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Abstract
In image processing, solving inverse problems is
the task of finding plausible reconstructions of
an image that was corrupted by some (usually
known) degradation operator. Commonly, this
process is done using a generative image model
that can guide the reconstruction towards solu-
tions that appear natural. The success of diffusion
models over the last few years has made them
a leading candidate for this task. However, the
sequential nature of diffusion models makes this
conditional sampling process challenging. Fur-
thermore, since diffusion models are often de-
fined in the latent space of an autoencoder, the
encoder-decoder transformations introduce addi-
tional difficulties. To address these challenges,
we suggest a novel sampling method based on se-
quential Monte Carlo (SMC) in the latent space of
diffusion models. We name our method LD-SMC.
We define a generative model for the data using
additional auxiliary observations and perform pos-
terior inference with SMC sampling based on a
backward diffusion process. Empirical evalua-
tions on ImageNet and FFHQ show the benefits
of LD-SMC over competing methods in various
inverse problem tasks and especially in challeng-
ing inpainting tasks.

1. Introduction
Many important signal processing tasks can be viewed as
inverse problems (Song et al., 2021c; Moliner et al., 2023;
Daras et al., 2024; Chung et al., 2023b; Cardoso et al., 2023).
In inverse problems, the objective is to obtain a clean signal
x ∈ Rn from a degraded observation y = A(x)+ψ, where
A is usually a known irreversible mapping and ψ is a Gaus-
sian noise vector. Common applications that fit this frame-
work include image deblurring, super-resolution, inpainting,
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Figure 1: LD-SMC solves inverse problem tasks in the latent
space of autoencoders by utilizing auxiliary observations
y1:T initialized using a forward diffusion process. Then,
sampling z0 from the posterior distribution is done based
on the backward diffusion process using sequential Monte
Carlo. In the figure, D and A denote the decoder and the
corruption operator respectively.

and Gaussian denoising. The broad applicability of inverse
problems makes them highly significant, as they encom-
pass numerous real-world challenges, such as those found
in digital image processing (Blackledge, 2005), wireless
communication (Chen et al., 2021), seismology (Virieux &
Operto, 2009), medical imaging (Song et al., 2021c; Chung
et al., 2023c), and astronomy (Craig & Brown, 1986).

A major challenge in solving inverse problems is the ex-
istence of multiple plausible solutions. For example, in
image inpainting, the likelihood p(y|x) remains constant
regardless of how the absent pixels are filled. However,
the desired solution is one that not only fits the observa-
tion, but also appears natural, which corresponds to having
a high probability under a natural image prior p(x). This
insight naturally leads to the approach of sampling from
the posterior distribution p(x|y) ∝ p(y|x)p(x), combining
the data likelihood and the prior to achieve realistic and
data-consistent solutions.

With the impressive recent advances in diffusion models
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021a), there has been a significant interest in leveraging
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them as prior image models to solve inverse problems. How-
ever, integrating diffusion models into this context is not
straightforward because of their sequential sampling process.
Specifically, diffusion sampling involves iterative drawing
from p(xt−1|xt), while the conditioning on the corrupted
image y is defined only in the final step, namely, through
p(y|x0). This mismatch makes direct sampling from the
joint posterior p(x0, ...,xT |y) particularly challenging.

Recently, several studies proposed sequential Monte Carlo
(SMC) (Doucet et al., 2001b; Del Moral et al., 2012) as an
effective solution for this task based on pixel-space diffusion
models (Cardoso et al., 2023; Trippe et al., 2023; Wu et al.,
2023; Dou & Song, 2024). Specifically, Wu et al. (2023)
applies the DPS approximation (Chung et al., 2023b) for
p(y|xt) with p(y|E[x0|xt]) and uses SMC sampling to cor-
rect for it. Dou & Song (2024), on the other hand, connected
xt to y by introducing a sequence of latent variables y1:T

through a duplex forward diffusion process and sampling
sequentially from p(xt:T |yt:T ). While this approach has
shown great potential, it has two main limitations. First, it
does not take into account future observations y0:t−1 in the
sampling process. Second, and more crucially, it is limited
to linear corruption models only. As such, it cannot be ap-
plied with nonlinear mappings A, let alone common Latent
Diffusion Models (LDMs) (Rombach et al., 2022) due to
the nonlinearity of the decoder. This is a harsh restriction as
many of the recent powerful and efficient models are LDMs
(Esser et al., 2024).

Both existing approaches have pros and cons. Using the
p(y|E[x0|xt]) approximation can be helpful in capturing
the large-scale semantics of the image, but it often lacks
in capturing the small details. On the other hand, using
auxiliary observations y1:T can help capture finer details,
but the duplex forward diffusion process is not amenable to
LDMs. Here, we propose a method that combines these two
approaches and strives to achieve the best of both worlds.
We define a generative model for the data based on a back-
ward diffusion process, according to which an auxiliary
observation yt is generated directly from zt, the latent dif-
fusion variable. Then, to apply posterior inference over the
variables of all timesteps, z0:T , we use SMC. To obtain a
tractable sampling procedure, we derive an approximate
target distributions and define a novel proposal distributions
for the SMC sampling process tailored for diffusion models.
Hence, we name our method Latent Diffusion Sequential
Monte Carlo, or more concisely LD-SMC. An illustration
of our approach is shown in Figure 1. We empirically vali-
dated LD-SMC on the ImageNet (Russakovsky et al., 2015)
and FFHQ (Karras et al., 2019) datasets. We found that
LD-SMC outperforms or is comparable to baseline methods
on image deblurring and super-resolution tasks, and can
significantly improve over baseline methods on inapainting
tasks, especially on the more diverse ImageNet dataset.

In this study, we make the following contributions: (1)
we propose a novel method for combining auxiliary obser-
vations with latent space diffusion models; (2) we derive
approximate target distributions for the SMC procedure and
novel proposal distributions to perform approximate pos-
terior sampling specifically tailored for diffusion models;
(3) We theoretically show that LD-SMC is asymptotically
accurate, namely that it can sample from pθ(z0|y0); (4)
LD-SMC achieves significant improvements in perceptual
quality in inpainting tasks, one of the most challenging
inverse problem tasks. Our code is publicly available at
https://github.com/ssi-research/LD-SMC

2. Background
Inverse Problems. In inverse problems, one would like to
recover a sample x ∈ Rn from a corrupted version of it
y ∈ Rm. Usually, the corruption model that acted on x is
known, but the operation is irreversible (Tarantola, 2005).
For instance, restoring a high-quality image from a low-
quality one. We denote the corruption operator by A(·),
and assume that y = A(x) + ψ, where ψ ∼ N (0, τ2I)
has a known standard deviation τ . In a more concise way,
p(y|x) = N (A(x), τ2I). Common examples of inverse
problems are inpainting, colorization, and deblurring. In
general, solving inverse problem tasks is considered an ill-
posed problem with many possible solutions x with equally
high p(y|x) values. Given a prior distribution p(x) over
natural images, one standard approach to solving the in-
verse problem is to sample from the posterior distribution
p(x|y) ∝ p(y|x)p(x).

Diffusion Models. Owing to their high-quality genera-
tion capabilities, in recent years diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) have been leveraged
as priors in inverse problems (Jalal et al., 2021; Song et al.,
2021d). Here, we adopt the DDIM formulation (Song et al.,
2021a) for the prior model, although our approach can work
with other formulations of diffusion models as well. Further-
more, since it is costly to apply the diffusion process in the
pixel space, a common approach is to apply the diffusion
model in the latent space given by an auto-encoder (Rom-
bach et al., 2022). Applying diffusion models in latent space
allows us to sample high-quality images while reducing the
computational resources needed by the model. Hence, de-
signing models that effectively solve inverse problems using
latent diffusion models is of great importance.

Denote by z0:T the random variables in the latent space. Let
α1:T , β1:T be the variance schedule of the diffusion process
with βt := 1 − αt. Also, denote by ᾱt :=

∏t
j=1 αj . The

DDIM sampling starts from a prior distribution at timestep
T set to p(zT ) = N (0, I). Then, for t > 1 the sampling is
done according to pθ(zt−1|zt) = N (zt−1|µθ(zt, t),Σ(t)),
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Figure 2: The graphical model of LD-SMC. In gray ob-
served variables and in white are latent variables.

where θ are the parameters of the neural network and,

Σ(t) = σ2
t I

µθ(zt, t) =
√
ᾱt−1z̄0(zt) +

√
1− ᾱt−1 − σ2

t · ϵθ(zt, t).
(1)

Here we denote the approximate posterior mean of E[z0|zt]
by z̄0(zt) :=

1√
ᾱt
(zt−

√
1− ᾱt ·ϵθ(zt, t)) (Robbins, 1956;

Efron, 2011; Chung et al., 2023b). For timestep t = 1, the
mean µθ(z1, 1) is taken to be z̄0(z1). As in (Dou & Song,

2024) we fix σt = η ·
√
βt · 1−ᾱt−1

1−ᾱt
with η being a hyper-

parameter.

