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ABSTRACT

Top-k selection algorithms are fundamental in a wide range of applications, from
high-performance computing and information retrieval to big data processing and
neural network model training. In this paper, we present RTop-K, a highly effi-
cient parallel row-wise top-k selection algorithm specifically designed for GPUs.
RTop-K leverages a binary search-based approach to optimize row-wise top-k se-
lection, providing a scalable and accelerated solution. We conduct a detailed anal-
ysis of early stopping in our algorithm, showing that it effectively maintains the
testing accuracy of neural network models while substantially improving perfor-
mance. Our GPU implementation of RTop-K demonstrates superior performance
over state-of-the-art row-wise top-k GPU implementations, achieving speed-ups
ranging from 4.25× to 9.51× with early stopping, and 3.94× without early stop-
ping. Moreover, RTop-K is capable of accelerating the overall training workflow
of MaxK-GNNs, delivering an average speed-up of 9.76% to 31.53% across dif-
ferent models and datasets.
The GPU implementation can be found on Github1.

1 INTRODUCTION

Top-k selection is a classic algorithmic challenge that involves identifying the k largest or small-
est elements from n input elements based on some predefined ranking criteria. The top-k selection
algorithm has been widely applied in many traditional scenarios, such as high-performance comput-
ing (HPC) (Muneer, 2021), information retrieval (IR) (Ding & Suel, 2011), big data (Gaihre et al.,
2019), and data mining (Malkov & Yashunin, 2018). Today, the top-k algorithm is increasingly ap-
plied in the training and inference of neural network models. For example, the Avg-TopK (Özdemir,
2023) pooling method has achieved more successful results in image classification accuracy and
transfer learning models compared to traditional methods. TopK-SGD (Shi et al., 2019) applied to
gradient sparsification techniques significantly reduces the communication traffic without obvious
impact on the model accuracy. Combining top-k with sparse training (Jayakumar et al., 2021) can
maintain constant sparsity and perform well while reducing resource requirements. In a study (Cui
et al., 2021), a top-k attention loss function was introduced to address the top-k ranking prediction
problem.

Graph Neural Networks (GNNs) have drawn tremendous attention in the past years due to their
unique ability to extract latent information from graph data (Hu et al., 2020). In the design and
acceleration of GNN training and inference, GPU platforms have become the prevalent choice due
to their multiple advantages. Firstly, compared to other processing hardware, GPUs provide superior
processing power and memory throughput (Li et al., 2018). For example, the NVIDIA A6000 GPU
boasts an impressive computation capability of 38.7 Tera FLOPS and a memory throughput 768
GB/s. Secondly, many leading supercomputers (such as Aurora and Eagle (LiveScience, 2023))
use GPUs as their primary computing resource. Thirdly, many applications and services related to
deep learning and neural networks are developed and deployed on GPU platforms. However, GNN
training and inference still typically pose strict challenges on latency and throughput (Xie et al.,
2023).

1https://anonymous.4open.science/r/RTopK-4DE7
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1. Top-k Selection
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Figure 1: The core operation of MaxK-
GNN, which introduces row-wise top-k se-
lection into the GNN workflow to provide
non-linearity and acceleration.

Recently, MaxK-GNN (Peng et al., 2024) has
achieved great success in the acceleration and opti-
mization of GNN training and inference on GPUs.
As shown in Figure 1, this work introduces row-
wise top-k selection before the feature aggregation
step in GNNs, which not only provides nonlinearity
in GNNs to optimize the model’s expressive ability
but also demonstrates that performing SPMM oper-
ations in GNNs with the row-wise top-k-processed
right hand matrix can achieve several times speedup
over traditional workflows while maintaining good
model accuracy. The top-k selection operation
in Max-GNN necessitates performing a large-scale
row-wise top-k computation, i.e., executing top-k
operations simultaneously across a batch of vectors
on GPUs.

Traditional top-k algorithms and their GPU imple-
mentations (Gaihre et al., 2021; Zhang et al., 2023; Li et al., 2024) are typically optimized for single
queries or limited batched queries, that is, for a large vector or a small batch of large vectors (typi-
cally with a batch size not exceeding 100). However, the optimization focus for traditional scenarios
differs from the row-wise top-k algorithm required for GNN training and inference. Implementing
and optimizing row-wise top-k algorithms on GPUs pose challenges in terms of dispersion, paral-
lelism, and efficiency. Since row-wise top-k involves performing top-k operations on a large batch
of vectors simultaneously, and each vector’s length corresponds to the hidden dimension of the neu-
ral network layer (which usually does not exceed 1024), it is crucial to allocate only a small and
appropriate amount of GPU resources for each vector. Under these limited resource constraints, the
various optimization methods proposed for large vectors in traditional top-k implementations may
be overly complex and inefficient. We should seek simple and efficient algorithms tailored to this
scenario.

