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ABSTRACT

Model pruning is an effective approach for compressing large language models
(LLMs). However, this process often leads to significant degradation of model
capabilities. While post-training techniques such as instruction tuning are com-
monly employed to recover model performance, existing methods often overlook
the uneven deterioration of model capabilities and incur high computational costs.
Moreover, some irrelevant instructions may also introduce negative effects to model
capacity recovery. To address these challenges, we propose the Post-training dAta
Selection method for Efficient pruned large language model Recovery (PASER).
PASER aims to identify instructions to recover the most compromised model capac-
ities with a certain data budget. Our approach first applies manifold learning and
spectral clustering to group recovery instructions in the semantic space, revealing
capability-specific instruction sets. Then, the data budget is adaptively allocated
across clusters by the degree of corresponding model capability degradation. In
each cluster, we prioritize data samples that lead to the most decline of model
performance. To mitigate potential negative tuning effects, we also detect and filter
out conflicting or irrelevant recovery data. Extensive experiments demonstrate that
PASER significantly outperforms conventional baselines, effectively recovering
the general capabilities of pruned LLMs while utilizing merely 4%-20% of the
original post-training data. We provide the anonymous code repository in Link.

1 INTRODUCTION

Model pruning, which aims at reducing model parameter amounts while maintaining model capabili-
ties, has been a promising approach for large language model (LLM) compression. Mainstream LLM
pruning schemes are unstructured (Frantar & Alistarh, 2023), semi-structured (Sun et al., 2024), and
structured pruning (Ma et al., 2023). Even though effective, the model capability degradation after
pruning is almost unavoidable, especially under high pruning ratios. This degradation phenomenon
is often more severe for the structured pruning scheme (Dong et al., 2024), which has been widely
adopted in industrial LLM compression thanks to its hardware-friendly property. Therefore, recovery
post-training after pruning has been a silver bullet to address thisissue (Ma et al., 2023; Zhao et al.).
Among various types of data including pre-training corpora and extensive fine-tuning datasets (Xia
et al., 2024a; Sun et al., 2024), instruction tuning data has demonstrated unique advantages for
efficient capability recovery (Ma et al., 2023; Zhao et al.; Zhang et al., 2024; Chen et al., 2023).
Compared to recovery via continued pre-training which requires massive computational resources,
instruction tuning enables effective restoration with a much smaller data scale by explicit supervision.
Furthermore, through the diverse task coverage, like language modeling, common sense reasoning,
mathematical problem solving, and code generation (Taori et al., 2023; Wu et al., 2024), instruction
tuning preserves the model’s general-purpose capabilities while preventing over-specialized recovery.

Conventional schemes (Ma et al., 2023) usually employ the full instruction tuning datasets like
Alpaca (Taori et al., 2023) to conduct the recovery post-training. However, this can bring significant
computation overhead and even unsatisfactory recovery performance (See Appendix A). An intuitive
solution is to leverage part of the original data for training, thus consuming less data and correspond-
ingly reducing the computation resource demand. Nevertheless, directly utilizing the naively split data
subset (e.g., first 20% of the data), can lead to sub-optimal performance, or even further performance
degradation. Moreover, the recovered performance considerably varies for models trained with
different subsets, implying the sensitivity to data constitution. Therefore, selecting the most valuable
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instruction-tuning data that can contribute to recovery performance positively and reduce training
costs becomes crucial. Though previous works have noticed the significance of selecting high-quality
data for general instruction tuning (Wang et al., 2024; Cao et al.; Li et al., 2024a), few of them are
specifically designed for the recovery post-training. Note such general high-quality standards, such as
clear structure and natural, human-like expressions, may not effectively target the specific capabilities
(e.g., math, code) severely compromised during pruning, which is essential for recovery post-training.

Considering the above limitations, the ideal recovery post-training data selection approach should
exhibit the following properties: (1) Targeted and Balanced Capability Recovery: Given the
uneven deterioration of different capabilities in the pruning (see Appendix A), the ideal selection
method should identify and prioritize the severely-degraded ones, while ensuring balanced recovery
of the model’s overall functionality. (2) Recovery Training Efficiency: Limited computing resources
pose serious efficiency challenges to the LLM recovery post-training. An ideal method should be
able to select instructions that are both most beneficial for recovery and light in computational cost,
thereby accelerating the training process and optimizing resource utilization. (3) Mitigation of
Negative Tuning Effects: Recognizing that not all instruction data is beneficial for model recovery,
an optimal approach should not only identify the most advantageous instructions, but also filter out
potentially harmful or irrelevant ones. This significantly reduces the risk of negative tuning effects
during the recovery training, ensuring that the selected data contributes positively to model recovery.

To achieve such goals, we propose the Post-training dAta Selection method for Efficient pruned
large language model Recovery (PASER). First, we perform semantic-structural recovery instruction
clustering to obtain data groups corresponding to different LLM capabilities. Second, we select
recovery instructions in a capability degradation-aware manner, where the data budget is allocated
across different clusters based on their corresponding capability degradation degrees. In particular,
when selecting samples within each capability cluster, the post-training computation cost of each
sample is also taken into consideration to optimize the efficiency of the recovery process. Finally, we
construct the concept consistency graph to maintain the semantic consistency across selected instruc-
tions, thus preventing the introduction of conflicting or irrelevant samples. Furthermore, we analyze
the time complexity (Section 3.5) and error bound (Appendix C) of PASER theoretically, which
guarantee the efficiency and effectiveness, respectively. We take the LLaMA 2/3/3.1, Baichuan2,
Qwen2.5/3, and Mixtral 8×7B as the target LLMs and perform the experiments under different
LLM pruning schemes and different-sized instruction tuning datasets. The comparison with random
and conventional instruction tuning data selection baselines demonstrates that PASER can more
effectively enhance the recovered LLM performance on language modeling and various reasoning
tasks. Meanwhile, the recovery training overhead can also be reduced significantly.

2 RELATED WORKS

Large Language Model Pruning can be generally divided into three categories: unstructured
pruning, semi-structured pruning, and structured pruning. Unstructured pruning removes individual
weights without structural constraints, with representative works including SparseGPT (Frantar &
Alistarh, 2023), Wanda (Sun et al., 2024), BESA (Xu et al., 2024b), and OWL (Yin et al., 2024).
This technique allows for maximum flexibility in weight selection and can achieve high compression
rates while maintaining model performance. However, the resulting irregular sparsity patterns limits
the practical acceleration. Semi-structured pruning (Guo et al., 2024; Malla et al., 2024; Frantar
& Alistarh, 2023; Sun et al., 2024) targets specific patterns like N:M sparsity, balancing flexibility
and hardware efficiency. Structured pruning approaches like LLM-Pruner (Ma et al., 2023) and
SliceGPT (Ashkboos et al., 2024) remove entire structural components, offering better hardware
compatibility and attracting industry attention (Ko et al., 2023; An et al., 2024; Song et al., 2024; Xia
et al., 2024a). However, structured pruning faces more severe performance degradation, highlighting
the importance of recovery post-training.

Instruction Tuning has emerged as a crucial technique for enhancing LLMs (Wei et al.; Wang et al.,
2023), improving their adaptability to novel tasks (Sanh et al.; Liang et al.; Zhou et al., 2024). Recent
works have explored instruction tuning as a post-compression recovery mechanism (Zhao et al.; Ma
et al., 2023). While promising, this combination faces challenges from reduced model capacity and
computational costs. Most current approaches use general instruction datasets without considering
compressed model’s characteristics or disproportionately affected capabilities. Our work addresses
these gaps by proposing a novel framework for post-training data selection in pruned LLM recovery.
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Figure 1: Visualization for our proposed PASER recovery post-training data selection framework.

3 METHODOLOGY

In this section, we first formulate the problem and then introduce three main components of the
PASER framework (shown in Figure 1): semantic-structural recovery instruction clustering, capability
degradation-aware instruction selection, and negative tuning effects mitigation. Furthermore, we
provide the time complexity analysis for the PASER process.

3.1 PROBLEM FORMULATION

Let Mo denote the original large language model and Mp the pruned version of this model. We define
the instruction tuning dataset as D = {(xi, yi)}Ni=1, where xi represents an instruction and yi is its
corresponding output. Our goal is to select a subset S ⊂ D to efficiently recover the performance of
Mp. We formulate the problem as an optimization task:

S∗ = argmin
S⊂D,|S|≤B

E(x,y)∼T [L(Mr(S), x, y)],

s.t. Mr(S) = RecoveryTrain(Mp, S),
(1)

where Mr(S) is the recovered model after training on subset S, T is the distribution of downstream
evaluation tasks, L is a loss function. B(B < N) is the recovery data budget, i.e., the maximum
number of samples allowed in the selected subset.

3.2 SEMANTIC-STRUCTURAL RECOVERY INSTRUCTION CLUSTERING

After the LLM pruning, different model capabilities can be affected unevenly because such capabilities
rely on distinct sets of internal modules (Meng et al., 2022; Dai et al., 2022), which are selectively
removed. To ensure targeted and balanced recovery, we need to identify and group data points related
to similar capabilities. To achieve this goal, we hypothesize that distinct geometric structures of
recovery instruction data in the high-dimensional semantic space may correspond to different aspects
of LLM capabilities. This hypothesis is based on the intuition that instructions pertaining similar
capabilities are likely to cluster together in the semantic space, forming identifiable topological
structures. Thus, we employ a two-step approach on the embedding space of instructions. First, to
enhance the natural separation between capability-specific instruction clusters, we apply a diffusion
kernel to SentenceBERT (Reimers & Gurevych, 2019) embeddings for manifold learning:

e(xi) = DiffusionKernel(SentenceBERT(xi)). (2)

Here, e(xi) is the obtained low-dimensional manifold representation of instruction xi. This process
helps uncover the intrinsic geometric structure in the semantic space while reducing dimensionality
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and preserving non-linear relationships. Then, non-negative matrix factorization (NMF)-based
spectral clustering (Ding et al., 2005) is conducted based on such e(xi) to identify natural groupings
of instructions that potentially correspond to different LLM capabilities, leading to K clusters:

C = {c1, . . . , cK}
= NMFSpectralClustering({e(xi)|(xi, yi) ∈ D}). (3)

The details are provided as below. In the first step of manifold learning, we first obtain the Sentence-
BERT embedding of each instruction xi. Then, an adjacency matrix A is constructed based on the
pairwise Euclidean distances of these embeddings: Aij = exp(−∥SentenceBERT(xi)−SentenceBERT(xj)∥2

2

2σ2 ),
where σ is a scaling parameter, typically set to the median of all pairwise distances. The degree
matrix D is then computed as a diagonal matrix where each diagonal element is the sum of the
corresponding row in A:Dii =

∑n
j=1 Aij . Using these matrices, we define the normalized graph

Laplacian L = I−D−1/2AD−1/2, where I is the identity matrix. We then apply the diffusion kernel
to this Laplacian Kt = exp(−tL), where Kt is the diffusion kernel at time t. The diffusion time t is
selected using the spectral gap method: topt = argmaxt

(
d log(λ2(t))

d log(t)

)
, where λ2(t) is the second

eigenvalue of Kt. The low-dimensional manifold representation e(xi) is then obtained by selecting
the top d eigenvectors of Ktopt : e(xi) = [ϕ1(xi), ϕ2(xi), ..., ϕd(xi)], where ϕj are the eigenvectors
of Ktopt corresponding to the d largest eigenvalues.

In the second step, we perform NMF-based spectral clustering on these low-dimensional repre-
sentations. Specifically, we construct a similarity matrix S from the manifold representations
Sij = exp(−∥e(xi)−e(xj)∥2

2σ2 ). We then determine the optimal number of clusters K by performing
NMF with different values of k and selecting the one that minimizes the Frobenius norm of the
approximation error K = argmink ∥S −WkH

T
k ∥F , where Wk and Hk are non-negative matrices

resulting from NMF with k components. With this optimal K, we decompose the similarity matrix
S using NMF such that S ≈ WHT , where W and H are non-negative matrices with K columns.
Finally, we assign each data point to a cluster based on the maximum value in each row of W , where
ci = argmaxj Wij , i = 1, ..., N . This results in K clusters C = {c1, . . . , cK}, where the number
of clusters K is adaptively determined through the above process.

3.3 CAPABILITY DEGRADATION-AWARE INSTRUCTION SELECTION

Capability Degradation Assessment To prioritize the severely affected capabilities and finally
achieve the balanced recovery of pruned LLMs, we need a measure of capability degradation to guide
the data selection. For each cluster ck obtained in Section 3.2, we define the capability degradation
score (CDS) with the Jensen-Shannon divergence (JSD) (Fuglede & Topsoe, 2004), which measures
distributional differences between the original and pruned models’ outputs as follows:

1

|ck|
∑

(x,y)∈ck

1

|y|

|y|∑
m=1

JSD(P (tm|Mp;x, y<m)||P (tm|Mo;x, y<m)). (4)

Here, P (tm|Mp;x, y<m) represents the output probability distribution on the m-th token variable of
the pruned model Mp given input x and previous m − 1 tokens of output y. Taking a token value
tim(1 ≤ i ≤ |Voc|) in this distribution as an example, its corresponding probability is

P (tim|Mp;x, y<m) =
exp( logit(tim)

τ )∑|Voc|
j=1 exp( logit(tjm)

τ )
, (5)

where τ is the softmax temperature and the |Voc| indicates the vocabulary size. logit(·) is the
logit value for tokens produced by LLM. Similarly, the P (tm|Mo;x, y<m) represents the output
probability distribution for the original model Mo. The JSD is actually the symmetrized and smoothed
version of the Kullback–Leibler divergence (KLD) (Kullback & Leibler, 1951): JSD(X||Y ) =
1
2KLD(X||M) + 1

2KLD(Y ||M). The distribution M = 1
2 (X + Y ) is the mixed distribution of X

and Y . Thus, the obtained CDS quantifies the average performance degradation for data points in
each capability cluster. The choice of JSD over simple loss variations as the performance degradation
signal is motivated by its unique properties. First, its symmetry ensures consistent comparison
between the pruned model Mp and the original model Mo, while its bounded range (0 to 1) provides
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a normalized measure of divergence. This facilitates easier interpretation and comparison across
different capability clusters. Moreover, JSD’s robustness to outliers and its information-theoretic
foundation allow for a more nuanced assessment of capability degradation, capturing subtle changes
in model outputs that might not be apparent from loss or accuracy values alone (Dutta et al., 2024) due
to the sampling uncertainty. In fact, the output distribution reveals the model’s thinking process more
comprehensively than just sampling results, which is critical for capability degradation assessment.
Besides, the smoothing effect introduced by the mixed distribution in JSD calculation also contributes
to a more stable assessment across diverse instruction types. Thanks to these properties, we obtain a
comprehensive and reliable assessment of capability degradation by employing JSD, enabling more
accurate identification and prioritization of the capabilities most severely affected by model pruning.

Inter-Capability Budget Allocation Sampling a subset of high-quality data S from the original set
D to achieve better training performance is the objective of the data selection process. Typically, an
instruction data budget B(B < N) should be maintained to ensure the efficiency on data utilization
and training process. Under this budget, we design an adaptive selection approach based on the above
CDS for balanced recovery while focusing on severely affected capabilities. In detail, we allocate the
sampling budget to each cluster proportionally to its corresponding CDS:

nk =

⌊
B · CDS(ck)∑K

j=1 CDS(cj)

⌋
. (6)

nk is the sample number budget allocated to cluster ck.

Intra-Capability Efficiency-Driven Sample Selection To maximize computational efficiency during
the recovery post-training phase, we need to select samples that offer the highest recovery benefit
relative to their computational cost. Within each cluster ck, we select the top nk samples based on
their Individual Efficiency Scores (IES):

IES(x, y) =
1
|y|

∑|y|
m=1 JSD(P (tm|Mp;x, y<m)||P (tm|Mo;x, y<m))

logComputationalCost(x, y)
. (7)

Here, ComputationalCost is instantiated with the quadratic term of sequence length (|x|+ |y|)2 as
the approximated complexity for LLM training. The use of JSD captures the degree of divergence
between the pruned and original models’ outputs, indicating areas where capabilities have been most
affected and thus offering the highest potential for targeted recovery. The logarithmic term balances
the consideration of computational cost, allowing for a more careful selection that favors efficient
samples without overly penalizing high-potential, moderately costly instances.