Sequential Monte Carlo (SMC). SMC is an important
technique for sampling in probabilistic graphical models
in which exact posterior inference is intractable. The SMC
breaks the sampling process down to intermediate steps,
allowing efficient sampling through a recursive procedure
(Doucet et al., 2001b; Del Moral et al., 2012; Naesseth et al.,
2019; Chopin et al., 2020).

One family of probabilistic models for which SMC is espe-
cially known is state-space models (SSMs), also known as
Hidden Markov Models (HMMs). In general, the following
quantities must be defined in SSMs, (1) a prior distribution
over the initial state p(zT ), (2) a transition distribution that
defines the dynamics between states p(zt|zt+1) ∀t < T ,
and (3) a measurement model p(yt|zt) ∀t < T . The goal
is to sample from the target distribution p(zt:T |yt:T−1). To
do so, SMC starts by sampling N particles {z(i)T }Ni=1 from
the prior distribution. Then, at each step, given the previous
particle set {z(i)t }Ni=1 new samples are taken from a pro-
posal distribution z

(i)
t−1 ∼ πt−1(z

(i)
t−1|z

(i)
t ) ∀i ∈ {1, ..., N}.

The particles are then weighted (and possibly resampled)
according to the new sequences {z(i)t−1:T }Ni=1. The proposal
distribution serves as an approximation to the target distri-
bution. Its support needs to contain the support of the target
density. The weighting mechanism then corrects the approx-
imation by assigning a weight to each particle to adjust its
probability. The resampling step, if applied, aims to remove
unlikely particles according to the model (Särkkä, 2013).

3. Related Work
Inverse problems have a long and evolving history, with
methodologies that have undergone significant advances
over the years (Daras et al., 2024). Recently, diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021d) have emerged as effective priors for solving
inverse problems in image data (Choi et al., 2021; Kawar
et al., 2022; Chung et al., 2023a;b; Rout et al., 2023; Song
et al., 2023; Wang et al., 2023; Dou & Song, 2024; Garber
& Tirer, 2024; Mardani et al., 2024; Sun et al., 2024).

In (Song et al., 2021d) it was shown that to sam-
ple from the posterior distribution, p(x0|y), one can
solve a stochastic differential equation based on the
prior score, ∇xt

log pθ(xt), and the conditional score,
∇xt

log pθ(y|xt). While the first term is easy to com-
pute, the latter term requires integration over the full diffu-
sion path from time t to 0. A useful and easy-to-calculate
approximation found in several studies is pθ(y|xt) ≈
pθ(y|E[x0|xt]) ≈ pθ(y|x̄0(xt)), which is readily available
at each step (Chung et al., 2023b; Song et al., 2023; Wu
et al., 2023). Specifically, Diffusion Posterior Sampling
(DPS) (Chung et al., 2023b) uses this approximation for
linear and nonlinear inverse problems with Gaussian and
Poisson likelihood models. Other methods also utilize the
pseudoinverse of the corruption operator A (Tirer & Giryes,
2018). ΠGDM (Song et al., 2023) introduces a guidance
scheme by matching the denoised output and the corrupted
image y, via a transformation of both. DDNM (Wang et al.,
2023) suggested refining the contents of the null space of
A during the backward diffusion process. A different ap-
proach proposed in (Mardani et al., 2024) is to approximate
the posterior using a variational approach based on the score
matching objective presented in (Song et al., 2021b). An
additional category of inverse problem approaches that use
diffusion models is designed with the objective of asymp-
totic exactness (Cardoso et al., 2023; Trippe et al., 2023;
Wu et al., 2023; Dou & Song, 2024). These methods utilize
SMC techniques, which have also been applied for uncondi-
tional sampling (Chen et al., 2025), to target exact sampling
from the posterior distribution p(x0|y). SMC-Diff (Trippe
et al., 2023) was designed mainly for motif-scaffolding. It
uses the prior distribution as a proposal which is known to
require a large number of particles for accurate estimation
results (Särkkä, 2013), a severe limitation for latent space
diffusion models due to expensive decoder evaluations. We
experimented with this proposal in our initial attempts and
witnessed that even 150 particles were not enough to sample
plausible reconstructions. MCGDiff (Cardoso et al., 2023)
was designed for linear inverse problems only, which makes
it unsuitable for inverse problems with latent-space diffu-
sion models due to encoder-decoder involvement. TDS (Wu
et al., 2023), a recent SMC-based method, solves general
inverse problem tasks using the twisting technique. This
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Algorithm 1 LD-SMC
1: Set z0 = E(x0), where x0 = argminx ||y0 −A(x)||22
2: Sample z1:T ∼ p(z1:T |z0) according to the forward

process of DDIM (Eq. 2)
3: For k = 1, ...,K:
4: Sample y1:T ∼

∏T
t=1 N (yt|A(D(zt)), τ

2I)
5: Sample z0:T ∼ pθ(z0:T |y0:T ) using SISR(y0:T )

6: SISR(y0:T ):
7: For i = 1, ..., N :
8: Sample z

(i)
T ∼ pθ(zT ) and initialize z(i) = (z

(i)
T )

9: Set w(i)
T according to Eq. 6

10: Normalize {w(i)
T }Ni=1 to sum to one

11: For t = T − 1, ..., 0:
12: {z(i)}Ni=1 ∼ Multi({z(i)}Ni=1, {w

(i)
t+1}Ni=1),

a resampling step
13: For i = 1, ..., N :
14: Sample z

(i)
t ∼ πt(zt|z(i)t+1) (Eq. 7) # proposal

15: Set w(i)
t according to Eq. 6

16: Update z(i) = (z
(i)
t , ..., z

(i)
T )

17: Normalize {w(i)
t }Ni=1 to sum to one

18: Sample one chain z ∼ Multi({z(i)}Ni=1, {w
(i)
0 }Ni=1)

19: Return z

method also uses the approximation of DPS, but by apply-
ing SMC sampling it can correct for it. FPS (Dou & Song,
2024), also a recent SMC-based method, uses auxiliary vari-
ables. FPS generates a sequence of observations y1:T based
on a duplex diffusion process, one process at the x space
and the other process at the y space. Since this method is de-
signed for linear inverse problems only, it permits tractable
Bayesian inference. Our method combines the ideas of both
TDS and FPS to obtain the best of both. Namely, we use
the posterior mean approximation and y1:T in our SMC
sampling process. As we will show, this combination can
be helpful in both understanding the general semantics of
an image and capturing fine details. We note here that there
are other methods that applied label augmentations similar
to FPS, one example is (Abu-Hussein et al., 2022) which
is applicable for linear inverse problems only. Hence, this
method as well cannot be trivially combined with latent
space diffusion models.

Several inverse sampling methods were specifically tailored
for latent diffusion models. PSLD (Rout et al., 2023) extend
DPS (Chung et al., 2023b) by incorporating an additional
gradient update step to guide the diffusion process to sam-
ple latent representations that maintain the integrity of the
decoding-encoding transformation, ensuring it remains non-
lossy. STSL (Rout et al., 2024) uses second-order informa-
tion for reconstruction based on efficient approximations.
Comparative analysis with STSL was not feasible due to

the absence of publicly available code, making replication
challenging. ReSample (Song et al., 2024), a contemporary
method alongside PSLD, acts in two stages; it first applies
hard data consistency to obtain latent variables that are con-
sistent with the observed measurements and then employs
a resampling scheme to map the sample back onto the data
manifold. Concurrent to this study Nazemi et al. (2024)
proposed a particle filtering approach. Their method builds
on PSLD and DPS update in the proposal distribution. Sim-
ilarly to TDS (Wu et al., 2023) the connection to the labels
is only through z0 using the approximate mean estimator.
Also, unlike LD-SMC it does not enjoy asymptotic guaran-
tees. Recently, both DAPS (Zhang et al., 2024) and MGPS
(Moufad et al., 2024) have been proposed to address inverse
problems both in pixel and latent space. DAPS decouples
latents in the sampling trajectory by first sampling from
z0|zt+∆t,y using MCMC techniques, for some ∆t > 0,
and then sampling zt. MGPS also decomposes the sam-
pling, but to an intermediate midpoint and uses variational
inference for posterior sampling. Given the similarities of
both methods, in our experiments we compare only to the
former. SILO (Raphaeli et al., 2025), an additional recent
study, first learns a NN that mimics an encoder operation on
labels y which is then used to guide the sampling process.
In our empirical evaluation, we compare to methods that
apply sampling only.

