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ABSTRACT

Knowledge transfer is an effective tool for learning, especially when labeled data
is scarce or when training from scratch is prohibitively costly. The overwhelming
majority of transfer learning literature is focused on obtaining accurate models,
neglecting the issue of adversarial robustness. Yet, robustness is essential, partic-
ularly when transferring to safety-critical domains. We analyze and compare how
different training procedures on the source domain and different fine-tuning strate-
gies on the target domain affect robustness. More precisely, we study 10 training
schemes for source models and 3 for target models, including normal, adversarial,
contrastive and Lipschitz constrained variants. We quantify model robustness via
randomized smoothing and adversarial attacks. Our results show that improving
model robustness on the source domain increases robustness on the target domain.
Target retraining has a minor influence on target model robustness. These results
indicate that model robustness is preserved during target retraining and transfered
from the source domain to the target domain.

1 INTRODUCTION

Since their proposal, neural networks are constantly evolving as they are being adapted for many
diverse tasks. They have a tendency to become more complex and larger, since e.g. overparama-
trization has proven to be highly beneficial. Training such large and complex neural networks usu-
ally requires a huge amount of (labeled) high-quality data. Since this amount of data is not available
in all domains, transfer learning was proposed. The idea is to transfer the knowledge of a trained
model from the so called source domain to a similar, related task in a target domain for which only
a small amount of data exists. Usually, the transfer is considered successful if the model achieves
high accuracy on the target domain. However, accuracy is not the only desired property of neural
networks. Adversarial robustness is often equally important, especially in safety-critical domains.
Some techniques applied in transfer learning (Shafahi et al., 2020; Chen et al., 2021) claim that they
improve robustness of transfer learning. However, there is no study that directly compares these
techniques to standard methods for improving robustness such as adversarial training or training
with a (local) Lipschitz constant. We fill this gap by answering the following questions:

1. Which training procedure results in the most robust source models?
2. Is robustness preserved during target retraining?
3. Does robust retraining on the target domain improve robustness?
4. Which training/target retraining provides models that are robust against distribution shifts?
5. Does transferability correlate with model robustness?

To answer these questions, we use a popular transfer learning framework consisting of two parts (see
Figure 1): a feature extractor f which extracts representations from the inputs and is trained on the
source domain and a classifier h which maps extracted representations to predictions and is retrained
on the target domain. We investigate and compare how different training procedures and target re-
training techniques affect performance and robustness of this model. More specifically, we compare
10 training procedures that can be grouped in three categories. Category one consists of training
methods that aim at achieving robustness by changing inputs, i.e. (1) training on clean inputs (ce),
(2) randomly perturbed inputs (ceN) and (3) adversarially perturbed inputs (ceA), (4) supervised
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contrastive learning (con) (Khosla et al., 2020), (5) supervised contrastive learning based on (5) ran-
domly perturbed inputs (conN) and (6) adversarially perturbed inputs (conA). The second category
of training approaches consists of methods that change the latent space of the model to achieve ro-
bustness, i.e. (7) latent adversarial training (feA) (Singh et al., 2019), (8) adversarial representation
loss minimization (feD) (Chen et al., 2021) and (9) a combination of supervised contrastive learning
and adversarial representation loss minimization (conF). Our third category of methods uses con-
straints on the whole model to improve robustness. These constraints are realized by (10) training
with a local Lipschitz constant (llc) (Huang et al., 2021). In order to analyze how target retraining
affects model robustness we compare target retraining on (a) clean (Rce), (b) randomly perturbed
(RceN) and (c) adversarially perturbed inputs (RceA).
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Figure 1: Transfer learning framework consisting of a feature extractor f , classifier hS on the source
domain and hT on the target domain. For input x, f(x) = z provides the features and hS(z) =
hS(f(x)) or hT (z) = hT (f(x)) the output. Source training procedures is grouped in methods that
change inputs (ce, ceN, ceA, con, conN, conA), methods that change the latent space (feD, feA,
conF) and methods that constrain the whole model (llc).

To provide a more complete picture of robustness we consider robustness certification, performance
against a variety of attacks, and performance under distribution shift. Namely, we employ (i) ran-
domized smoothing based certification and (ii) Fast gradient sign method (FGSM), (iii) Project Gra-
dient Descent (PGD) and (iv) DeepFool (DF) attacks on the source domain and the target domain.
In terms of distribution shift, we determine source and target accuracy under different shifts based
on random noise, changes of contrast, and Gaussian Blur shift. Next, we investigate whether there is
a correlation between transferability and model robustness. We compute a transferability metric and
analyze it together with model robustness and zero-shot performance. For transferability quantifica-
tion we use the H-score, proposed by (Bao et al., 2019) to quantify the usability of representations
learned on a source domain for learning a target task.

This battery of robustness tests can tell us when is adversarial robustness transferable. As we will
show in Section 4, target models inherit robustness from the source models while target retraining
has a minor impact. Our findings suggest that model robustness is transferable when source models
are trained based on a procedure that enhances model robustness without being too focused on data-
specific adversarial examples.

2 BACKGROUND AND RELATED WORK

Robustness is widely studied for standard tasks such as classification and regression, but there are
few works that analyze how robustness properties can be transferred from the source to the target
domain. There are different aspects of robustness. One aspect is the vulnerability to adversarial
examples (Szegedy et al., 2014) – small input perturbations that are carefully-crafted to manipulate
the predictions of a model (e.g. cause misclassification). Finding attacks for a given model has been
widely studied for different threat models. These attacks can be used to compute an upper bound
on the accuracy under adversarial perturbations. However, this bound can be loose since properly
evaluating adversarial robustness is challenging. While a model may be robust against a particular
attack there is usually no guarantee that it will not fail against a better and stronger attack. The lesson
that seemingly robust models can be broken has been learned more than once (Carlini & Wagner,
2017; Athalye et al., 2018; Tramèr et al., 2020).

A complementary strategy to evaluate adversarial robustness is via verification/certification. Robust-
ness certificates provide guarantees that the prediction of model will not change for the specified
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perturbation set. Since certificates are NP-hard to compute in general, verification uses tractable
(but sound) relaxations to provide a lower bound on adversarial robutness. Verification methods
can be grouped in different categories, such as methods based on smoothing (Cohen et al., 2019),
Lipschitz bounds (Fazlyab et al., 2019), interval bound methods (Mirman et al., 2018), and opti-
mization (Wong & Kolter, 2018). Randomized smoothing (Cohen et al., 2019) is widely used due
to its generality – it treats the model as a block box and only requires accesses to model inputs and
outputs. Since most of the other techniques do not scale to the models typically used in transfer
learning and/or are only applicable to specific families of models we adopt randomized smoothing
in our evaluations.

Another aspect is robustness to distribution shift, which arise from (natural) variations in the
data such as noise, changes in contrast, lighting conditions, or object composition. For example,
Hendrycks & Dietterich (2019) investigate robustness using synthetic distribution shifts by intro-
ducing noise (Gaussian, shot noise), blurring, simulated weather conditions, contrast change, and
corruptions from compression. To investigate this aspect we also adopt a similar procedure focusing
on three types of representative shifts (noise, blurring and contrast).

The literature on robustness of transfer learning is scarce, especially relative to standard supervised
learning. The few existing studies are disconnected, the findings are not comparable with each other,
and even lead to contradictory conclusions. While Salman et al. (2020) shows that robust training
improves the accuracy on the unperturbed target domain data, Shafahi et al. (2020) shows the op-
posite – adversarial training increases robustness but decreases accuracy. This is one motivation for
our study – we intend to provide a fair and comparable evaluation of the most promising techniques
aiming at improving robustness.

One of the strongest empirical defences is adversarial training (Goodfellow et al., 2015; Madry
et al., 2018)1 Until now, transfer learning techniques mainly use adversarial training to obtain fea-
ture representations that generalize better. Salman et al. (2020) and Utrera et al. (2021) show that
adversarially trained/robust models indeed transfer better than their standard-trained counterparts,
especially if the target domain has limited data. However, the primary goal of these works is to
improve accuracy on unperturbed (rather than adversarial) target data. Similarly, Engstrom et al.
(2019), Ilyas et al. (2019), and Allen-Zhu & Li (2021) show that adversarial training improves fea-
ture learning and results in representations that are more aligned with humans.