Additionally, we must consider the requirements and characteristics of applying row-wise top-k in
neural networks. We only need to select the values of the top-k elements in each row and their
indices in the vector. We do not need to perform sorting at all; neither the k selected elements
in each row nor the remaining elements require sorting. Furthermore, given the neural network’s
tolerant and robust nature, we can explore the feasibility of approximate top-k to further accelerate
the overall algorithm.

To efficiently implement row-wise top-k on GPUs for neural network applications, we introduce
RTop-K, a highly efficient parallel top-k selection algorithm designed for a large batch of limited-
size vectors, with the capability of approximation to further enhance the speed of the row-wise top-k
algorithm without compromising the accuracy of the neural network model.

We summarize our contributions as follows:

• We provide a comprehensive summary of GPU top-k selection algorithms and analyze
the performance limitations of state-of-the-art GPU implementations in the row-wise top-k
selection scenario.

• We propose a binary search-based top-k selection algorithm and provide a theoretical anal-
ysis of the effects of early stopping.

• We implement the binary search-based top-k selection algorithm on the GPU and con-
duct comprehensive tests, demonstrating that it outperforms state-of-the-art row-wise top-k
GPU implementations, with early stopping having minimal impact on testing accuracy.

2 PRELIMINARY AND RELATED WORKS

2.1 TOP-K ALGORITHMS

The heap-based top-k algorithm (Cormen et al., 2009) uses a min-heap to maintain the top-k ele-
ments by comparing and replacing the heap root when a larger element is encountered. QuickSelect
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(Dashti et al., 2013) leverages a partition-based approach similar to quicksort to find the k-th largest
element. The bucket-based algorithm (Yang et al., 2024) divides data into buckets, sorting only rel-
evant ones to find the top-k elements, which is effective for uniformly distributed data. RadixSelect
(Alabi et al., 2012) uses digit-wise sorting to identify the top-k elements efficiently. The bitonic top-
k algorithm (Shanbhag et al., 2018) employs bitonic sorting to merge and find the top-k elements in
parallel.

When considering these algorithms, we must take into account their suitability for GPU implementa-
tion and the optimization requirements for specific problem scenarios. For example, the heap-based
top-k algorithm is not well-suited for parallelization on GPUs because it relies on complex tree
structure operations and element-wise comparisons and swaps. Although QuickSelect, RadixSelect,
and the bitonic top-k algorithm can be successfully implemented on GPUs, they still require con-
siderable data access and resource demands when operating on a vector. This makes it difficult to
optimize for row-wise top-k scenarios, where a large batch of limited size vectors requires top-k
selection simultaneously, necessitating simplified operations and limited resource usage per vector.
The bucket-based top-k algorithm is more friendly to row-wise top-k scenarios but still requires
further simplification to enhance performance.

2.2 GPU ARCHITECTURE

The architecture of NVIDIA GPUs consists of an array of multithreaded Streaming Multiprocessors
(SMs) designed to execute thousands of threads concurrently. A function that runs on a GPU is
called a kernel.

Thread and Memory Hierarchy. NVIDIA GPUs organize threads into warps, with each warp
containing 32 threads that execute the same instruction simultaneously. Warps are grouped into
blocks, which reside on the same Streaming Multiprocessor (SM) and can communicate via shared
memory, a fast on-chip memory space. Blocks are further grouped into grids for specific kernel
launches. Threads access data from multiple memory spaces: device memory (large but slower,
accessible by all threads), shared memory (low-latency, for communication within a block), and
registers (fastest, partitioned among threads on an SM). The usage of registers can affect the number
of blocks that can be active on an SM.

Warp-Level Primitives. Warp-level primitives are a set of operations that allow threads within a
warp to cooperate and communicate efficiently. These include:

• Synchronization primitive: Ensures that all threads reach the same point in execution
before proceeding.

• Shuffle primitive: Allows threads to exchange values within a warp.

• Ballot primitive: Enables threads to collectively determine which threads meet a specified
condition by generating a mask representing the threads that satisfy the condition.

• Counting primitive: Counts the number of set bits in a given mask, often used in conjunc-
tion with the ballot primitive.

The flexible use of warp-level primitives is crucial for designing high-performance kernels, as the
efficiency of information sharing through these primitives can even surpass that of using shared
memory.