4. Method
Given a corrupted image y0, the goal is to sample z0 ∼
pθ(z0|y0) using a pre-trained latent diffusion model as prior.
Then, we can transform this sample into an image by ap-
plying a pre-trained decoder D, i.e. x0 := D(z0). Here,
we stack all the parameters of the networks (diffusion and
encoder-decoder) under θ. In what follows, we first define
a generative model for the data and then describe how to
perform Bayesian inference on all latent variables using
blocked Gibbs sampling. Specifically, we use the diffusion
process and the corruption operator to augment the model
with additional auxiliary observations. Then, inference is
applied over the diffusion variables using SMC. The corre-
sponding graphical model can be seen in Figure 2.

4.1. The Generative Model

We now explicitly define the data generation model,

1. zT ∼ N (0, I)),

2. zt−1|zt ∼ p(zt−1|zt) ∀t ∈ {1, ..., T},
3. yt|zt ∼ N (A(D(zt)︸ ︷︷ ︸

xt

), τ2I) ∀t ∈ {0, ..., T}.

Where, pθ(yt|zt) is defined by the corruption model,
p(zt−1|zt) = Ep(z0|zt)[p(zt−1|zt, z0)] is a backwards gen-
erative process that corresponds to a non-Markovian forward
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Figure 3: Comparison between LD-SMC and baseline methods on inpainting of ImageNet images.

process with

p(zt−1|zt, z0) =

N
(
zt−1|

√
ᾱt−1z0 +

√
1− ᾱt−1 − σ2

t · zt −
√
ᾱtz0√

1− ᾱt

, σ2
t I

)
,

(2)
set according DDIM (Song et al., 2021a). Introducing unob-
served data is a known technique in statistics for conducting
effective Markov chain Monte Carlo (MCMC) sampling
(Van Dyk & Meng, 2001; Dou & Song, 2024). In our case,
we can use it while leveraging the dependencies between
the variables in order to build an efficient SMC sampling
procedure, as described in the next section.

4.2. Sampling Procedure

Given the generative model defined in Section 4.1, our
aim is to apply Bayesian inference over the latent vari-
ables. In broad strokes, to obtain a sample z0 ∼ pθ(z0|y0)
we use blocked Gibbs sampling to sample in turns from
pθ(y1:T |z0:T ,y0) using knowledge on the corruption model
and pθ(z0:T |y0:T ) using SMC. Specifically, we propose the
following procedure:

1. Obtain an initial guess for z0 (Sec. 4.2.1).

2. Sample, z1:T ∼ p(z1:T |z0,y0) = p(z1:T |z0) accord-
ing to the forward process of DDIM (Eq. 2).

3. Repeat for some fixed number of steps:

(a) Sample, y1:T ∼ pθ(y1:T |z0:T ,y0) =

pθ(y1:T |z1:T ) =
∏T

t=1 N (yt|A(D(zt)), τ
2I).

(b) Sample, z0:T ∼ pθ(z0:T |y0:T ) using SMC based
on a pre-trained diffusion model (Sec. 4.2.2).

Here, we use the dynamics of the forward process and the
graphical model dependencies in steps 2 and 3(a). The two
steps that are not straightforward are obtaining an initial
guess for z0 (step 1) and performing the sampling process
in step 3(b). We discuss both in the following sections, but
before that we make a few comments. First, clearly the
run-time of the algorithm depends linearly on the number
of Gibbs iterations. As a result, the sampling time can be
slow. However, with proper initialization (as discussed in
Section 4.2.1), we empirically found that even one iteration
of Step 3 suffices to achieve good results. Hence, unless
otherwise stated, in our empirical evaluations, we applied
this step only once. Second, one may be concerned that
evaluating the decoder on noisy latent variables can generate
non-natural images. While this may be true, empirically we
observed a graceful degradation in image quality with time,
as seen in Figure 7. Furthermore, the latent variables, even
if noisy, carry information about y0. This information is
then transferred to the auxiliary labels which help guide the
sampling process.

4.2.1. INITIAL GUESS FOR z0

The first challenge is to obtain an initial z0 (step 1. in the
sampling procedure). There are multiple sensible ways to
perform this initialization. Importantly, z0 should carry in-
formation about the measurement y0, which can then be
used to guide the sampling process using the auxiliary la-
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Figure 4: Comparison between LD-SMC and baseline methods on Gaussian deblurring of ImageNet images.

bels. As a result, the variance in the process will be reduced
and the convergence will be accelerated. For example, one
option is to leverage the pseudoinverse of A for linear op-
erators similar to (Wang et al., 2023). But, that would not
work for nonlinear corruption operators. Although there are
mitigations for this problem (Song et al., 2023), to maintain
generality, we applied the following optimization procedure,

x0 = argmax
x

log pθ(y0|x) = argmin
x

||y0 −A(x)||22,
(3)

where x is initialized to D(ẑ0) for ẑ0 ∼ N (0, I). Then,
after reaching convergence, an initial z0 is obtained by ap-
plying the encoder on the outcome, namely z0 = E(x0).
An alternative for this procedure is to perform the optimiza-
tion process directly in the latent space. However, in our
experiments we found that the former option worked better
and was substantially faster as it did not involve expensive
gradient propagation through the decoder.

4.2.2. POSTERIOR SAMPLING

We now move on to explain step 3(b) of the sampling pro-
cedure. Due to the non-linearity of the decoder, even for
linear corruption operators A, finding the exact posterior is
intractable. One option to overcome this difficulty is to use
SMC sampling. In what follows, we first describe approxi-
mate (tractable) target distributions for {pθ(zt:T |y0:T )}t=T

t=0 ,
then we present the induced sequence weights wt and a
novel proposal distributions πt for all timesteps t. These
components are used as part of a general sequential im-
portance sampling with resampling (SISR) algorithm as
depicted in Algorithm 1.

Approximate target distributions. First, notice that due to
the structure of the model, the posterior density of the r.v.
zt at each step t depends only on zt+1:T . Hence, the target
distribution of interest at each timestep t is pθ(zt:T |y0:T ).
However, even computing the unnormalized quantity of that
target distribution can be costly. Therefore, we make the
following assumption pθ(zt:T |y0:T ) ≈ pθ(zt:T |yt:T ,y0).
This assumption is reasonable since y0 stores all the input
information to begin with. In Appendix B we arrive at the
following recursive formula which forms the approximate
target distributions of the SMC procedure for all t:

pθ(zt:T |yt:T ,y0) ∝
pθ(yT |zT )p̄θ(y0|zT )p(zT ), t = T,
pθ(yt|zt)p̄θ(y0|zt)

p̄θ(y0|zt+1)
pθ(zt|zt+1)pθ(zt+1:T |yt+1:T ,y0),

0 < t < T,
pθ(y0|z0)
p̄θ(y0|z1)

pθ(z0|z1)pθ(z1:T |y0:T ), t = 0,

(4)

where we define p̄θ(y0|zt) := pθ(y0|z̄0(zt)) =
N (y0|A(D(z̄0(zt))), (1− ᾱt)I)), with the variance taken
to be the variance of zt|z0 according to the forward diffusion
process. Importantly, as the final target distribution at t = 0
matches the desired distribution pθ(z0:T |y0:T ) (see Eq. 10
in Appendix C), in the large compute limit samples from the
correct target can be obtained despite all approximations.

Sequence weights and proposal distributions. To de-
rive an SMC procedure using the proposed target distri-
butions, it is common to use importance sampling. The
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Table 1: Quantitative results on 1024 examples of size 256× 256 from FFHQ test set. All methods were evaluated under
the same experimental setup using LDM. Lower (↓) is better in all metrics.