Goldblum et al. (2020) and (Vaishnavi et al., 2022) investigate whether robustness can transfer from
an adversarially trained teacher to a student within the same domain via knowledge distillation.
The goal for the student is to match the model output (Goldblum et al., 2020) or match the learned
representations (Vaishnavi et al., 2022). In contrast to that, we investigate robustness transferability
across domains. Chan et al. (2020) argues that matching input gradients is important for robustness
transfer. Yamada & Otani (2022) investigate whether robustness transfers to downstream tasks such
as object detection and semantic segmentation. They find that in the fixed-feature setting robustness
is partially preserved and opposed to previous findings, show that an adversarial prior does not
help for robustness transfer. Nern & Sharma (2022) investigate transfers from pre-trained models
and theoretically shows that downstream robustness is bounded by the robustness of the underlying
representation (irrespective of the pre-training protocol).

Finally, most closely related to our work is the study by Shafahi et al. (2020) showing that adversarial
training of the feature extractor coupled with a one-layer-classifier improves robustness on the target
domain. With a similar goal, Chen et al. (2021) proposes an adversarial training procedure that
minimizes the distance between adversarial and unperturbed representations (i.e. the output of the
feature extractor f ) and proposes to use a classifier with a fixed Lipschitz constant. In all above
works the robustness (when evaluated) is considered only w.r.t. a small set of attacks. To provide a
more complete picture, we additionally consider verification and robustness to distribution shift.

3 MODEL, TRAINING PROCEDURES & TARGET RETRAINING

A simple but popular transfer learning framework, that we use for this work consists of two parts: a
so called feature extractor f and a classifier h (see Figure 1). The prediction for input x is obtained
as y = h(f(x)). The feature extractor is trained on the source domain and is then frozen, i.e. not

1The details are important since adversarial training against a weak attack produces a weak defense.
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changed during target retraining, while the classifier is retrained on the target domain. The idea of
this model is, that in related tasks similar features are important and thus the feature extractor can
be transferred from source domain to the target domain without adaptions, while the classifier maps
extracted representations/features to classes and must be adapted to the target domain.

We compare the following 10 training schemes, to determine the best way of obtaining robust source
models and preserving robustness during transfer to the target domain (details see Appendix A.1).

1. Standard supervised learning (ce). As baseline, the whole model h ◦ f is trained on clean input
data using the cross-entropy (CE) as loss function.

2. Randomly perturbed inputs (ceN). We train the whole model h ◦ f on randomly perturbed
inputs. The noisy inputs are obtained by randomly sampling the perturbation ϵ from a Gaussian
distribution N (0, δ2I) and adding it to the clean input x.

3. Adversarially perturbed inputs (ceA). During adversarial training, an attack is used to compute
an adversarial perturbation δ for each input x. The model h ◦ f is trained on the perturbed inputs
x+ δ. We use a 10-step project gradient descent (PGD) attack to obtain δ during training.

4. Minimizing adversarial feature loss (feD). (Chen et al., 2021) proposed a method explicitly
aimed at improving robustness of transfer learning models. This approach is based on a loss function
that linearly combines the cross entropy loss LCE with a so called representation distance loss LR =
||f(xadv)− f(x)||2, where ||.||2 is the L2-norm. The LR loss minimizes the distance between
clean and adversarially perturbed inputs in representation space. The adversarial inputs xadv are
obtained with the attack described in paragraph 3 (ceA). The final loss L = LCE + λ

DR
LR is a liner

combination of the two, where λ ∈ [0; 1] is a hyper-parameter and DR is the dimensionality of the
representation space.

5. Latent perturbations (feA). The previous training procedures focused on adversarial examples
in the input space and/or the representation space. However, non-robustness can be caused by any
layer of the neural network that maps close points far from each other. To address this issue latent
adversarial training was proposed (Singh et al., 2019). The authors choose a layer l and split the
neural network n at that layer into two parts n1 and n2 such that n = n2 ◦n1. Then they use the fast
gradient sign method (FGSM) on the sub-network n2, which results in and adversarial example in
the input space of n2, i.e. the latent space of the whole neural network n. For training, the authors
additional compute an adversarial example in the input space of n and combine the gradients of
adversarial input and latent adversarial example to update the neural network parameters. (Singh
et al., 2019) proposes to use this training procedure for fine-tuning after the training. Since standard
adversarial training is not used after (but during) training, we modify their approach to ensure a fair
comparison. First, we use latent adversarial training from the beginning of the training. Second, for
each training step we randomly chose a latent layer l for splitting the network and computing latent
adversarial examples. Finally, we extended the method such that latent adversarial examples can be
computed by any attack strategy. To ensure comparability we compute latent adversarial examples
and adversarial inputs by using 10-step PGD attacks.

6. Local Lipschitz constant (llc). Bounding the Lipschitz constant of a neural network is known to
improve model robustness and can even be used to get guarantees. Since bounds on global Lipschitz
constants are often loose and might lead to over-regularization, we train a neural network based on
an upper bound on a trainable local Lipschitz constant as proposed by (Huang et al., 2021). The
local Lipschitz constant is obtained by taking interactions between weight matrices and activation
functions into account. It can be proven that the obtained bound is tighter than the global Lipschitz
constant. The details of this training approach are explained in (Huang et al., 2021).

7. Supervised contrastive learning (con). Neural networks trained with fully-supervised con-
trastive learning (Khosla et al., 2020) consist of the same two parts as our transfer learning model: a
feature extractor f that computes a representation f(x) for each input x and a classifier h that maps
the representation to the output space h(f(x)). The idea of contrastive learning is to compute repre-
sentations for a batch of samples and train the feature extractor by pulling representations that corre-
spond to the same class (positive samples) together and pushing representations of different classes
(negative samples) apart from each other. To ensure positive samples, on each input in a batch B
we perform two different realizations of random data augmentations aug(.), such as random crops,
random grey-scale changes, etc., which results in two new training batches: B1 = [aug(x) ∀x ∈ B]
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B2 = [aug(x) ∀x ∈ B]. We train on B1∪B2. We include this training procedure since it is directly
based on a desirable property of the representations: Inputs of the same class should result in close
representations. Enforcing this might affect source or target model robustness.
In each training epoch, we alternatingly update the parameters of the feature encoder f and the clas-
sifier h. First, the feature encoder is updated based on the representation computed for the inputs
using the contrastive loss (that minimizes the distance between positive samples and maximizes
the distance between negative samples). Second, the representations are propagated through the
classifier and the classifier is updated using cross-entropy loss.

8. Supervised contrastive learning on randomly perturbed inputs (conN). This training proce-
dure is exactly like supervised contrastive learning, except for the data augmentation of each batch.
We use a clean version of the batch and a version that contains randomly perturbation samples:
B1 = [aug(x) ∀x ∈ B], and B2 = [x + ϵ ∀x ∈ B1]. The perturbation ϵ is obtained by sampling
from a Gaussian distribution N (0, δ2I).

9. Supervised contrastive learning on adversarially perturbed inputs (conA). This training
procedure is again exactly like supervised contrastive learning, except for the data augmentation.
We use a clean version of the batch and an adversarially perturbed version: B1 = [aug(x) ∀x ∈ B]
B2 = [x + δ ∀x ∈ B1]. The adversarial perturbation δ is obtained by computing a 10-step PGD
attack on each input x ∈ B1.

10. Fine-tuned contrastive learning (conF). We propose to combine supervised contrastive learn-
ing as described in paragraph 7 with fine-tuning based on minimizing the adversarial feature loss.
Since the standard contrastive learning operates in the representation space, but does not see any ad-
versarial examples during training, we propose to add fine-tuning on the source dataset to increase
robustness. After training, we retrain the whole model (on the source dataset) by minimizing the
feature loss (see paragraph 4).

