, we assume finding the largest k elements.
Suppose a matrix has N rows and M columns;
the problem is equivalent to performing top-k se-
lection on N vectors of length M simultaneously.
Since N can be extremely large and M is lim-
ited, we need to apply a simplified algorithm to
each vector, ensuring that the algorithm can exe-
cute quickly with very limited computational re-
sources and memory access. We adopt a binary
search-based top-k algorithm, which is even more
convenient to execute than the bucket top-k algo-
rithm.

3.1 BINARY SEARCH-BASED
TOP-K SELECTION ALGORITHM

The algorithm, as illustrated in Fig. 2, first re-
trieves the min and max values of the vector,
and then uses several iterations of binary search
to determine a threshold thres. The min, max,
and thres values are updated in each iteration,
and the loop terminates when the number of ele-
ments filtered by the current threshold equals k.
To address the issue where the loop might strug-
gle to exit due to multiple equal or very close ele-
ments during filtering, we introduce the condition

max − min > ϵ, where ϵ = ϵ′ · max, and ϵ′ is a small value representing the precision, such as
10−4. If this condition is not met, the loop will also exit, and the remaining elements will be selected
sequentially among those that are equal within the specified precision.

Table 1 presents the statistical results of the iteration counts at which the algorithm exits for different
values of k, with the vector’s size M = 256. For each k value, 105 repeated experiments were
conducted, with the vector initialized with normally distributed elements. It can be observed that the
average iteration at exit ranges from 7.6 to 9.6, and the probability of the iteration count being less
than or equal to 13 exceeds 95%.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Min MaxThreshold
cn𝑡𝑡 > 𝑘𝑘

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 1

𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 2

𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 3

𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 4

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑊𝑊

ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑

𝑛𝑛𝑛𝑛
𝑛𝑛

𝑜𝑜𝑜𝑜
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑛𝑛

cn𝑡𝑡 > 𝑘𝑘

cn𝑡𝑡 < 𝑘𝑘

cn𝑡𝑡 = 𝑘𝑘

Figure 2: Illustration of the binary search-based top-k selection algorithm.

Table 1: Cumulative percentage of iterations where the loop exits for different k values (ϵ =
10−4,M = 256). Results are based on 105 repeated experiments for each k.

Iteration k=16 k=32 k=64 k=96 k=128

3 4.13% 2.71% 1.96% 1.34% 1.58%
4 8.98% 5.32% 3.52% 3.00% 2.81%
5 17.90% 10.64% 6.92% 5.84% 5.59%
6 33.86% 21.40% 13.87% 11.72% 11.15%
7 54.43% 38.84% 27.12% 23.29% 22.11%
8 72.38% 59.17% 46.64% 41.35% 39.93%
9 84.53% 76.00% 66.21% 61.48% 60.35%

10 91.88% 86.81% 80.68% 77.37% 76.62%
11 95.81% 93.03% 89.79% 87.64% 87.18%
12 97.89% 96.45% 94.70% 93.57% 93.31%
13 98.97% 98.21% 97.35% 96.70% 96.60%
14 99.52% 99.12% 98.67% 98.34% 98.25%
15 99.76% 99.53% 99.34% 99.20% 99.17%
16 100.00% 100.00% 100.00% 100.00% 100.00%

Average Exit 7.60 8.29 8.95 9.52 9.60

Algorithm 1 summarizes the complete binary search-based top-k algorithm process. It contains a
number of branching conditions, and the loop length executed by each warp can be different. We
attempt to further simplify it.

Algorithm 2 Binary Search-based Top-k Se-
lection Algorithm with Early Stopping
Require: Vector v of size M , integer k, inte-

ger max iter
Ensure: Top-k largest elements and their in-

dices in v
1: min← min(v)
2: max← max(v)
3: for iter ← 1 to max iter do
4: thres← min+max

2
5: cnt← |{i | vi ≥ thres}|
6: if cnt < k then
7: max← thres
8: else if cnt > k then
9: min← thres

10: else
11: break
12: end if
13: end for
14: elems, indices ← {(vi, i) | vi ≥

min}
15: return first k pairs of elems, indices

Given the inherent robustness of neural networks,
we can explore the feasibility of incorporating
early stopping into the algorithm. We present the
pseudocode for the early stopping algorithm and
then conduct a numerical analysis.