Inpainting (Box) Inpainting (Free-Form) Gaussian Deblurring Super-Resolution (8×)

FID NIQE LPIPS FID NIQE LPIPS FID NIQE LPIPS FID NIQE LPIPS

LDPS 39.81 7.592 0.236 40.17 7.609 0.212 29.30 6.538 0.237 29.64 6.412 0.282
LTDS 39.57 7.602 0.236 39.78 7.578 0.212 30.23 6.553 0.238 30.45 6.412 0.284
ReSample 86.79 7.142 0.230 37.01 6.622 0.151 39.80 7.441 0.275 59.23 7.307 0.356
PSLD 39.68 6.544 0.246 36.26 6.835 0.216 36.31 6.802 0.341 40.33 6.803 0.347
PFLD 39.06 6.509 0.245 36.43 6.817 0.215 37.16 6.751 0.343 38.11 6.832 0.345
LatentDAPS 60.24 9.999 0.257 54.40 8.766 0.223 54.28 9.496 0.283 70.24 10.17 0.344

LD-SMC (1 particle) 33.37 7.032 0.212 33.67 7.034 0.194 29.19 6.575 0.232 30.02 6.426 0.277
LD-SMC (5 particles) 33.87 7.066 0.211 33.60 7.021 0.194 29.47 6.528 0.233 30.62 6.455 0.278

key idea is to construct proposal distributions πt(zt:T ), one
for each timestep, from which it is easy to sample, and
approximate p(zt:T |y0:T ) with the empirical distribution∑N

i=1 w
(i)
t δ

z
(i)
t:T

(zt:T ). Where, δzt:T
is the Dirac measure

and the weight wt (presented here for t < T ) is defined as,

wt ∝
p̃θ(zt:T |yt:T ,y0)

πt(zt:T )

=
p̃θ(zt|zt+1,yt,y0)

πt(zt|zt+1)

p̃θ(zt+1:T |yt+1:T ,y0)

πt+1(zt+1:T )

=
p̃θ(zt|zt+1,yt,y0)

πt(zt|zt+1)
wt+1.

(5)

Here, p̃θ(·) is the unnormalized approximate target density.
Plugging the unnormalized target densities from Eq. 4 in
Eq. 5 for all timesteps t results in,

wt ∝


pθ(yT |zT )p̄θ(y0|zT )pθ(zT )

πT (zT ) , t = T,
pθ(yt|zt)p̄θ(y0|zt)pθ(zt|zt+1)

p̄θ(y0|zt+1)πt(zt|zt+1)
wt+1, 0 < t < T,

pθ(y0|z0)pθ(z0|z1)
p̄θ(y0|z1)π0(z0|z1)

w1, t = 0.

(6)

With these weights, we now turn to defining the proposal
distributions πt for all timesteps t. The optimal choice
in the sense of minimizing the variance of the weights is
π(zt|zt:T ) = pθ(zt|zt+1,y0:t) (Doucet et al., 2000; Särkkä,
2013). However, they cannot be obtained in closed form.
Hence, we design alternative proposal distributions. The
proposal distributions for timesteps t < T are defined to be
Gaussian πt(zt|zt+1) = N (mt,St) with parameters:

St = σ̃2
t+1I

mt = µθ(zt+1, t+ 1)− (γt∇zt+1
log p̄θ(y0|zt+1)

+ λt∇µθ(zt+1,t+1) log qθ(yt|zt+1)).

(7)

Where qθ(yt|zt+1) = N (yt|A(D(µθ(zt+1, t+ 1))), τ2I),
and γt, λt are finite scaling coefficients. In addition,
πT (zT ), the distribution of the proposal at time T , is set to
the diffusion prior distribution, πT (zT ) = N (0, I).

In Eq. 7, we set the variance to be the variance of the prior
diffusion model, namely σ̃t+1 = σt+1; however, other
choices are also applicable. The idea behind the proposal
mean is to correct the prior mean estimation by shifting it
toward latents that agree more strongly with both yt and y0.
Specifically, the second term of the correction can be seen
as making one gradient update step starting from the current
prior mean, which serves as an estimate to zt.

The parameters γt and λt control the effect of the correction
terms to the prior mean. In practice, it is challenging to con-
trol the trade-off between the two correction terms. Hence,
we propose the following simple approach. During the sam-
pling process, the first term only is used, that is, λt = 0, and
then starting from some predefined timestep s, the second
term is used as well. The intuition here is that during the
initial sampling steps, the quality of the labels yt may not
be good. Therefore, we rely on the first term through the
posterior mean estimator to capture the general semantics
of the image. However, in later sampling stages the quality
of the labels increases (see Figure 7 in the appendix), and
the latter correction term can help capture fine details in the
image. This design choice also relates to the three-stage
phenomenon in the diffusion sampling process witnessed
in the literature (Yu et al., 2023). Setting λt = 0 for all
timesteps reduces the LD-SMC proposal update to that of
TDS (Wu et al., 2023). Appendix D shows an instantiation
of γt and λt used in this study.

Having defined the weights and the proposal distributions,
we present LD-SMC concisely in Algorithm 1. The algo-
rithm has two parts; the first part is the Gibbs sampling
process and the second is the SMC sampling using SISR.
In the algorithm the abbreviation ”Multi” refers to Multi-
nomial distribution and a resampling step is performed at
each iteration, although it is not mandatory. Appendix C
provides a proof that LD-SMC can achieve an arbitrarily
accurate estimate of pθ(z0|y0) under several conditions.
Importantly, the estimate does not depend on any of the
approximations made to derive our model. The following
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Theorem summarizes that informally,
Theorem 4.1. (informal) Let PN (z0:T ) =∑N

i=1 w
(i)
0 δ

z
(i)
0:T

(z0:T ) be the discrete measure obtained
by the function SISR in Algorithm 1. Under regularity
conditions PN (z0:T ) converges setwise to pθ(z0:T |y0:T )
as N → ∞. Furthermore, the stationary distribution of
the Gibbs sampling process is pθ(z0:T ,y1:T |y0), and the
marginal pθ(z0|y0) is the limiting distribution of the z0’s
subchain.

Connection to TDS. While the derivation is different, the
SMC procedure in LD-SMC resembles somewhat that of
TDS (Wu et al., 2023). The main difference between the two
methods is the dependence on the auxiliary variables y1:T ,
which are only relevant for LD-SMC in both the proposal
distributions and the weights. Empirically, we observed
that this additional conditioning helped to better align the
sampling with the corrupted image y0 compared to using
the posterior mean approximation as in (Chung et al., 2023b)
and (Wu et al., 2023).

5. Experiments
5.1. Experimental Setting

We evaluated LD-SMC on ImageNet (Russakovsky et al.,
2015) and FFHQ (Karras et al., 2019); both are common in
the literature of inverse problems (Chung et al., 2023b; Dou
& Song, 2024). In ImageNet, samples were conditioned on
the class label. The guidance scale was fixed to 1.0 in all our
experiments. Results can be improved by adjusting it (Rom-
bach et al., 2022). Images were resized to 3 × 256 × 256
and normalized to the range [0, 1]. We used the latent dif-
fusion models VQ-4 / CIN256-V2 (Rombach et al., 2022)
as the prior model in FFHQ / ImageNet, respectively, with
the DDIM diffusion sampler (Song et al., 2021a), accord-
ing to the data split in (Esser et al., 2021). We sampled
1024 random images from the validation set of each dataset
which were used to evaluate all methods. We followed the
protocol of (Song et al., 2024) and added Gaussian noise
with zero mean and standard deviation τ = 0.01 to the cor-
rupted images. Full experimental details are provided in
Appendix A.

Compared methods. We compare LD-SMC with several
recent SoTA baseline methods. All methods were evalu-
ated in a similar experimental setup using the same latent
diffusion model to ensure fairness in the comparisons. (1)
DPS (Chung et al., 2023b), which introduces correction to
the sampling process of the diffusion through the posterior
mean estimator; (2) TDS (Wu et al., 2023), which uses
the twisting technique for approximate sequential Monte
Carlo sampling; since DPS and TDS were designed for
pixel-space diffusion models, we term the adapted versions
of them to the latent space LDPS and LTDS, respectively.

(a) Effect of s (b) Effect of N

Figure 5: FID and PSNR values when varying s (left) and
the number of particles N (right) on ImageNet box (left)
and free-form (right) inpainting tasks.

(3) ReSample (Song et al., 2024), which applies an opti-
mization procedure during the sampling process to match
the approximate posterior mean to the label followed by a
resampling step; (4) PSLD (Rout et al., 2023), which intro-
duces a correction term to the DPS step to “glue” z0; (5)
PFLD (Nazemi et al., 2024), a particle filtering approach
for LDM based on PSLD update for the proposal distribu-
tion; (6) LatentDAPS which decouples the latents in the
sampling trajectory. In all experiments, we evaluated LD-
SMC with N = {1, 5} particles. Using one particle incurs
a computational cost similar to that of LDPS (see Table 4 in
the appendix). LTDS and PFLD were evaluated with N = 5
particles. All methods were tested on the following inverse
problem tasks: box inpainting, Gaussian deblurring, super-
resolution (8×) and free-form inpainting. We followed the
setup in (Chung et al., 2023b) for the first three tasks and
the setup in (Saharia et al., 2022) for the last one with a few
changes to the default hyperparameters. In inpainting tasks,
the masks were randomly sampled for each new sample.