3.4 NEGATIVE TUNING EFFECTS MITIGATION

To prevent performance degradation due to conflicting or irrelevant information, we need to detect and
mitigate the potential negative tuning effects. We introduce a Concept Consistency Graph (CCG) to
model relationships between concepts in the selected data. Here, a concept refers to a key knowledge
unit or semantic element extracted from an instruction tuning sample. Concepts play a crucial role in
capturing the essential information within instructions and help to identify potential conflicts that
could lead to a negative tuning effects. By managing relationships between concepts, we aim to
maintain semantic consistency across the selected instruction tuning dataset, thereby reducing the risk
of learning conflicting or irrelevant information during the recovery process. The formal definition
for CCG is provided as follows:

Definition 1 (Concept Consistency Graph). A CCG is a graph G = (V,E) where the vertices V
represent concepts, and an edge (vi, vj) ∈ E exists if concepts vi and vj co-occur in at least one
instruction tuning sample without conflict.

For each new sample (x, y), we first extract its concept C(x, y) and then check for consistency:
IsConsistent(x, y) = ∀vi, vj ∈ C(x, y) : (vi, vj) ∈ E or {vi, vj} ̸⊂ V . We only add samples that
are consistent with the existing CCG, updating the graph with each addition. This approach ensures
that we maintain a coherent set of instructions, minimizing the risk of negative tuning effects by
avoiding the introduction of conflicting concepts during the recovery training process. The full
version of our algorithm is provided in Appendix B.
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3.5 TIME COMPLEXITY ANALYSIS

The theoretical analysis for PASER are as two folds: 1) time complexity analysis regarding efficiency;
2) error bound analysis regarding effectiveness. As the main bottleneck for real-world application,
we first explore PASER’s time complexity here.
Theorem 1. The overall time complexity of PASER is O(N logN +NC2), where N is the number
of instructions in D, and C is the maximum number of concepts in any instruction tuning sample.

Proof. We analyze each step of the algorithm in detail. The Semantic-Structural Recovery Instruction
Clustering, including SentenceBERT embedding, Diffusion Kernel computation, and NMF Spectral
Clustering, has a dominant complexity of O(N logN). For the Capability Degradation Assessment
step, computing JSD for each sample and calculating CDS for each cluster take O(N) time in total.
The Inter-capability Budget Allocation, which involves allocating the budget to clusters, has a time
complexity of O(K), where K is the number of clusters. However, since K ≤ N , this step does
not dominate the overall complexity. During Intra-capability Efficiency-Driven Sample Selection,
for each cluster ck, we perform sorting by JSD (O(|ck| log |ck|)), iterate through sorted samples
(O(|ck|)), perform consistency checks (IsConsistent, O(C2) per sample), and update the CCG
(O(C2) per sample). Considering all clusters, this step’s total complexity is O(N logN +NC2).
Thus, the overall time complexity is dominated by the clustering step and the intra-capability sample
selection step. Therefore, the total time complexity is O(N logN +NC2).

In practice, C is often much smaller than N (C ≪ N ) and can be considered as a constant factor
for large N . Thus, we can simplify the complexity to O(N logN). This analysis demonstrates that
PASER is computationally efficient and scalable for large instruction tuning datasets. In addition, to
guarantee the performance effectiveness, we also conduct a comprehensive theoretical error bound
analysis for PASER in Appendix C.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Target LLMs The experiments are mainly performed on several open-source popular English LLMs:
LLaMA2-7B/13B/70B (Touvron et al., 2023) (hf version), LLaMA3-8B (Dubey et al., 2024)(instruct
version), and bilingual LLMs: Baichuan2-7B/13B (Yang et al., 2023)(base version), which support
both English and Chinese. Besides, several more recent LLMs are also adopted in Appendix J.

Instruction Tuning Datasets As for the original recovery post-training data, we choose two different-
size instruction tuning datasets: Alpaca (Taori et al., 2023) and LaMini (Wu et al., 2024). Alpaca
contains 52K instruction-following samples generated using OpenAI’s text-davinci-003 model based
on 175 human-written seed tasks. LaMini contains a total of 2.58M pairs of instructions and
responses synthesized with gpt-3.5-turbo based on several existing resources of prompts, including
self-instruct (Wang et al., 2023), P3 (Sanh et al., 2022), FLAN (Longpre et al., 2023) and Alpaca (Taori
et al., 2023). This dataset can help evaluate the effectiveness and efficiency in large-scale settings.

Base Pruning Schemes Different pruning schemes are incorporated into our experiments to explore
the applicability of PASER, ranging from structured pruning methods: LLM-Pruner (Ma et al., 2023),
SliceGPT (Ashkboos et al., 2024), semi-structured pruning method: Wanda (Sun et al., 2024), and
unstructured pruning method: SparseGPT (Frantar & Alistarh, 2023).

Instruction Tuning Data Selection Baselines In addition to the random data selection, we also
compare PASER with several recent general instruction tuning data selection baselines: Instruction
Mining (Cao et al.), IFD (Li et al., 2024a), Nuggets (Li et al., 2024b). Note none of these baselines
are customized for post-pruning recovery training scenario. Besides, the evaluation performance of
recovery training with the full original dataset is also compared.

Evaluation Datasets and Tasks To thoroughly evaluate the performance of recovered LLMs, we
employ seven common sense reasoning datasets:BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020),
HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC-Easy (Clark et al.,
2018), ARC-Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). In the practice,
we relies on the open-source library1 to implement the evaluation, where the model needs to rank the

1https://github.com/EleutherAI/lm-evaluation-harness
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Table 1: Recovery performance of different instruction tuning data selection methods under various
pruning schemes on LLaMA2-7B model. The ‘bold’ represents the best performance under the same
pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
Full Data 736.42 1273.10 37.83 53.21 26.42 49.57 25.29 28.16 29.00 35.64
Random 93.77 180.62 57.61 64.37 45.39 55.87 43.78 31.94 34.90 47.69
Instruction Mining 23.31 40.63 61.59 75.68 66.08 60.71 62.34 37.96 39.20 57.65
IFD 19.76 33.30 63.55 77.23 67.21 60.90 63.46 37.81 40.00 58.59
Nuggets 20.02 35.19 63.62 77.43 67.36 61.08 63.77 37.64 39.90 58.69
PASER 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
Full Data 38.24 68.53 68.75 69.84 57.92 66.18 62.37 36.82 38.30 57.17
Random 41.86 74.92 66.89 68.21 55.79 64.56 60.23 35.47 37.60 55.54
Instruction Mining 39.75 71.28 67.87 68.93 56.42 65.76 61.89 36.23 37.60 56.39
IFD 37.75 67.48 69.23 70.54 58.38 67.12 63.75 37.18 38.40 57.80
Nuggets 23.86 35.42 69.89 71.21 58.79 67.56 72.23 37.47 38.60 59.39
PASER 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
Full Data 27.63 50.22 70.77 74.87 63.78 65.26 65.30 34.04 37.10 58.73
Random 35.98 65.24 69.68 73.14 58.65 63.69 63.16 31.91 36.20 56.63
Instruction Mining 31.47 57.17 70.61 73.85 61.27 64.13 64.72 33.79 36.80 57.88
IFD 25.82 46.78 71.06 75.57 64.15 65.38 66.55 35.63 37.60 59.42
Nuggets 23.98 43.24 71.68 76.14 64.65 65.69 66.16 36.91 38.20 59.92
PASER 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
Full Data 25.83 47.26 69.10 74.15 59.68 67.76 63.74 39.59 37.80 58.83
Random 28.74 50.85 67.84 75.39 57.14 68.92 59.76 37.34 36.60 57.57
Instruction Mining 24.08 45.51 70.50 74.47 61.91 65.40 67.73 36.49 37.40 59.13
IFD 21.19 40.05 71.06 75.13 62.79 65.72 68.80 36.23 37.20 59.56
Nuggets 16.21 28.95 71.64 75.67 63.33 66.05 69.49 36.60 37.40 60.03
PASER 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

choices in the multiple choice tasks or generate the answer in the open-ended generation tasks. The
whole process is conducted in the zero-shot manner. Besides, we follow (Ma et al., 2023) to evaluate
the language modeling capability with the zero-shot perplexity (PPL) analysis on WikiText2 (Merity
et al., 2022) and PTB (Marcus et al., 1993). For enhancing evaluation comprehensiveness, we
also conduct experiments on mathematical problem solving and code generation tasks, as shown in
Appendix D and E, respectively.

4.2 EXPERIMENT RESULTS AND ANALYSIS

Recovery Performance for Different Pruning Schemes We evaluate the recovery performance
of LLaMA2-7B using different instruction tuning data selection methods under structured pruning,
semi-structured pruning, and unstructured pruning, respectively. According to the results in Table 1,
directly employing full data can indeed bring the sub-optimal recovery performance, especially under
the LLM-Pruner. This is because the full version of data contains some irrelevant or conflicting
information for capability recovery, resulting in the negative tuning effects during the training phase.
Meanwhile, even the general instruction tuning data selection methods like IFD and Nuggets can
bring better reasoning and language model performance than full data and random in most cases,
validating the necessity of conducting recovery data selection. Furthermore, we can find that previous
selection methods can hardly help model recover to the level of unpruned status, under the limited
data budget. However, our PASER can not only outperform baselines, but also reduce the averaged
reasoning performance degradation to less than 3% under LLM-Pruner, Wanda, and SparseGPT.
Especially, when pruning LLaMA2-7B with SliceGPT, our PASER can improve the average reasoning
performance to 64.31, higher than the unpruned model. Besides, its zero-shot perplexity on WikiText2
and PTB is also lower than unpruned model slightly. This suggests that allocating recovery budget
according to capability degradation levels and prioritizing most-affected samples exhibit the potential
of help pruned LLM recover to the capability level of unpruned status. Besides, PASER can also
be extended to other LLM post-compression scenarios, like the post-quantization recovery. The
corresponding results and analysis are provided in Appendix G.

Robustness over Various Target Large Language Models To validate whether PASER can maintain
the robust effectiveness among various target LLMs, we conduct the experiments on LLaMA2-
7B/13B/70B, LLaMA3-8B, Baichuan2-7B/13B, under LLM-Pruner. According to results in Table 2,
we can first observe the model capability under high pruning ratio (50%) is hard to recover to
unpruned level, especially for relatively smaller model like LLaMA2-13B and Baichuan2-13B.
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Table 2: Recovery performance of different instruction tuning data selection methods on different
target LLMs under LLM-Pruner scheme. The ‘bold’ represents the best performance on the same
target LLM. Here, the Alpaca is taken as the original dataset. The “Reason” indicates the averaged
performance on 7 common sense reasoning datasets.

Model Benchmark w/o pruning w/o Training Full Data Random Instruction Mining IFD Nuggets PASER

LLaMA2-13B
ratio=50%

WikiText2↓ 11.58 73.52 27.74 39.85 44.37 38.61 33.50 21.67
PTB↓ 20.24 151.19 45.08 76.20 80.82 73.25 61.26 35.09
Reason↑ 64.78 48.86 56.40 54.62 54.09 54.77 55.25 57.62

LLaMA2-70B
ratio=50%

WikiText2↓ 8.92 46.81 31.76 25.34 23.16 22.87 19.63 12.35
PTB↓ 15.59 92.36 56.83 48.72 43.45 43.68 36.24 21.82
Reason↑ 71.72 61.14 65.56 64.03 66.74 67.27 67.73 69.62

LLaMA3-8B
ratio=25%

WikiText2↓ 7.36 15.47 9.58 12.52 13.25 11.04 10.31 8.09
PTB↓ 12.87 28.31 16.73 22.17 23.47 19.31 18.02 14.16
Reason↑ 70.14 63.45 67.84 65.60 65.47 66.64 67.30 69.83

Baichuan2-7B
ratio=25%

WikiText2↓ 14.42 28.30 25.29 27.04 34.24 24.83 21.48 16.92
PTB↓ 26.78 53.34 35.81 46.83 60.93 37.81 37.65 30.76
Reason↑ 64.19 56.33 57.39 57.09 54.78 57.36 57.84 59.70

Baichuan2-13B
ratio=50%

WikiText2↓ 11.23 58.41 24.35 40.44 36.82 33.45 28.96 14.62
PTB↓ 18.04 116.26 42.68 76.57 70.45 63.23 53.31 29.82
Reason↑ 67.25 57.59 61.64 59.12 59.38 60.34 61.09 63.75

Though, PASER can still outperform random and best-performing data selection baseline, Nuggets,
by 4.41 and 2.31 points, respectively on average. Especially, for LLaMA2-70B, our PASER can
control the averaged reasoning performance degradation to less than 3%. This can be explained that
the structure redundancy in 70B model is relatively higher, paving the way for effective recovery
through data selection under high pruning ratios. As for the second smallest model, LLaMA3-8B,
PASER can recover the reasoning performance to the 99.56% of the unpruned status, which further
demonstrates the robustness of PASER over different target LLMs. Finally, the performance of
various recovery methods including PASER on Baichuan2-7B is not satisfying enough given only
25% pruning ratio, which can be attributed to that the pruning process has severely damaged the model
internal structure. Supplementary experiments on more recent LLMs can be seen in Appendix J.

Table 3: Recovery performance of different instruc-
tion tuning data selection methods under two struc-
tured pruning schemes on LLaMA2-7B model. The
‘bold’ represents the best performance under the
same pruning scheme. Here, the LaMini is taken
as the original dataset. The “Reason” indicates the
averaged performance on 7 reasoning datasets.

Pruning Recovery
Post-training WikiText2↓ PTB↓ Reason↑

w/o pruning w/o Training 12.62 22.14 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 57.78
Full Data 16.28 27.12 62.68
Random 18.40 32.15 60.93
Instruction Mining 17.83 28.87 60.76
IFD 18.54 31.23 60.65
Nuggets 18.27 30.90 60.99
PASER 13.45 22.63 63.79

SliceGPT
ratio=25%

w/o Training 44.53 80.07 54.27
Full Data 24.36 35.64 58.31
Random 39.86 70.92 56.68
Instruction Mining 37.75 67.28 57.53
IFD 25.75 53.48 58.94
Nuggets 21.86 31.42 60.96
PASER 14.27 23.53 65.74

Recovery Performance with Different In-
struction Tuning Datasets In addition to the
recovery performance on Alpaca shown in Ta-
ble 1, we also explore the corresponding re-
sults on another larger dataset, LaMini. Es-
pecially, considering the space limitation and
more severe performance degradation of struc-
tured pruning schemes, we provide the exper-
iments results on LLM-Pruner and SliceGPT
on Table 3. From this table, we can observe
that PASER can still consistently outperform
other data selection and random methods. Be-
sides, comparing the results in Table 1 and
3, it can be found that improving the data
scale (from 10K to 10K samples) indeed facili-
tates the recovery performance though the sig-
nificantly increased computational overhead,
which is consistent with the Scaling Law (Ka-
plan et al., 2020). We can also notice that the
performance of full data on LaMini is rela-
tively competitive, which is because the pro-
portion of conflicting or negative data for recovery is much lower than that in Alpaca.

Ablation Study To validate the contribution of each component in PASER, we conduct comprehensive
ablation studies. Specifically, we evaluate three variants: (1) PASER w/o S2RIC: replacing semantic-
structural clustering with random clustering while keeping other modules unchanged; (2) PASER
w/o CDAIS: randomly sampling equal number of instructions from each cluster instead of using
capability degradation-aware selection; (3) PASER w/o NTEM: removing the negative tuning effects
mitigation module. The results in Table 4 demonstrate that all three components contribute positively
to model recovery across different pruning schemes. The semantic-structural clustering effectively
identifies capability-specific instruction groups, leading to 0.18-1.43 points improvement in reasoning
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Table 4: Ablation study results on LLaMA2-7B for each component under different pruning schemes.
The “Reason” indicates the averaged performance on 7 common sense reasoning datasets.