As shown in Algorithm 2, the introduction of
early stopping further simplifies the algorithm,
with the main loop forcefully exiting in no more
than max iter iterations. The collection phase
uses min instead of thres as the threshold, en-
suring that only one-pass collection is needed,
thereby eliminating the need for the two-pass col-
lection process present in the original algorithm
(in the branch where cnt ̸= k). Table 2 summa-
rizes the hit rate (overlap ratio) and the average
relative error between the early stopping top-k se-
lection with different max iter settings and the
optimal top-k selection. The experiments were
conducted with vectors of size M = 256 con-
sisting of normally distributed elements, and 105

repeated experiments for each condition. When
max iter ≥ 5 for k ≥ 32 (max iter ≥ 6 for
k = 16), both the maximum element and the min-
imum element in the early stopping top-k selec-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Statistics of early stop top-k selection for Different k Values and Maximum Iterations
(M=256). E1(%) represents the average relative error between the maximum element in early stop
top-k selection and the maximum element in the optimal top-k selection. E2(%) represents the
average relative error between the minimum element in early stop top-k selection and the minimum
element in the optimal top-k selection. Hit(%) represents the overlap ratio between the early stop
top-k selection and the optimal top-k selection.

k = 16 k = 32 k = 64 k = 96 k = 128

Iter E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%)
2 12.6 20.17 45.85 13.46 30.68 37.81 7.12 25.03 51.78 4.42 17.80 69.59 4.6 24.73 70.93
3 8.01 13.13 54.29 6.22 13.19 60.32 4.44 12.40 69.04 3.39 12.94 74.41 2.78 13.23 79.33
4 4.93 7.64 68.35 3.47 7.05 74.46 2.47 6.55 80.51 1.99 6.82 84.33 1.6 7.24 87.34
5 3.52 5.20 77.36 2.20 4.31 83.19 1.47 3.70 87.88 1.18 3.91 90.49 0.97 4.29 92.34
6 2.90 4.33 81.57 1.62 3.17 87.62 0.99 2.39 91.83 0.77 2.57 93.77 0.62 2.90 95.03
7 2.67 4.10 83.17 1.38 2.79 89.51 0.79 1.87 93.68 0.61 2.00 95.33 0.47 2.30 96.35
8 2.61 4.06 83.68 1.31 2.69 90.19 0.71 1.72 94.35 0.55 1.82 95.94 0.41 2.11 96.86

tion have an average relative error of no more than 5%. For k ≥ 64, only 4 iterations are needed
for the hit rate between the early stopping top-k selection and the optimal top-k selection to exceed
80%. These results indicate that the early stopping top-k selection is numerically stable and con-
trollable. We will further test the impact of early stopping top-k selection on model accuracy in the
experimental section.

3.2 GPU IMPLEMENTATION DESIGN

Ballot & Pop Cnt

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌

0.8 0.7 0.5 0.9 1 4 5 7

𝐄𝐄𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈

𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌

3. 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐧𝐧𝐧𝐧

𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓

2. 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒

𝟏𝟏.𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋

Max Min Max Min Max Min Max Min

Max MinMax Min

Max Min

Collect

Round 1

Broadcast

Round 2

Cnt Cnt

Cnt Iter n

Cnt Cnt Cnt Cnt

Collect

Round 1

Round 2

Broadcast

Cnt Cnt

Cnt Iter 2

Cnt Cnt Cnt Cnt

Collect

Round 1

Round 2

Broadcast

Cnt Cnt

Cnt Iter 1

Cnt Cnt Cnt Cnt

Collect

Round 1

Round 2

Broadcast

Figure 3: GPU implementation of the binary
search-based top-k selection algorithm.

Both Algorithm 1 and Algorithm 2 are well-
suited for GPU implementation, where a single
warp processes a single vector of size M . Fig. 3
illustrates the GPU implementation design for
Algorithm 2, which can be divided into three
stages: loading, searching, and selecting.

Loading stage: In this stage, each vector
is loaded from global memory into the cor-
responding shared memory, maintaining effi-
ciency through coalescing memory access. A
synchronization barrier is set at the end of this
stage.

Searching stage: In this stage, each vector is
handled by a single warp, assuming the warp
contains w threads (Fig. 3 illustrates w = 4,
while in actual hardware environments w =
32). The key point of the implementation is that
the max, min, and thres values at the begin-
ning and in each iteration need to be synchro-
nized across all threads within the warp. This
can be achieved using a combination of clas-
sic tree-reduction and broadcast primitives. The
first step is to obtain the max and min of the
vector. The vector is divided into ⌈M/w⌉ parts,
with each thread responsible for extracting the
maximum and minimum elements within its as-
signed part. Then, a tree-reduction using the
shuffle primitive is performed in log2 w steps
to obtain the maximum and minimum elements
across the entire warp, and these values are
broadcasted to all threads within the warp. The
second step is to perform a binary search ac-
cording to Algorithm 2 to obtain the selection

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

k0

1
Ti

m
e

(m
s)

N=214, M=256

k0

1
N=214, M=512

k0

1
N=214, M=768

k0.0

2.5

Ti
m

e
(m

s)

N=216, M=256

k0.0

2.5

N=216, M=512

k0.0

2.5

N=216, M=768

k0

10

Ti
m

e
(m

s)