Evaluation metrics. In the main text we report the fol-
lowing metrics, FID (Heusel et al., 2017), NIQE (Mittal
et al., 2012), and LPIPS (Zhang et al., 2018). Full results
including PSNR and SSIM (Wang et al., 2004) are deferred
to Appendix H. FID and NIQE are considered perceptual
metrics; lower values in them indicate higher perceptual
quality. The other metrics can be considered as distortion
metrics, which quantify some discrepancy between the gen-
erated images and the ground-truth values. Since perceptual
metrics and distortion metrics can be in conflict with each
other (Blau & Michaeli, 2018), we put more emphasis on
perceptual quality. Hence, for all methods, we performed
grid search over hyper-parameters and chose the best con-
figuration according to the FID.

5.2. Experimental Results

Quantitative results are shown in Tables 1 and 2. From the
tables, LD-SMC is usually the best or second best among all
the comparisons. Specifically, on inpainting where extrapo-
lation is needed within the masked region and details should
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Table 2: Quantitative results on 1024 examples of size 256× 256 from ImageNet test set. All methods were evaluated under
the same experimental setup using LDM. Lower (↓) is better in all metrics.

Inpainting (Box) Inpainting (Free-Form) Gaussian Deblurring Super-Resolution (8×)

FID NIQE LPIPS FID NIQE LPIPS FID NIQE LPIPS FID NIQE LPIPS

LDPS 65.04 7.935 0.379 53.47 7.867 0.334 52.48 6.855 0.383 61.02 6.514 0.439
LTDS 64.74 7.907 0.378 52.75 7.884 0.334 50.82 6.695 0.379 59.12 6.270 0.435
ReSample 90.32 8.464 0.318 44.15 7.104 0.248 46.45 7.411 0.353 87.65 8.290 0.491
PSLD 71.15 8.042 0.434 62.38 8.037 0.411 60.68 6.599 0.417 66.56 7.669 0.489
PFLD 72.83 7.933 0.436 63.34 8.026 0.414 60.94 6.733 0.421 64.72 7.685 0.492
LatentDAPS 98.24 11.36 0.394 68.65 9.625 0.330 77.09 10.55 0.417 104.6 12.68 0.489

LD-SMC (1 particle) 51.49 6.878 0.326 38.21 6.969 0.285 52.48 6.855 0.383 58.06 6.243 0.434
LD-SMC (5 particles) 50.67 6.891 0.325 36.18 6.671 0.278 52.29 6.791 0.383 57.89 6.238 0.433

be preserved outside of it, LD-SMC can greatly improve
over baseline methods. This property is also manifested
in Figure 3 and Figure 8 in the appendix. LD-SMC man-
ages to produce plausible reconstructions while maintaining
fine details. The differences are especially highlighted on
the ImageNet dataset which has more diversity in it. Also,
as is clear from the figures, ReSample images suffer from
significant artifacts. We speculate that it partly stems from
the complete optimization process performed in every few
sampling steps according to this method.

Figure 4 shows qualitative results for Gaussian deblurring
of images by all methods. From the figure, LD-SMC, LDPS,
LTDS, and ReSample are able to generate plausible recon-
structions on this task. PSLD and PFLD images have no-
ticeable artifacts, while LatantDAPS images are blurry.

Additional quantitative and qualitative results can be found
in Appendix H and I. In terms of the distortion metrics
PSNR and SSIM, LD-SMC usually substantially outper-
forms PSLD and PFLD and has a small advantage over
LDPS and LTDS, but overall the three methods are com-
parable. ReSample and LatentDAPS are usually the best.
Nevertheless, as can be seen visually and as indicated by
other metrics, it comes at the expense of perceptual quality.
LatentDAPS images are overly smooth and details are not
preserved in them, while ReSample images have noticeable
artifacts, especially in inpainting tasks.

5.3. Analysis

In Figure 5 we evaluate LD-SMC in terms of FID and PSNR
on inpainting tasks when varying s, the hyperparameter that
controls the influence of yt in the proposal distribution, and
N , the number of particles. From Figure 5(a) there is a clear
trade-off in FID and PSNR when s changes. Higher s values
result in a better FID at the expense of PSNR, while lower
s values show the opposite trend. For inpainting, s = 333
strikes a good balance between the two metrics while giving
more emphasis to the perceptual quality. In addition, note
that taking s = 0 is similar to using the DPS as a proposal

distribution which results in a significant reduction in per-
ceptual quality. Figure 5(b) shows an improvement in FID
while suffering from a small reduction in PSNR when in-
creasing the number of particles. In our comparisons, we
chose N = 5 to balance between performance and com-
putational cost incurred by adding particles (see Section E
for further details). Empirically, we found that sometimes
only increasing the number of particles resulted in favorable
metric values, as is also clear from the tables. We attribute
this to the relatively small number of particles with which
we experimented (up to 10). However, in general, one can
expect that as the number of particles increases, the sam-
ples will become more accurate. Finally, in Appendix F
we present an ablation study on the effect of using several
Gibbs steps. We show that improvements in FID and PSNR
can be obtained by taking more than one step, yet there is
not always a clear trend of improvements over the steps.

6. Conclusion
In this study, we presented LD-SMC, a novel method for
solving inverse problems in the latent space of diffusion
models using SMC. LD-SMC augment the model with aux-
iliary observations, one per each timestep, and use these
observations to guide the sampling process as part of the
backward diffusion process. This framework can be seen as
applying one step of blocked Gibbs sampling. To perform
SMC sampling, we suggested a novel weighing scheme and
proposal distributions. Both are based on information from
the auxiliary labels and the true label y0. Empirically, we
validated LD-SMC against strong baseline methods on com-
mon benchmarks. The results suggest that LD-SMC can
improve the performance over baseline methods, especially
in cases where extrapolation is needed (e.g., in inpainting
tasks). one limitation of our approach is related to com-
putational demand. The sampling time and the memory
demand increase with the number of particles and Gibbs
iterations. This effect can be partially mitigated by taking
fewer particles and GPU parallelization.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
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Appendix of Inverse Problem Sampling in Latent Space
Using Sequential Monte Carlo

A. Full Experimental Details
The experiments were carried out mainly using an NVIDIA A100 having 40GB and 80GB memory. In all experiments,
we used the DDIM formulation (Song et al., 2021a), although LD-SMC can be applied with other sampling procedures.
For all methods, we performed a hyperparameter search on η ∈ {0.05, 0.5, 1.0} and found that LD-SMC worked best with
η = 1.0. For DPS and TDS we examined several scaling coefficient schemes for the prior mean update, including the ones
proposed in each of the corresponding papers, and found that our proposed update worked better for both. For all three
methods (LD-SMC, DPS, and TDS) we searched for κ1 ∈ {0.3, 0.4, 0.5, 1.0, 1.5, 2.0}. For our method, we also performed
a grid search over κ2 ∈ {0.5, 1.5, 2.5}, s ∈ {0, 100, 200, 333}, and ρ ∈ {0.5, 0.75}. In addition, when applying resampling,
we set the variance of pθ(yt|zt) to (1 − ᾱt)I to match the variance of p̄θ(y0|zt). For PSLD, in most cases, the default
hyperparameters suggested in the paper and code did not yield good results. Hence, we performed a grid search over PSLD’s
hyperparameters γt ∈ {1e− 4, 1e− 3, 1e− 2, 5e− 2, 0.1, 0.2} and ηt ∈ {0.05, 0.1, 0.2, 0.5, 0.9}, and used the best ones
for both PSLD and PFLD. For ReSample, we found that using η = 0.0, the default value in the code, usually performed best.
Also, we performed a grid search over γ, the scaling coefficient of the resampling step std in {4, 8, 16, 40, 80, 200, 400}.
For LatentDAPS, we used the default hyperparameters suggested in the paper, except for super-resolution tasks where we
made a grid search over η0 ∈ {1e− 4, 5e− 5, 1e− 5, 5e− 6, 1e− 6, 5e− 7, 1e− 7}. In addition, for comparability with
other methods, we used observation noise of 0.01, instead of the default 0.05 in the code, and in ImageNet experiments we
used N = 100 steps. To choose the best set of hyperparameters, we evaluated each method both visually and using the FID
on a sample of 64 images. Then, we sampled 1024 images using the best configuration. Similarly to ReSample, we found
that applying an optimization process at the end of the sampling process in the latent space can sometimes improve visibility
and metric values. We evaluated all models except LatentDAPS with and without this final optimization process and chose
the best according to the FID. The optimization procedure was not applied to inpainting tasks since it created non-smooth
changes at the boundaries of the box, making the images look non-natural.