Target retraining. Since the feature extractor f is fixed during retraining on the target domain,
techniques such as constrastive learning, minimizing adversarial feature loss or latent adversarial
training are not applicable to adapt the classifier to the target domain. We use and compare three
different retraining procedures for the classifier: standard supervised leaning (Rce, see paragraph 1),
training on randomly perturbed inputs (RceN, see paragraph 2) and training on adversarially per-
turbed inputs (RceA, paragraph 3).

4 WHEN IS ADVERSARIAL ROBUSTNESS TRANSFERABLE?

4.1 WHICH TRAINING PROCEDURE RESULTS IN THE MOST ROBUST SOURCE MODELS?

Our goal is to analyze if and how robustness can be preserved during transfer from the source domain
to the target domain. Thus, we first need to obtain robust source models. To achieve this we train
models based on the 10 procedures discussed in Section 3. All models are trained on three different
datasets, i.e. SVHN, EMNIST and CIFAR10. Details on the experimental set up can be found in the
appendix A.1.

We evaluate model robustness in two complementary ways by using attacks and verifica-
tion/certification. More specifically we use attacks of different strength, i.e. fast gradient sign
method (FGSM) as a weak attack, and projected gradient descent (PGD) and DeepFool (DF) as
strong attacks. For certification we use randomized smoothing, since this verification technique
treats the model as black box and thus is applicable on all model architectures and activation func-
tions. Figure 2 illustrates the results of our robustness evaluation. The exact numbers and the
verifiable radius can be found in Table 1 (Appendix A.2).

First, we observe that all training procedures, except ceN and llc, result in comparable and high
base accuracy (Abase rose/gray). Training on randomly perturbed inputs (ceN) can reduce the base
accuracy by 0 − 5 % and training with a local Lipschitz constant (llc) by 1 − 20 % depending on
the dataset.

The verifiable accuracy (Acert.), i.e. the portion of points for which randomized smoothing could
certify the prediction, varies between the different training procedures. Not surprisingly, models
trained on randomly perturbed inputs (ceN and conN) have the highest verifiable accuracy. Using
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Figure 2: Accuracy on the clean test set (Abase, rose or gray), verifiable accuracy (Acert., red) and
accuracy decrease under FGSM (green), DeepFool (DF, blue) and PGD attacks (purple) of source
models trained on SVHN , EMNIST and CIFAR10.

robust training that includes attacks (ceA, feD, feA, conA, conF) or a local Lipschitz constant (llc)
result results in models with medium to high verifiable accuracy and using training without pertur-
bations (ce, con) results in the least robust models according to randomized smoothing. Our attack
analysis (Figure 2) shows that using robust training (ceN, ceA, feD, feA, llc, conN, conA, conF)
results in models that are significantly more robust than normally trained models (ce, con).

Thus, to obtain high accuracy and high robustness on the source dataset, we recommended to use a
robust training procedure. The best performing training procedure w.r.t. to base accuracy, verifiable
accuracy and robustness against adversarial attacks is conF, i.e. supervised contrastive learning
followed by a fine tuning step that uses adversarial attacks and a loss function that minimizes the
distance between clean and adversarial representations in the feature space (see Table 1).

4.2 IS ROBUSTNESS PRESERVED DURING TARGET RETRAINING?

In the previous section we analyzed how to get (the most) robust source models. Now we analyze
if robustness is preserved during transfer from the source domain to the target domain during tar-
get retraining. Since we focus on inherited robustness properties in this chapter, we do the target
retraining on clean inputs (Rce). Figure 3 shows the target robustness versus the source robustness
of the models. Robustness is quantified by determining the verifiable accuracy using randomized
smoothing (first row) and the accuracy under the most successful (FGSM, PGD, DeepFool) attack,
i.e. the attack which results in the largest accuracy decrease (second row).

If source robustness would be hundred percent preserved during transfer, the measurements would
fall on the line y = x. However, we observe a more complex and dataset dependent correlation
between target robustness and source robustness. First, models with low source accuracy result in
models with low target accuracy such as ce. Models with high source robustness have different
capabilities of preserving this robustness during target retraining. The amount of robustness that can
be preserved depends on the source training procedure and the transfer learning task (i.e. source and
target domain).

On SVHN – MNIST we observe a clear target robustness ranking of training procedures that result in
similarly robust source models. Using a local Lipschitz constant (llc), contrastive learning on clean
(con), randomly (conN) or adversarial perturbed inputs (conA) results in robust target models which
are even more robust than the source models (measurements above y = x line). On EMNIST –
KMNIST the highest target robustness is observed for llc and models trained with a loss function that
minimizes representation distances corresponding to clean and adversarial inputs (feD), but target
models are less robust than source models. If models are transferred from CIFAR10 to FMNIST,
the highest target robustness transfer is achieved by llc. The other approaches are able to preserve
(most of) the robustness during transfer.
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Figure 3: Target vs. source robustness quantified by verification or the most successful (FGSM,
PGD, DeepFool) attack. Labels refer to the source training, target retraining is done on clean inputs.

Thus, even though they are not the most robust methods on the source domain, the most robust meth-
ods on the target domain are the contrastive learning techniques and llc which uses a local Lipschitz
constant. These training procedure achieve robustness without being too focused on adversarial ex-
amples. While llc aims at mapping close input to close outputs, the contrastive approaches minimize
representation distances of inputs corresponding to the same class. Thus, both approaches achieve
robustness by more general concepts that computing worst case perturbations/adversarial examples
which might be too data-specific to ensure that robustness is passed onto the target models.

4.3 DOES ROBUST RETRAINING ON THE TARGET DOMAIN IMPROVE ROBUSTNESS?

In the previous section we show that the training procedure significantly affect model robustness on
the target domain. In this section we analyze the influence of target retraining on target robustness.
To this end we compare 3 different target retraining procedures, i.e. target retraining on clean inputs
(Rce), on randomly perturbed inputs (RceN) and on adversarial perturbed inputs (RceA). Figure 4
compares accuracy, verifiable accuracy and accuracy decrease under attacks of these three target
retraining schemes. Detailed numbers corresponding to these plots (and further plots) can be found
in Table 2, 3, 4 and Figure 8 in the appendix A.2.
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Figure 4: Accuracy on the clean test set (Abase, bright colors), verifiable accuracy (Acert., dark
colors) and accuracy decrease of the strongest (FGSM, PGD, DeepFool) attack of target retraining
on clean (Rce), randomly perturbed (RceN) and adversarially perturbed (RceA) inputs.

Comparing the three target retraining schemes, training on randomly perturbed inputs inputs (RceN)
results in higher verifiable accuracy (first row, dark brown bars) but decreases the accuracy on the
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clean dataset. Our attack analysis shows small differences in model robustness for the three target
retraining schemes. Both analyses clearly illustrate that the training procedure on the source domain
has a major influence on target model robustness, while the target retraining has a minor effect on it.
Thus, in order to obtain robust target models we require robust training of the source model.

4.4 WHICH TRAINING/TARGET RETRAINING PROVIDES MODELS THAT ARE ROBUST
AGAINST DISTRIBUTION SHIFTS?

In the previous sections, we quantify and analyze adversarial robustness, i.e. robustness against
small input perturbations that aim at fooling the model to make a wrong prediction. Another type
of perturbations that occur in real-life transfer learning are distributions shifts. Distribution shifts
are changes of the dataset such as random noise, changes in contrast or Gaussian blur. We analyze
robustness of our source models (see Figure 5 and Table 5) and target models (see Figure 5, Table 6,
7 and 8) against these data shifts.
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Figure 5: Accuracy on the clean test set (Abase, gray) and accuracy under distribution shifts based
on random noise, changes of the contrast and Gaussian blur of source models.
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Figure 6: Accuracy on the clean test set (Abase, bright colors) and accuracy under distribution shifts
based on random noise, changes of the contrast and Gaussian blur of target models retrained on
clean (Rce), randomly (RceN) or adversarial perturbed (RceA) inputs.