N=218, M=256

k0

10

N=218, M=512

k0

10

N=218, M=768

16 32 64 96 128
k

0

50

Ti
m

e
(m

s)

N=220, M=256

16 32 64 96 128
k

0

50

N=220, M=512

16 32 64 96 128
k

0

50

N=220, M=768

max_iter=2
max_iter=3

max_iter=4
max_iter=5

max_iter=6
max_iter=7

max_iter=8
no early stopping

Pytorch

Figure 4: Comparison of kernel execution time (ms) between RTop-K with different early stopping
max iter values and without early stopping (ϵ = 10−4), against PyTorch for various configurations
of (N , M , k), where N = 214, 216, 218, 220, M = 256, 512, 768, and k = 16, 32, 64, 96, 128.

threshold. In each iteration, the count of elements above the current threshold is accumulated and
broadcasted using the same tree-reduction method. Then, each thread uses cnt to simultaneously
update the max, min, and thres values. After a specified number of iterations, the final threshold
is obtained.

Selecting stage: A single warp traverses the entire vector in one pass. The ballot primitive is used to
identify the elements and their indices that meet the selection threshold, and these are dumped into
the output buffer. The pop count primitive is then used to count the number of selected elements to
ensure that only the top-k pairs are dumped.

This design requires no data writes outside of registers, except for loading the vector and dumping
the results. During the searching and selecting stages, warp-level primitives are utilized to achieve
highly optimized inter-thread collaboration. Moreover, each warp operates independently in parallel,
maintaining high overall efficiency. The implementation for Algorithm 1 follows the same workflow,
with adjustments made to the termination condition of the loop in the searching stage. Additionally,
the selecting stage may require a potential two-pass selection, which is accomplished by repeating
the selection process with a different threshold.

4 EXPERIMENTS

4.1 SETUP AND CONFIGURATION

The CUDA source code of RTop-K is compiled using NVCC, version 12.2, and executed on an
NVIDIA A6000 platform running Ubuntu 22.04. We conduct comprehensive performance tests on
the RTop-K kernel, covering various input matrix dimensions, with the number of rows N ranging
from 214 to 220, hidden dimensions M ranging from 256 to 768, and k values ranging from 16 to
128. In all cases, we evaluate the speed of RTop-K with different early stopping settings, including
max iter values from 2 to 8, as well as no early stopping (ϵ = 10−4). The results are com-
pared against the row-wise top-k implementation provided by PyTorch (Pytorch, 2024), which is
the state-of-the-art row-wise top-k implementation supporting a large number of rows. The latency
measurements are conducted using the Nsight Compute tool (NVIDIA, 2023).

We also integrate the RTop-K kernel into MaxK-GNN models to evaluate the overall speedup of
the entire training process and the impact of different early stopping settings on test accuracy. The
evaluation covers three models in MaxK-GNN: GraphSAGE (Hamilton et al., 2017), GCN (Kipf
& Welling, 2016), and GIN (Xu et al., 2019). The graph datasets used include Flickr (McAuley &

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Average speed up of RTop-K compared to PyTorch implementation (ϵ = 10−4 for No Early
Stopping) across different M values.

Max Iteration 2 3 4 5 6 7 8 No Early Stopping

M=256 12.39 11.27 9.91 8.66 7.63 6.83 6.19 6.05
M=512 7.33 5.69 4.64 3.93 3.41 3.01 2.70 2.43
M=768 8.80 7.69 6.35 5.41 4.72 4.25 3.85 3.32

Average 9.51 8.22 6.97 6.00 5.26 4.70 4.25 3.94

Table 4: Graph data and the baseline testing accuracy of the MaxK-GNN based GNN model along
with the percentage of time spent on row-wise top-k operations during training.

GNN Model GraphSAGE GCN GIN

Graph #Nodes Acc(%) Top-k Prop(%) Acc(%) Top-k Prop(%) Acc(%) Top-k Prop(%)
Ogbn-products 2449029 80.08 19.81 76.6 19.61 77.77 19.67

Yelp 716847 61.09 26.09 48.26 25.84 43.16 25.92
Reddit 232965 96.74 11.66 95.18 11.61 94.96 11.62
Flickr 89250 53.44 26.86 50.42 26.78 51.73 26.73

Leskovec, 2012), Yelp (Zeng et al., 2020), Reddit (William L. Hamilton, 2017), and Ogbn-products
(Hu et al., 2020).

4.2 RTOP-K KERNEL EVALUATION

Fig. 4 presents a comprehensive time profiling of RTop-K compared to the PyTorch implementation.
It can be observed that RTop-K demonstrates significant speed improvements over PyTorch across
various early stopping max iter settings. Even with no early stopping, RTop-K consistently outper-
forms PyTorch in all scenarios. Moreover, the dimension that has the most impact on the speed-up
ratio is M , while N and k have relatively smaller effects. Table 3 summarizes the average speed-up
of RTop-K relative to PyTorch for different values of M . When M = 256, the speed-up varies from
6.19× to 12.39× across different max iter settings, and even with no early stopping, the speed-up
is still as high as 6.05×. On average, the speed-up ranges from 4.25× to 9.51× with early stopping,
and 3.94× with no early stopping.