2.3 GPU TOP-K IMPLEMENTATIONS

Dr. Top-k(Gaihre et al., 2021) is a delegate-centric system that helps reduce the workload of GPU
top-k computations, including Radix Select, Bucket Select, and Bitonic Select. It achieves this by
dividing the input into sub-ranges and selecting delegates from them, along with performing multi-
GPU optimizations. A work(Zhang et al., 2023) proposed two optimization methods, AIR Top-k
and GridSelect. AIR Top-k employs an iteration-fused design and adaptive strategy to minimize
CPU-GPU communication and memory traffic, while GridSelect uses a shared queue and parallel
two-step insertion to decrease costly operations, enhancing parallel top-k efficiency on GPUs. A re-
cent RadixSelect implementation RadiK(Li et al., 2024) utilizes an optimization framework tailored

3
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for high memory bandwidth and resource utilization, along with an adaptive scaling technique for
enhanced robustness, that supports larger k values with high efficiency.

However, the above state-of-the-art GPU implementations are optimized for limited batches of large
vectors. For instance, Dr. Top-k, AIR Top-k, and RadiK are designed for scenarios where the vector
size is on the order of 220 (about one million elements), and the batch size does not exceed 100.
This is not suitable for row-wise top-k applications, where the typical vector size is less than 1024,
and the batch size can reach millions.

PyTorch’s top-k implementation (Pytorch, 2024) is suitable for row-wise top-k operations. It uses
RadixSelect as the underlying method, which, as analyzed in Section 2.1, is overly complex for each
limited-size vector. Moreover, its selection results are sorted, which is also unnecessary. Although
it can handle large batch sizes, its efficiency is suboptimal in scenarios where a minimalistic top-k
selection is critical for each single vector.

Algorithm 1 Binary Search-based Top-k Se-
lection Algorithm
Require: Vector v of size M , integer k
Ensure: Top-k largest elements and their in-

dices in v
1: min← min(v)
2: max← max(v)
3: ϵ← ϵ′ ·max
4: thres, cnt← 0
5: while max−min > ϵ do
6: thres← min+max

2
7: cnt← |{i | vi ≥ thres}|
8: if cnt < k then
9: max← thres

10: else if cnt > k then
11: min← thres
12: else
13: break
14: end if
15: end while
16: if cnt = k then
17: elems, indices ← {(vi, i) | vi ≥

thres}
18: else
19: elems, indices ← {(vi, i) | vi >

thres+ ϵ}
20: Append the first k − |elems| pairs of

{(vi, i) | thres− ϵ ≤ vi ≤ thres+ ϵ}
to elems, indices

21: end if
22: return elems, indices

3 RTOP-K FRAMEWORK

The row-wise top-k operation involves finding the
largest (or smallest) k elements and their indices
in each row of a matrix. Without loss of gener-
ality, we assume finding the largest k elements.
Suppose a matrix has N rows and M columns;
the problem is equivalent to performing top-k se-
lection on N vectors of length M simultaneously.
Since N can be extremely large and M is lim-
ited, we need to apply a simplified algorithm to
each vector, ensuring that the algorithm can exe-
cute quickly with very limited computational re-
sources and memory access. We adopt a binary
search-based top-k algorithm, which is even more
convenient to execute than the bucket top-k algo-
rithm.

3.1 BINARY SEARCH-BASED
TOP-K SELECTION ALGORITHM

The algorithm, as illustrated in Fig. 2, first re-
trieves the min and max values of the vector,
and then uses several iterations of binary search
to determine a threshold thres. The min, max,
and thres values are updated in each iteration,
and the loop terminates when the number of ele-
ments filtered by the current threshold equals k.
To address the issue where the loop might strug-
gle to exit due to multiple equal or very close ele-
ments during filtering, we introduce the condition

max − min > ϵ, where ϵ = ϵ′ · max, and ϵ′ is a small value representing the precision, such as
10−4. If this condition is not met, the loop will also exit, and the remaining elements will be selected
sequentially among those that are equal within the specified precision.

Table 1 presents the statistical results of the iteration counts at which the algorithm exits for different
values of k, with the vector’s size M = 256. For each k value, 105 repeated experiments were
conducted, with the vector initialized with normally distributed elements. It can be observed that the
average iteration at exit ranges from 7.6 to 9.6, and the probability of the iteration count being less
than or equal to 13 exceeds 95%.
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Figure 2: Illustration of the binary search-based top-k selection algorithm.

Table 1: Cumulative percentage of iterations where the loop exits for different k values (ϵ =
10−4,M = 256). Results are based on 105 repeated experiments for each k.