Robustness of source models against distribution shifts depends on the dataset and the shift. The
normally trained model (ce) is the least robust model. Models trained on randomly perturbed inputs
(ceN, conN) are robust to noise shifts, while contrastive learning (con, conN, conA, conF) result in
the most robust models w.r.t. changes of the contrast (see Table 5). Robustness against Gaussian
blur shifts can be increased by robust training or contrastive learning.
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Target model robustness against distribution shifts mainly depends on the training procedure, while
target retraining has a minor effect. Adversarial training and contrastive learning improve robustness
against distribution shifts. On the SVHN – MNIST task training with a local Lipschitz constant (llc)
and contrastive learning techniques without fine-tuning (con, conN, conA) result in the most robust
target models against distribution shifts caused by noise, contrast changes or Gaussian blurring. On
EMNIST – KMNIST adversarial training with a loss that minimizes distance between representa-
tions corresponding to clean and adversarial perturbed inputs (feD) yields the most robust models
against all three analyzed distribution shifts. On CIFAR10 – FMNIST contrastive learning on ran-
domly perturbed inputs (conN) and training with a local Lipschitz constant result in the strongest
performing models against noise, contrast change and Gaussian blur data distribution shifts. Thus,
models that are robust against adversarial attacks are also more robust against distribution shifts
compared to non-robust models.

4.5 DOES TRANSFERABILITY CORRELATE WITH MODEL ROBUSTNESS?

One key requirement of transfer learning models is transferability, i.e. the potential of a model to
benefit the target task. We analyze if there is a correlation between robustness and transferability of
our source models (see Figure 7, Figure 13, Table 9 and 10 in the Appendix). In order to quantify
transferability we use the H-score as proposed by Bao et al. (2019) and determine the zero-shot per-
formance of the source models. The zero-shot performance is the accuracy a source model achieves
on the target dataset before any target retraining.
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Figure 7: Transferability (H-Score) versus robustness of the source models quantified as verifiable
accuracy or accuracy under the strongest attack and zero-shot performance on SVHN – MNIST.

The absolute value of the H-score depends on the dataset. Considering the ranking, the contrastive
learning approaches (con, conN, conA, conF) have the highest H-scores on all three transfer learning
tasks. A reason might be that these methods train the feature extractor by pulling together positive
anchors (representations corresponding to the same class) and pushing apart negative anchors (rep-
resentations corresponding to different classes) in the feature space. Since con performs similar
to the more robust contrastive approaches we could not find a correlation between robustness and
transferability. On the SVHN – MNIST task source and target dataset share all ten classes and the
transferability estimations are are consistent with the zero-shot performance. The contrastive ap-
proaches have a high zero-shot accuracy of up to 66 %. On EMNIST – KMNIST and CIFAR10 –
FMNIST the source dataset and the target dataset contain different classes so zero-shot accuracy is
similarly low for all methods as expected (see Figure 13 in the Appendix). Thus, if the source dataset
and target dataset contain the same classes the supervised contrastive learning schemes achieve the
highest transferability, zero-shot accuracy and can preserve robustness during transfer.

5 CONCLUSION

This work analyzes how different training procedures on the source domain and fine-tuning strate-
gies on the target domain affect model robustness. We show that the training procedure on the source
domain has a major effect on target model robustness while target retraining has a minor effect. Our
results indicate that contrastive learning and training with a local Lipschitz constant best preserve
robustness during target retraining. Furthermore, robustness to adversarial attacks also provides
robustness against distribution shifts. Transferability and zero-shot performance depend on the re-
latedness between the source and the target domain and on the source training process. The highest
transferability and zero-shot performance is achieved by contrastive learning approaches, which are
also among the strongest ones in preserving robustness during transfer.
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6 REPRODUCIBILITY STATEMENT

Detailed information about the datasets, the transfer learning tasks, models, attacks and randomized
smoothing is provided in the subsections of section A.1
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A APPENDIX

A.1 DETAILS OF THE EXPERIMENTAL SETUP

Models. All models have a similar base architecture, proposed by (Huang et al., 2021). The encoder
consists of 6 convolutional layers (kernel sizes: 3, 3, 4, 3, 3, 4), each one followed by an activation
layer with ReLU or ReLUx (llc) as activation function, a flatting layer to reshape (which is required
for contrastive learning), followed by a linear layer (size: 512) and another activation layer. We
include the flatting layer for all models since it is essential for contrastive learning, but did not had
an effect on normally trained classifiers and we wanted to keep the architecture of the approaches
as close as possible. The classifier consists of one linear layer. Implementation is done in Pytorch
(Paszke et al., 2019). For contrastive learning (con, conN, conA and conF) we use stochastic gradient
descent as optimizer as proposed by (Khosla et al., 2020), all other models are optimized using
Adam optimizer. As mixing coefficient for CE-loss and feature-distance loss (feD training) we
chose λ = 0.1 as proposed by (Chen et al., 2021). Hyper-parameters are determined by performing
a grid-search. For training the contrastive models (con, conN, conA, Fcon) the grid search is done in
[0.005; 0.1] and for the other models in [0.0001; 0.001]. All models are trained for 800 epochs and
retrained for 200 epochs. The target retraining learning rate is search in [0.0001; 0.5] and we do are
warm-start, i.e. we do not randomly internalize the weights of the classifier before target retraining.
Model fine-tuning (conF) is done for 100 epochs and with a learning rate in [0.0001; 0.001].

Datasets. We use six different datasets: The SVHN dataset (Netzer et al., 2011) contains images
of street few housing numbers. The MNIST dataset (LeCun & Cortes, 2010) consists of gray-
scale images of handwritten digits. The CIFAR10 dataset (Krizhevsky et al., 2009) contains 3 ×
32 × 32 images of objects (airplane, bird, car, cat, deer, dog, horse, ship, truck and frog). The
FashionMNIST/FMNIST dataset (Xiao et al., 2017) contains gray-scale images of clothes. The
EMNIST dataset (Cohen et al., 2017) consists the 26 character of the alphabet and the KMNIST
(Clanuwat et al., 2018) dataset consists of gray-scale images of Japanese characters. Each dataset
already consists of a predefined training set and a test set. We further split the training sets into
training data (90%) and validation data (10%).The validation set is used during training/retraining
to check the accuracy and determine the best model. The following data augmentations are used on
all datasets and model: random horizontal filps, random corps, and random rotations (≤15°). For
contrastive models (con, conN, conA and conF) additional augmentations, i.e. random resize crop,
color jitter and random gray-scale) is used.

Transfer Learning Tasks Based on the six datasets discussed above we create three transfer learn-
ing tasks of different relatedness. We consider the following transfer tasks (source domain → target
domain): SVHN → MNIST (highly related), CIFAR10 → FMNIST (related), EMNIST → KM-
NIST (related).

Perturbations and Attacks. We use four different attack types: Noise attacks, Fast Gradient Sign
Method (FGSM), Project Gradinent Descent (PGD) attacks and DeepFool attacks with attack radii of
0.1. We chose an attack radius of 0.1 since that is a popular perturbation size analyzed in randomized
smoothing as well as for attacks. The perturbation is bounded by the L2-norm and applied to the
input after data normalization. For adversarial training we use 10-step PGD attacks, while robustness
analysis uses 1-step FGSM attacks, 100-step PGD attacks and 100-step DeepFool attacks based on
the implementation provided by Rauber et al. (2020).

Randomized Smoothing. Randomized smoothing techniques (Cohen et al., 2019) draw samples
xi ∼ N (x, σ) from the close neighborhood of input x, propagate them through the neural network
and aggregate the outputs to obtain a smooth prediction. We use σ = 0.1, draw 500 samples for
each input and bind the probability of returning an incorrect answer/prediction by α = 10−4. If
a prediction cannot be certified randomized smoothing abstains, i.e. returns −1 instead of a label.
Please note that the certified prediction mainly depends depends on the neighborhood of the input
sample x (i.e. the 500 drawn samples) and might be different than the prediction of the base model,
which only depends on input x.