We observe that the speed-up with no early stopping is close to that of max iter = 8, which
indicates that although the binary search requires many iterations in the worst-case, it typically exits
early in most cases. This observation is consistent with the results presented in Table 1. Even with
a few bad cases, the overall kernel speed remains unaffected.

4.3 MODEL TRAINING AND TESTING PERFORMANCE EVALUATION

Table 4 summarizes the proportion of time spent on row-wise top-k operations in several MaxK-
GNN training instances. It is evident that row-wise top-k operations account for a substantial portion
of the training time, ranging from 11.61% in the Reddit GCN training to 26.86% in the Flickr
GraphSAGE training. This indicates that optimizing row-wise top-k operations is meaningful for
improving their training efficiency.

The speed and accuracy impact of applying RTop-K with different early stopping settings in the
actual training of these models is shown in Fig. 5. For all GNN models and all graphs, the appli-
cation of RTop-K effectively accelerates the overall training workflow. Specifically, under different
max iter settings, the average overall training speed-up for Reddit ranges from 9.76% to 11.62%,
for Flickr from 25.75% to 31.53%, for Ogbn-products from 17.73% to 21.40%, and for Yelp from
24.75% to 30.24%.

It can be observed that the testing accuracy of the models remains high. Except for the GIN training
on Flickr, the testing accuracy across different max iter settings for other cases fluctuates around
the testing accuracy achieved with the optimal row-wise top-k selection. In many cases, applying

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 3 4 5 6 7 8
Max Iter

0.94

0.96

0.98

1.00

1.02
Ac

cu
ra

cy

SAGE - Reddit

2 3 4 5 6 7 8
Max Iter

0.52

0.54

0.56

Ac
cu

ra
cy

SAGE - Flickr

2 3 4 5 6 7 8
Max Iter

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

SAGE - Ogbn-products

2 3 4 5 6 7 8
Max Iter

0.60

0.62

0.64

0.66

Ac
cu

ra
cy

SAGE - Yelp

2 3 4 5 6 7 8
Max Iter

0.94

0.96

0.98

1.00

1.02

Ac
cu

ra
cy

GCN - Reddit

2 3 4 5 6 7 8
Max Iter

0.48

0.50

0.52

Ac
cu

ra
cy

GCN - Flickr

2 3 4 5 6 7 8
Max Iter

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

GCN - Ogbn-products

2 3 4 5 6 7 8
Max Iter

0.46

0.48

0.50

0.52

Ac
cu

ra
cy

GCN - Yelp

2 3 4 5 6 7 8
Max Iter

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

GIN - Reddit

2 3 4 5 6 7 8
Max Iter

0.50

0.51

0.52

0.53

0.54

0.55

Ac
cu

ra
cy

GIN - Flickr

2 3 4 5 6 7 8
Max Iter

0.76

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

GIN - Ogbn-products

2 3 4 5 6 7 8
Max Iter

0.42

0.44

0.46

Ac
cu

ra
cy

GIN - Yelp

1.025

1.050

1.075

1.100

1.125

Sp
ee

d-
up

 R
at

io

1.20

1.25

1.30

1.35

Sp
ee

d-
up

 R
at

io

1.10

1.15

1.20

1.25

Sp
ee

d-
up

 R
at

io

1.20

1.25

1.30

Sp
ee

d-
up

 R
at

io

1.025

1.050

1.075

1.100

1.125

Sp
ee

d-
up

 R
at

io

1.20

1.25

1.30

1.35

Sp
ee

d-
up

 R
at

io

1.10

1.15

1.20

Sp
ee

d-
up

 R
at

io

1.20

1.25

1.30

Sp
ee

d-
up

 R
at

io

1.025

1.050

1.075

1.100

1.125

Sp
ee

d-
up

 R
at

io

1.20

1.25

1.30

1.35

Sp
ee

d-
up

 R
at

io

1.10

1.15

1.20

1.25

Sp
ee

d-
up

 R
at

io

1.20

1.25

1.30

Sp
ee

d-
up

 R
at

io

Accuracy Optimal Top-K Accuracy Overall Speed-up Ratio

Figure 5: Overall training speed-up ratio and testing accuracy of applying RTop-K to various MaxK-
GNN model training processes on different graphs.

early stopping for row-wise top-k selection even results in higher testing accuracy. This is also a
manifestation of the inherent robustness of GNNs.