For LD-SMC, we present here the chosen hyperparameters:

Table 3: LD-SMC hyperparameters for all tasks.

Dataset Task κ1 κ2 s ρ Final Latent Optimization

FFHQ

Inpainting (Box) 1.0 2.5 333 0.75 No
Inpainting (Free-Form) 1.0 2.5 333 0.75 No
Gaussian deblurring 1.5 1.5 100 0.5 Yes
Super-resolution 1.0 2.5 100 0.5 Yes

ImageNet

Inpainting (Box) 2.0 2.5 333 0.75 No
Inpainting (Free-Form) 2.0 2.5 333 0.75 No
Gaussian deblurring 0.5 – 0 – Yes
Super-resolution 0.3 2.5 333 0.5 No

B. Approximate Target Distributions
In Section 4.2.2 we presented approximate target distributions for the SMC sampling procedure. Here we present the
derivation for each case, namely (1) t = T , (2) 0 < t < T , and (3) t = 0:

13
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(1) t = T :
pθ(zT |yT ,y0) ∝ pθ(yT |zT ,y0)pθ(zT |y0)

∝ pθ(yT |zT )pθ(y0|zT )p(zT )
≈ pθ(yT |zT )p̄θ(y0|zT )p(zT ).

Where, in the first transition we used Bayes rule, in the second transition we used the model dependencies and Bayes rule
again, and in the last transition we make the additional approximation of conditioning on the posterior mean estimator.

(2) 0 < t < T :
pθ(zt:T |yt:T ,y0) ∝ pθ(yt|zt:T ,yt+1:T ,y0)pθ(zt:T |yt+1:T ,y0)

= pθ(yt|zt)pθ(zt|zt+1:T ,yt+1:T ,y0)pθ(zt+1:T |yt+1:T ,y0)

= pθ(yt|zt)pθ(zt|zt+1,y0)pθ(zt+1:T |yt+1:T ,y0)

= pθ(yt|zt)
pθ(y0|zt)

pθ(y0|zt+1)
pθ(zt|zt+1)pθ(zt+1:T |yt+1:T ,y0)

≈ pθ(yt|zt)p̄θ(y0|zt)
p̄θ(y0|zt+1)

pθ(zt|zt+1)pθ(zt+1:T |yt+1:T ,y0).

Where, in the first transition we used Bayes rule, in the third transition we used the Markovian assumption, in the forth
transition we used Bayes rule again, and in the last transition we make an additional approximation and condition on the
posterior mean estimator for both time t and time t+ 1.

(3) t = 0 :
pθ(z0:T |y1:T ,y0) = pθ(z0|z1:T ,y0:T )pθ(z1:T |y1:T ,y0)

= pθ(z0|z1,y0)pθ(z1:T |y0:T )

=
pθ(y0|z0)
pθ(y0|z1)

pθ(z0|z1)pθ(z1:T |y0:T )

≈ pθ(y0|z0)
p̄θ(y0|z1)

pθ(z0|z1)pθ(z1:T |y0:T )

Where, in the third transition we used Bayes rule, and in the last transition we make an additional approximation and
condition on the posterior mean estimator.

C. Asymptotic Accuracy of LD-SMC
Here we provide a proof that z0 samples can be made arbitrarily accurate according to our model design. Our proof is
composed of three parts, all of which have been previously established in the literature. We will restate them here and
accommodate them to our setting. The three parts are, (1) augmenting the model with auxiliary random variables, ergo
performing a completion of the desired marginal density pθ(z0|y0) (Definition 10.3 in (Robert & Casella, 1999)), (2)
Proving asymptotic accuracy of the SMC procedure following a similar lines of Theorem 2 in (Wu et al., 2023), (3) Showing
sufficient conditions that the Markov chain generated by the Gibbs sampling procedure is ergodic and hence pθ(z0|y0) is
the limiting distribution from which z0’s are sampled (Theorem 10.6 in (Robert & Casella, 1999)).

First of all, here we provide a concise version of our Gibbs sampler presented in Section 4.2. We denote by j the index of
the Gibbs iterations:

1. Initialize z00:T

2. For j = 0, ..., J − 1:

(a) Sample, yj+1
1:T ∼ pθ(y1:T |zj0:T ,y0).

(b) Sample, zj+1
0:T ∼ pθ(z0:T |yj+1

1:T ,y0) using SMC.

Definition C.1. (Robert & Casella, 1999). Given a probability density pθ(z0|y0), a density g that satisfies∫
g(z0, z1:T ,y1:T |y0)dz1:T dy1:T is called a completion of pθ(z0|y0).

We denote by (zj0:T ,y
j
1:T ) the Markov chain generated by our proposed Gibbs sampler. Similarly, denote by (zj0) the

corresponding subchain.
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Theorem C.2. (Robert & Casella, 1999). For the Gibbs sampler described in Section 4.2, if (zj0:T ,y
j
1:T ) is ergodic, then

the distribution g is a stationary distribution for it and pθ(z0|y0) is the limiting distribution of the subchain (zj0).

Proof. The support of g is Rd, with d = dim(z0:T ,y1:T ), and hence is connected. Also, since each conditional distribution
in the Gibbs sampling process is a Gaussian or a multiplication of Gaussian densities, they are all strictly positive. Following
Lemma 10.11 in (Robert & Casella, 1999), (zj0:T ,y

j
1:T ) is irreducible and aperiodic, i.e., it is ergodic.

Specifically, Theorem C.2 shows that in order to obtain samples from the marginal distribution pθ(z0|y0), we need to
sample y1:T and z0:T from the conditional distribution according to the model at each iteration. Sampling y1:T variables is
straightforward as it requires sampling from independent Gaussian distributions, that is, pθ(yt|zt) = N (yt|A(D(zt)), τ

2I)
for all t > 0. On the other hand, sampling z0:T requires sampling using an SMC procedure. As we show next in the large
particle limit, samples from pθ(z0:T |y0:T ) are accurate.

To prove the asymptotic accuracy of the SMC procedure in LD-SMC, we adopt the formulation of (Wu et al., 2023). In what
follows, to prevent cluttered notation, we drop the index of the Gibbs iteration and note that all quantities are those of a
specific iteration. Specifically, here we first reiterate the following 3 important quantities, the prior distribution pθ(z0:T ), the
proposal distributions πt(zt|zt+1), and the weighting functions wt(zt, zt+1) and then proceed to the proof.

Prior distribution. Let pθ(z0:T ) denote the diffusion generative model defined according to Eq. 1. Then, the Markovian
structure of the prior diffusion model goes as follows,

pθ(zt|zt+1) = N (µθ(zt+1, t+ 1), σ2
t+1I)

= N (zt|
√
ᾱt

(
zt+1−

√
1−ᾱt+1·ϵθ(zt+1,t+1)

√
ᾱt+1

)
+
√
1− ᾱt − σ2

t+1 · ϵθ(zt+1, t+ 1), σ2
t+1I), 1 < t < T,

pθ(zT ) = N (0, I) t = T.

Proposal distributions. Denote the proposal distribution for timestep t < T as πt(zt|zt+1) = N (mt,St), with parameters

St = σ̃2
t+1I

mt = µθ(zt+1, t+ 1)− (γt∇zt+1 log p̄θ(y0|zt+1) + λt∇µθ(zt+1,t+1) log qθ(yt|zt+1)).
(8)

Where p̄θ(y0|zt+1) = N (y0|A(D(z̄0(zt+1))), (1− ᾱt+1)I), and qθ(yt|zt+1) = N (yt|A(D(µθ(zt+1, t+ 1))), τ2I), and
γt, λt are finite scaling coefficients. The distribution of the proposal at time T , πT (zT ), from which the initial sample is
taken, is set to the diffusion prior distribution pθ(zT ) = N (0, I).

Weighting functions. The unnormalized weighting functions for all timesteps t are summarized as follows,
w̃T (zT ) = pθ(yT |zT )p̄θ(y0|zT ),
w̃t(zt, zt+1) = pθ(yt|zt)p̄θ(y0|zt)pθ(zt|zt+1)/(p̄θ(y0|zt+1)πt(zt|zt+1)),

w̃0(z0, z1) = pθ(y0|z0)pθ(z0|z1)/p̄θ(y0|z1)π0(z0|z1),

where pθ(yt|zt) = N (yt|A(D(zt)), τ
2I).