Distribution shifts. We generate different distribution shifts on each dataset based on random per-
turbations (noise), changes of the contrast (contrast) and Gaussian blur (blur). More specifically, we
use Gaussian noise shift (Noise), uniform noise shift (UNoise), contrast reduction shift (Contrast),
contrast reduction shift based on a binary search (ContrastBin), contrast reduction based on a linear
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search(ContrastLin), Gaussin blur (Blur) and a salt and pepper (SaltPepper) shift. The perturbation
or shift size is bounded by the L2-norm and 5 as upper bound. To compute these perturbations we
use the implementation provided by Rauber et al. (2020).

Transferability. In order to estimate transferability of source models we compute the H-score as
proposed by (Bao et al., 2019).
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A.2 ADDITIONAL EXPERIMENTAL RESULTS

Which training procedure results in the most robust source models?

Table 1 shows how robust target model retrained on normal (ce), randomly perturbed (ceN) and ad-
versarial perturbed (ceA) target inputs are. In order to quantify robustness we compute the verifiable
accuracy using randomized smoothing and accuracy under FGSM, PGD and DeepFool attacks.

Table 1: Accuracy on the clean test set (base), verifiable accuracy (cert.) and radius, accuracy under
FGSM, PGD and DeepFool attacks of source models trained on SVHN, EMNIST and CIFAR10.
The best values/highest accuracy are highlighted using bold letters.

SVHN → MNIST

Train Retrain Abase [%] Acert. [%] Rcert. AFGSM [%] APGD [%] ADeepFool [%]

ce – 94.03 78.41 0.110 78.53 71.25 75.11
ceN – 93.40 91.65 0.171 86.90 86.26 86.47
ceA – 94.20 87.55 0.147 86.50 85.05 85.76
feD – 93.69 88.29 0.157 86.70 86.17 86.38
feA – 94.33 87.91 0.148 87.33 86.13 86.66
llc – 77.60 76.00 0.165 72.66 72.71 71.50
con – 93.32 69.91 0.096 79.35 66.73 75.06
conN – 91.70 88.49 0.167 83.90 83.00 83.30
conA – 92.41 85.27 0.145 83.75 82.16 82.96
conF – 95.28 86.55 0.147 88.54 87.20 88.06

EMNIST → KMNIST

Train Retrain Abase [%] Acert. [%] Rcert. AFGSM [%] APGD [%] ADeepFool [%]

ce – 92.12 17.16 0.029 85.31 46.36 39.68
ceN – 92.57 92.42 0.202 91.43 91.41 91.41
ceA – 92.40 53.11 0.138 90.97 90.82 90.89
feD – 92.29 89.63 0.198 91.40 91.39 91.40
feA – 92.91 52.91 0.131 91.63 91.55 91.58
llc – 91.06 90.96 0.204 90.35 90.30 90.27
con – 92.63 8.81 0.094 81.23 26.64 56.16
conN – 92.39 92.13 0.199 90.83 90.40 90.39
conA – 92.34 11.88 0.130 90.74 90.49 90.65
conF – 93.26 81.78 0.169 91.97 91.88 91.91

CIFAR10 → FMNIST

Train Retrain Abase [%] Acert. [%] Rcert. AFGSM [%] APGD [%] ADeepFool [%]

ce – 85.70 32.06 0.076 59.91 50.72 55.31
ceN – 79.84 78.42 0.153 69.86 69.01 69.28
ceA – 84.83 56.72 0.121 71.91 70.36 71.29
feD – 83.46 64.58 0.127 72.66 71.49 72.14
feA – 84.35 60.59 0.126 73.67 72.56 73.12
llc – 65.75 62.44 0.172 61.34 61.41 60.79
con – 87.26 31.43 0.083 61.14 51.84 57.41
conN – 83.59 79.41 0.153 70.45 69.10 69.28
conA – 85.39 51.29 0.114 72.72 71.44 71.47
conF – 89.91 45.46 0.114 78.17 76.47 77.38
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Does robust retraining on the target domain improve robustness?

Table 2, 3, 4 and Figure 8 show how target retraining affects robustness. In order to quantify robust-
ness we compute the verifiable accuracy using randomized smoothing and accuracy under FGSM,
PGD and DeepFool attacks.

Table 2: Accuracy on the clean test set (base), verifiable accuracy (cert.) and raduis, accuracy under
FGSM, PGD and DeepFool attacks of target models trained on SVHN and retrained on MNIST. The
best values/highest accuracy are highlighted using bold letters.

SVHN → MNIST

Train Retrain Abase [%] Acert. [%] Rcert. AFGSM [%] APGD [%] ADeepFool [%]

ce Rce 71.07 8.09 0.002 23.97 1.34 1.07
ce RceN 40.29 31.47 0.017 9.70 0.27 0.14
ce RceA 61.26 9.90 0.009 34.49 4.43 2.33
ceN Rce 70.31 69.12 0.121 57.67 53.13 53.08
ceN RceN 71.02 71.46 0.127 59.38 55.08 54.70
ceN RceA 69.72 68.60 0.121 57.33 52.75 52.79
ceA Rce 60.40 36.28 0.054 45.88 22.55 34.80
ceA RceN 53.00 73.21 0.117 42.15 27.14 33.93
ceA RceA 60.42 33.96 0.052 46.22 24.48 35.90
feD Rce 78.92 75.20 0.141 71.53 67.48 69.38
feD RceN 79.29 81.34 0.151 71.94 67.63 69.31
feD RceA 79.15 75.38 0.141 72.01 67.90 69.73
feA Rce 59.64 50.95 0.088 46.20 38.65 38.30
feA RceN 53.10 66.12 0.098 40.13 33.69 32.96
feA RceA 59.09 51.09 0.091 46.82 40.46 39.44
llc Rce 96.40 96.13 0.196 95.83 95.73 95.72
llc RceN 96.41 96.32 0.200 95.91 95.86 95.83
llc RceA 96.43 96.15 0.197 95.83 95.75 95.70
con Rce 95.01 93.59 0.180 90.78 89.17 89.41
con RceN 94.58 93.90 0.184 89.93 88.32 88.71
con RceA 94.82 93.63 0.183 91.03 89.49 89.81
conN Rce 94.58 94.12 0.193 92.33 91.85 91.91
conN RceN 94.45 93.86 0.193 92.09 91.55 91.59
conN RceA 94.65 94.05 0.192 92.38 91.85 91.83
conA Rce 93.88 92.86 0.190 91.17 90.74 90.76
conA RceN 93.49 93.09 0.191 90.96 90.63 90.60
conA RceA 93.60 92.94 0.190 91.07 90.75 90.81
conF Rce 85.08 84.86 0.145 75.75 71.95 71.96
conF RceN 83.05 84.81 0.147 72.32 68.16 68.59
conF RceA 86.14 86.04 0.144 76.10 71.94 72.18
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Table 3: Accuracy on the clean test set (base), verifiable accuracy (cert.) and radius, accuracy
under FGSM, PGD and DeepFool and attacks of target models trained on EMNIST and retrained on
KMNIST. The best values/highest accuracy are highlighted using bold letters.