Iteration k=16 k=32 k=64 k=96 k=128

3 4.13% 2.71% 1.96% 1.34% 1.58%
4 8.98% 5.32% 3.52% 3.00% 2.81%
5 17.90% 10.64% 6.92% 5.84% 5.59%
6 33.86% 21.40% 13.87% 11.72% 11.15%
7 54.43% 38.84% 27.12% 23.29% 22.11%
8 72.38% 59.17% 46.64% 41.35% 39.93%
9 84.53% 76.00% 66.21% 61.48% 60.35%

10 91.88% 86.81% 80.68% 77.37% 76.62%
11 95.81% 93.03% 89.79% 87.64% 87.18%
12 97.89% 96.45% 94.70% 93.57% 93.31%
13 98.97% 98.21% 97.35% 96.70% 96.60%
14 99.52% 99.12% 98.67% 98.34% 98.25%
15 99.76% 99.53% 99.34% 99.20% 99.17%
16 100.00% 100.00% 100.00% 100.00% 100.00%

Average Exit 7.60 8.29 8.95 9.52 9.60

Algorithm 1 summarizes the complete binary search-based top-k algorithm process. It contains a
number of branching conditions, and the loop length executed by each warp can be different. We
attempt to further simplify it.

Algorithm 2 Binary Search-based Top-k Se-
lection Algorithm with Early Stopping
Require: Vector v of size M , integer k, inte-

ger max iter
Ensure: Top-k largest elements and their in-

dices in v
1: min← min(v)
2: max← max(v)
3: for iter ← 1 to max iter do
4: thres← min+max

2
5: cnt← |{i | vi ≥ thres}|
6: if cnt < k then
7: max← thres
8: else if cnt > k then
9: min← thres

10: else
11: break
12: end if
13: end for
14: elems, indices ← {(vi, i) | vi ≥

min}
15: return first k pairs of elems, indices

Given the inherent robustness of neural networks,
we can explore the feasibility of incorporating
early stopping into the algorithm. We present the
pseudocode for the early stopping algorithm and
then conduct a numerical analysis.

As shown in Algorithm 2, the introduction of
early stopping further simplifies the algorithm,
with the main loop forcefully exiting in no more
than max iter iterations. The collection phase
uses min instead of thres as the threshold, en-
suring that only one-pass collection is needed,
thereby eliminating the need for the two-pass col-
lection process present in the original algorithm
(in the branch where cnt ̸= k). Table 2 summa-
rizes the hit rate (overlap ratio) and the average
relative error between the early stopping top-k se-
lection with different max iter settings and the
optimal top-k selection. The experiments were
conducted with vectors of size M = 256 con-
sisting of normally distributed elements, and 105

repeated experiments for each condition. When
max iter ≥ 5 for k ≥ 32 (max iter ≥ 6 for
k = 16), both the maximum element and the min-
imum element in the early stopping top-k selec-
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Table 2: Statistics of early stop top-k selection for Different k Values and Maximum Iterations
(M=256). E1(%) represents the average relative error between the maximum element in early stop
top-k selection and the maximum element in the optimal top-k selection. E2(%) represents the
average relative error between the minimum element in early stop top-k selection and the minimum
element in the optimal top-k selection. Hit(%) represents the overlap ratio between the early stop
top-k selection and the optimal top-k selection.

k = 16 k = 32 k = 64 k = 96 k = 128

Iter E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%) E1(%) E2(%) Hit(%)
2 12.6 20.17 45.85 13.46 30.68 37.81 7.12 25.03 51.78 4.42 17.80 69.59 4.6 24.73 70.93
3 8.01 13.13 54.29 6.22 13.19 60.32 4.44 12.40 69.04 3.39 12.94 74.41 2.78 13.23 79.33
4 4.93 7.64 68.35 3.47 7.05 74.46 2.47 6.55 80.51 1.99 6.82 84.33 1.6 7.24 87.34
5 3.52 5.20 77.36 2.20 4.31 83.19 1.47 3.70 87.88 1.18 3.91 90.49 0.97 4.29 92.34
6 2.90 4.33 81.57 1.62 3.17 87.62 0.99 2.39 91.83 0.77 2.57 93.77 0.62 2.90 95.03
7 2.67 4.10 83.17 1.38 2.79 89.51 0.79 1.87 93.68 0.61 2.00 95.33 0.47 2.30 96.35
8 2.61 4.06 83.68 1.31 2.69 90.19 0.71 1.72 94.35 0.55 1.82 95.94 0.41 2.11 96.86

tion have an average relative error of no more than 5%. For k ≥ 64, only 4 iterations are needed
for the hit rate between the early stopping top-k selection and the optimal top-k selection to exceed
80%. These results indicate that the early stopping top-k selection is numerically stable and con-
trollable. We will further test the impact of early stopping top-k selection on model accuracy in the
experimental section.