5 CONCLUSION

In this paper, we presented RTop-K, a highly efficient parallel row-wise top-k selection algorithm
for GPUs. By employing a binary search-based approach, RTop-K significantly accelerates top-k
operations while maintaining the accuracy of neural network models, as confirmed by our theoretical
analysis. Comprehensive kernel evaluations showed that RTop-K outperforms state-of-the-art GPU
implementations, achieving average speed-ups of 4.25× to 9.51× with early stopping and 3.94×
without early stopping. The overall MaxK-GNN training workflow evaluation of applying RTop-K
shows that RTop-K can provide an overall speed-up of 9.76% to 31.53%, with early stopping having
almost no impact on testing accuracy.

REFERENCES

Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. Fast k-Selection Algo-
rithms for Graphics Processing Units. Journal of Experimental Algorithmics, 17:4–2, 2012.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. MIT press, 2009.

Chaoran Cui, Jian Zong, Yuling Ma, Xinhua Wang, Lei Guo, Meng Chen, and Yilong Yin. Tri-
branch convolutional neural networks for top-k focused academic performance prediction, 2021.
URL https://arxiv.org/abs/2107.10424.

Ali Dashti, Igor Komarov, and Raissa M D’Souza. Efficient computation of k-nearest neighbour
graphs for large high-dimensional data sets on gpu clusters. PLoS One, 8(9):e74113, 2013. doi:
10.1371/journal.pone.0074113.

Shuai Ding and Torsten Suel. Faster Top-k Document Retrieval Using Block-Max Indexes. In
Proceedings of the 34th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 993–1002, 2011.

9

https://arxiv.org/abs/2107.10424

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Anil Gaihre, Santosh Pandey, and Hang Liu. Deanonymizing Cryptocurrency with Graph Learning:
The Promises and Challenges. In Conference on Communications and Network Security (CNS),
pp. 1–3. IEEE, 2019.

Anil Gaihre, Da Zheng, Scott Weitze, Lingda Li, Shuaiwen Leon Song, Caiwen Ding, Xiaoye S.
Li, and Hang Liu. Dr. top-k: delegate-centric top-k on gpus. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421. doi: 10.
1145/3458817.3476141. URL https://doi.org/10.1145/3458817.3476141.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Siddhant M. Jayakumar, Razvan Pascanu, Jack W. Rae, Simon Osindero, and Erich Elsen. Top-kast:
Top-k always sparse training, 2021. URL https://arxiv.org/abs/2106.03517.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Ang Li, Weifeng Liu, Linnan Wang, Kevin Barker, and Shuaiwen Leon Song. Warp-consolidation:
A Novel Execution Model for GPUs. In International Conference on Supercomputing, 2018.

Yifei Li, Bole Zhou, Jiejing Zhang, Xuechao Wei, Yinghan Li, and Yingda Chen. Radik: Scalable
and optimized gpu-parallel radix top-k selection. In Proceedings of the 38th ACM International
Conference on Supercomputing, ICS ’24, pp. 537–548, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400706103. doi: 10.1145/3650200.3656596. URL
https://doi.org/10.1145/3650200.3656596.

LiveScience. The 7 most powerful supercomputers in the world right
now. Available at https://www.livescience.com/technology/
7-most-powerful-supercomputers-in-the-world, 2023. Accessed: 2024,
Sep 30.

Yu A Malkov and Dmitry A Yashunin. Efficient and Robust Approximate Nearest Neighbor Search
Using Hierarchical Navigable Small World Graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 42(4):824–836, 2018.

Julian McAuley and Jure Leskovec. Image labeling on a network: Using social-network metadata for
image classification. 07 2012. ISBN 978-3-642-33764-2. doi: 10.1007/978-3-642-33765-9 59.

Muneer. arrayfirerequest. Available at https://groups.google.com/g/
arrayfire-users/c/oDtQcI7afZQ/, 2021. Accessed: 2021, Mar 17.

NVIDIA. Nvidia nsight compute. https://developer.nvidia.com/nsight-compute,
2023. Accessed: 2023-08-20.

Hongwu Peng, Xi Xie, Kaustubh Shivdikar, Md Amit Hasan, Jiahui Zhao, Shaoyi Huang, Omer
Khan, David Kaeli, and Caiwen Ding. Maxk-gnn: Extremely fast gpu kernel design for acceler-
ating graph neural networks training. In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 2, pp.
683–698, 2024.

Pytorch. torch.topk. https://pytorch.org/docs/stable/generated/torch.
topk.html, 2024. Accessed: 2024-08-15.

Anil Shanbhag, Holger Pirk, and Samuel Madden. Efficient Top-K Query Processing on Massively
Parallel Hardware. In Proceedings of the 2018 International Conference on Management of Data,
pp. 1557–1570. ACM, 2018.