EMNIST → KMNIST

Train Retrain Abase [%] Acert. [%] Rcert. AFGSM [%] APGD [%] ADeepFool [%]

ce Rce 79.29 36.82 0.030 63.82 19.79 15.80
ce RceN 41.00 57.63 0.059 27.91 6.98 4.70
ce RceA 78.08 38.97 0.039 65.77 29.14 23.06
ceN Rce 81.96 81.57 0.188 79.36 79.21 79.14
ceN RceN 82.18 81.80 0.188 79.41 79.30 79.21
ceN RceA 82.19 81.71 0.188 79.45 79.31 79.26
ceA Rce 80.71 44.83 0.123 76.30 75.86 75.96
ceA RceN 63.81 71.07 0.144 57.77 57.12 57.23
ceA RceA 80.65 44.73 0.124 76.40 75.87 76.04
feD Rce 84.82 79.64 0.187 82.99 82.98 82.91
feD RceN 82.04 83.46 0.190 79.91 79.89 79.79
feD RceA 84.76 79.86 0.187 83.05 83.04 82.97
feA Rce 82.09 41.82 0.142 78.34 78.09 78.07
feA RceN 66.10 75.17 0.158 60.85 60.46 60.35
feA RceA 82.25 44.98 0.137 78.45 78.17 78.13
llc Rce 81.21 81.15 0.191 79.61 79.41 79.30
llc RceN 80.96 80.83 0.191 79.03 78.85 78.76
llc RceA 81.26 81.19 0.191 79.72 79.50 79.36
con Rce 69.69 13.67 0.066 46.34 7.24 8.65
con RceN 18.45 39.21 0.050 12.47 2.12 2.50
con RceA 62.56 17.70 0.039 47.16 11.48 12.80
conN Rce 60.88 58.67 0.126 50.73 47.39 47.25
conN RceN 60.39 58.64 0.128 49.90 47.26 47.13
conN RceA 61.16 58.98 0.129 51.30 48.35 48.13
conA Rce 61.80 12.26 0.168 52.30 49.85 50.17
conA RceN 20.62 38.35 0.092 14.25 13.08 13.59
conA RceA 60.93 11.41 0.178 51.28 49.32 49.45
conF Rce 51.86 35.58 0.089 43.35 42.03 41.84
conF RceN 41.81 40.54 0.089 33.19 31.92 31.86
conF RceA 51.81 35.84 0.094 43.75 42.46 42.22
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Table 4: Accuracy on the clean test set (base), verifiable accuracy (cert.) and radius, accuracy under
FGSM, PGD and DeepFool attacks of target models trained on CIFAR10 and retrained on FMNIST.
The best values/highest accuracy are highlighted using bold letters.

CIFAR10 → FMNIST

Train Retrain Abase [%] Acert. [%] Rcert. AFGSM [%] APGD [%] ADeepFool [%]

ce Rce 71.11 26.25 0.039 47.72 28.13 31.91
ce RceN 35.64 64.96 0.084 16.98 6.92 8.37
ce RceA 70.47 26.03 0.036 51.57 36.20 38.34
ceN Rce 73.18 69.58 0.144 64.32 63.11 63.17
ceN RceN 72.48 71.33 0.150 64.49 63.31 63.53
ceN RceA 73.23 69.44 0.146 64.67 63.58 63.63
ceA Rce 74.60 67.61 0.131 63.63 61.81 62.15
ceA RceN 65.87 72.10 0.155 56.58 54.81 55.13
ceA RceA 75.32 66.70 0.132 65.37 63.71 64.17
feD Rce 71.52 57.24 0.118 62.19 60.41 60.96
feD RceN 59.31 70.05 0.159 50.89 49.25 49.66
feD RceA 71.92 58.02 0.119 63.30 61.71 62.26
feA Rce 69.83 61.53 0.108 59.44 57.08 57.56
feA RceN 64.08 70.39 0.137 54.99 52.89 53.28
feA RceA 69.82 61.12 0.113 60.29 58.38 58.69
llc Rce 80.07 79.70 0.180 76.08 75.80 75.64
llc RceN 79.02 79.28 0.184 75.93 75.70 75.59
llc RceA 80.10 79.88 0.185 76.64 76.45 76.38
con Rce 79.81 38.93 0.076 51.31 28.42 33.61
con RceN 70.39 73.22 0.122 32.51 14.57 16.96
con RceA 78.13 48.20 0.092 57.73 41.66 44.26
conN Rce 82.25 78.26 0.158 68.31 63.39 63.98
conN RceN 80.94 78.42 0.163 67.43 62.74 63.44
conN RceA 82.04 78.35 0.165 70.27 66.87 67.15
conA Rce 80.31 53.23 0.098 67.66 64.09 65.01
conA RceN 73.11 73.07 0.132 61.69 58.02 58.99
conA RceA 79.75 54.87 0.102 68.31 65.41 66.06
conF Rce 75.97 61.55 0.097 60.67 56.97 58.09
conF RceN 62.25 70.72 0.120 42.03 38.47 39.68
conF RceA 75.36 64.26 0.105 61.96 59.15 59.79
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Figure 8: Accuracy on the clean test set (base, bright colors), verifiable accuracy (cert., dark colors),
accuracy under FGSM (dark green), DeepFool (DF, dark blue) and PGD attacks (dark purple) of
target models retrained on normal (Rce), randomly (RceN) or adversarially perturbed (RceA) target
data.

Which training/target retraining provides models that are robust against distribution shifts?

Table 5, 6, 7, 8 and Figure 9, 10, 11, 12 show accuracy of source models and target models under
distribution shifts based on noise perturbations, changes in contrast and Gaussian blur. More specif-
ically, we use Gaussian noise shift (Noise), uniform noise shift (UNoise), contrast reduction shift
(Contrast), contrast reduction shift based on a binary search (ContrastBin), contrast reduction based
on a linear search(ContrastLin), Gaussin blur (Blur) and a salt and pepper (SaltPepper) shift.
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Table 5: Accuracy on the clean test set (Abase) and under distribution shifts of source models trained
on SVHN (first row), EMNIST (second row) and CIFAR10 (third row). The best values/highest
accuracy are highlighted using bold letters.

SVHN → MNIST

Train Retrain Abase [%] ANoise [%] AUNoise [%] AContrast [%] AContrastBin [%] AContrastLin [%] ABlur [%] ASaltPepper [%]

ce – 94.03 82.45 81.91 86.37 84.17 83.90 25.99 29.70
ceN – 93.40 91.97 91.66 80.83 79.11 78.68 26.67 36.62
ceA – 94.20 88.97 88.78 85.87 84.55 84.33 29.29 29.23
feD – 93.69 89.59 89.57 85.16 83.67 83.49 28.54 38.10
feA – 94.33 89.39 89.33 85.66 83.99 83.80 28.08 32.85
llc – 77.60 76.76 76.76 61.54 60.46 60.46 29.16 48.19
con – 93.32 77.04 76.65 87.91 87.06 86.97 25.99 21.87
conN – 91.70 88.95 88.82 85.21 84.10 84.04 26.30 38.67
conA – 92.41 87.32 87.05 86.07 85.02 84.96 26.86 25.15
conF – 95.28 88.66 88.63 88.15 86.81 86.70 29.51 38.49

EMNIST → KMNIST

Train Retrain Abase [%] ANoise [%] AUNoise [%] AContrast [%] AContrastBin [%] AContrastLin [%] ABlur [%] ASaltPepper [%]

ce – 92.12 25.29 22.93 11.34 9.33 8.38 27.80 42.10
ceN – 92.57 92.53 92.60 82.51 80.72 80.27 87.05 75.27
ceA – 92.40 83.20 83.25 20.38 19.60 18.69 71.82 29.46
feD – 92.29 91.72 91.79 89.74 88.32 88.17 88.51 61.76
feA – 92.91 92.82 92.82 92.45 91.71 91.65 83.14 41.47
llc – 91.06 91.07 91.00 90.27 89.29 89.27 85.39 86.87
con – 92.63 15.90 16.54 92.54 92.08 91.84 83.53 4.59
conN – 92.39 92.29 92.31 92.36 91.95 91.87 85.63 18.13
conA – 92.34 20.94 21.81 92.44 91.99 91.94 84.86 9.82
conF – 93.26 92.73 92.79 93.30 92.74 92.71 86.34 41.03