Ablation Variant LLM-Pruner (25%) SliceGPT (25%) Wanda (2:4) SparseGPT (50%)
WikiText2↓ PTB↓ Reason↑ WikiText2↓ PTB↓ Reason↑ WikiText2↓ PTB ↓ Reason↑ WikiText2↓ PTB↓ Reason↑

w/o S2RIC 18.73 32.84 59.67 14.83 25.42 63.03 15.84 30.25 61.19 14.89 26.31 62.60
w/o CDAIS 17.56 30.15 60.26 14.16 24.92 62.68 15.46 29.48 61.23 14.62 25.84 62.49
w/o NTEM 19.82 35.60 59.25 15.37 27.81 61.92 16.79 31.52 61.34 15.91 28.19 61.76
PASER 16.40 26.35 61.10 12.24 21.53 64.31 14.13 27.22 62.02 13.33 23.77 62.78

Figure 2: Average reasoning performance and recovery post-training time consumption curves
corresponding to different instruction tuning data selection methods. The left two subfigures are for
Alpaca while right two subfigures are for LaMini.

performance. Its removal causes degradation in both language modeling (increased perplexity)
and reasoning tasks, particularly evident under structured pruning schemes like LLM-Pruner and
SliceGPT. The capability degradation-aware selection mechanism enhances recovery efficiency
through adaptive budget allocation, contributing 0.29-1.63 points improvement in reasoning tasks
while maintaining stable language modeling performance. Negative tuning effects mitigation shows
significant impact (0.68-2.39 points improvement), especially under high pruning ratios, highlighting
its importance in preventing conflicting information during recovery training. These improvements
are consistently observed across different pruning schemes, with particularly pronounced effects in
structured pruning where capability degradation tends to be more severe and uneven. More detailed
ablation study results and analysis are provided in Appendix L. Besides, we also empirically explore
the technique selection of PASER’s each component in Appendix N.

Recovery Post-training Efficiency Analysis To highlight PASER’s advantages on recovery post-
training efficiency, we conduct the experiments under different data budgets B and different datasets
and record the corresponding averaged reasoning performance and training time in Figure 2. From
the first and third subfigures, we can observe that PASER can obtain best recovery performance under
different B/N on Alpaca and LaMini. Interestingly, in the first subfigure, when rising B/N from
0.3 to 0.4, the reasoning performance of Random even decreases. It is because expanding data scale
also introduces the conflicting or negative data existing in the original dataset. From the second and
fourth subfigures, PASER consistently consumes the least training time, which can be attributed to the
efficiency-driven sample selection process in PASER. This advantage can be more obvious under low
B/N like 0.02 on LaMini. This is because increasing data budget will force PASER to select some
relatively more time-consuming samples given the fixed original dataset, weakening its efficiency
superiority. Besides, we also study the time consumption during data selection in Appendix O.

5 CONCLUSION AND FUTURE WORKS

Recovery post-training has been an important procedure after large language model pruning to restore
the critical capabilities. Previous works directly utilize the full instruction tuning dataset, facing
high computation cost, risks of untargeted recovery, and negative tuning effects. In this work, we
propose the post-training data selection method for efficient pruned model recovery. According to
capability degradation degrees, we allocate selection budget across different capability data obtained
through semantic-structural clustering. We then select samples where model output behavior has
been severely affected while considering computation cost, and introduce a concept consistency
graph to mitigate negative tuning effects. Extensive experiments on different LLMs and theoretical
analysis demonstrate the effectiveness of our framework. Future work will explore other optimization
approaches like data augmentation and revision to further improve recovery efficiency.
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ETHICS STATEMENT

The development and deployment of technologies like PASER for efficient recovery of pruned large
language models necessitates careful consideration of ethical implications. While PASER contributes
to reducing environmental impact and potentially democratizing AI access by lowering computational
requirements, it also raises concerns about potential misuse, bias amplification, and privacy. It’s
crucial to remain vigilant about these risks, implement robust safeguards, and maintain transparency
in the recovery process. Continuous monitoring for fairness and bias in model outputs is essential, as
is responsible deployment with appropriate human oversight, especially in high-stakes applications.
As the field evolves, ongoing ethical assessment and dialogue with stakeholders are vital to ensure that
advancements in large language model efficiency contribute positively to society while minimizing
potential harm. Ultimately, the goal should be to harness the benefits of improved model recovery
techniques like PASER while proactively addressing the complex ethical challenges they present.

REPRODUCIBILITY STATEMENT

We provide an anonymous code repository https://anonymous.4open.science/r/
PASER-E606 containing the implementation of PASER, along with detailed instructions for repro-
ducing our experiments. All datasets used in this work, including Alpaca and LaMini for instruction
tuning and standard reasoning/QA benchmarks (e.g., BoolQ, PIQA, ARC, HellaSwag, WinoGrande,
OpenbookQA), are publicly available. Hyperparameters, pruning schemes, and evaluation protocols
are described in the main text and appendices to ensure clarity. Our theoretical analysis, ablation
studies, and efficiency measurements are also documented to facilitate independent verification
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A SUPPORTING MATERIALS FOR INTRODUCTION PART

We provide the performance comparison in Figure 3 which supports the claim in the second paragraph
of Section 1 about the recovery performance deterioration. From this figure, we can find that
employing the full version of recovery data or uniformly split subset to conduct recovery training can
hardly achieve satisfying performance.

Besides, we also provide the evidence for the uneven deterioration of different LLM capabilities
during the pruning process (corresponding to the third paragraph in Section 1). From the Figure 4,
we can observe that the four critical capabilities: language modeling, common sense reasoning,
mathematical problem solving, and code generation exhibit significant difference on the performance
degradation degrees. This phenomenon exits widely in the provided four pruning settings, which
implies the necessity of performing targeted and balanced capability recovery. In fact, even among
the various common sense reasoning tasks, this kind of uneven capability deterioration effect is still
evident.

Figure 3: Average performance on seven common LLM reasoning evaluation tasks after recovery
post-training with different data. The numbers in brackets represent the group index of the data subset
in the full dataset. Unpruned indicates the original model and w/o Training indicates the pruned
model (using LLM-Pruner (Ma et al., 2023)) without the recovery post-training.

Figure 4: Normalized performance degradation degree(%) on four various capabilities under four
LLM pruning settings.

B PSEUDOCODE

We provide the full version of our pseudocode in Algorithm 1.

18
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Algorithm 1 Post-training data Selection for efficient pruned large language model recovery (PASER)
Input: Mo: original model, Mp: pruned model, D: instruction tuning dataset, B: data budget, U :
computational cost budget

procedure PASER(Mo,Mp, D,B,U )
C ← NMFSpectralClustering({e(xi)|(xi, yi) ∈ D})
for ck ∈ C do

CDS(ck)← ComputeCapabilityDegradationScore(ck,Mo,Mp)
end for
{nk} ← AllocateSamples({CDS(ck)}, B)
S ← ∅, G← InitializeCCG()
for ck ∈ C do

Lk ← SortByIESDescending(ck)
i← 0, count← 0
while count < nk and i < |Lk| do

(x, y)← Lk[i]
if IsConsistent(x, y,G) and

∑
(x′,y′)∈S∪{(x,y)}

ComputationalCost(x′, y′) ≤ U then

S ← S ∪ {(x, y)}
G← UpdateCCG(G, x, y)
count← count + 1

end if
i← i+ 1

end while
end for
return S

end procedure

C THEORETICAL ERROR BOUND ANALYSIS

In this section, we establish theoretical guarantees for our PASER framework by deriving error
bounds that characterize how close PASER’s solution is to the optimal recovery solution.

C.1 PROBLEM FORMULATION REVISITED

Recall from Section 3.1 that our objective is to find a subset S∗ ⊂ D of instruction tuning data that
minimizes the expected loss on downstream tasks:

S∗ = arg min
S⊂D,|S|≤B

E(x,y)∼T [L(Mr(S), x, y)], (8)

where Mr(S) is the recovered model after training on subset S, T is the distribution of downstream
evaluation tasks, and L is a loss function.

C.2 THEORETICAL FRAMEWORK

To establish theoretical guarantees, we introduce the following assumptions:
Assumption 1 (Performance Decomposition). The performance on downstream tasks can be decom-
posed as a weighted sum of performances across different capability clusters:

E(x,y)∼T [L(Mr(S), x, y)] =

K∑
k=1

wk · E(x,y)∼ck [L(Mr(S), x, y)], (9)

where ck represents the k-th capability cluster, wk ≥ 0 is its weight in the evaluation distribution,
and

∑K
k=1 wk = 1.

Assumption 2 (Capability Independence). The recovery effect on one capability depends primarily
on samples from the corresponding cluster, with limited cross-cluster effects. For distinct clusters ci
and cj , and subsets Si ⊂ ci and Sj ⊂ cj:

|E(x,y)∼ci [L(Mr(Si ∪ Sj), x, y)]− E(x,y)∼ci [L(Mr(Si), x, y)]| ≤ δij , (10)
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where δij ≥ 0 is a small constant representing the cross-cluster influence.
Assumption 3 (Conceptual Consistency Monotonicity). Within a capability cluster, for conceptually
consistent subsets, larger training subsets generally produce better recovery effects. Given a Concept
Consistency Graph G = (V,E), for any SA ⊂ SB ⊂ ck where all pairs of samples in SB are
conceptually consistent according to G:

E(x,y)∼ck [L(Mr(SB), x, y)] ≤ E(x,y)∼ck [L(Mr(SA), x, y)]. (11)
Assumption 4 (Sample Selection Submodularity). The recovery benefit exhibits approximate sub-
modularity within each capability cluster. For conceptually consistent subsets S ⊂ T ⊂ ck and an
element e ∈ ck \ T that is conceptually consistent with all elements in T :

∆(e|S) ≥ ∆(e|T )− αk · |T \ S|, (12)
where ∆(e|S) = E(x,y)∼ck [L(Mr(S), x, y)] − E(x,y)∼ck [L(Mr(S ∪ {e}), x, y)] represents the
marginal benefit of adding element e to subset S, and αk > 0 is a cluster-specific constant.
Assumption 5 (Intra-Capability Selection Effectiveness). For each capability cluster ck, let Sk

be the subset of size nk selected by PASER and S∗
k be the optimal subset of the same size. The

intra-capability selection effectiveness of PASER is characterized by:
E(x,y)∼ck [L(Mr(Sk), x, y)] ≤ E(x,y)∼ck [L(Mr(S

∗
k), x, y)] + (1− γk) ·∆k, (13)

where γk ∈ (0, 1] and ∆k = E(x,y)∼ck [L(Mr(∅), x, y)] − E(x,y)∼ck [L(Mr(S
∗
k), x, y)] represents

the maximum possible improvement, which is guaranteed by above Assumption 4.
Assumption 6 (Inter-Capability Budget Allocation Effectiveness). Given the limited cross-cluster
influence established in Assumption 2, suboptimal budget allocation across capability clusters cannot
catastrophically impact overall recovery performance. Therefore, the effectiveness of PASER’s budget
allocation across clusters can be bounded by:

K∑
k=1

wk ·E(x,y)∼ck [L(Mr(S
∗
k), x, y)] ≤

K∑
k=1

wk ·E(x,y)∼ck [L(Mr(S
∗
k(n

∗
k)), x, y)]+(1−β)·C1, (14)

where β ∈ (0, 1], S∗
k is the optimal subset of size nk from cluster ck, S∗

k(n
∗
k) is the optimal subset of

size n∗
k from cluster ck, and {n∗

k}Kk=1 is the optimal budget allocation across clusters under the same
total budget B (

∑K
k=1 nk =

∑K
k=1 n

∗
k = B). Thus, S∗

k(n
∗
k) = S∗ ∩ ck.

Based on these assumptions, we establish the following theorem:
Theorem 2 (PASER Error Bound). Let SPASER be the subset selected by PASER with budget B, S∗

be the optimal subset of the same size, and γ = mink γk. Then there exists a constant C > 0 such
that:

E(x,y)∼T [L(Mr(SPASER), x, y)] ≤ E(x,y)∼T [L(Mr(S
∗), x, y)] + (1− βγ) · C. (15)

C.3 DETAILED DERIVATION

We now provide a step-by-step derivation of the error bound, explicitly showing how each assumption
is utilized.

Step 1: Decompose the performance into capability clusters using Assumption 1:

E(x,y)∼T [L(Mr(SPASER), x, y)] =

K∑
k=1

wk · E(x,y)∼ck [L(Mr(SPASER), x, y)] (16)

E(x,y)∼T [L(Mr(S
∗), x, y)] =

K∑
k=1

wk · E(x,y)∼ck [L(Mr(S
∗), x, y)]. (17)

Step 2: Apply Assumption 2 (Capability Independence) to isolate the effect of samples from each
cluster:

E(x,y)∼ck [L(Mr(SPASER), x, y)] ≤ E(x,y)∼ck [L(Mr(SPASER ∩ ck), x, y)] +
∑
j ̸=k

δkj (18)

= E(x,y)∼ck [L(Mr(Sk), x, y)] +
∑
j ̸=k

δkj , (19)
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where Sk = SPASER ∩ ck is the subset selected by PASER from cluster ck.

Similarly for the optimal subset:

E(x,y)∼ck [L(Mr(S
∗), x, y)] ≥ E(x,y)∼ck [L(Mr(S

∗ ∩ ck), x, y)]−
∑
j ̸=k

δkj . (20)

Step 3: Now we analyze the relationship between PASER’s selection Sk and the optimal selection
S∗
k within cluster ck.

First, we utilize Assumption 3 (Conceptual Consistency Monotonicity). PASER’s Concept Con-
sistency Graph ensures that all selected samples in Sk are conceptually consistent. For any subset
SCCG
k ⊂ Sk that is conceptually consistent:

E(x,y)∼ck [L(Mr(Sk), x, y)] ≤ E(x,y)∼ck [L(Mr(S
CCG
k ), x, y)]. (21)

Now, we apply Assumption 4 (Sample Selection Submodularity) to analyze the greedy selection
process employed by PASER within each cluster. For a conceptually consistent set, the greedy
algorithm achieves an approximation ratio that depends on the degree of submodularity.

Let SG
k be the set obtained by a greedy selection process that maximizes the marginal gain at each step

while ensuring conceptual consistency. From the properties of approximated submodular functions
(Assumption 4) and the guarantees of the greedy algorithm for such functions:

E(x,y)∼ck [L(Mr(S
G
k ), x, y)] ≤ E(x,y)∼ck [L(Mr(S

∗
k), x, y)] + ηk ·∆k, (22)

where ηk ∈ [0, 1) is a constant that depends on the submodularity gap parameter αk and the size of
the selection nk, and ∆k is as defined in Assumption 5 (Intra-Capability Selection Effectiveness).

PASER’s efficiency-driven selection further refines this greedy selection by prioritizing samples with
higher Individual Efficiency Scores. This introduces an additional approximation factor ϕk ∈ [0, 1):

E(x,y)∼ck [L(Mr(Sk), x, y)] ≤ E(x,y)∼ck [L(Mr(S
G
k ), x, y)] + ϕk ·∆k. (23)

Combining these equations, we get:

E(x,y)∼ck [L(Mr(Sk), x, y)] ≤ E(x,y)∼ck [L(Mr(S
∗
k), x, y)] + (ηk + ϕk) ·∆k. (24)

Setting (1− γk) = (ηk + ϕk), we arrive at the form presented in Assumption 5:

E(x,y)∼ck [L(Mr(Sk), x, y)] ≤ E(x,y)∼ck [L(Mr(S
∗
k), x, y)] + (1− γk) ·∆k. (25)

This explicitly shows how γk incorporates both the submodularity properties (Assumption 4) and the
conceptual consistency properties (Assumption 3) into our error bound.

Step 4: Combine Steps 2 and 3:

E(x,y)∼ck [L(Mr(SPASER), x, y)] ≤ E(x,y)∼ck [L(Mr(Sk), x, y)] +
∑
j ̸=k

δkj (26)

≤ E(x,y)∼ck [L(Mr(S
∗
k), x, y)] + (1− γk) ·∆k +

∑
j ̸=k

δkj .