In SMC the proposal distributions and weighting functions define a sequence of intermediate target distributions {νt}Tt=0

defined as follows,

νt(zt:T ) =
1

Lt

(
πT (zT )

T∏
t′=t

πt′(zt′ |zt′+1)

)(
w̃T (zT )

T∏
t′=t

w̃t′(zt′ , zt′+1)

)
. (9)

Importantly, if for given weighting functions and proposal distributions the final target distribution ν0 coincides with the
desired posterior distribution p(z0:T |y0:T ), then samples that are approximately distributed according to p(z0:T |y0:T ) can be
obtained (Doucet et al., 2001a; Naesseth et al., 2019). The approximation becomes accurate in the limit of large number of
particles. For t = 0, plugging in Eq. 9 the proposal distributions and weighting functions and observing that all appearances
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of the proposal distributions besides that of time T cancel out, we obtain:

ν0(z0:T ) =
1

L0
pθ(zT )pθ(yT |zT )p̄θ(y0|zT )

[
T−1∏
t=1

pθ(yt|zt)p̄θ(y0|zt)pθ(zt|zt+1)

p̄θ(y0|zt+1)

]
pθ(y0|z0)
p̄θ(y0|z1)

pθ(z0|z1)

=
1

L0

T∏
t=0

pθ(yt|zt)
T−1∏
t=0

pθ(zt|zt+1)pθ(zT ) =
1

L0
pθ(y0:T |z0:T )pθ(z0:T ) = pθ(z0:T |y0:T ).

(10)

Where in the second equality p̄θ terms cancel out and in the last equality we applied Bayes rule.

Now that we established necessary conditions to sample from pθ(z0:T |y0:T ), the following theorem from (Chopin et al.,
2020) characterizes the conditions under which SMC algorithms converge. We adopt the formulation of (Wu et al., 2023)
and present it here, adapted to our case.

Theorem C.3. ((Chopin et al., 2020) – Proposition 11.4). Let {z(i)0:T , w
(i)
0 } be the sequence of particles and final weights

returned by the last iteration of the SMC algorithm with N particles and using multinomial resampling. If the weight
functions of all timesteps w(i)

t are positive and bounded, then for every ν0-measurable function ϕ of z(i)0:T ,

lim
N→∞

N∑
i=1

w
(i)
0 ϕ(z

(i)
0:T ) =

∫
ϕ(z0:T )ν0(z0:T )dz0:T

with probability one.

Specifically, taking ϕ(z0:T ) = I[z0:T ∈ E] for any ν0-measurable set E implies the convergence of PN (E) =∑N
i=1 w

(i)
0 δ

z
(i)
0:T

(E). Here, δz is the Dirac measure defined for a given point z and a ν0-measurable set E. The following
proposition characterizes the conditions under which Theorem C.3 applies in our case.

Proposition C.4. Let PN (E) =
∑N

i=1 w
(i)
0 δ

z
(i)
0:T

(E) be a discrete distribution over particles with {(z(i)0:T , w
(i)
0 )}Ni=1 returned

by the SMC procedure in Section 4.2.2 with N particles. Assume for all t:

(a) The likelihood functions pθ(yt|zt) = N (yt|A(D(zt)), τ
2I), the ratios p̄θ(y0|zt)/p̄θ(y0|zt+1), and p̄θ(y0|zT ), are all

positive and bounded.

(b) log p̄θ(y0|zt) is continuous and has bounded gradients in zt.

(c) log qθ(yt|zt+1) is continuous and has bounded gradients in µθ(zt+1, t+ 1).

(d) The proposal variance is larger than the prior diffusion model variance, namely σ̃2
t > σ2

t .

Then PN converges setwise to pθ(z0:T |y0:T ) with probability one, that is for every set E, limN→∞ PN (E) =∫
E
pθ(z0:T |y0:T )dz0:T .

Note that here, unlike (Wu et al., 2023), we do not need to assume that p̄θ(y0|z0) = pθ(y0|z0) due to our revised posterior
distribution. Here, however, we add assumption (c). Assumptions (b) and (c) are the strongest assumptions as they may
not apply even for linear transformations. But, for sufficiently smooth decoder and diffusion model in the input (zt or
µθ(zt+1, t+ 1)) with uniformly bounded gradients, the assumptions will hold.

Proof. To prove the statement, we need to show that (1) the target distribution of the SMC procedure at time t = 0 is
pθ(z0:T |y0:T ), and (2) the weighting functions wt(zt, zt+1) of all timesteps are all positive and bounded. The first condition
was already established in Eq. 10, hence we proceed to the second condition.

Since all the weights are defined through multiplications of density functions, they are strictly positive. To show that they
are bounded, we first note that, by assumption (a), wT (zT ) is bounded. To show that the intermediate weights are bounded
it is enough to consider the log transformation of the unnormalized weights,

log w̃t(zt, zt+1) =

{
log pθ(yt|zt) + log p̄θ(y0|zt)

p̄θ(y0|zt+1)
+ log pθ(zt|zt+1)

πt(zt|zt+1)
, 0 < t < T,

log pθ(y0|z0) + log pθ(z0|z1)
π0(z0|z1)

, t = 0.
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(a) Super-Resolution on ImageNet (b) Gaussian Deblurring on ImageNet

Figure 6: FID and PSNR values when increasing the number of Gibbs iterations (with N = 1 particle).

By assumption (a), log pθ(yt|zt) and log p̄θ(y0|zt)/p̄θ(y0|zt+1) are bounded for all t. We will show next that the
log pθ(zt|zt+1)/πt(zt|zt+1) terms are all bounded based on assumptions (b) - (d). We denote by µt := µθ(zt+1, t+ 1),

log
pθ(zt|zt+1)

πt(zt|zt+1)
= log

|2πσ2
t+1I|−0.5 exp{−(2σ2

t+1)
−1||zt − µt||22}

|2πσ̃2
t+1I|−0.5 exp{−(2σ̃2

t+1)
−1||zt −mt||22}

c
= −1

2
[σ−2

t+1||zt − µt||22 − σ̃−2
t+1||zt −mt||22]

Expanding, ||zt −mt ± µt||22 = ||zt − µt||22 + 2⟨zt − µt,µt −mt⟩+ ||µt −mt||22

= −1

2
[(σ−2

t+1 − σ̃−2
t+1)||zt − µt||22 − 2σ̃−2

t+1⟨zt − µt,µt −mt⟩ − σ̃−2
t+1||µt −mt||22]

Notice, ||µt −mt||22 = ||γt∇zt+1
log p̄θ(y0|zt+1) + λt∇µt

log qθ(yt|zt+1)||22 < ∞
by applying Minkowski inequality and using assumptions (b) and (c)

c
= −1

2
[(σ−2

t+1 − σ̃−2
t+1)||zt − µt||22 − 2σ̃−2

t+1⟨zt − µt,µt −mt⟩]

Apply Cauchy-Schwartz inequality,

≤ −1

2
(σ−2

t+1 − σ̃−2
t+1)||zt − µt||22 + σ̃−2

t+1||µt −mt||2||zt − µt||2]

Apply the inequality − a

2
x2 + bx ≤ b2

2a
for a = σ−2

t+1 − σ̃−2
t+1 > 0 by assumption (d)

≤
σ̃−4
t+1||µt −mt||22
2(σ−2

t+1 − σ̃−2
t+1)

< ∞.

Where the last inequality is again due to assumptions (b) and (c). Here, c
= denotes an equality up to a constant.

D. Proposal Distribution Scaling Coefficients
Recall that our proposal distribution (Eq. 7 in the main text) is made up of two elements. These elements are scaled by two
coefficients, γt and λt. Here, we provide an explicit formula for these coefficients. We found that our proposed scaling
works better than common procedures used in the literature. For consistency with baseline methods, we also used our
proposed scaling approach for DPS and TDS (which corresponds to setting s = 0), since these methods apply a similar
update rule. We tried to use it for other baselines but it did not work well for them.

Let g1
t := ∇zt

||y0 − A(D(z̄0(zt)))||22, and g2
t := ∇µθ(zt+1,t+1)||yt − A(D(µθ(zt+1, t + 1)))||22. We set the scaling

coefficients γt and λt according to the following scheme: γt = 1[t≥s] ·κ1 · 1
max(||g1

t ||22,1)
+1[t<s] ·κ2 · (1−ρ) · 1

max(||g1
t ||22,1)

,

and λt = 1[t<s] · κ2 · ρ · 1
max(||g2

t ||22,1)
, where s, ρ, κ1, κ2 are all hyper-parameters.
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E. Computational Cost
We add here a comparison between the compared methods in average run-time (seconds) and memory (GB) over 10 trials
for sampling a single image on ImageNet box inpainting task. For TDS and PFLD we use 5 particles. For LD-SMC, we
inspect several variants that differ in the number of particles and Gibbs iterations. The results are shown in Table 4. From the
table, the run-time is roughly linear in the number of particles and Gibbs iterations. Yet, importantly, it can be controlled by
the practitioner to trade off performance (which can be good with one Gibbs iteration and one particle) and computational
demand. In addition, we note that our code is not properly optimized and improvements can be made to it.