CIFAR10 → FMNIST

Train Retrain Abase [%] ANoise [%] AUNoise [%] AContrast [%] AContrastBin [%] AContrastLin [%] ABlur [%] ASaltPepper [%]

ce – 85.70 44.11 43.27 75.41 72.25 71.72 16.61 26.34
ceN – 79.84 80.24 80.08 60.61 56.36 55.59 25.37 33.40
ceA – 84.83 64.70 64.05 74.72 71.04 70.54 20.89 31.79
feD – 83.46 71.00 70.54 69.95 65.85 65.24 24.96 29.78
feA – 84.35 68.09 67.93 71.65 67.87 67.39 25.47 34.55
llc – 65.75 63.77 63.70 52.64 46.95 46.88 35.97 50.25
con – 87.26 42.46 41.33 86.43 85.08 85.00 43.09 38.48
conN – 83.59 80.70 80.70 82.23 80.22 80.12 45.54 41.80
conA – 85.39 59.45 58.54 84.36 82.67 82.63 44.96 41.47
conF – 89.91 56.31 55.41 85.36 83.54 83.51 28.81 44.57

20



Under review as a conference paper at ICLR 2023

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
SV

HN

Distribution shifts: SVHN -- MNIST
Abase ANoise AContrast ABlur

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
SV

HN

Distribution shifts: SVHN -- MNIST
Abase ANoise AUNoise AS + P

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
SV

HN

Distribution shifts: SVHN -- MNIST
Abase AContrast AContrastB AContrastL

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
EM

NI
ST

Distribution shifts: EMNIST -- KMNIST
Abase ANoise AContrast ABlur

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
EM

NI
ST

Distribution shifts: EMNIST -- KMNIST
Abase ANoise AUNoise AS + P

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
EM

NI
ST

Distribution shifts: EMNIST -- KMNIST
Abase AContrast AContrastB AContrastL

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
CI

FA
R1

0

Distribution shifts: CIFAR10 -- FMNIST
Abase ANoise AContrast ABlur

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
CI

FA
R1

0
Distribution shifts: CIFAR10 -- FMNIST

Abase ANoise AUNoise AS + P

ce ceN ceA feD feA llc con conN conA conF
Training Method

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
] o

n 
CI

FA
R1

0

Distribution shifts: CIFAR10 -- FMNIST
Abase AContrast AContrastB AContrastL

Figure 9: Accuracy on the clean test set (Abase, bright colors) and accuracy under distribution shifts
based on random noise, changes of the contrast and Gaussian blur of target model trained on SVHN,
EMNIST or CIFAR10.

Table 6: Accuracy on the clean test set (Abase) and under distribution shifts of the target models
trained on SVHN and retrained on MNIST. The best values/highest accuracy are highlighted using
bold letters.

SVHN → MNIST

Train Retrain Abase [%] ANoise [%] AUNoise [%] AContrast [%] AContrastBin [%] AContrastLin [%] ABlur [%] ASaltPepper [%]

ce Rce 71.07 36.04 36.20 33.93 27.45 15.81 25.85 8.91
ce RceN 40.29 28.90 28.84 26.03 17.48 7.51 8.26 3.50
ce RceA 61.26 62.01 62.71 64.32 46.20 27.11 29.88 16.19
ceN Rce 70.31 61.34 60.72 57.16 46.62 38.70 40.16 23.31
ceN RceN 71.02 67.94 67.80 64.99 51.71 45.00 44.04 26.72
ceN RceA 69.72 54.59 52.38 45.68 38.20 31.42 37.14 22.50
ceA Rce 60.40 41.80 41.63 45.77 30.99 15.03 21.52 1.68
ceA RceN 53.00 81.85 82.85 81.83 48.00 36.70 32.82 8.42
ceA RceA 60.42 38.88 39.12 40.04 25.85 14.35 20.25 1.50
feD Rce 78.92 43.52 41.10 40.17 32.67 17.11 44.46 17.06
feD RceN 79.29 55.34 52.87 46.16 38.54 23.91 51.90 16.88
feD RceA 79.15 42.94 40.66 39.12 31.80 17.03 44.12 17.98
feA Rce 59.64 51.24 50.50 50.36 38.61 28.96 29.64 5.10
feA RceN 53.10 56.20 54.80 56.84 36.33 28.56 32.61 5.41
feA RceA 59.09 50.68 48.83 46.96 35.12 25.47 29.44 6.25
llc Rce 96.40 96.57 96.56 96.60 95.97 95.96 91.79 92.54
llc RceN 96.41 96.47 96.43 96.53 96.10 96.09 93.37 93.12
llc RceA 96.43 96.52 96.47 96.68 96.06 96.05 92.03 92.58
con Rce 95.01 94.17 94.47 95.34 94.39 94.29 91.21 24.79
con RceN 94.58 94.37 94.38 94.73 93.88 93.80 90.59 29.13
con RceA 94.82 94.17 94.13 95.05 94.12 94.08 91.27 29.82
conN Rce 94.58 94.74 94.78 95.00 93.68 93.60 90.45 47.45
conN RceN 94.45 94.48 94.47 94.65 93.45 93.35 90.27 50.45
conN RceA 94.65 94.69 94.79 94.96 93.72 93.63 90.43 47.82
conA Rce 93.88 93.82 93.82 94.08 93.28 93.19 89.68 34.87
conA RceN 93.49 93.69 93.53 93.89 92.94 92.89 89.33 35.91
conA RceA 93.60 93.35 93.62 94.05 93.06 93.02 89.35 32.86
conF Rce 85.08 37.97 37.13 34.56 32.12 23.09 42.45 30.06
conF RceN 83.05 34.96 33.39 29.20 26.60 16.57 34.18 31.33
conF RceA 86.14 31.82 30.66 28.35 26.02 16.42 34.99 27.15
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Table 7: Accuracy on the clean test set (Abase) and under distribution shifts of the target models
trained on EMNIST and retrained on KMNIST. The best values/highest accuracy are highlighted
using bold letters.

EMNIST → KMNIST

Train Retrain Abase [%] ANoise [%] AUNoise [%] AContrast [%] AContrastBin [%] AContrastLin [%] ABlur [%] ASaltPepper [%]

ce Rce 79.29 31.75 30.54 19.19 17.68 16.14 36.07 37.09
ce RceN 41.00 31.43 30.15 18.69 13.44 12.44 19.18 23.87
ce RceA 78.08 34.14 32.82 19.61 18.27 16.64 40.84 43.26
ceN Rce 81.96 82.09 81.90 71.06 67.67 66.98 71.08 61.18
ceN RceN 82.18 82.06 81.98 71.52 68.12 67.32 71.07 61.42
ceN RceA 82.19 82.06 81.92 71.27 67.98 67.26 71.38 61.47
ceA Rce 80.71 69.89 69.58 28.14 24.92 23.35 61.33 24.63
ceA RceN 63.81 70.98 71.42 61.43 47.05 43.16 44.55 20.37
ceA RceA 80.65 69.51 69.68 27.90 24.64 23.22 61.33 25.23
feD Rce 84.82 83.01 82.99 79.86 77.24 76.98 79.13 53.70
feD RceN 82.04 83.32 83.39 83.59 78.85 78.66 75.52 56.31
feD RceA 84.76 82.96 83.12 79.86 77.26 77.05 79.11 53.78
feA Rce 82.09 81.31 81.66 80.69 78.69 78.44 70.02 35.69
feA RceN 66.10 67.35 66.45 66.08 62.50 62.09 50.61 29.25
feA RceA 82.25 81.46 81.35 80.80 78.92 78.71 70.56 36.85
llc Rce 81.21 81.16 81.08 79.91 76.93 76.87 73.01 71.50
llc RceN 80.96 80.90 80.84 79.66 76.73 76.63 72.11 71.23
llc RceA 81.26 81.40 81.17 80.01 77.03 77.03 73.29 71.76
con Rce 69.69 23.74 24.72 69.56 66.23 65.04 50.54 1.99
con RceN 18.45 43.19 42.43 17.48 16.03 15.51 10.97 2.75
con RceA 62.56 27.84 28.53 62.13 59.37 58.38 47.81 3.38
conN Rce 60.88 60.75 60.99 60.85 57.15 56.41 42.91 2.26
conN RceN 60.39 60.50 60.38 60.28 56.65 55.94 42.73 2.45
conN RceA 61.16 61.01 61.23 60.72 57.30 56.70 43.17 2.76
conA Rce 61.80 23.08 24.60 62.60 59.05 58.67 41.60 1.90
conA RceN 20.62 35.41 35.66 20.15 18.02 17.79 11.14 0.66
conA RceA 60.93 22.06 22.83 61.43 58.22 57.88 42.05 2.18
conF Rce 51.86 46.70 47.97 50.85 46.81 46.40 33.94 3.36
conF RceN 41.81 44.11 44.01 43.28 38.02 37.48 24.82 3.04
conF RceA 51.81 47.63 48.10 51.42 47.28 46.86 34.90 4.45

Table 8: Accuracy on the clean test set (Abase) and under distribution shifts of the target models
trained on CIFAR10 and retrained on FMNIST. The best values/highest accuracy are highlighted
using bold letters.