(27)

Step 5: Apply Assumption 5 (Inter-Capability Budget Allocation Optimality) to compare PASER’s
allocation with the optimal allocation:
K∑

k=1

wk · E(x,y)∼ck [L(Mr(S
∗
k), x, y)] ≤

K∑
k=1

wk · E(x,y)∼ck [L(Mr(S
∗
k(n

∗
k)), x, y)] + (1− β) · C1,

(28)

where C1 is a constant related to the maximum performance difference between different budget
allocations. The factor β quantifies how well PASER’s capability degradation-aware budget allocation
approximates the theoretical optimal allocation.
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Step 6: Combine Steps 1-5 and let γ = mink γk:

E(x,y)∼T [L(Mr(SPASER), x, y)] =

K∑
k=1

wk · E(x,y)∼ck [L(Mr(SPASER), x, y)] (29)

≤
K∑

k=1

wk ·

E(x,y)∼ck [L(Mr(S
∗
k), x, y)] + (1− γk) ·∆k +

∑
j ̸=k

δkj

 (30)

≤
K∑

k=1

wk · E(x,y)∼ck [L(Mr(S
∗
k), x, y)] + (1− γ) ·

K∑
k=1

wk ·∆k +

K∑
k=1

wk

∑
j ̸=k

δkj (31)

≤
K∑

k=1

wk · E(x,y)∼ck [L(Mr(S
∗
k(n

∗
k)), x, y)] + (1− β) · C1 + (1− γ) · C2 + C3 (32)

=

K∑
k=1

wk · E(x,y)∼ck [L(Mr(S
∗ ∩ ck), x, y)] + (1− β) · C1 + (1− γ) · C2 + C3 (33)

≤ E(x,y)∼T [L(Mr(S
∗), x, y)] + 2C3 + (1− β) · C1 + (1− γ) · C2 (34)

≤ E(x,y)∼T [L(Mr(S
∗), x, y)] + 2C3 + (1− βγ) · (C1 + C2), (35)

where:

• C2 =
∑K

k=1 wk ·∆k represents the maximum possible improvement across all clusters,

• C3 =
∑K

k=1 wk

∑
j ̸=k δkj represents the total cross-cluster effects.

Step 7: Let C = C1 + C2, considering δkj → 0 as claimed in the Assumption 2,
E(x,y)∼T [L(Mr(SPASER), x, y)] ≤ E(x,y)∼T [L(Mr(S

∗), x, y)] + (1− βγ) · C. (36)

C.4 INTERPRETATION OF THE ERROR BOUND

The error bound provides several key insights, explicitly highlighting the role of each assumption:

Performance Decomposition (Assumption 1): This foundational assumption enables modular
analysis by decomposing model performance into distinct capabilities, allowing PASER to target
specific degraded capabilities with focused recovery resources.

Capability Independence (Assumption 2): By establishing bounded cross-capability influence, this
assumption validates PASER’s independent optimization within each capability cluster, ensuring that
improvements in one area don’t significantly interfere with others.

Conceptual Consistency Monotonicity (Assumption 3): By ensuring monotonicity within concep-
tually consistent subsets, PASER’s CCG mechanism effectively mitigates negative tuning effects,
making the selection problem more tractable.

Sample Selection Submodularity (Assumption 4): The approximated submodularity enables
efficient greedy-like selection methods to achieve near-optimal results within each capability cluster.

Intra-Capability Selection Effectiveness (Assumption 5): The parameter γ reflects PASER’s
efficiency in selecting the most valuable samples within each capability cluster. When γ approaches
1, PASER’s intra-cluster selection approaches optimality.

Inter-Capability Budget Allocation Effectiveness (Assumption 6): The parameter β reflects
PASER’s efficiency in allocating the budget across different capability clusters. When β approaches
1, PASER’s budget allocation approaches the theoretical optimal allocation.

Combined Effect: The error term (1 − βγ) indicates that when both selection effectiveness and
allocation effectiveness are high, PASER’s performance approaches the global optimal solution.

This theoretical framework explains PASER’s strong empirical performance: by intelligently allocat-
ing budget based on capability degradation degree (improving β) and selecting the most valuable
samples within each cluster while maintaining concept consistency (improving γ), PASER achieves
near-optimal recovery performance.
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Table 5: Recovery performance of different instruction tuning data selection methods on mathematical
problem solving tasks under various pruning schemes. The ’bold’ represents the best performance
under the same pruning scheme.

Recovery Method LLM-Pruner (25%) SliceGPT (25%) Wanda (2:4) SparseGPT (50%)
GSM8K Minerva GSM8K Minerva GSM8K Minerva GSM8K Minerva

w/o Training 44.3 17.8 42.5 16.9 43.8 17.4 43.1 17.2
Full Data 46.5 19.1 44.8 18.3 45.9 18.7 45.2 18.5
Random 45.8 18.4 43.9 17.8 44.7 18.1 44.3 17.9
Instruction Mining 46.2 18.9 44.5 18.1 45.4 18.5 44.9 18.3
IFD 46.8 19.3 45.1 18.5 45.8 18.8 45.4 18.6
Nuggets 47.1 19.5 45.4 18.7 46.2 19.0 45.7 18.8
PASER 49.4 21.2 47.8 20.5 48.5 20.8 47.2 20.1

D EVALUATION ON MATHEMATICAL PROBLEM SOLVING TASKS

To validate the effectiveness of PASER beyond common sense reasoning tasks, we conduct additional
experiments on mathematical problem solving capabilities. Specifically, we employ two widely-
adopted mathematical problem solving benchmarks:

• GSM8K (Cobbe et al., 2021): A dataset containing 8.5K high-quality grade school math word
problems that test various mathematical problem solving capabilities, including arithmetic, algebra,
and word problem solving.

• Minerva Math (Lewkowycz et al., 2022): A comprehensive mathematical evaluation dataset
covering diverse topics in mathematics ranging from arithmetic to calculus, with problems requiring
multi-step reasoning.

The recovery performance under different pruning schemes is presented in Table 5. From these results,
we can observe that PASER consistently outperforms baseline methods across all pruning schemes
on both mathematical problem solving benchmarks. The improvements are particularly significant
under the LLM-Pruner scheme, where PASER achieves 5.1% and 3.4% absolute improvements over
w/o Training on GSM8K and Minerva Math, respectively. While different pruning schemes affect
the base performance levels, PASER maintains its effectiveness in recovery. For example, under the
more aggressive SparseGPT (50%) setting, PASER still achieves 4.1% and 2.9% improvements on
GSM8K and Minerva Math over w/o Training. Compared to Full Data training, PASER achieves
better performance while using only 20% of the instruction data, demonstrating its efficiency in
recovering mathematical problem solving capabilities.

These results, combined with the common sense reasoning results presented in the main paper,
demonstrate that PASER is effective across diverse tasks. The strong performance on mathematical
tasks is particularly noteworthy given that these problems often require precise, step-by-step reasoning
and have less tolerance for errors compared to common sense reasoning tasks. This validates the
effectiveness of our capability degradation score in identifying and prioritizing recovery for severely
affected capabilities, even in domains requiring high precision.

Table 6: Recovery performance of different instruction tuning data selection methods on code
generation tasks under various pruning schemes. The ‘bold’ represents the best performance under
the same pruning scheme. ‘P@k’ indicates ‘Pass@k’.

Recovery Method
LLM-Pruner (25%) SliceGPT (25%)

HumanEval MBPP HumanEval MBPP
P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100 P@1 P@10 P@100

w/o Training 3.4 6.2 10.4 7.1 15.5 24.6 3.0 5.9 8.7 6.2 11.8 21.5
Full Data 7.8 15.1 19.0 15.2 26.3 39.5 2.9 5.1 11.8 9.3 19.7 36.4
Random 6.2 13.7 20.5 12.8 23.8 35.0 3.1 5.8 14.2 8.5 17.2 38.6
Instruction Mining 8.9 17.8 28.4 15.7 29.2 43.1 6.3 11.4 23.8 12.8 24.5 45.2
IFD 10.5 21.2 35.6 18.2 34.5 50.7 8.7 16.8 31.2 16.4 30.8 52.4
Nuggets 11.8 22.9 38.3 18.9 35.8 52.4 9.5 18.5 33.9 17.6 32.6 51.9
PASER 14.4 27.6 48.2 23.1 42.6 62.0 12.9 25.2 44.5 22.3 41.0 63.7
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E EVALUATION ON CODE GENERATION TASKS

To further explore the PASER’s effectiveness on recovering code generation capability, we take two
structured pruning schemes (LLM-Pruner, SliceGPT) and perform exhaustive evaluations on two
major code generation benchmarks:

• HumanEval (Chen et al., 2021): A widely-used code generation benchmark consisting of 164 hand-
crafted Python programming problems that test various programming concepts. Each problem
contains a function signature with docstring and test cases, requiring models to complete the
implementation. The benchmark evaluates functional correctness using the Pass@k metric, which
measures the percentage of problems where a correct solution appears in k samples.

• MBPP (Austin et al., 2021): A programming benchmark containing 974 Python programming prob-
lems focused on basic programming tasks. Each problem includes a natural language description,
test cases, and a reference solution, making it particularly suitable for evaluating language-to-
code generation capabilities. MBPP uses the same Pass@k evaluation metric as HumanEval but
generally features simpler problems with a broader coverage of basic programming concepts.

In our experiments, models are evaluated in zero-shot on HumanEval and 3-shot on MBPP. The
results under Pass@k (k = 1, 10, 100) metrics are present in Table 6. As shown in the table, code
generation capability experiences severe degradation after pruning. The Pass@1 performance on
HumanEval drops to merely 3.4% under LLM-Pruner without recovery training. This dramatic decline
indicates that code generation, as a complex reasoning task, is particularly vulnerable during model
compression. Through capability degradation-aware budget allocation and targeted sample selection,
PASER demonstrates remarkable effectiveness in recovering this severely impacted capability. Under
LLM-Pruner, it achieves 14.4% Pass@1 on HumanEval, not only substantially outperforming other
recovery methods but also surpassing the full data training baseline. The improvement becomes
even more pronounced at higher sampling rates, i.e., PASER reaches 48.2% Pass@100 compared
to Random’s 20.5% and Instruction Mining’s 28.4%. This significant performance gap validates
our approach of prioritizing recovery resources for severely degraded capabilities and selecting
the most relevant instruction samples for recovery training. The superiority of PASER remains
consistent across different evaluation settings. On MBPP, which features simpler programming tasks,
PASER still maintains a clear advantage over baseline methods, achieving 23.1% Pass@1 and 62.0%
Pass@100 under LLM-Pruner. When tested with a different pruning scheme (SliceGPT), which
causes even more severe initial degradation (3.0% Pass@1 on HumanEval), PASER successfully
recovers the performance to 12.9% Pass@1 and 44.5% Pass@100.

These results comprehensively demonstrate that our capability-aware recovery strategy effectively
addresses the disproportionate impact of model compression on complex reasoning abilities, enabling
targeted and efficient recovery of critical model capabilities.

Table 7: Recovery performance of different instruction tuning data selection methods on other
knowledge extensive tasks under different LLM pruning schemes. The ‘bold’ represents the best
performance under the same pruning scheme. Here, the Alpaca is taken as the original dataset. The
LLaMA2-7B is taken as the target here to ensure consistency.

Benchmark Pruning w/o Training Full Data Random Instruction Mining IFD Nuggets PASER

MMLU

LLM-Pruner (25%) ↓ 25.35 36.27 40.91 41.42 41.86 42.30 46.37
SliceGPT (25%) 28.80 40.82 41.76 42.15 42.51 42.64 46.97
Wanda (2:4) 32.58 44.45 42.36 42.53 42.73 43.55 47.04
SparseGPT (50%) 34.13 45.01 42.47 44.19 43.63 43.18 47.43

CommonsenseQA

LLM-Pruner (25%) ↓ 48.47 57.50 60.21 60.65 61.22 62.59 66.44
SliceGPT (25%) 49.60 61.32 61.09 60.81 62.28 62.23 66.51
Wanda (2:4) 52.65 65.04 61.71 62.13 62.47 62.91 66.79
SparseGPT (50%) 53.97 64.32 62.21 63.04 62.48 63.17 67.63

F EVALUATION ON OTHER KNOWLEDGE-EXTENSIVE TASKS

To supplement more experiments on other knowledge-extensive evaluation tasks, we conduct experi-
ments on MMLU (Hendrycks et al.) and CommonsenseQA (Talmor et al., 2019), with LLaMA2-7B
as the target LLM to ensure comparison consistency. As shown in the Table 7, PASER consistently
outperforms existing data selection baselines and even surpasses full-data tuning. This demonstrates
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that PASER generalizes well beyond the commonsense reasoning benchmarks in the main text and is
effective on other knowledge-intensive tasks.

Table 8: Recovery performance of different instruction tuning data selection methods under RTN
4bits and GPTQ 4bits schemes on LLaMA2-7B model. The ‘bold’ represents the best performance
under the same quantization scheme. Here, the Alpaca is taken as the original dataset.

Quantization Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o Quant w/o training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

RTN
4 bits

w/o training 18.14 33.28 66.52 74.95 69.24 63.91 65.58 38.07 35.10 59.05
Full Data 15.83 27.41 67.35 75.70 69.94 64.57 66.22 38.48 35.90 59.74
Random 16.72 29.56 64.53 73.08 67.48 62.28 63.93 37.13 33.90 57.48
Instruction Mining 16.05 27.83 66.73 75.15 69.43 64.08 65.74 38.18 35.30 59.23
IFD 15.21 25.74 68.16 76.40 70.60 65.18 66.83 38.83 37.40 60.49
Nuggets 14.68 24.53 68.99 77.13 71.28 65.82 67.46 39.21 38.70 61.23
PASER 14.21 23.37 70.43 78.41 72.47 66.92 68.54 39.81 41.50 62.58

GPTQ
4 bits

w/o training 15.96 27.86 67.82 76.15 70.35 64.95 66.59 38.69 36.90 60.21
Full Data 15.62 26.95 68.00 76.31 70.50 65.09 66.73 38.78 37.40 60.40
Random 16.31 28.74 66.81 75.24 69.49 64.14 65.79 38.22 35.70 59.34
Instruction Mining 15.37 26.42 68.31 76.58 70.75 65.33 66.96 38.93 37.90 60.68
IFD 14.83 25.16 68.96 77.15 71.29 65.83 67.47 40.21 39.00 61.42
Nuggets 13.52 22.93 69.74 77.83 71.93 66.43 68.06 39.56 40.20 61.96
PASER 12.95 21.84 71.20 79.12 73.12 67.53 69.14 40.18 42.90 63.31

Table 9: Recovery performance of different recovery data selection methods under RTN 4bits
and GPTQ 4bits quantization schemes on LLaMA2-13B model. The ‘bold’ represents the best
performance under the same quantization scheme. Here, the Alpaca is taken as the original dataset.

Quantization Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o Quant w/o training 11.58 20.24 69.02 78.73 76.60 69.69 73.23 44.20 42.00 64.78

RTN
4 bits

w/o training 17.53 32.34 63.15 74.59 72.62 65.94 69.17 41.49 37.00 60.57
Full Data 16.95 31.02 63.59 75.02 73.04 66.33 69.58 41.75 37.50 60.97
Random 17.86 33.15 62.00 73.48 71.55 64.94 68.13 40.84 35.20 59.45
Instruction Mining 17.24 31.68 62.83 74.27 72.32 65.65 68.87 41.29 36.10 60.19
IFD 15.63 28.39 65.03 76.37 74.34 67.49 70.80 42.46 39.60 62.30
Nuggets 15.08 27.15 65.45 76.76 76.72 67.84 71.17 42.70 40.20 62.98
PASER 12.34 23.08 67.33 78.50 76.41 69.37 72.78 43.67 41.70 64.25

GPTQ
4 bits

w/o training 14.74 26.86 64.68 76.04 74.02 67.20 70.49 42.28 39.10 61.97
Full Data 16.02 29.34 63.62 75.05 73.07 66.35 69.61 41.76 37.40 60.98
Random 14.58 26.52 64.82 76.17 74.15 67.32 70.61 42.36 39.30 62.10
Instruction Mining 13.67 24.59 66.37 77.58 75.51 68.56 71.91 44.15 41.30 63.63
IFD 13.51 24.26 68.46 77.66 75.59 68.63 71.99 43.20 41.40 63.85
Nuggets 12.76 22.92 67.21 78.34 76.25 69.24 72.63 43.59 42.70 64.28
PASER 11.25 20.93 68.11 79.16 77.05 69.97 73.39 44.04 44.20 65.13

Table 10: Recovery performance of different recovery data selection methods on LLaMA2-7B under
AWQ 4bits scheme. The ‘bold’ represents the best performance among different selection methods.
Here, the Alpaca is taken as the original dataset. The “Reason” indicates the averaged performance
on 7 commonsense reasoning datasets.

Quantization Benchmark w/o Training Full Data Random Instruction Mining IFD Nuggets PASER

AWQ 4bits
WikiText2↓ 13.52 12.10 13.27 12.02 12.24 11.58 11.05
PTB↓ 23.29 22.76 22.23 21.51 20.12 19.74 18.48
Reason↑ 61.47 62.32 62.41 63.19 63.46 63.13 65.54

G EXTENDED EXPERIMENTS ON POST-QUANTIZATION RECOVERY TRAINING

Though the method descriptions and the experiments in the main body are mainly around the
LLM pruning scenario, our PASER framework can actually be extended seamlessly to other LLM
compression scenario. To further demonstrate its applicability, we conduct the experiments on
post-quantization recovery training and compare our PASER with corresponding instruction tuning
data selection baselines. In detail, we choose two most representative methods: Round-To-Nearest
(RTN) (Frantar & Alistarh, 2022; Yao et al., 2022), GPTQ (Frantar et al., 2023) to perform the
LLM quantization. It should be clarified that RTN method, which rounds all weights to the nearest
quantized value on exactly the same asymmetric per-row grid, is actually the fundamental technique
in most works about LLM quantization (Frantar & Alistarh, 2022; Yao et al., 2022; Park et al.).