10

https://doi.org/10.1145/3458817.3476141
https://arxiv.org/abs/2106.03517
https://doi.org/10.1145/3650200.3656596
https://www.livescience.com/technology/7-most-powerful-supercomputers-in-the-world
https://www.livescience.com/technology/7-most-powerful-supercomputers-in-the-world
https://groups.google.com/g/arrayfire-users/c/oDtQcI7afZQ/
https://groups.google.com/g/arrayfire-users/c/oDtQcI7afZQ/
https://developer.nvidia.com/nsight-compute
https://pytorch.org/docs/stable/generated/torch.topk.html
https://pytorch.org/docs/stable/generated/torch.topk.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
in distributed deep learning, 2019. URL https://arxiv.org/abs/1911.08772.

Jure Leskovec William L. Hamilton, Rex Ying. Inductive representation learning on large graphs.
arXiv preprint arXiv:1706.02216, 2017.

Xi Xie, Hongwu Peng, Amit Hasan, Shaoyi Huang, Jiahui Zhao, Haowen Fang, Wei Zhang, Tong
Geng, Omer Khan, and Caiwen Ding. Accel-gcn: High-performance gpu accelerator design for
graph convolution networks. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 01–09, 2023. doi: 10.1109/ICCAD57390.2023.10323722.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km.

Yiqing Yang, Guoyin Zhang, Yanxia Wu, Zhixiang Zhao, and Yan Fu. Split-bucket partition (sbp):
a novel execution model for top-k and selection algorithms on gpus. J. Supercomput., 80(11):
15122–15160, March 2024. ISSN 0920-8542. doi: 10.1007/s11227-024-06031-x. URL https:
//doi.org/10.1007/s11227-024-06031-x.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS.

Jingrong Zhang, Akira Naruse, Xipeng Li, and Yong Wang. Parallel top-k algorithms on gpu: A
comprehensive study and new methods. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’23, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400701092. doi: 10.1145/3581784.3607062.
URL https://doi.org/10.1145/3581784.3607062.

Cüneyt Özdemir. Avg-topk: A new pooling method for convolutional neural networks. Expert
Systems with Applications, 223:119892, 2023. ISSN 0957-4174. doi: https://doi.org/10.1016/
j.eswa.2023.119892. URL https://www.sciencedirect.com/science/article/
pii/S0957417423003937.

A THE EXPECTATION OF THE ITERATION COUNTS OF ALGORITHM 1

Assume that a vector v of length M has elements that follow a normal distribution N(µ, σ2).
The probability that an element x exceeds a threshold thres is given by P (x > thres) =

1− Φ
(

thres−µ
σ

)
, where Φ is the cumulative distribution function of the normal distribution. If the

expected number of elements selected from v is k, the expectation of thres, denoted as E(thres),
satisfies:

M ·
(
1− Φ

(
E(thres)− µ

σ

))
= k =⇒ E(thres) = µ+ σ · Φ−1

(
1− k

M

)
(1)

Considering the distinguishable interval δ between the k-th and (k + 1)-th largest elements, the
length of this interval is:

δ =
1

M · f(E(thres))
(2)

where

f(E(thres)) =
1

σ
√
2π

exp

(
− (E(thres)− µ)2

2σ2

)
is the probability density at E(thres). The length of the initial search interval D is given by:

D = max(v)−min(v) ≈ 2σ
√
2 lnM (3)

11

https://arxiv.org/abs/1911.08772
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1007/s11227-024-06031-x
https://doi.org/10.1007/s11227-024-06031-x
https://openreview.net/forum?id=BJe8pkHFwS
https://doi.org/10.1145/3581784.3607062
https://www.sciencedirect.com/science/article/pii/S0957417423003937
https://www.sciencedirect.com/science/article/pii/S0957417423003937

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Table 5: Cumulative percentage of iterations where the loop exits in Algorithm 1, for different M,k
values, with ϵ = 0. Experimental results are based on 104 repeated experiments for each M,k
couple, and theoretical values E(n) are also provided.
Iters M, k

256
64

256
128

1024
64

1024
128

1024
256

1024
512

4096
64

4096
128

4096
256

4096
512

8192
64

8192
128

8192
256

8192
512

1 0.12 1.5 0 0 0.02 0.53 0 0 0 0 0 0 0 0
2 0.17 1.5 1.25 0.17 0.02 0.53 0.41 0.41 0.18 0 0.12 0.23 0.24 0.02
3 1.98 1.62 1.27 0.5 0.62 0.54 0.43 0.41 0.2 0.08 0.3 0.24 0.25 0.02
4 3.48 2.9 1.93 1.31 0.99 0.7 1.54 0.63 0.36 0.33 1.11 0.7 0.32 0.15
5 6.88 6.06 4.05 2.42 1.67 1.25 2.83 1.34 0.76 0.61 2.43 1.3 0.7 0.31
6 13.96 11.64 8.18 4.49 3.24 2.64 5.4 2.84 1.64 1.06 4.68 2.62 1.46 0.75
7 27.3 23.03 16.09 9.42 6.41 5.16 11.13 5.99 3.37 2.15 9.18 5.28 2.98 1.6
8 46.47 40.18 30.63 18.77 12.7 10.19 21.56 12.05 6.89 4.15 19.25 10.62 5.59 3.27
9 66.34 60.57 50.71 35.21 24.91 19.69 39.04 24.37 13.69 8.23 34.8 21.5 11.49 6.72