CIFAR10 → FMNIST

Train Retrain Abase [%] ANoise [%] AUNoise [%] AContrast [%] AContrastBin [%] AContrastLin [%] ABlur [%] ASaltPepper [%]

ce Rce 71.11 37.35 37.26 65.04 58.13 49.88 22.57 17.40
ce RceN 35.64 48.57 48.03 38.90 27.91 22.82 9.57 7.21
ce RceA 70.47 35.17 35.85 65.69 60.36 54.02 24.38 21.64
ceN Rce 73.18 61.93 60.56 41.54 37.68 35.90 33.92 21.92
ceN RceN 72.48 66.49 65.33 44.60 40.87 38.48 35.95 24.23
ceN RceA 73.23 62.67 60.70 41.62 38.07 36.04 34.45 21.99
ceA Rce 74.60 70.19 70.53 69.57 64.56 62.64 41.42 21.42
ceA RceN 65.87 72.63 72.65 68.57 61.20 58.75 37.25 28.63
ceA RceA 75.32 69.50 69.36 70.56 65.48 63.08 42.43 19.94
feD Rce 71.52 60.90 60.68 56.94 53.64 49.80 36.16 13.69
feD RceN 59.31 69.01 69.03 61.87 52.33 50.82 36.03 16.16
feD RceA 71.92 61.23 61.63 56.76 53.46 50.00 37.21 15.03
feA Rce 69.83 47.54 47.50 49.23 45.50 41.69 35.38 14.85
feA RceN 64.08 59.07 59.14 52.91 47.39 43.52 30.94 20.98
feA RceA 69.82 49.89 49.31 51.29 47.48 44.83 35.64 16.14
llc Rce 80.07 79.39 79.13 71.15 69.52 69.38 65.79 67.24
llc RceN 79.02 78.55 78.52 69.56 67.88 67.81 65.07 68.27
llc RceA 80.10 79.33 79.05 70.92 69.36 69.23 66.18 67.88
con Rce 79.81 48.53 49.73 79.71 76.19 75.86 52.91 28.03
con RceN 70.39 76.02 75.90 70.25 64.80 64.18 40.55 17.18
con RceA 78.13 57.63 58.49 77.29 74.91 74.77 58.66 36.11
conN Rce 82.25 79.66 79.70 80.85 76.91 76.27 58.27 24.65
conN RceN 80.94 80.07 80.00 79.91 75.96 75.30 61.20 23.92
conN RceA 82.04 79.61 79.27 80.73 77.68 77.21 60.58 30.34
conA Rce 80.31 64.51 64.98 77.09 74.48 74.23 59.60 11.86
conA RceN 73.11 75.74 75.85 71.64 69.01 68.63 51.17 14.07
conA RceA 79.75 64.68 65.91 77.26 74.80 74.61 60.82 12.35
conF Rce 75.97 62.19 61.79 68.66 65.13 62.87 41.23 27.31
conF RceN 62.25 67.67 67.81 56.35 51.13 47.13 24.86 14.25
conF RceA 75.36 66.40 65.50 69.19 66.01 64.15 43.30 32.16
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Figure 10: Accuracy on the clean test set (Abase, bright colors) and accuracy under distribution shifts
based on random noise, changes of the contrast and Gaussian blur of target model trained on SVHN
and retrained on clean (Rce), randomly (RceN) or adversarial perturbed (RceA) inputs (MNIST).
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Figure 11: Accuracy on the clean test set (Abase, bright colors) and accuracy under distribution
shifts based on random noise, changes of the contrast and Gaussian blur of target model trained
on EMNIST and retrained on clean (Rce), randomly (RceN) or adversarial perturbed (RceA) inputs
(KMNIST).
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Figure 12: Accuracy on the clean test set (Abase, bright colors) and accuracy under distribution
shifts based on random noise, changes of the contrast and Gaussian blur of target model trained
on CIFAR10 and retrained on clean (Rce), randomly (RceN) or adversarial perturbed (RceN) inputs
(FMNIST).

Does transferability correlate with model robustness?

Table 9 shows the verifiable accuracy (ASmooth), accuracy under the strongest (FGSM, PGD, Deep-
Fool) attack (Astr. attack) and quantifies transferability using H-score. Table 10 shows the source
accuracy and the zero-shot target accuracy, i.e. the accuracy a source model achieves on the target
dataset before target retraining. Results of both tables are visulaized in Figure 13.

Table 9: Transferability, verifiable accuracy and accuracy under attack of source models versus
robustness on the source dataset. Transferability is measured by the H-Score, while robustness is
quantified using verifiable accuracy and accuracy under the strongest attack.

SVHN → MNIST EMNIST → KMNIST CIFAR10 → FMNIST

Train Acert. [%] Astr. attack [%] H− score Acert. [%] Astr. attack [%] H− score Acert. [%] Astr. attack [%] H− score

ce 78.41 71.25 6.81 17.16 39.68 18.23 32.06 50.72 5.44
ceN 91.65 86.26 6.62 92.42 91.41 18.72 78.42 69.01 4.82
ceA 87.55 85.05 6.84 53.11 90.82 18.76 56.72 70.36 5.33
feD 88.29 86.17 6.69 89.63 91.39 19.25 64.58 71.49 5.16
feA 87.91 86.13 6.81 52.91 91.55 18.82 60.59 72.56 5.28
llc 76.00 71.50 4.94 90.96 90.27 17.47 62.44 60.79 3.62
con 69.91 66.73 7.78 8.81 26.64 21.90 31.43 51.84 7.31
conN 88.49 83.00 7.63 92.13 90.39 27.06 79.41 69.10 6.56
conA 85.27 82.16 7.61 11.88 90.49 4.88 51.29 71.44 9.55
conF 86.55 87.20 8.06 81.78 91.88 21.98 45.46 76.47 7.29
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Table 10: Accuracy of source models (before target retraining) on the target dataset versus accuracy
on the source dataset.

SVHN → MNIST EMNIST → KMNIST CIFAR10 → FMNIST

Train ASource [%] ATarget [%] ASource [%] ATarget [%] ASource [%] ATarget [%]

ce 94.03 19.81 92.12 1.56 85.70 5.44
ceN 93.40 22.13 92.57 2.01 79.84 5.96
ceA 94.20 19.96 92.40 1.69 84.83 11.52
feD 93.69 16.79 92.29 1.87 83.46 6.39
feA 94.33 17.81 92.91 1.67 84.35 3.89
llc 77.60 58.32 91.06 1.85 65.75 6.79
con 93.32 65.24 92.63 1.23 87.26 9.91
conN 91.70 65.78 92.39 0.95 83.59 9.77
conA 92.41 66.17 92.34 1.08 85.39 9.96
conF 95.28 25.10 93.26 1.68 89.91 10.20
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Figure 13: Transferability quantified by the H-Score versus robustness of the source models quan-
tified as verifiable accuracy (Verification) or accuracy under the strongest (FGSM, PGD, DeepFool)
attack (Attacking) and zero-shot performance on SVHN – MNIST, EMNIST – KMNIST and CI-
FAR10 – FMNIST.
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