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Its runtimes scales well to the models with many billion parameters due to the direct rounding.
According to the results provided in Table 8 and 9, we can observe that the PASER can still effectively
enhance the recovery performance and outperform the data selection baselines on averaged reasoning
performance and zero-shot perplexity for both LLaMA2-7B and LLaMA2-13B models. Meanwhile,
recovery data selection baselines can indeed achieve the stronger performance than full data and
random baselines, which validates the necessity of conducting recovery data selection even in the
LLM quantization scenario. Furthermore, comparing these results with Table 1 and 2, it can be
noticed that the improvement space of PASER in Table 8 and 9 has been reduced to some extent. This
is because the post-compression performance of such quantization schemes has been competitive
enough, which can reflected from the w/o training row. In addition, we also conduct experiments
on one of the most robust LLM quantization scheme, AWQ (Lin et al., 2024), and the results are
provided in the Table 10. Considering the superior performance of AWQ itself on reducing the
performance drop brought by the precision loss, our improvement over baselines is still obvious,
further demonstrating the generalizability of PASER on quantization schemes.

Table 11: Recovery performance of different instruction tuning data selection methods on LLaMA2-
7B under different LLM distillation schemes. The ‘bold’ represents the best performance on the same
distillation scheme. Here, the Alpaca is taken as the original dataset. The “Reason” indicates the
averaged performance on 7 commonsense reasoning datasets.

Distillation Benchmark w/o Training Full Data Random Instruction Mining IFD Nuggets PASER

DistiLLM
WikiText2↓ 23.58 27.31 22.50 21.43 20.32 20.09 18.65
PTB↓ 46.83 43.71 44.08 41.61 38.17 36.82 32.86
Reason↑ 55.20 57.12 56.29 57.71 58.55 58.42 60.34

MiniPLM
WikiText2↓ 22.71 25.04 21.37 20.74 19.77 18.92 17.27
PTB↓ 43.09 42.02 42.71 41.28 39.03 37.22 33.08
Reason↑ 56.43 58.21 56.07 57.50 59.39 59.21 61.42

SKD
WikiText2↓ 24.45 25.82 21.14 20.48 19.20 18.56 17.07
PTB↓ 44.73 41.49 42.02 39.67 36.52 34.31 30.75
Reason↑ 56.67 59.61 57.38 58.79 59.82 59.50 61.94

H EXTENDED EXPERIMENTS ON POST-DISTILLATION RECOVERY TRAINING

In addition to the post-pruning and post-quantization experiments, we also supplement post-distillation
experiments to achieve a full LLM post-compression recovery training picture. In detail, we adopt
DistiLLM (Ko et al., 2024), MiniPLM (Gu et al.), SKD (Xu et al.), respectively, to distill a LLaMA2-
7B model into a 1.5B scale small language model. The corresponding post-distillation recovery
performance has been provided in the Table 11. From the table, we can observe that our PASER
can effectively help recover LLM capabilities compressed with different recent distillation methods.
Therefore, we can conclude that our proposed PASER can generalize well across different kinds of
LLM compression paradigms, not limited to the pruning discussed in the main text.

I EXPERIMENTS ON RECOVERY TRAINING WITH KNOWLEDGE DISTILLATION

Inspired by (Muralidharan et al., 2024), we explore the knowledge distillation as the recovery
post-training paradigm instead of the standard supervised learning with the groundtruth label. Here,
we set the original model Mo as the teacher and the pruned model Mp as the student. The mean
KL divergence (Kullback & Leibler, 1951) between the output probability distribution of Mo and
that of Mp is taken as the objective function. Comparing the corresponding results under different
pruning schemes in Table 12 with that in Table 1, we can first observe that knowledge distillation
can effectively improve the recovery performance on both reasoning and language modeling tasks
in most cases. In particular, the reasoning performance of PASER is improved by 0.348 points
on average among such four pruning schemes. Interestingly, the knowledge distillation recovery
performance of Full Data under LLM-Pruner is much better than that with standard label-supervised
learning. This demonstrates that knowledge distillation is also a promising approach to avoid the
misleading information from the irrelevant or conflicting samples existing in the original dataset.
Because its learning process directly imitates the unpruned model behavior instead of the provided
labels, thus better preserving the thinking and decision-making consistency with the original model.
As a summary, distilling the knowledge of unpruned model into the pruned model can be regarded
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Table 12: Knowledge distillation recovery performance of different instruction tuning data selection
methods under various pruning schemes on LLaMA2-7B model. The ‘bold’ represents the best
performance under the same pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
Full Data 24.72 43.91 63.30 76.01 67.18 62.27 64.23 36.86 39.20 58.44
Random 23.82 41.20 68.03 74.89 66.27 64.51 64.65 32.58 38.30 58.46
Instruction Mining 22.65 39.40 62.17 75.98 66.74 61.29 63.01 38.32 39.60 58.16
IFD 19.17 32.30 64.13 77.55 67.89 61.56 64.09 38.19 40.40 59.12
Nuggets 18.64 32.19 64.46 76.66 67.26 64.88 66.50 36.52 39.20 59.35
PASER 15.91 25.39 67.89 77.81 69.62 67.63 68.46 39.87 40.20 61.64

SliceGPT
ratio=25%

w/o training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
Full Data 35.48 66.25 69.35 70.34 58.50 66.76 62.95 37.14 38.70 57.68
Random 38.63 65.67 67.19 68.59 56.21 64.94 60.63 35.61 37.80 55.85
Instruction Mining 35.56 62.14 68.41 69.51 57.08 66.33 62.51 36.59 38.00 56.92
IFD 33.50 61.33 69.51 70.82 58.70 67.49 64.09 37.22 38.50 58.05
Nuggets 21.39 32.83 70.17 71.49 59.11 67.94 72.51 37.54 38.70 59.64
PASER 11.87 20.91 73.43 80.32 74.46 69.76 71.95 42.26 41.70 64.84

Wanda
sparsity=2:4

w/o training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
Full Data 25.92 47.85 71.09 75.14 64.10 65.62 65.64 34.38 37.50 59.07
Random 34.98 63.47 70.18 73.62 59.15 63.83 63.70 32.13 36.50 57.02
Instruction Mining 30.56 55.56 71.03 73.97 61.69 64.56 64.86 33.93 37.00 58.15
IFD 24.08 41.44 71.78 75.89 64.83 65.72 68.89 35.97 38.00 60.15
Nuggets 23.14 40.10 72.26 76.50 65.33 66.03 66.52 37.27 38.60 60.36
PASER 13.84 23.54 71.25 78.15 72.06 66.64 68.66 39.38 40.50 62.38

SparseGPT
sparsity=50%

w/o training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
Full Data 28.17 52.82 68.52 75.77 57.84 69.26 60.43 37.72 37.00 58.08
Random 25.31 43.22 69.74 74.91 60.28 68.10 64.06 39.95 39.80 59.55
Instruction Mining 21.56 39.61 71.12 74.85 62.53 66.06 68.07 36.85 37.80 59.61
IFD 17.76 31.25 71.70 75.76 63.43 66.06 69.14 36.59 37.60 60.04
Nuggets 14.83 25.38 72.18 75.95 63.91 66.29 69.75 36.86 37.70 60.38
PASER 13.00 22.24 75.07 78.66 66.90 69.31 72.85 38.89 39.60 63.04

Table 13: Recovery performance comparison between different combinations of knowledge distilla-
tion (KD) and supervised fine-tuning (SF) under various pruning schemes. The ’bold’ represents the
best performance under the same pruning scheme.

Recovery Training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
LLM-Pruner (ratio=25%)

KD 15.91 25.39 67.89 77.81 69.62 67.63 68.46 39.87 40.20 61.64
SF 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10
First KD, then SF 16.15 25.87 67.57 77.55 69.31 67.30 68.15 39.71 40.00 61.37
First SF, then KD 16.28 26.02 67.41 77.43 69.15 67.11 67.96 39.63 39.90 61.23

SliceGPT (ratio=25%)
KD 11.87 20.91 73.43 80.32 74.46 69.76 71.95 42.26 41.70 64.84
SF 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31
First KD, then SF 12.06 21.24 73.12 80.05 74.18 69.45 71.62 42.03 41.50 64.56
First SF, then KD 12.15 21.38 72.94 79.95 74.05 69.32 71.51 41.95 41.40 64.45

Wanda (sparsity=2:4)
KD 13.84 23.54 71.25 78.15 72.06 66.64 68.66 39.38 40.50 62.38
SF 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02
First KD, then SF 13.97 25.31 71.02 78.03 71.94 66.47 68.49 39.23 40.30 62.21
First SF, then KD 14.05 26.28 70.89 77.95 71.85 66.35 68.41 39.15 40.20 62.11

SparseGPT (sparsity=50%)
KD 13.00 22.24 75.07 78.66 66.90 69.31 72.85 38.89 39.60 63.04
SF 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78
First KD, then SF 13.15 22.96 74.94 78.53 66.78 69.18 72.72 38.81 39.50 62.92
First SF, then KD 13.24 23.35 74.85 78.45 66.70 69.11 72.64 38.75 39.45 62.85

as an effective way to enhance the recovery performance, though bring more memory overhead.
Furthermore, stronger layer-wise distillation can also be taken into consideration (Jiao et al., 2020).

Exploration on Combined Training Strategies Given the complementary potential of knowledge
distillation (KD) and supervised fine-tuning (SF), we further explore whether combining these two
approaches could lead to enhanced recovery performance. Specifically, we investigate two cascading
strategies: (1) first applying KD followed by SF, and (2) first conducting SF followed by KD. Table
13 presents the results under different pruning schemes.

Interestingly, the results show that neither cascading strategy consistently outperforms individual
KD or SF approaches. This suggests that these two training paradigms might actually serve similar
functions in recovering model capabilities, making their combination redundant rather than comple-
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Table 14: Recovery performance of different instruction tuning data selection methods on several more
recent and advanced LLMs under LLM-Pruner scheme. The ‘bold’ represents the best performance
on the same target LLM. Here, the Alpaca is taken as the original dataset. The “Reason” indicates the
averaged performance on 7 common sense reasoning datasets.

Model Benchmark w/o pruning w/o Training Full Data Random Instruction Mining IFD Nuggets PASER

LLaMA3.1-8B
ratio=25%

WikiText2↓ 6.63 14.85 9.74 12.16 13.84 11.32 10.81 7.56
PTB↓ 16.72 29.21 18.38 23.47 26.52 21.75 20.46 17.83
Reason↑ 70.81 63.92 67.95 65.73 65.34 66.82 67.58 70.05

Qwen2.5-7B
ratio=25%

WikiText2↓ 6.94 15.82 11.68 13.94 15.37 10.95 10.23 8.16
PTB↓ 20.58 32.95 24.43 29.16 30.54 22.89 21.37 19.85
Reason↑ 70.49 62.71 67.08 64.29 63.75 66.93 67.42 69.14

Qwen3-8B
ratio=25%

WikiText2↓ 6.68 14.29 9.18 11.83 13.26 10.17 9.45 7.24
PTB↓ 18.45 30.56 20.74 25.41 28.13 22.68 21.05 18.97
Reason↑ 71.73 64.25 68.62 66.37 65.81 67.95 68.24 70.58

Mixtral-8x7B
ratio=25%

WikiText2↓ 7.52 15.87 12.83 14.32 14.27 13.65 12.98 9.62
PTB↓ 17.46 31.45 24.87 27.13 26.58 25.21 24.07 19.75
Reason↑ 72.04 61.56 64.83 63.75 65.21 66.48 67.24 70.87

mentary. Knowledge distillation shows slightly better performance across all pruning schemes, which
could be attributed to its ability to capture the nuanced knowledge encoded in the teacher model’s
full output distribution. However, the marginal gains from combining approaches do not justify the
additional computational overhead required for cascaded training.

J EXPERIMENTS ON MORE RECENT LLMS

In addition to the previous experiments conducted on LLaMA2/3 and Baichuan2 families, we also
supplement some results on more recent and advanced LLMs: LLaMA3.1-8B 2, Qwen2.5-7B (Yang
et al., 2024) 3, Qwen3-8B 4. Besides, the Mixture of Experts(MOE) model Mixtral-8×7B (Jiang
et al., 2024) 5 is also employed to conduct the experiments. The evaluation results have been
provided in Table 14. From Table 14, we can observe that PASER consistently outperforms all
baseline methods across different recent and advanced LLMs, including the MOE architecture
(Mixtral-8x7B). For LLaMA3.1-8B, PASER achieves perplexity scores (7.56 on WikiText2, 17.83 on
PTB) that are remarkably close to those of the unpruned model (6.63 and 16.72, respectively), with
only a 0.76 point gap in reasoning performance (70.05 vs. 70.81). Notably, PASER demonstrates
robust performance across different model architectures. For the MoE-based Mixtral-8x7B, PASER
significantly narrows the performance gap from 10.48 points (w/o Training: 61.56 vs. w/o pruning:
72.04) to just 1.17 points (PASER: 70.87 vs. w/o pruning: 72.04), representing a 88.8% recovery of
lost capability. This demonstrates that our capability-aware selection approach effectively addresses
the specialized recovery needs of sparse models with expert-based architectures. Among the most
recent models, Qwen3-8B shows the strongest recovery with PASER, achieving 98.4% of the
unpruned model’s reasoning performance (70.58 vs. 71.73). Meanwhile, Qwen2.5-7B demonstrates
slightly lower recovery effectiveness, potentially due to differences in its architecture and pretraining
approach. These results further validate PASER’s applicability across diverse and state-of-the-
art LLM architectures, confirming that our capability degradation-aware instruction selection and
negative tuning effects mitigation strategies generalize well beyond the models in the main paper.

K DISCUSSION ON COMPARISON WITH GENERAL DATA SELECTION
METHODS

To further demonstrate our PASER is an unique contribution and solution for pruned-LLM recovery,
we discuss the comparison with previous general data selection methods (e.g., LESS (Xia et al.,
2024b), DELIFT (Agarwal et al.), SMART (Renduchintala et al., 2024), Datamodels (Ilyas et al.,
2022)) from four perspectives: 1) Why general data selection methods do not suffice for pruned-LLM
recovery? (Appendix K.1) 2) How PASER differs from previous general data selection methods?

2https://huggingface.co/meta-llama/Llama-3.1-8B
3https://huggingface.co/Qwen/Qwen2.5-7B
4Qwen/Qwen3-8B
5https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
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(Appendix K.2) 3) What is specific comparison between PASER and gradient-based sampling?
(Appendix K.3) 4) Can PASER benefit from gradient-derived dense information? (Appendix K.4)

K.1 Q1: WHY GENERAL DATA SELECTION METHODS DO NOT SUFFICE FOR PRUNED-LLM
RECOVERY?

While existing data selection methods such as LESS (Xia et al., 2024b), DELIFT (Agarwal et al.),
SMART (Renduchintala et al., 2024), and Datamodels (Ilyas et al., 2022) have demonstrated effec-
tiveness for various training objectives (e.g., improving generalization, robustness, or efficiency),
they are not specifically tailored to the unique recovery challenges posed by pruning. Notably:

• Uneven Capability Degradation: Pruning introduces non-uniform degradation across different
model capabilities (e.g., commonsense, coding, math), as shown in Figure 4 of Appendix A.
General selection methods typically assume uniform importance across examples or rely on
training dynamics in full-capacity models, failing to prioritize capability-specific weaknesses that
are critical in post-pruning recovery (see Section 1 and Section 3.3). For example, as discussed
in the Line 48-50, existing data selection methods generally favor samples with clear structure
and natural, human-like expressions. However, these samples may not exactly target specific
capabilities (e.g., math, code) severely compromised during pruning. In fact, in the post-pruning
recovery scenario, even if the expression of samples regarding severely compromised capabilities
is not so clear or structured, we should still prioritize them.