3.2 GPU IMPLEMENTATION DESIGN
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Figure 3: GPU implementation of the binary
search-based top-k selection algorithm.

Both Algorithm 1 and Algorithm 2 are well-
suited for GPU implementation, where a single
warp processes a single vector of size M . Fig. 3
illustrates the GPU implementation design for
Algorithm 2, which can be divided into three
stages: loading, searching, and selecting.

Loading stage: In this stage, each vector
is loaded from global memory into the cor-
responding shared memory, maintaining effi-
ciency through coalescing memory access. A
synchronization barrier is set at the end of this
stage.

Searching stage: In this stage, each vector is
handled by a single warp, assuming the warp
contains w threads (Fig. 3 illustrates w = 4,
while in actual hardware environments w =
32). The key point of the implementation is that
the max, min, and thres values at the begin-
ning and in each iteration need to be synchro-
nized across all threads within the warp. This
can be achieved using a combination of clas-
sic tree-reduction and broadcast primitives. The
first step is to obtain the max and min of the
vector. The vector is divided into ⌈M/w⌉ parts,
with each thread responsible for extracting the
maximum and minimum elements within its as-
signed part. Then, a tree-reduction using the
shuffle primitive is performed in log2 w steps
to obtain the maximum and minimum elements
across the entire warp, and these values are
broadcasted to all threads within the warp. The
second step is to perform a binary search ac-
cording to Algorithm 2 to obtain the selection
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Figure 4: Comparison of kernel execution time (ms) between RTop-K with different early stopping
max iter values and without early stopping (ϵ = 10−4), against PyTorch for various configurations
of (N , M , k), where N = 214, 216, 218, 220, M = 256, 512, 768, and k = 16, 32, 64, 96, 128.

threshold. In each iteration, the count of elements above the current threshold is accumulated and
broadcasted using the same tree-reduction method. Then, each thread uses cnt to simultaneously
update the max, min, and thres values. After a specified number of iterations, the final threshold
is obtained.

Selecting stage: A single warp traverses the entire vector in one pass. The ballot primitive is used to
identify the elements and their indices that meet the selection threshold, and these are dumped into
the output buffer. The pop count primitive is then used to count the number of selected elements to
ensure that only the top-k pairs are dumped.

This design requires no data writes outside of registers, except for loading the vector and dumping
the results. During the searching and selecting stages, warp-level primitives are utilized to achieve
highly optimized inter-thread collaboration. Moreover, each warp operates independently in parallel,
maintaining high overall efficiency. The implementation for Algorithm 1 follows the same workflow,
with adjustments made to the termination condition of the loop in the searching stage. Additionally,
the selecting stage may require a potential two-pass selection, which is accomplished by repeating
the selection process with a different threshold.

4 EXPERIMENTS

4.1 SETUP AND CONFIGURATION

The CUDA source code of RTop-K is compiled using NVCC, version 12.2, and executed on an
NVIDIA A6000 platform running Ubuntu 22.04. We conduct comprehensive performance tests on
the RTop-K kernel, covering various input matrix dimensions, with the number of rows N ranging
from 214 to 220, hidden dimensions M ranging from 256 to 768, and k values ranging from 16 to
128. In all cases, we evaluate the speed of RTop-K with different early stopping settings, including
max iter values from 2 to 8, as well as no early stopping (ϵ = 10−4). The results are com-
pared against the row-wise top-k implementation provided by PyTorch (Pytorch, 2024), which is
the state-of-the-art row-wise top-k implementation supporting a large number of rows. The latency
measurements are conducted using the Nsight Compute tool (NVIDIA, 2023).

We also integrate the RTop-K kernel into MaxK-GNN models to evaluate the overall speedup of
the entire training process and the impact of different early stopping settings on test accuracy. The
evaluation covers three models in MaxK-GNN: GraphSAGE (Hamilton et al., 2017), GCN (Kipf
& Welling, 2016), and GIN (Xu et al., 2019). The graph datasets used include Flickr (McAuley &
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Table 3: Average speed up of RTop-K compared to PyTorch implementation (ϵ = 10−4 for No Early
Stopping) across different M values.

Max Iteration 2 3 4 5 6 7 8 No Early Stopping

M=256 12.39 11.27 9.91 8.66 7.63 6.83 6.19 6.05
M=512 7.33 5.69 4.64 3.93 3.41 3.01 2.70 2.43
M=768 8.80 7.69 6.35 5.41 4.72 4.25 3.85 3.32

Average 9.51 8.22 6.97 6.00 5.26 4.70 4.25 3.94

Table 4: Graph data and the baseline testing accuracy of the MaxK-GNN based GNN model along
with the percentage of time spent on row-wise top-k operations during training.