10 81.07 76.76 69.08 55.43 43.92 35.98 60.23 42.59 26.65 16.71 55.41 38.13 22.42 13.3
11 90.11 87.67 82.99 72.93 63.57 55.7 76.59 62.55 46.7 31.29 73.09 58.45 39.96 25.94
12 95.17 93.48 90.71 84.79 78.45 73.32 87.42 78.11 66.36 52.28 85.21 75.11 60.66 44.97
13 97.46 96.8 95.19 91.9 88.37 85.06 93.42 87.9 81.06 70.87 92.16 86.37 77.12 64.65
14 98.68 98.35 97.59 95.86 93.82 92.47 96.48 93.18 89.91 83.91 96.29 92.63 87.55 80.25
15 99.46 99.21 98.79 97.95 96.87 96.32 98.24 96.3 94.73 91.34 98.15 96.39 93.48 89.3
16 99.73 99.56 99.43 98.89 98.46 98.06 99.21 98.14 97.35 95.39 99.11 98.19 96.73 94.46
17 99.85 99.72 99.71 99.51 99.18 99.03 99.59 99.02 98.51 97.65 99.48 99.18 98.35 97.29
18 99.96 99.85 99.9 99.73 99.62 99.44 99.77 99.45 99.2 98.8 99.77 99.59 99.21 98.66
19 99.99 99.93 99.95 99.84 99.84 99.67 99.87 99.75 99.64 99.38 99.89 99.76 99.54 99.33
20 99.99 99.98 99.97 99.9 99.93 99.85 99.95 99.87 99.84 99.76 99.98 99.89 99.8 99.69
21 99.99 99.99 99.98 99.95 99.97 99.93 99.97 99.94 99.95 99.95 99.99 99.98 99.94 99.84
22 99.99 99.99 99.99 99.96 99.99 99.95 99.99 99.98 99.98 99.97 99.99 99.98 99.96 99.9
23 99.99 99.99 99.99 99.99 99.99 99.96 100 99.98 100 99.98 100 100 99.99 99.94
24 100 99.99 100 100 99.99 99.97 - 100 - 99.99 - - 100 99.96
25 - 99.99 - - 100 99.99 - - - 99.99 - - - 99.98
26 - 100 - - - 100 - - - 99.99 - - - 99.99
27 - - - - - - - - - 100 - - - 99.99
28 - - - - - - - - - - - - - 100

Avg 8.72 9 9.53 10.31 10.87 11.24 10.07 10.95 11.73 12.46 10.3 11.14 12.02 12.8

E(n) 9.08 9.41 9.87 10.62 11.24 11.57 10.36 11.2 12 12.75 10.54 11.41 12.26 13.06

Each iteration of binary search halves the search interval length and moves closer to E(thres). The
expected number of iterations E(n) required for the algorithm to exit is determined by the search
interval shrinking to within δ. Thus, E(n) can be approximated as:

E(n) ≈ log2

(
D

δ

)
= log2

(
2σ
√
2 lnM ·M · f(E(thres))

)
= log2

(
2M

√
lnM

π

)
− 1

2 ln 2

(
Φ−1

(
1− k

M

))2

(4)

We compared the calculation results of Equation (4) with more detailed experimental results, as
shown in Table 5. It can be observed that the results match well, but E(n) is always slightly larger
than the measured average exit. This could be because the estimation of the initial search interval,
D ≈ 2σ

√
2 lnM , is valid only when M is sufficiently large. When M is not large enough, the lack

of tail samples causes the actual initial search interval to be smaller.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B A COMPREHENSIVE ANALYSIS OF THE PERFORMANCE OF RTOP-K WHEN
APPLIED TO VARYING VECTOR SIZES

Our design fixes one warp to process one vector. As the vector size M increases, the shared memory
required per warp also increases. Given that the available shared memory per block has a limit, on
the A6000 GPU, we allocate only ⌊8192/M⌋ warps per block. For M > 8192, our current shared
memory-based acceleration strategy cannot be directly applied.