• Performance Sensitivity to Instruction Content: As shown empirically in Figure 3 of Appendix
A, recovery performance varies drastically depending on which subset is selected, an issue rarely
addressed by general-purpose selection algorithms. This is a unique challenge in pruned model
recovery, as pruning disrupts the model’s internal structure and weakens its representational
capacity, making the choice of recovery data more critical and sensitive than in standard fine-tuning
scenarios.

• Incompatibility with Recovery Training Goals: Many existing methods select samples that
maximize representativeness or informativeness during pre-training or fine-tuning, which may
inadvertently include instructions that are irrelevant or conflicting with each other, thus resulting in
harmful impact for recovering pruned capabilities.

Thus, applying these methods directly without modification often leads to inefficient use of recovery
budgets and fails to address the nuanced degradation patterns introduced by pruning.

K.2 Q2: HOW PASER DIFFERS FROM PREVIOUS GENERAL DATA SELECTION METHODS?

PASER is designed from first principles for post-pruning recovery and introduces three key innova-
tions absent in prior methods:

• Capability-Aware Clustering and Budget Allocation: Unlike data selection methods that focus
on sample diversity or informativeness globally, PASER performs semantic-structural clustering
(Section 3.2) to uncover latent instruction groups aligned with distinct capabilities. We then assess
degradation in each cluster using Jensen-Shannon Divergence between pruned and original model
outputs (Section 3.3), and allocate recovery budget proportionally. This enables targeted and
balanced recovery, which existing methods do not consider. In contrast, existing methods typically
treat all capabilities uniformly and are agnostic to which skills the model has lost post-pruning.
As a result, they may waste recovery budget on less-affected areas while failing to restore critical
capabilities.

• Efficiency-Driven Sample Selection: PASER integrates computational efficiency by computing
a sample-wise efficiency score based on degradation severity and expected training cost. This is
crucial in recovery settings where data budgets and compute are highly constrained. In contrast,
datamodel-based selection methods (e.g., Datamodels (Ilyas et al., 2022)) require training large
probes or repeated forward/backward passes, making them computationally expensive and imprac-
tical for efficient recovery. LESS is also time-consuming, because it involves gradient computation
and LoRA training during the selection process.

• Negative Tuning Mitigation via Concept Consistency Graph: General-purpose selection ap-
proaches rarely guard against harmful instructions. PASER introduces a Concept Consistency
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Graph (Section 3.4) to detect and filter irrelevant or conflicting samples that might lead to negative
tuning effects. This is a particularly pressing issue when the model’s representational capacity
has been impaired by pruning, which results in models more sensitive to conflicting information.
However, existing methods rarely address this risk, most of which assume all data in high-quality
pools is beneficial. However, our results (e.g., Table 1) show that even using the full dataset can
degrade performance due to negative tuning effects, especially for pruned models with weakened
internal representations

Besides, we would like to highlight that across all pruning schemes and models (Tables 1, 2, 3),
PASER consistently outperforms random, full data, and several instruction-tuning selection baselines
(e.g., Nuggets, IFD), despite using only 4%–20% of the original data. Additionally, our ablation
study (Table 4) confirms the importance of each PASER module in achieving superior recovery.

In summary, PASER is motivated by and explicitly designed for the unique characteristics and
challenges of pruned LLM recovery. Existing general data selection methods neither target uneven
capability loss nor mitigate the risk of irrelevant or conflicting data. PASER fills this gap by
introducing capability-driven, efficiency-aware, and consistency-preserving data selection, thus
leading to substantial gains in both recovery quality and training cost.

K.3 Q3: WHAT IS SPECIFIC DIFFERENCE BETWEEN PASER AND GRADIENT-BASED
SAMPLING?

We would like to clarify the fundamental differences between PASER and gradient-based data
selection strategies such as LESS (Xia et al., 2024b), and supplement this with a controlled empirical
comparison.

Conceptual Differences Gradient-based methods (e.g., LESS) typically rely on computing influence
scores or gradient norms to identify impactful training samples. These scores are often computed
with respect to specific layers or objectives (e.g., classification loss or instruction adherence) and
require gradient backpropagation, which incurs high computational cost—especially when evaluating
all samples across large instruction tuning sets. In contrast, PASER is specifically designed for
capability recovery after structured/semi-structured/unstructured pruning, where the pruned model
exhibits uneven degradation across semantic capabilities. Rather than using gradient signals, PASER
leverages: 1) Semantic clustering to disentangle instruction groups aligned with distinct capabilities;
2) Capability Degradation Scores (CDS) based on Jensen-Shannon divergence (JSD) between the
pruned and original models’ output distributions; 3) Efficiency-aware scoring to optimize recovery
benefit per unit of compute cost; 4) Negative tuning effect mitigation using concept consistency
graphs. This design enables PASER to approximate dense information signals (through token-
level divergence) while being more effective, efficient, and robust than backpropagation-dependent
strategies.

Empirical Comparison To further clarify the performance and efficiency differences, we compare
PASER with a LESS-style gradient-based sampling baseline, which selects the top 20% samples from
Alpaca with the highest gradient norm of loss w.r.t. embedding parameters. As shown in Table 15,

Table 15: Recovery performance of different data selection methods on LLaMA2-7B under different
LLM distillation schemes. Here, the Alpaca is taken as the original dataset. The “Reason” indicates
the averaged performance on 7 commonsense reasoning datasets.

Pruning Recovery
Data Selection Reasoning ↑ WikiText2 ↓ PTB ↓ Data Selection

Time (mins) ↓
Recovery Training
Time (mins) ↓

LLM-Pruner (25%) PASER 61.10±0.11 16.40±0.28 26.35±0.30 5.25 28.97
LESS-style 458.48±0.37 20.21±2.16 34.20±6.37 163.10 41.35

SliceGPT (25%) PASER 64.31±0.08 12.24±0.32 21.53±0.41 5.24 29.14
LESS-style 59.09±0.35 25.83±4.03 38.42±5.28 148.51 42.04

Wanda (2:4) PASER 62.02±0.14 14.13±0.21 27.22±0.29 5.35 30.37
LESS-style 58.64±0.51 21.84±3.89 39.25±6.02 152.38 42.43

SparseGPT (50%) PASER 62.78±0.10 13.33±0.25 23.77±0.33 5.22 28.63
LESS-style 59.36±0.43 19.89±3.64 37.31±5.15 170.49 41.16

PASER not only achieves better recovery performance across both language modeling and reasoning
tasks, but also incurs significantly less data selection time (up to 30× less) due to its gradient-free
design. The recovery training time is also reduced (↓ 14.2%), as PASER’s efficiency-driven sampling
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strategy favors shorter and semantically cohesive instructions. Furthermore, PASER consistently
exhibits lower performance variance across different pruning settings (e.g., reasoning accuracy std
of 0.08–0.14 vs. 0.35–0.51 for LESS-style), indicating greater robustness under heterogeneous
post-pruning degradation. In summary, PASER offers a more effective, efficient, robust, and pruning-
aware alternative to gradient-based sampling strategies, especially in scenarios where gradient signals
become noisy or unreliable due to structural capacity loss.

K.4 Q4: CAN PASER BENEFIT FROM GRADIENT-DERIVED DENSE INFORMATION?

While PASER does not explicitly rely on gradient information, we acknowledge that gradient-
derived signals capture dense local sensitivity and can, in principle, provide useful guidance for
data selection. In our current design, we approximate similar effects using token-level output
distributional divergence (JSD) to reflect fine-grained capability deterioration without requiring
backward computation. This makes PASER highly efficient and model-agnostic. That said, we agree
with the reviewer that incorporating lightweight gradient signals could further enhance selection
granularity. In future work, we plan to explore hybrid approaches by integrating gradient-based
information into PASER in the following ways:

• Gradient-Guided Cluster Weighting: Use average gradient norms within each capability cluster
to refine degradation scores alongside our JSD-based measure.

• Gradient-Augmented Efficiency Scoring: Combine gradient-based sample importance with our
current JSD-based efficiency metric, possibly as a weighted fusion.

• LoRA-style Gradient Probing: Introduce low-rank adapters to cheaply approximate gradient
information in a parameter-efficient manner during selection, especially useful for large LLMs.

We believe this line of integration can combine the dense expressiveness of gradients with PASER’s
efficient, capability-aware framework, further improving recovery quality without incurring excessive
compute overhead.

Table 16: The detailed ablation study for our proposed three components under various pruning
schemes on LLaMA2-7B model. The ‘bold’ represents the best performance under the same pruning
scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

LLM-Pruner
ratio=25%

PASER w/o S2RIC 18.73 32.84 65.31 76.84 67.59 64.85 65.92 37.96 39.20 59.67
PASER w/o CDAIS 17.56 30.15 66.27 77.03 68.15 65.73 66.58 38.54 39.50 60.26
PASER w/o NTEM 19.82 35.60 64.83 77.52 67.34 64.48 63.59 36.78 40.20 59.25
PASER 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

PASER w/o S2RIC 14.83 25.42 71.15 78.91 72.25 67.84 69.95 40.82 40.30 63.03
PASER w/o CDAIS 14.16 24.92 70.89 78.56 71.84 67.45 69.58 40.47 40.00 62.68
PASER w/o NTEM 15.37 27.81 69.97 77.33 70.68 65.92 68.03 39.39 42.10 61.92
PASER 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

PASER w/o S2RIC 15.84 30.25 69.26 77.42 70.31 65.82 67.84 38.67 39.00 61.19
PASER w/o CDAIS 15.46 29.48 69.14 77.35 70.27 65.74 67.79 38.75 39.60 61.23
PASER w/o NTEM 16.79 31.52 69.51 76.92 70.76 65.23 67.28 38.47 41.20 61.34
PASER 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

PASER w/o S2RIC 14.89 26.31 73.25 77.45 70.15 68.47 69.28 39.82 39.80 62.60
PASER w/o CDAIS 14.62 25.84 72.91 77.50 69.93 68.12 69.05 39.94 40.00 62.49
PASER w/o NTEM 15.91 28.19 71.53 78.62 65.48 67.21 69.79 39.18 40.50 61.76
PASER 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

L DETAILED ABLATION STUDY RESULTS

In this section, we present comprehensive ablation results of the three key components in PASER:
semantic-structural recovery instruction clustering (S2RIC), capability degradation-aware instruction
selection (CDAIS), and negative tuning effects mitigation (NTEM). Table 16 shows the detailed
performance across different evaluation metrics.

The detailed results reveal the distinct contributions of each component under different pruning
schemes. For structured pruning like LLM-Pruner, removing S2RIC leads to significant degradation
in both language modeling (perplexity increases from 16.40 to 18.73 on WikiText2) and reasoning
tasks (average score drops by 1.43 points), highlighting its importance in addressing uneven capability
degradation. The impact of CDAIS is particularly evident under SliceGPT, where its removal
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causes a 1.63-point drop in average reasoning performance while maintaining relatively stable
language modeling metrics, demonstrating its effectiveness in balancing recovery priorities. Under
semi-structured pruning (Wanda), all three components show more balanced contributions, with
performance drops ranging from 0.68 to 0.83 points when each is removed. This suggests that semi-
structured pruning requires a more holistic recovery approach. For unstructured pruning (SparseGPT)
where capability degradation tends to be more uniform, NTEM plays a particularly crucial role -
its removal leads to the largest drop in language modeling performance (perplexity increases from
13.33 to 15.91 on WikiText2) and affects complex reasoning tasks like WinoGrande and ARC-e
significantly. Notably, the full PASER framework consistently achieves the best performance across
almost all metrics under various pruning schemes, with only occasional exceptions in individual tasks
(e.g., OBQA in LLM-Pruner and PIQA in SparseGPT). This comprehensive superiority validates our
design choice of combining these three components for effective pruned model recovery.

M HYPERPARAMETER ROBUSTNESS ANALYSIS

To demonstrate the robustness of PASER to various hyperparameter settings, we conducted a compre-
hensive sensitivity analysis. This analysis helps establish that our method’s strong performance is
not dependent on specific hyperparameter configurations but remains consistent across a reasonable
range of settings.

M.1 SENSITIVITY TO EMBEDDING DIMENSION

The dimensionality of the manifold representation after applying the diffusion kernel is controlled
by parameter d. We evaluate PASER’s performance with d ranging from 4 to 64 on LLaMA2-7B
under LLM-Pruner (ratio=25%). As shown in left subfigure of Figure 5, clustering results remains
consistent (Rand Index >0.85) across this range, and average reasoning performance variations is
controlled within ±0.2 points. This indicates that PASER is relatively stable to the specific choice
of embedding dimension, though we select d = 16 based on the eigenvalue decay pattern, where
eigenvalues beyond this dimension contribute negligibly to the representation.

Figure 5: (a) Sensitivity to embedding dimension d after manifold learning, here the clustering results
under d = 16 is taken as the reference; (b) Robustness to temperature parameter τ in Equation 5.

M.2 ROBUSTNESS TO TEMPERATURE PARAMETER

For the Jensen-Shannon divergence (JSD) calculation in the capability degradation score, we investi-
gate the effect of temperature τ in the softmax function (Equation 5). In right subfigure of Figure 5,
we test values in the range τ ∈ {0.5, 0.75, 1.0, 1.25, 1.5} and observe that while lower temperatures
(τ < 0.75) lead to slightly sharper capability distinctions, the overall performance differences are
minimal (<0.3 points). Our default setting of τ = 1.0 provides a good balance between sensitivity to
capability differences and stability across pruning schemes.
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Overall, our hyperparameter sensitivity analysis demonstrates that PASER’s performance is robust
across a wide range of hyperparameter settings. This stability enhances the practical applicability of
our method, as it does not require extensive hyperparameter tuning to achieve strong performance in
real-world scenarios.

N EMPIRICAL EXPLORATION FOR COMPONENT SELECTION

To demonstrate the selection optimality of each component in our PASER framework, we conduct the
empirical exploration on alternative initial instruction embedding models, dimensionality reduction
methods, clustering methods, divergence measurement methods, and budget allocation strategy, to
investigate if they can achieve better final recovery performance.

Table 17: Recovery performance of multiple PASER versions integrated with initial instruction em-
bedding models under various pruning schemes on LLaMA2-7B model. The PASER(SentenceBERT)
is the version we employ in the main body. The ‘bold’ represents the best performance under the
same pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
PASER(Qwen2.5-7B) 16.38 26.33 67.27 77.32 69.01 67.00 67.86 39.56 39.80 61.12
PASER(LLaMA3-8B) 16.37 26.31 67.29 77.32 69.01 67.00 67.84 39.58 40.00 61.15
PASER(SentenceBERT) 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
PASER(Qwen2.5-7B) 12.22 21.51 72.78 79.86 73.94 69.20 71.39 41.86 41.30 64.33
PASER(LLaMA3-8B) 12.21 21.50 72.80 79.86 73.94 69.20 71.40 41.85 41.30 64.34
PASER(SentenceBERT) 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
PASER(Qwen2.5-7B) 14.11 27.20 70.79 77.87 71.78 66.26 68.32 39.03 40.10 62.02
PASER(LLaMA3-8B) 14.10 27.22 70.80 77.90 71.80 66.29 68.33 39.07 40.10 62.04
PASER(SentenceBERT) 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
PASER(Qwen2.5-7B) 13.62 24.36 74.65 78.26 66.46 68.80 72.50 38.72 39.30 62.67
PASER(LLaMA3-8B) 13.50 23.98 74.72 78.31 66.55 68.96 72.50 38.63 39.30 62.71
PASER(SentenceBERT) 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

N.1 EXPLORATION ON OTHER POSSIBLE INSTRUCTION EMBEDDING MODELS

In the Semantic-Structal Recovery Instruction Clustering module of our PASER framework, we adopt
the SentenceBERT (Reimers & Gurevych, 2019) to obtain the initial instruction embedding, consider-
ing that SentenceBERT has demonstrated strong transfer capability across various text semantic tasks.
To further validate that SentenceBERT is competitive enough here with the empirical evidence, we
replace it with two other advanced LLMs: Qwen2.5-7B (Yang et al., 2024) and LLaMA3-8B (Dubey
et al., 2024) here and conduct the experiments. As shown in Table 17, using much larger pretrained
language models like Qwen2.5-7B and LLaMA3-8B as embedding generators provides marginal
performance improvements (less than 0.05 points on average) compared to SentenceBERT. While
LLaMA3-8B achieves the highest performance in three configurations, these gains are negligible
given the substantially increased computational costs associated with using such large models for
initial embeddings. Besides, under the SparseGPT, sparsity=50% setting, SentenceBERT performs
obviously better than LLaMA3-8B and Qwen2.5-7B. This finding validates our design choice of
SentenceBERT as the default embedding model for PASER, as it strikes an optimal balance between
semantic representation quality and computational efficiency. SentenceBERT requires significantly
fewer resources while still enabling effective capability-specific clustering that supports our targeted
recovery approach. The results demonstrate that while more powerful embedding models may theo-
retically provide better semantic representations, in practice, the performance difference is minimal
for our specific task of recovery data selection.