GNN Model GraphSAGE GCN GIN

Graph #Nodes Acc(%) Top-k Prop(%) Acc(%) Top-k Prop(%) Acc(%) Top-k Prop(%)
Ogbn-products 2449029 80.08 19.81 76.6 19.61 77.77 19.67

Yelp 716847 61.09 26.09 48.26 25.84 43.16 25.92
Reddit 232965 96.74 11.66 95.18 11.61 94.96 11.62
Flickr 89250 53.44 26.86 50.42 26.78 51.73 26.73

Leskovec, 2012), Yelp (Zeng et al., 2020), Reddit (William L. Hamilton, 2017), and Ogbn-products
(Hu et al., 2020).

4.2 RTOP-K KERNEL EVALUATION

Fig. 4 presents a comprehensive time profiling of RTop-K compared to the PyTorch implementation.
It can be observed that RTop-K demonstrates significant speed improvements over PyTorch across
various early stopping max iter settings. Even with no early stopping, RTop-K consistently outper-
forms PyTorch in all scenarios. Moreover, the dimension that has the most impact on the speed-up
ratio is M , while N and k have relatively smaller effects. Table 3 summarizes the average speed-up
of RTop-K relative to PyTorch for different values of M . When M = 256, the speed-up varies from
6.19× to 12.39× across different max iter settings, and even with no early stopping, the speed-up
is still as high as 6.05×. On average, the speed-up ranges from 4.25× to 9.51× with early stopping,
and 3.94× with no early stopping.

We observe that the speed-up with no early stopping is close to that of max iter = 8, which
indicates that although the binary search requires many iterations in the worst-case, it typically exits
early in most cases. This observation is consistent with the results presented in Table 1. Even with
a few bad cases, the overall kernel speed remains unaffected.

4.3 MODEL TRAINING AND TESTING PERFORMANCE EVALUATION

Table 4 summarizes the proportion of time spent on row-wise top-k operations in several MaxK-
GNN training instances. It is evident that row-wise top-k operations account for a substantial portion
of the training time, ranging from 11.61% in the Reddit GCN training to 26.86% in the Flickr
GraphSAGE training. This indicates that optimizing row-wise top-k operations is meaningful for
improving their training efficiency.

The speed and accuracy impact of applying RTop-K with different early stopping settings in the
actual training of these models is shown in Fig. 5. For all GNN models and all graphs, the appli-
cation of RTop-K effectively accelerates the overall training workflow. Specifically, under different
max iter settings, the average overall training speed-up for Reddit ranges from 9.76% to 11.62%,
for Flickr from 25.75% to 31.53%, for Ogbn-products from 17.73% to 21.40%, and for Yelp from
24.75% to 30.24%.

It can be observed that the testing accuracy of the models remains high. Except for the GIN training
on Flickr, the testing accuracy across different max iter settings for other cases fluctuates around
the testing accuracy achieved with the optimal row-wise top-k selection. In many cases, applying
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Figure 5: Overall training speed-up ratio and testing accuracy of applying RTop-K to various MaxK-
GNN model training processes on different graphs.

early stopping for row-wise top-k selection even results in higher testing accuracy. This is also a
manifestation of the inherent robustness of GNNs.

5 CONCLUSION

In this paper, we presented RTop-K, a highly efficient parallel row-wise top-k selection algorithm
for GPUs. By employing a binary search-based approach, RTop-K significantly accelerates top-k
operations while maintaining the accuracy of neural network models, as confirmed by our theoretical
analysis. Comprehensive kernel evaluations showed that RTop-K outperforms state-of-the-art GPU
implementations, achieving average speed-ups of 4.25× to 9.51× with early stopping and 3.94×
without early stopping. The overall MaxK-GNN training workflow evaluation of applying RTop-K
shows that RTop-K can provide an overall speed-up of 9.76% to 31.53%, with early stopping having
almost no impact on testing accuracy.
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A THE EXPECTATION OF THE ITERATION COUNTS OF ALGORITHM 1

Assume that a vector v of length M has elements that follow a normal distribution N(µ, σ2).
The probability that an element x exceeds a threshold thres is given by P (x > thres) =

1− Φ
(

thres−µ
σ

)
, where Φ is the cumulative distribution function of the normal distribution. If the

expected number of elements selected from v is k, the expectation of thres, denoted as E(thres),
satisfies:

M ·
(
1− Φ

(
E(thres)− µ

σ

))
= k =⇒ E(thres) = µ+ σ · Φ−1

(
1− k

M

)
(1)