For M ≤ 8192, the speedup of RTop-K relative to PyTorch is shown in Figure 6.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

19
20

20
48

21
76

23
04

24
32

25
60

26
88

28
16

29
44

30
72

32
00

33
28

34
56

35
84

37
12

38
40

39
68

40
96

42
24

43
52

44
80

46
08

47
36

48
64

49
92

51
20

52
48

53
76

55
04

56
32

57
60

58
88

60
16

61
44

62
72

64
00

65
28

66
56

67
84

69
12

70
40

71
68

72
96

74
24

75
52

76
80

78
08

79
36

80
64

81
92

M

0

2

4

6

8

10

12

14

16

18

Sp
ee

du
p

Speedup by M and Selected max_iter
max_iter = 2
max_iter = 5
max_iter = 8
No Early Stopping

Figure 6: Speedup of RTop-K relative to PyTorch for different vector sizes M and number of vectors
N = 65536. The average speedup for each case is computed over k = 64, 128, 256, 512 and k < M .
Precision ϵ = 10−16 is used for the no early stopping version.

Considering the lower-bound speed of RTop-K (no early stopping version):

• When M is below 3072, the speed of RTop-K is generally more than twice that of PyTorch.

• When M is between 3072 and 6144, RTop-K is generally faster than PyTorch.

• When M is between 6144 and 8192, RTop-K becomes slower than PyTorch, although it
remains faster for smaller max iter values.

It is worth noting that when M is a multiple of 256 or 512, the performance of our method drops
sharply. This is likely due to shared memory bank conflicts. These conflicts can usually be mitigated
by adding padding in the data access structure to break the conflict pattern. We will strive to resolve
this issue in the final version.

Theoretically, as shown in Equation (4), the expected number of search iterations for Algorithm 1
is:

E(n) = log2

(
2M

√
lnM

π

)
− 1

2 ln 2

(
Φ−1

(
1− k

M

))2

< log2

(
2M

√
lnM

π

)
= O(logM)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

In each iteration, a reduction operation of length M is required. Since one warp is fixed for one
vector, the time complexity of this reduction is equivalent to serial reduction, which is O(M).
Therefore, the total time complexity of Algorithm 1 is O(M logM). In contrast, PyTorch’s un-
derlying operation, RadixSelect, has a time complexity of O(M). Thus, when M is sufficiently
large, Algorithm 1 will lag behind traditional algorithms.

However, from a practical perspective, for M ≤ 8192, as shown in Table 5, the growth of E(n)
is very slow. Additionally, since the search range has a lower bound (depending on the data type),
the number of search iterations has an upper bound. Moreover, the searching stage is fully executed
in shared memory, which leads to a decreasing proportion of time spent in the searching stage
compared to the loading and selecting stages, as these involve increasing global memory accesses
with the growth of M .

Therefore, we believe the actual time complexity of Algorithm 1 is less than O(M logM) and is
closer to O(M). As M increases, the relative speedup of RTop-K compared to PyTorch decreases
primarily because the relative efficiency of PyTorch’s RadixSelect improves (the proportion of its
initialization, histogram construction, and indexing overhead decreases).

We also evaluated the performance of Algorithm 1 with different precision settings, and the results
are shown in Figure 7.

12
8

25
6

38
4

51
2

64
0

76
8

89
6

10
24

11
52

12
80

14
08

15
36

16
64

17
92

19
20

20
48

21
76

23
04

24
32

25
60

26
88

28
16

29
44

30
72

32
00

33
28

34
56

35
84

37
12

38
40

39
68

40
96

42
24

43
52

44
80

46
08

47
36

48
64

49
92

51
20

52
48

53
76

55
04

56
32

57
60

58
88

60
16

61
44

62
72

64
00

65
28

66
56

67
84

69
12

70
40

71
68

72
96

74
24

75
52

76
80

78
08

79
36

80
64

81
92

M

0

2

4

6

8

10

12

14

Sp
ee

du
p

Speedup by M and Selected Precision, No Early Stopping
= 0.0001
= 1e 16
= 0

Figure 7: Speedup of RTop-K (no early stopping version) relative to PyTorch for different vector
sizes M and different precisions, with the number of vectors N = 65536. The average speedup for
each case is computed over k = 64, 128, 256, 512 and k < M .

We found that precision has almost no impact on speed. Even with the setting of ϵ = 0, as shown
in Table 5, Algorithm 1 exits within 16 iterations in the vast majority of cases, and the remaining
rare cases have a negligible impact on the overall performance. This is also because the searching
stage is fully executed in shared memory, making Algorithm 1 less sensitive to the number of search
iterations.

14

	Introduction
	Preliminary and Related Works
	Top-k Algorithms
	GPU Architecture
	GPU Top-k Implementations

	RTop-K Framework
	Binary Search-based Top-k Selection Algorithm
	GPU Implementation Design

	Experiments
	Setup and Configuration
	RTop-K Kernel Evaluation
	Model Training and Testing Performance Evaluation

	Conclusion
	The expectation of the iteration counts of Algorithm 1
	A comprehensive analysis of the performance of RTop-K when applied to varying vector sizes