N.2 EXPLORATION ON OTHER POSSIBLE DIMENSIONALITY REDUCTION METHODS

To validate the suitability of diffusion kernel as dimensionality reduction approach which focus
on uncovering the instruction geometric structure in the semantic space to facilitate the following
capability clustering process, we replace it with other alternative schemes and compare the perfor-
mance. As shown in Table 18, among different dimensionality reduction methods, our diffusion
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Table 18: Recovery performance of multiple PASER versions integrated with different dimensionality
reduction approaches under various pruning schemes on LLaMA2-7B model. The PASER(Diffusion)
is the version we employ in the main body. The ‘bold’ represents the best performance under the
same pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
PASER(UMAP) 16.92 27.83 66.31 76.84 67.59 65.85 66.92 38.96 39.20 60.31
PASER(PCA) 17.05 28.16 66.18 76.73 67.46 65.73 66.84 38.87 39.10 60.18
PASER(t-SNE) 17.21 28.42 66.05 76.68 67.34 65.64 66.74 38.73 39.00 60.05
PASER(Diffusion) 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
PASER(UMAP) 14.83 25.42 71.15 78.91 72.25 67.84 69.95 40.82 40.30 63.03
PASER(PCA) 13.87 23.75 71.73 79.31 72.79 68.48 70.53 41.28 40.70 63.55
PASER(t-SNE) 13.59 23.24 72.04 79.53 73.06 68.73 70.81 41.43 40.90 63.79
PASER(Diffusion) 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
PASER(UMAP) 15.84 30.25 69.26 77.42 70.31 65.82 67.84 38.67 39.00 61.19
PASER(PCA) 15.46 29.48 69.14 77.35 70.27 65.74 67.79 38.75 39.60 61.23
PASER(t-SNE) 14.72 28.21 70.14 77.62 71.08 66.01 68.02 38.85 39.80 61.65
PASER(Diffusion) 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
PASER(UMAP) 14.89 26.31 73.25 77.45 65.15 68.47 71.28 37.82 38.80 61.75
PASER(PCA) 14.62 25.84 73.51 77.68 65.52 68.73 71.61 38.14 38.90 62.01
PASER(t-SNE) 13.98 24.95 74.13 78.04 66.14 68.86 72.09 38.43 39.10 62.40
PASER(Diffusion) 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

kernel approach consistently outperforms alternatives across all pruning schemes. The diffusion
kernel’s ability to preserve manifold structure while adapting to the intrinsic geometry of instruction
data proves particularly advantageous for capability-aware clustering. UMAP, PCA, and t-SNE each
demonstrate reasonable performance, but they fall short by 0.38-1.28 points compared to the diffusion
kernel approach on average reasoning tasks. The performance gap is especially pronounced under
structured pruning schemes like LLM-Pruner (0.79 points advantage) and SliceGPT (0.52 points
advantage), where capability degradation tends to be more severe and uneven. This confirms that
the diffusion kernel’s non-linear dimensionality reduction better captures the complex relationships
between instructions targeting similar capabilities, enabling more effective recovery prioritization.
While t-SNE shows competitive performance in some scenarios, its sensitivity to hyperparameters
and initialization makes it less stable for diverse instruction sets compared to our approach.

Table 19: Recovery performance of multiple PASER versions integrated with different data clustering
approaches under various pruning schemes on LLaMA2-7B model. The PASER(S2RIC) is the
version we employ in the main body. The ‘bold’ represents the best performance under the same
pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
PASER(NMF_TFIDF) 17.82 29.45 65.93 76.88 67.42 65.19 66.37 38.81 39.60 60.03
PASER(LDA_TFIDF) 17.56 28.91 66.18 77.02 67.76 65.58 66.92 38.95 39.70 60.30
PASER(KMeans_TFIDF) 17.21 28.13 66.47 77.15 68.04 65.92 67.23 39.12 39.80 60.53
PASER(Spectral_MTEB) 16.82 27.24 66.89 77.23 68.46 66.38 67.56 39.31 39.80 60.80
PASER(Spectral_BERT) 16.61 26.79 67.06 77.26 68.72 66.68 67.71 39.43 39.80 60.95
PASER(S2RIC) 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
PASER(NMF_TFIDF) 14.27 24.36 70.89 78.76 72.13 67.69 70.12 41.95 40.80 63.21
PASER(LDA_TFIDF) 14.86 25.19 70.31 78.42 71.64 67.25 69.58 40.37 40.60 62.60
PASER(KMeans_TFIDF) 13.58 23.42 71.46 79.07 72.61 68.14 70.48 41.08 41.00 63.41
PASER(Spectral_MTEB) 12.91 22.47 72.08 79.41 73.18 68.62 70.87 41.43 41.10 63.81
PASER(Spectral_BERT) 12.58 22.01 72.41 79.63 73.55 68.91 71.12 41.63 41.20 64.06
PASER(S2RIC) 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
PASER(NMF_TFIDF) 16.18 30.94 70.09 76.68 69.98 64.82 66.92 38.14 39.60 60.89
PASER(LDA_TFIDF) 18.74 34.98 69.85 76.31 69.42 64.37 66.48 37.82 39.40 60.52
PASER(KMeans_TFIDF) 15.49 29.76 70.92 77.03 70.51 65.28 67.38 38.47 40.30 61.41
PASER(Spectral_MTEB) 14.81 28.49 70.54 77.42 71.12 65.75 67.82 38.74 39.90 61.61
PASER(Spectral_BERT) 14.47 27.86 70.66 77.65 71.45 66.01 68.06 38.89 40.00 61.82
PASER(S2RIC) 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
PASER(NMF_TFIDF) 15.97 28.13 72.63 76.94 64.37 67.18 70.39 37.54 38.60 61.09
PASER(LDA_TFIDF) 15.41 27.09 73.12 77.31 64.93 67.63 70.92 37.86 38.80 61.51
PASER(KMeans_TFIDF) 14.72 25.91 73.61 77.66 65.46 68.09 71.48 38.19 39.00 61.93
PASER(Spectral_MTEB) 14.03 24.84 74.16 78.01 66.02 68.54 71.98 38.44 39.20 62.34
PASER(Spectral_BERT) 13.68 24.31 74.48 78.21 66.32 68.79 72.28 38.75 39.30 62.59
PASER(S2RIC) 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78
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N.3 EXPLORATION ON OTHER POSSIBLE CLUSTERING METHODS

To discuss the impact of different instruction tuning data clustering approaches, we replace our
Semantic-structural Recovery Instruction Clustering (S2RIC) module with some other common
text clustering method: NMF_TFIDF, LDA_TFIDF, KMeans_TFIDF, Spectral_MTEB, Spec-
tral_BERT (Xu et al., 2024a). The reasoning performance comparison among different PASER
versions with such clustering methods is provided in Table 19. From the table, we can find that inte-
grating other instruction clustering methods with PASER can bring the performance decline to some
extent among all four pruning schemes. Especially, the clustering method with traditional statistics-
based text representation technique, TFIDF, generally behaves worse than semantic embedding-based
text representation techniques like BERT. Therefore, we can conclude that our semantic-structural
recovery instruction clustering is at least a competitive approach as the clustering component of
PASER. Though, comparing these results with those in Table 1, we can observe the advantages of
PASER over other general instruction tuning data selection methods can still be stably maintained.
This further demonstrates that the potential of the clustering-based data selection for effective and
balanced LLM capability recovery.

Table 20: Recovery performance of multiple PASER versions integrated with different capability
degradation assessment approaches under various pruning schemes on LLaMA2-7B model. The
PASER(JSD) is the version we employ in the main body. The ‘bold’ represents the best performance
under the same pruning scheme. Here, the Alpaca is taken as the original dataset.

Pruning Recovery
Post-training WikiText2↓ PTB↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average

w/o pruning w/o Training 12.62 22.14 71.13 78.40 72.79 67.17 69.36 40.70 40.80 62.91

LLM-Pruner
ratio=25%

w/o Training 20.34 38.81 61.87 76.61 65.86 60.22 63.13 37.37 39.40 57.78
PASER(KLD) 16.91 27.54 66.52 76.95 68.24 65.84 66.58 38.74 39.70 60.37
PASER(WD) 16.73 27.26 66.81 77.10 68.58 66.18 67.08 39.09 39.80 60.59
PASER(JSD) 16.40 26.35 67.25 77.29 68.98 66.97 67.84 39.54 39.80 61.10

SliceGPT
ratio=25%

w/o Training 44.53 80.07 65.54 66.87 54.16 63.38 58.46 34.56 36.90 54.27
PASER(KLD) 13.81 23.64 71.59 78.87 72.28 67.85 69.94 40.84 40.50 63.12
PASER(WD) 13.10 22.75 72.08 79.25 72.93 68.39 70.48 41.26 40.90 63.61
PASER(JSD) 12.24 21.53 72.75 79.84 73.92 69.18 71.37 41.82 41.30 64.31

Wanda
sparsity=2:4

w/o Training 42.10 76.85 69.30 71.99 53.06 62.75 60.94 28.07 34.60 54.39
PASER(KLD) 15.29 29.08 69.85 77.13 70.65 65.47 67.58 38.52 39.20 61.20
PASER(WD) 14.64 28.21 70.42 77.54 71.23 65.86 67.95 38.78 39.70 61.64
PASER(JSD) 14.13 27.22 70.77 77.87 71.78 66.26 68.30 39.04 40.10 62.02

SparseGPT
sparsity=50%

w/o Training 19.26 36.41 71.22 75.60 62.85 66.06 69.11 36.86 37.80 59.93
PASER(KLD) 14.76 25.97 73.51 77.71 65.87 68.35 71.82 38.36 38.90 62.07
PASER(WD) 14.21 25.18 74.15 78.05 66.24 68.68 72.19 38.53 39.10 62.42
PASER(JSD) 13.33 23.77 74.79 78.38 66.62 69.03 72.57 38.70 39.40 62.78

N.4 EXPLORATION ON OTHER POSSIBLE CAPABILITY DEGRADATION ASSESSMENT
METHODS

To further demonstrate the advantages of utilizing Jensen-Shannon divergence (JSD) as the capa-
bility degradation assessment approach (elaborated in Section 3.3), we compare it with alternative
schemes like Kullback–Leibler divergence (KLD) (Kullback & Leibler, 1951) and Wasserstein dis-
tance (WD) (Vaserstein, 1969). As shown in Table 20, JSD consistently outperforms alternative
divergence measures across all pruning schemes. While KLD is a widely used dissimilarity measure,
its asymmetric nature (KLD(P ||Q) ̸= KLD(Q||P )) makes it less suitable for comparing output
distributions between original and pruned models, resulting in a 0.73 points average performance
drop compared to JSD. The WD performs better than KLD, but still falls 0.51 points short of JSD
on average reasoning performance. Although WD can capture gradual distribution shifts that might
be missed by other divergence measures, it appears to be more sensitive to outlier probability dif-
ferences that don’t necessarily correlate with capability degradation. This suggests that major shifts
in probability mass, rather than fine-grained transportation costs, are more indicative of capability
deterioration. JSD’s symmetry and boundedness (always between 0 and 1) provide a more stable
and interpretable measure of capability divergence, enabling more accurate prioritization of severely
affected capabilities. Its ability to balance sensitivity to both major and minor distribution shifts
makes it particularly effective for detecting subtle capability degradations that might be missed by
other measures. The superior performance of JSD across all four pruning schemes validates our
design choice in Section 3.3.
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N.5 EXPLORATION ON OTHER POSSIBLE BUDGET ALLOCATION STRATEGIES

Table 21: Recovery performance of different budget alloca-
tion strategies under various pruning schemes on LLaMA2-7B
model. The Linear proportional is the version we employ in
the main body. The ‘bold’ represents the best performance
under the same pruning scheme. Here, the Alpaca is taken as
the original dataset.

Allocation Strategy LLM-Pruner SliceGPT Wanda SparseGPT
Equal 60.34 63.52 61.28 62.05
Square-root scaling 60.68 63.81 61.56 62.31
Logarithmic scaling 60.51 63.65 61.43 62.18
Linear proportional 61.10 64.31 62.02 62.78

Beyond our proportional allocation
strategy in Equation 6, we explore
alternative allocation strategies in-
cluding equal allocation, square-
root scaling (nk ∝

√
CDS(ck)),

and logarithmic scaling (nk ∝
log(1 + CDS(ck))). As shown in
Table 21, the linear proportional al-
location consistently outperforms al-
ternatives, showing ∼0.4-0.8 points
higher average performance across
pruning schemes. This validates our
design choice while demonstrating
that PASER maintains reasonable
performance even with different allocation strategies.

O FINE-GRAINED DATA SELECTION TIME CONSUMPTION ANALYSIS

In addition to the recovery post-training efficiency analysis provided in the Figure 2 and Section 4.2,
we also analyze the fine-grained time consumption of each component to provide a deeper understand-
ing for PASER’s efficiency advantages during data selection phase. In the experiments, we follow

Table 22: Time consumption breakdown of PASER components on different-sized datasets.

Component Alpaca (52K) LaMini (2.58M)
Time (min) Percentage Time (hrs) Percentage

Semantic-Structural Recovery Instruction Clustering

SentenceBERT Embedding 0.63 11% 0.12 10%
Diffusion Kernel 1.64 28% 0.36 31%
NMF Spectral Clustering 0.82 14% 0.15 13%

Capability Degradation-Aware Instruction Selection

JSD Computation 0.35 6% 0.07 6%
Budget Allocation 0.12 2% 0.02 2%

Negative Tuning Effects Mitigation

Concept Extraction 1.22 21% 0.26 22%
CCG Construction 0.71 12% 0.14 12%
Consistency Checking 0.34 6% 0.06 5%

Total Selection Time 5.83 100% 1.18 100%

Recovery Training (Full Data) 83.63 – 57.97 –
Recovery Training (PASER) 26.71 – 4.29 –
Time Saving 56.92 68.1% 53.68 92.6%

the standard settings in the main body experiments: |B|=10.4K (20%) for Alpaca and |B|=103.2K
(4%) for LaMini. Our component-wise time consumption analysis reveals the relative computational
costs across PASER’s pipeline, as detailed in Table 22. The semantic-structural clustering process
(S2RIC) consumes approximately 54% of the total selection time, with the Diffusion Kernel phase
(30%) requiring the most computation in this component due to eigendecomposition operations.

The capability degradation assessment and budget allocation constitute about 8% of the selection time.
Here, JSD computation is the most intensive operation (6%), while budget allocation using Equation
6 requires minimal overhead (2%). This aligns with our theoretical analysis, as JSD computation
involves calculating probability distributions across the vocabulary space for each token.
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The negative tuning effects mitigation component, particularly building and maintaining the Concept
Consistency Graph, accounts for 39% of the selection process. Concept extraction (22%) and CCG
construction during sample selection (12%) are the key operations. For Alpaca, the complete CCG-
based filtering process required around 2.27 minutes but prevented negative tuning effects that would
have otherwise caused performance degradation of 0.68-2.39 points across tasks.

For larger datasets like LaMini (2.58M samples), we implemented optimizations to maintain scal-
ability: (1) approximate k-nearest neighbors with locality-sensitive hashing for manifold learning,
reducing complexity from O(N2) to O(N logN); (2) parallel processing for JSD computation
across multiple CPU cores; and (3) incremental CCG updates with optimized data structures. With
these optimizations, the complete data selection process for LaMini took approximately 1.18 hours,
significantly less than the days required for full dataset recovery training.

Despite the overhead of data selection (5.83 minutes for Alpaca and 1.18 hours for LaMini), PASER
achieves substantial overall time savings: 68.1% for Alpaca and 92.6% for LaMini compared to full
dataset training. These savings stem from the reduced training data volume (20% for Alpaca and 4%
for LaMini) and the focus on efficiency-driven sample selection that prioritizes samples with high
information-to-computation ratios.