Considering the distinguishable interval δ between the k-th and (k + 1)-th largest elements, the
length of this interval is:

δ =
1

M · f(E(thres))
(2)

where

f(E(thres)) =
1

σ
√
2π

exp

(
− (E(thres)− µ)2

2σ2

)
is the probability density at E(thres). The length of the initial search interval D is given by:

D = max(v)−min(v) ≈ 2σ
√
2 lnM (3)
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Table 5: Cumulative percentage of iterations where the loop exits in Algorithm 1, for different M,k
values, with ϵ = 0. Experimental results are based on 104 repeated experiments for each M,k
couple, and theoretical values E(n) are also provided.
Iters M, k

256
64

256
128

1024
64

1024
128

1024
256

1024
512

4096
64

4096
128

4096
256

4096
512

8192
64

8192
128

8192
256

8192
512

1 0.12 1.5 0 0 0.02 0.53 0 0 0 0 0 0 0 0
2 0.17 1.5 1.25 0.17 0.02 0.53 0.41 0.41 0.18 0 0.12 0.23 0.24 0.02
3 1.98 1.62 1.27 0.5 0.62 0.54 0.43 0.41 0.2 0.08 0.3 0.24 0.25 0.02
4 3.48 2.9 1.93 1.31 0.99 0.7 1.54 0.63 0.36 0.33 1.11 0.7 0.32 0.15
5 6.88 6.06 4.05 2.42 1.67 1.25 2.83 1.34 0.76 0.61 2.43 1.3 0.7 0.31
6 13.96 11.64 8.18 4.49 3.24 2.64 5.4 2.84 1.64 1.06 4.68 2.62 1.46 0.75
7 27.3 23.03 16.09 9.42 6.41 5.16 11.13 5.99 3.37 2.15 9.18 5.28 2.98 1.6
8 46.47 40.18 30.63 18.77 12.7 10.19 21.56 12.05 6.89 4.15 19.25 10.62 5.59 3.27
9 66.34 60.57 50.71 35.21 24.91 19.69 39.04 24.37 13.69 8.23 34.8 21.5 11.49 6.72

10 81.07 76.76 69.08 55.43 43.92 35.98 60.23 42.59 26.65 16.71 55.41 38.13 22.42 13.3
11 90.11 87.67 82.99 72.93 63.57 55.7 76.59 62.55 46.7 31.29 73.09 58.45 39.96 25.94
12 95.17 93.48 90.71 84.79 78.45 73.32 87.42 78.11 66.36 52.28 85.21 75.11 60.66 44.97
13 97.46 96.8 95.19 91.9 88.37 85.06 93.42 87.9 81.06 70.87 92.16 86.37 77.12 64.65
14 98.68 98.35 97.59 95.86 93.82 92.47 96.48 93.18 89.91 83.91 96.29 92.63 87.55 80.25
15 99.46 99.21 98.79 97.95 96.87 96.32 98.24 96.3 94.73 91.34 98.15 96.39 93.48 89.3
16 99.73 99.56 99.43 98.89 98.46 98.06 99.21 98.14 97.35 95.39 99.11 98.19 96.73 94.46
17 99.85 99.72 99.71 99.51 99.18 99.03 99.59 99.02 98.51 97.65 99.48 99.18 98.35 97.29
18 99.96 99.85 99.9 99.73 99.62 99.44 99.77 99.45 99.2 98.8 99.77 99.59 99.21 98.66
19 99.99 99.93 99.95 99.84 99.84 99.67 99.87 99.75 99.64 99.38 99.89 99.76 99.54 99.33
20 99.99 99.98 99.97 99.9 99.93 99.85 99.95 99.87 99.84 99.76 99.98 99.89 99.8 99.69
21 99.99 99.99 99.98 99.95 99.97 99.93 99.97 99.94 99.95 99.95 99.99 99.98 99.94 99.84
22 99.99 99.99 99.99 99.96 99.99 99.95 99.99 99.98 99.98 99.97 99.99 99.98 99.96 99.9
23 99.99 99.99 99.99 99.99 99.99 99.96 100 99.98 100 99.98 100 100 99.99 99.94
24 100 99.99 100 100 99.99 99.97 - 100 - 99.99 - - 100 99.96
25 - 99.99 - - 100 99.99 - - - 99.99 - - - 99.98
26 - 100 - - - 100 - - - 99.99 - - - 99.99
27 - - - - - - - - - 100 - - - 99.99
28 - - - - - - - - - - - - - 100