Table 4: Average run time and memory demand on ImageNet box inpainting task.

Method Run Time (Sec.) Memory (GB)

LDPS 105.5 8.123
LTDS 418.5 19.86
ReSample 333.4 5.769
PSLD 144.5 9.473
PFLD 469.8 26.51
LatentDAPS 67.82 4.745

LD-SMC (1 particle) 136.3 9.213
LD-SMC (3 particles) 375.1 15.11
LD-SMC (5 particles) 537.2 21.16
LD-SMC (10 particles) 1013. 35.78
LD-SMC (1 particle; 2 Gibbs iterations) 271.2 9.213
LD-SMC (1 particle; 4 Gibbs iterations) 541.0 9.213

F. Further Ablation Studies
Number of Gibbs iterations. Recall that in the main text we used only one Gibbs step throughout. Here we examine the
effect of using more Gibbs steps in Figure 6. We do so on two tasks, the first is super-resolution and the second in Gaussian
deblurring, both on ImageNet. In super-resolution, we observe an improvement in the PSNR with the number of Gibbs steps
while suffering from reduction in the FID. Interestingly, this experiment shows that we can obtain a comparable PSNR to
ReSample while having a substantially better FID compared to it on this task. In Gaussian deblurring there is a less clear
trend, nevertheless, the figure shows that the FID can be improved while maintaining roughly the same PSNR value. We
speculate that the difference between these two cases stems from the different s values used in these experiments. Taking
s > 0 tends to generate smoother images that are better aligned with higher values of distortion metrics such as PSNR.

Proposal distributions. In Table 5 we compare different choices of proposal distributions. Specifically, we compare to (1)
the naive choice of using the prior as a proposal distribution, i.e., a bootstrap filter (Gordon et al., 1993); and (2) taking the
DPS step as a proposal distribution, which corresponds to setting s = 0. The table shows a clear advantage to the proposal
distribution used in this study and presented in Section 4.2.2.

Table 5: FFHQ. Proposal distribution ablation. Box inpainting on 1024 test examples using N = 5 particles.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Prior proposal 62.35 7.628 12.60 0.365 0.671
DPS proposal 39.94 7.558 24.20 0.814 0.235

LD-SMC 33.87 7.066 24.10 0.821 0.211
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Figure 7: Evolution of yt over time for different tasks according to forward process of DDIM.

G. Forward Process
In Figure 7 we present the evolution of the auxiliary labels yt over time as part of the forward process according to our
proposed sampling procedure in Section 4.2, steps (a) & (b). From the figure, we observe a gradual cleaning of noise in the
auxiliary labels when advancing from time t = 1000 to time t = 0.

H. Full Results

Table 6: ImageNet. Box inpainting on 1024 test examples.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

LDPS 65.04 7.935 19.51 0.665 0.379
LTDS 64.74 7.907 19.49 0.665 0.378
ReSample 90.32 8.464 18.16 0.695 0.318
PSLD 71.15 8.042 18.10 0.565 0.434
PFLD 72.83 7.933 18.09 0.564 0.436
LatentDAPS 98.24 11.36 19.98 0.704 0.394

LD-SMC (1 particle) 51.49 6.878 19.38 0.672 0.326
LD-SMC (5 particles) 50.67 6.891 19.42 0.672 0.325
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Table 7: ImageNet. Free-form inpainting on 1024 test examples.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

LDPS 53.47 7.867 23.76 0.722 0.334
LTDS 52.75 7.884 23.74 0.721 0.334
ReSample 44.15 7.104 22.78 0.778 0.248
PSLD 62.38 8.037 21.65 0.610 0.411
PFLD 63.34 8.026 21.59 0.609 0.414
LatentDAPS 68.65 9.625 24.75 0.766 0.330

LD-SMC (1 particle) 38.21 6.969 23.54 0.727 0.285
LD-SMC (5 particles) 36.18 6.671 23.43 0.727 0.278

Table 8: ImageNet. Gaussian deblurring on 1024 test examples.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

LDPS 52.48 6.855 23.61 0.615 0.383
LTDS 50.82 6.695 23.57 0.614 0.379
ReSample 46.45 7.411 24.36 0.639 0.353
PSLD 60.68 6.599 21.94 0.506 0.417
PFLD 60.94 6.733 21.78 0.496 0.421
LatentDAPS 77.09 10.55 24.44 0.659 0.417

LD-SMC (1 particle) 52.48 6.855 23.61 0.615 0.383
LD-SMC (5 particles) 52.29 6.791 23.61 0.615 0.383

Table 9: ImageNet. Super-resolution (8×) on 1024 test examples.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

LDPS 61.02 6.514 21.65 0.523 0.439
LTDS 59.12 6.270 21.59 0.520 0.435
ReSample 87.65 8.290 22.05 0.532 0.491
PSLD 66.56 7.669 20.83 0.480 0.489
PFLD 64.72 7.685 20.83 0.479 0.492
LatentDAPS 104.6 12.68 22.38 0.566 0.489

LD-SMC (1 particle) 58.06 6.243 21.51 0.524 0.434
LD-SMC (5 particles) 57.89 6.238 21.50 0.520 0.433

Table 10: FFHQ. Box inpainting on 1024 test examples.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

LDPS 39.81 7.592 24.15 0.814 0.236
LTDS 39.57 7.602 24.24 0.814 0.236
ReSample 86.79 7.142 19.75 0.815 0.230
PSLD 39.68 6.544 22.31 0.774 0.246
PFLD 39.06 6.509 22.40 0.774 0.245
LatentDAPS 60.24 9.999 24.91 0.838 0.257

LD-SMC (1 particle) 33.37 7.032 23.98 0.819 0.212
LD-SMC (5 particles) 33.87 7.066 24.10 0.821 0.211
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Table 11: FFHQ. Free-form inpainting on 1024 test examples.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

LDPS 40.17 7.609 27.95 0.858 0.212
LTDS 39.78 7.578 27.95 0.858 0.212
ReSample 37.01 6.622 26.31 0.891 0.151
PSLD 36.26 6.835 26.19 0.823 0.216
PFLD 36.43 6.817 26.35 0.825 0.215
LatentDAPS 54.40 8.766 29.23 0.883 0.223

LD-SMC (1 particle) 33.67 7.034 27.35 0.859 0.194
LD-SMC (5 particles) 33.60 7.021 27.35 0.859 0.194

Table 12: FFHQ. Gaussian deblurring on 1024 test examples.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

LDPS 29.30 6.538 28.03 0.775 0.237
LTDS 30.23 6.553 27.93 0.772 0.238
ReSample 39.80 7.441 28.45 0.763 0.275
PSLD 36.31 6.802 24.02 0.633 0.341
PFLD 37.16 6.751 23.96 0.628 0.343
LatentDAPS 54.28 9.496 29.70 0.831 0.283

LD-SMC (1 particle) 29.19 6.575 28.37 0.789 0.232
LD-SMC (5 particles) 29.47 6.528 28.34 0.787 0.233

Table 13: FFHQ. Super-resolution (8×) on 1024 test examples.

Perceptual Quality Distortion

FID (↓) NIQE (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

LDPS 29.64 6.412 25.48 0.701 0.282
LTDS 30.45 6.412 25.38 0.698 0.284
ReSample 59.23 7.307 25.55 0.661 0.356
PSLD 40.33 6.803 23.66 0.615 0.347
PFLD 38.11 6.832 23.69 0.617 0.345
LatentDAPS 70.24 10.17 26.87 0.760 0.344

LD-SMC (1 particle) 30.02 6.426 25.52 0.706 0.277
LD-SMC (5 particles) 30.62 6.455 25.49 0.703 0.278
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I. Additional Image Reconstructions

Figure 8: Comparison between LD-SMC and baseline methods on inpainting of FFHQ images.
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Figure 9: Gaussian deblurring. LD-SMC reconstruction of images from FFHQ (left) and ImageNet (right).
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Figure 10: Super-resolution. LD-SMC reconstruction of images from FFHQ (left) and ImageNet (right).
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