The empirical measurements confirm our theoretical analysis in Section 3.5 - with the number of
concepts per sample C being relatively small (average of 5-7 concepts per instruction), the dominant
time complexity factor remains O(N logN). This enables PASER to scale efficiently to large
instruction tuning datasets while maintaining its performance advantages over conventional recovery
approaches.

P CASE STUDY FOR RECOVERY INSTRUCTION CLUSTERING

To illustrate the effectiveness of our Semantic-Structural Recovery Instruction Clustering (S2RIC)
approach for grouping samples focusing on similar capabilities together, we conduct a case study
of clustered instruction samples from the Alpaca dataset. Specifically, we provide representative
samples from several obtained clusters as follows.

P.1 CLUSTER 1: BASIC FACTUAL KNOWLEDGE AND INFORMATION RETRIEVAL

• Instruction: “Find the five largest cities in France.”
• Instruction: “What is the capital of France?”
• Instruction: “Find the population density of United States.”

These instructions primarily test the model’s ability to recall basic facts and information, correspond-
ing to general knowledge capabilities.

P.2 CLUSTER 2: LANGUAGE UNDERSTANDING AND TRANSLATION

• Instruction: “Translate the word ’giraffe’ to French.”
• Instruction: “Pick the correct Spanish translation of “Hello”.”
• Instruction: “Difference in meaning between "done freely" and "freely done¨? For instance, is

there any difference in meaning between these two sentences?”

This cluster focuses on language-related tasks, including translation, idiomatic expressions, and
grammatical analysis.

P.3 CLUSTER 3: LOGICAL REASONING AND PROBLEM SOLVING

• Instruction: “A friend shares the following text with you and asks for your opinion: ’Purple-eyed
individuals have a stronger psychic connection to the cosmos and have more chances to predict the
future.’ Analyze the statements and point out logical fallacies or unsupported claims.”

• Instruction: “Explain how to solve a Sudoku puzzle in three steps.”
• Instruction: “Answer this math question: What is the value of 3 to the power of 5?”
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These instructions test the model’s ability to perform mathematical calculations, logical deductions,
and pattern recognition.

P.4 CLUSTER 4: CREATIVE WRITING AND TEXT GENERATION

• Instruction: “Write a microblog post about a recent experience you had.”

• Instruction: “Compose a haiku about the wonders of technology.”

• Instruction: “Create an illustration of the inside of a castle.”

This cluster groups tasks that require creative text generation, showcasing the model’s ability to
produce original content across various formats and topics.

P.5 CLUSTER 5: SUMMARIZATION AND INFORMATION EXTRACTION

• Instruction: “Summarize the techniques used for summarizing text.”

• Instruction: “Extract the main argument from the passage.”

• Instruction: “Provide a brief summary of the article "A Brief History of the Automobile Industry".”

These instructions focus on the model’s capability to condense information and identify key points
from longer texts.

This study demonstrates that S2RIC effectively groups instructions targeting similar LLM capabilities,
enabling PASER to allocate recovery efforts, i.e., data budget, more strategically. By focusing
intensively on clusters where capabilities have degraded most after the pruning, while maintaining
awareness of all capability clusters, PASER achieves both targeted and balanced recovery. This
dual approach ensures efficient and comprehensive restoration of the model’s diverse functionalities,
optimizing the recovery process for pruned LLMs.

Q VISUALIZATION FOR RECOVERY INSTRUCTION CLUSTERING

To better illustrate the semantic relationship of clusters after our Semantic-Structural Recovery
Instruction Clustering, we provide the visualization results in the Figure 6. Notably, the numbered
samples in each cluster correspond to those in above Appendix P. For example, the instructions
numbered as 1,2,3 in Language Understanding cluster are the three samples provided in Appendix P.2.
From this figure, we can find that our approach successfully identifies meaningful semantic structures
in the instruction space that correspond to different LLM capabilities.

R CASE STUDY FOR NEGATIVE TUNING EFFECTS MITIGATION

To illustrate the negative tuning effects mitigation process in PASER, we present the following case
study, including both initial concept consistency graph construction and new sample evaluation.

R.1 CONSTRUCTING INITIAL CONCEPT CONSISTENCY GRAPH

We begin with three accepted instruction-output pairs to construct our initial Concept Consistency
Graph (CCG):

1. Instruction: "Explain the basic principles of quantum computing."
Output: "Quantum computing is based on the principles of quantum mechanics. It uses quantum
bits or qubits, which can exist in multiple states simultaneously due to superposition. Quantum
entanglement allows qubits to be correlated with each other. These properties enable quantum
computers to perform certain calculations much faster than classical computers for specific
problems."
Concepts: {quantum computing, qubit, superposition, entanglement}

2. Instruction: "Describe the main components of a classical computer."
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Figure 6: Visualization for the semantic-structural clustering of recovery instruction data by LLM
capabilities. For ease of presentation, only the first two manifold dimensions are utilized.

Output: "A classical computer typically consists of several key components: the Central Pro-
cessing Unit (CPU) which performs calculations and controls other components; Random Access
Memory (RAM) for temporary data storage; a hard drive for long-term data storage; and various
input/output devices. These components work together to process and store information using
binary logic."

Concepts: {CPU, RAM, hard drive, binary logic}

3. Instruction: "What are the fundamental concepts in deep learning?"

Output: "Deep learning is a subset of machine learning based on artificial neural networks. Key
concepts include: neural networks with multiple layers (deep neural networks), which can learn
hierarchical representations of data; backpropagation, an algorithm for training these networks by
adjusting weights; and various optimization techniques to improve learning. Deep learning has
shown remarkable success in tasks such as image and speech recognition."

Concepts: {deep learning, neural network, backpropagation, optimization}

Based on these samples, we construct an initial Concept Consistency Graph (CCG):

V = {quantum computing, qubit, superposition, entanglement,
CPU, RAM, hard drive, binary logic,
deep learning, neural network, backpropagation, optimization}
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The edges E in the graph represent the co-occurrence of concepts within each instruction-output pair.

E = {(quantum computing, qubit), (quantum computing, superposition),
(quantum computing, entanglement), (qubit, superposition),
(qubit, entanglement), (superposition, entanglement),
(CPU, RAM), (CPU, hard drive), (CPU, binary logic),
(RAM, hard drive), (RAM, binary logic), (hard drive, binary logic),
(deep learning, neural network), (deep learning, backpropagation),
(deep learning, optimization), (neural network, backpropagation),
(neural network, optimization), (backpropagation, optimization)}

This explicit definition of E clearly shows the relationships between concepts within each domain,
while highlighting the absence of edges between concepts from different domains.

R.2 EVALUATING NEW SAMPLES

We now evaluate two new samples using PASER’s negative tuning effects mitigation process.

R.2.1 SAMPLE 1: ACCEPTED

Instruction: "How does increasing the number of qubits affect a quantum computer’s performance?"

Output: "Increasing the number of qubits in a quantum computer can significantly enhance its
performance and capabilities:

1. Exponential growth in computational power: Each additional qubit doubles the number of quantum
states that can be represented, leading to an exponential increase in computational power.

2. Handling more complex problems: More qubits allow quantum computers to tackle larger and
more complex problems that are intractable for classical computers.

3. Improved error correction: A larger number of qubits can be used to implement more robust quan-
tum error correction codes, improving the overall stability and reliability of quantum computations.

4. Enhanced quantum parallelism: More qubits enable greater parallelism in quantum algorithms,
potentially leading to faster solution times for certain problems.

5. Challenges in scalability: However, increasing the number of qubits also introduces challenges
in maintaining coherence and reducing error rates, which are active areas of research in quantum
computing.

In summary, while increasing the number of qubits can dramatically improve a quantum computer’s
capabilities, it also comes with technical challenges that researchers are working to overcome."

Concepts: {qubit, quantum computer, computational power, quantum states, error correction, quan-
tum parallelism, coherence}

Applying PASER’s negative tuning effects mitigation process:

1. Concept Extraction: C(x, y) = {qubit, quantum computer, computational power, quantum
states, error correction, quantum parallelism, coherence}

2. Consistency Check: For each pair (vi, vj) ∈ C(x, y):

• (qubit, quantum computer): both ∈ V and (vi, vj) ∈ E

• (qubit, computational power): qubit ∈ V , computational power /∈ V

• (qubit, quantum states): qubit ∈ V , quantum states /∈ V

• Other pairs: at least one concept /∈ V

3. Decision: IsConsistent(x, y) = True, because for all pairs, either (vi, vj) ∈ E or {vi, vj} ̸⊂ V

PASER accepts this sample as it is consistent with the existing CCG and introduces relevant new
concepts without conflicts.
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R.2.2 SAMPLE 2: REJECTED

Instruction: "Explain how quantum computing can be used to significantly speed up deep learning
algorithms."

Output: "Quantum computing has the potential to speed up certain aspects of deep learning al-
gorithms. Quantum algorithms could potentially optimize the training process of neural networks,
especially in handling large-dimensional data. However, it’s important to note that the exact advan-
tages and applications are still being researched, and classical computers remain more practical for
most current deep learning tasks."

Concepts: {quantum computing, deep learning, neural network, speedup}

Applying PASER’s negative tuning effects mitigation process:

1. Concept Extraction: C(x, y) = {quantum computing, deep learning, neural network, speedup}
2. Consistency Check: For each pair (vi, vj) ∈ C(x, y):

• (quantum computing, deep learning): both ∈ V , but (vi, vj) /∈ E

• (quantum computing, neural network): both ∈ V , but (vi, vj) /∈ E

• (deep learning, neural network): both ∈ V and (vi, vj) ∈ E

• (speedup, any other concept): speedup /∈ V

3. Decision: IsConsistent(x, y) = False, because the pairs (quantum computing, deep learning) and
(quantum computing, neural network) have both concepts in V, but these edges do not exist in E.
This introduces new relationships between existing concepts that are not present in the current
CCG.

PASER rejects this sample because it introduces direct relationships between quantum computing
and deep learning/neural networks, which were not present in the initial CCG. While these concepts
existed separately in the CCG, their combination in this context could lead to potential misunder-
standings or oversimplifications about the current state and capabilities of quantum computing in
machine learning.

R.3 CONCLUSION

This case study demonstrates PASER’s negative tuning effects mitigation process in action. By
accepting Sample 1, PASER allows for the introduction of new, relevant concepts that expand the
concept consistency graph without introducing conflicts. By rejecting Sample 2, PASER prevents
the introduction of potentially misleading relationships between existing concepts from different
domains, thus mitigating the risk of negative tuning effects during the recovery process.

S IMPLEMENTATION DETAILS AND HYPERPARAMETER SETTINGS

Most of experiments are conducted on the server with 8 × NVIDIA RTX 6000 Ada GPUs. Part of
experiments on 70B model and MOE models are conducted on NVIDIA H800 Tensor Core GPU
cluster. For the Semantic-Structural Recovery Instruction Clustering, we use consistent settings
across all experiments: diffusion time t is automatically selected using the spectral gap method, and
the embedding dimension d is set to 16. The optimal number of clusters K is determined adaptively
through NMF approximation error minimization, typically resulting in 8-12 clusters for Alpaca
and 15-20 clusters for LaMini. For the JSD calculation in capability degradation score, we use a
temperature τ=1.0 for the output probability distribution. The computational cost is approximated
using the quadratic term of sequence length with a coefficient of 1.0 across all experiments. For
concept extraction, we use a maximum of 10 concepts per instruction-response pair with a minimum
phrase length of 2 words and a maximum of 4 words. The concept similarity threshold for consistency
checking is set to 0.75 across all experiments. We maintain these same hyperparameter settings
across all models and pruning schemes to ensure fair comparison. During the recovery post-training
phase, we take the the low-rank approximation, LoRA (Hu et al.), to improve the efficiency. The
corresponding hyperparameters are set as following: rank=8, batch size=64, epochs=2, learning rate
= 1e-4 (Alpaca series experiments), 5e-5 (LaMini series experiments). As for the structured pruning,
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we set the pruning ratio as 25% for LLaMA2-7B/LLaMA3-8B/Baichuan2-7B and 50% for LLaMA2-
13B/LLaMA2-70B/Baichuan-13B models. For the other two kinds of pruning schemes, we follow
the previous work (Frantar & Alistarh, 2023). Specifically, we adopt the 2:4 semi-structured sparsity
patterns and implement 50% unstructured weight sparsity. Except the experiments for recovery
post-training efficiency analysis, we set the ratio of recovery data budget B to original dataset size N
as 20% for Alpaca and 4% for LaMini. As for the implementation of concept extraction in Section 3.4,
we use the open-source library rake-nltk 6. To ensure statistical robustness, all the results reported
in this paper are the averages of five runs with different seeds. Statistical significance is also assessed
using two-tailed independent t-tests, with results considered significant when p < 0.01. In our
experiments, we find all our reported results for PASER can pass this statistical significance test. For
facilitating the reproduction of our work, we provide the code in the supplementary materials, also
seen in anonymous Github https://anonymous.4open.science/r/PASER-E606.

T LIMITATION ANALYSIS

While PASER demonstrates significant improvements in recovery performance and efficiency for
pruned large language models, there are several limitations to consider:

• Computational overhead: Although PASER reduces the recovery training time, the initial cluster-
ing and data selection process introduces some computational overhead. For very large instruction
tuning datasets, this overhead may become non-trivial.

• Dependence on initial pruning quality: The effectiveness of PASER may vary depending on the
quality and method of the initial model pruning. Poorly pruned models might not benefit as much
from the targeted recovery approach.

• Potential bias in capability recovery: While PASER aims for balanced capability recovery, there
might still be some bias towards certain capabilities based on the initial clustering results and the
composition of the instruction tuning dataset.

• Scalability to extremely large models: The paper primarily demonstrates results on models up to
70B parameters. The scalability and effectiveness of PASER on even larger models (e.g., 100B+
parameters) need further investigation.

• Long-term Stability: The long-term stability of models recovered using PASER, especially under
continued fine-tuning or adaptation, has not been thoroughly examined in this work.

Limitations of Concept Consistency Graph. In addition to the above analysis, we further discuss the
concept consistency graph’s potential limitations. Indeed, while CCG helps mitigate negative tuning
effect, we acknowledge there are scenarios where semantic conflicts might not be fully captured:

• Cross-domain Knowledge Integration: When instructions involve integrating knowledge from
multiple distinct domains, CCG might miss subtle conflicts in their interactions. For example,
when concepts from physics and biology are combined in interdisciplinary problems, their complex
relationships and potential incompatibilities may not be fully reflected in simple co-occurrence
patterns.

• Context-dependent Semantics: The same concept pairs might have different relationships de-
pending on context. For instance, terms like "positive" and "negative" could be contradictory in
sentiment analysis but complementary in mathematics, making it challenging for CCG to maintain
consistent concept relationships across different contexts.

• Temporal or Version-specific Conflicts: In rapidly evolving domains like technology or scientific
research, concept relationships might change over time. An instruction about "state-of-the-art
performance" or "current best practices" could contain outdated or conflicting information that is
not immediately apparent from concept co-occurrence analysis.

• Nuanced Conceptual Dependencies: When instructions involve subtle logical dependencies or
conditional relationships between concepts, the binary edge representation in CCG might not
fully capture these complex interactions. This is particularly evident in reasoning tasks where
conclusions depend on specific combinations of conditions.

6https://pypi.org/project/rake-nltk/
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Our results acknowledge these inherent limitations while demonstrating CCG’s overall effectiveness
in practical applications.

U DECLARATION OF LLM USAGE

We used a general-purpose large language model assistant solely for language editing (grammar
polishing, minor rephrasing, and shortening) and for non-substantive code scaffolding (e.g., generating
boilerplate for plotting or CLI argument parsing). All research ideas, algorithmic designs (PASER),
theoretical analyses, experiment setups, and reported results were conceived, implemented, and
verified by the authors. No figures, tables, proofs, or claims were generated by an LLM without
human verification, and no conclusions rely on unverifiable LLM outputs. No new training or
evaluation data were created with an LLM for this work. We rely on publicly available instruction-
tuning datasets (e.g., Alpaca and LaMini), whose responses were originally synthesized by third-party
LLMs as documented by their providers; we used them as-is without further LLM-based modification.
The assistant was not used to generate novel technical content unique to this paper (e.g., PASER’s
methodology, equations, or ablation study design). All code that implements PASER’s selection
pipeline and all experimental decisions were written and reviewed by the authors. The LLM is not an
author and bears no responsibility for the work; accountability lies with the human authors. When
LLM suggestions influenced wording, the authors performed fact-checking and ensured compliance
with dataset licenses and double-blind review requirements
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