Avg 8.72 9 9.53 10.31 10.87 11.24 10.07 10.95 11.73 12.46 10.3 11.14 12.02 12.8

E(n) 9.08 9.41 9.87 10.62 11.24 11.57 10.36 11.2 12 12.75 10.54 11.41 12.26 13.06

Each iteration of binary search halves the search interval length and moves closer to E(thres). The
expected number of iterations E(n) required for the algorithm to exit is determined by the search
interval shrinking to within δ. Thus, E(n) can be approximated as:

E(n) ≈ log2

(
D

δ

)
= log2

(
2σ
√
2 lnM ·M · f(E(thres))

)
= log2

(
2M

√
lnM

π

)
− 1

2 ln 2

(
Φ−1

(
1− k

M

))2

(4)

We compared the calculation results of Equation (4) with more detailed experimental results, as
shown in Table 5. It can be observed that the results match well, but E(n) is always slightly larger
than the measured average exit. This could be because the estimation of the initial search interval,
D ≈ 2σ

√
2 lnM , is valid only when M is sufficiently large. When M is not large enough, the lack

of tail samples causes the actual initial search interval to be smaller.
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B A COMPREHENSIVE ANALYSIS OF THE PERFORMANCE OF RTOP-K WHEN
APPLIED TO VARYING VECTOR SIZES

Our design fixes one warp to process one vector. As the vector size M increases, the shared memory
required per warp also increases. Given that the available shared memory per block has a limit, on
the A6000 GPU, we allocate only ⌊8192/M⌋ warps per block. For M > 8192, our current shared
memory-based acceleration strategy cannot be directly applied.

For M ≤ 8192, the speedup of RTop-K relative to PyTorch is shown in Figure 6.
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Figure 6: Speedup of RTop-K relative to PyTorch for different vector sizes M and number of vectors
N = 65536. The average speedup for each case is computed over k = 64, 128, 256, 512 and k < M .
Precision ϵ = 10−16 is used for the no early stopping version.

Considering the lower-bound speed of RTop-K (no early stopping version):

• When M is below 3072, the speed of RTop-K is generally more than twice that of PyTorch.

• When M is between 3072 and 6144, RTop-K is generally faster than PyTorch.

• When M is between 6144 and 8192, RTop-K becomes slower than PyTorch, although it
remains faster for smaller max iter values.

It is worth noting that when M is a multiple of 256 or 512, the performance of our method drops
sharply. This is likely due to shared memory bank conflicts. These conflicts can usually be mitigated
by adding padding in the data access structure to break the conflict pattern. We will strive to resolve
this issue in the final version.

Theoretically, as shown in Equation (4), the expected number of search iterations for Algorithm 1
is:

E(n) = log2

(
2M

√
lnM

π

)
− 1

2 ln 2

(
Φ−1

(
1− k

M

))2

< log2

(
2M

√
lnM

π

)
= O(logM)
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In each iteration, a reduction operation of length M is required. Since one warp is fixed for one
vector, the time complexity of this reduction is equivalent to serial reduction, which is O(M).
Therefore, the total time complexity of Algorithm 1 is O(M logM). In contrast, PyTorch’s un-
derlying operation, RadixSelect, has a time complexity of O(M). Thus, when M is sufficiently
large, Algorithm 1 will lag behind traditional algorithms.

However, from a practical perspective, for M ≤ 8192, as shown in Table 5, the growth of E(n)
is very slow. Additionally, since the search range has a lower bound (depending on the data type),
the number of search iterations has an upper bound. Moreover, the searching stage is fully executed
in shared memory, which leads to a decreasing proportion of time spent in the searching stage
compared to the loading and selecting stages, as these involve increasing global memory accesses
with the growth of M .

Therefore, we believe the actual time complexity of Algorithm 1 is less than O(M logM) and is
closer to O(M). As M increases, the relative speedup of RTop-K compared to PyTorch decreases
primarily because the relative efficiency of PyTorch’s RadixSelect improves (the proportion of its
initialization, histogram construction, and indexing overhead decreases).

We also evaluated the performance of Algorithm 1 with different precision settings, and the results
are shown in Figure 7.
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Figure 7: Speedup of RTop-K (no early stopping version) relative to PyTorch for different vector
sizes M and different precisions, with the number of vectors N = 65536. The average speedup for
each case is computed over k = 64, 128, 256, 512 and k < M .

We found that precision has almost no impact on speed. Even with the setting of ϵ = 0, as shown
in Table 5, Algorithm 1 exits within 16 iterations in the vast majority of cases, and the remaining
rare cases have a negligible impact on the overall performance. This is also because the searching
stage is fully executed in shared memory, making Algorithm 1 less sensitive to the number of search
iterations.
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