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Abstract

Sign language translation (SLT) aims to translate perceived visual signals into spo-1

ken language. Recent works have achieved impressive performance by improving2

visual representations and adopting advanced machine translation techniques, but3

the faithfulness (i.e., whether the SLT model captures correct visual signals) in SLT4

has not received enough attention. In this paper, we explore the association among5

SLT-relevant tasks and find that the imprecise glosses and limited corpora may6

hinder faithfulness in SLT. To improve faithfulness in SLT, we first integrate SLT7

subtasks into a single framework named MonoSLT, which can share the acquired8

knowledge among SLT subtasks based on their monotonically aligned nature. We9

further propose two kinds of constraints: the alignment constraint aligns the visual10

and linguistic embeddings through a sharing translation module and synthetic11

code-switching corpora; the consistency constraint integrates the advantages of12

subtasks by regularizing the prediction consistency. Experimental results show that13

the proposed MonoSLT is competitive against previous SLT methods by increasing14

the utilization of visual signals, especially when glosses are imprecise.15

1 Introduction16

Sign languages, as a typical visual language, fulfill the same social and mental functions within17

the Deaf community effectively. Sign languages convey information through a unique physical18

transmission system and the corresponding linguistic theory [1], which makes them differ greatly19

from spoken languages. To bridge the communication gap between the Deaf and hearing communities,20

vision-based Sign Language Recognition (SLR) [2, 3] and Sign Language Translation (SLT) [4–6]21

have attracted much attention over several decades. Recent works often evaluate different aspects of22

sign language understanding models on these two tasks: the effectiveness of the feature extraction [7–23

9] and the transferability from visual features to the target spoken language [10–12]. However, the24

association between these two tasks has not been paid enough attention.25

Gloss1 sequences play a critical role in both SLR and SLT. On one hand, recent SLR datasets [3, 11]26

have limited samples and only provide sentence-wise annotations (i.e., gloss sequences) due to the27

high cost of frame-wise annotations, and the monotonous alignment between the gloss sequence28

and sign clips makes it possible to leverage Connectionist Temporal Classification (CTC) [13] to29

provide supervision. On the other hand, Gloss sequences are widely used as the input of Gloss2Text30

(G2T) task to estimate the upper bound of Sign2Text (S2T) task [6, 12]. The relationship among31

these tasks is illustrated in Fig. 1(a). Because glosses can be used to evaluate both SLR and SLT32

models, it is logical to assume that the SLR model with a lower error rate (more accurate prediction of33

glosses) can provide more accurate translation results. However, as a visual language, sign language34

conveys information through multiple visual signals and glosses are imprecise representations of sign35

videos [10]. Many attempts [10, 14–16] have been done to improve the visual representations but36

how to reduce effects from imprecise gloss has not attracted enough attention.37

1Gloss is the written approximation of a sign.
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Text:       Darunter zum teil schneeregen.

（Partly sleet underneath.）
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Figure 1: (a) An example from Phoenix14T [3]. The goal of SLR is to recognize a gloss sequence,
which is monotonically aligned with sign clips, from the sign video. S2T and G2T aim to translate
sign videos and gloss sequences into spoken language sentences, and G2T is often regarded as the
‘upper bound’ of S2T. (b) We decompose S2T into two subtasks based on the temporal receptive
fields of source features: Vision-to-Text (V2T) and Context-to-Text (C2T), all SLT subtasks have
monotonically aligned source features.

As shown in Fig. 1(a), S2T and G2T are similar translation tasks. Different from general multilingual38

Neural Machine Translation (NMT) [17, 18], they have monotonically aligned source languages39

(glosses and sign clips) and the same target language. Previous works attempt to improve SLT40

performance by adopting large-scale pretrained LMs [12] and leveraging extra corpus [11, 19]. These41

works are developed under the paradigm that ‘improves G2T first and then transfers to S2T’, which42

greatly improve S2T performance but inevitably face the hallucination problem [20] (i.e., S2T models43

tend to generate fluent but inadequate translations), and we attribute this problem to the lack of44

faithfulness [21] (i.e., the S2T models cannot capture correct visual signals). Besides, the availability45

of G2T corpora is also the bottleneck for the generalization of the pretrained model.46

In this paper, we attempt to increase the utilization of visual signals in S2T to improve faithfulness,47

especially when glosses are imprecise. We first decompose S2T into two subtasks based on the48

temporal receptive fields of source features: Vision-to-Text (V2T) and Context-to-Text (C2T). As49

shown in Fig. 1(b), from V2T to C2T to G2T, the degree of visual abstraction of source features50

gradually increases, while the translation quality will get better generally. We revisit recent SLT51

approaches [22, 12] and observe that it is hard for V2T models to find the corresponding visual clips52

during training, while this is exactly the strength of G2T models. Moreover, improving the alignment53

between visual clips and target words can improve the faithfulness of translation and relieve the54

hallucination problem. Different from recent works [11, 12, 19] that attempt to improve the ‘upper55

bound’ (G2T) of C2T, we focus on the association among these tasks and try to improve the ‘lower56

bound’ (V2T) of C2T.57

Specifically, we first integrate the learning of SLT subtasks into a single framework named MonoSLT58

by sharing their translated modules, which can share the acquired knowledge among SLT subtasks59

based on their monotonically aligned nature. We further propose two kinds of constraints to enhance60

faithfulness in SLT. The alignment constraint implicitly aligns the visual and linguistic embeddings61

through the shared translation module and synthetic code-switching corpora, which are generated62

by replacing partial visual embeddings with their corresponding gloss embeddings. The consistency63

constraint regularizes prediction consistency between different subtasks, which can improve both64

training efficiency and translation quality. Experimental results show that the proposed approach can65

surpass previous SLT methods on Phoenix14T by increasing the utilization of visual signals.66

Our contributions can be summarized as follows:67

⋄ Exploring the association among different relevant tasks about SLT and integrating SLT subtasks68

into a single framework named MonoSLT, which can share the acquired knowledge among SLT69

subtasks based on their monotonically aligned nature.70

⋄ Proposing two kinds of constraints to enhance faithfulness in SLT. The alignment constraint71

aligns the visual and linguistic embeddings through a shared translation module and synthetic72

code-switching corpora, and the consistency constraint leverages the advantages of subtasks by73

regularizing the prediction consistency.74

⋄ Showing the lack of faithfulness in recent SLT methods and verifying the effectiveness of75

MonoSLT for the utilization of visual signals, especially when glosses are imprecise.76
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2 Related Work77

Sign Language Translation. With the development of vision and language understanding algorithms,78

SLT has progressed rapidly in recent years [6, 23, 22, 11, 12, 15]. Recent SLT methods can be79

roughly categorized into two categories: vision-based and language-based.80

Vision-based SLT works devote to learning useful visual representations from videos. Considering81

the relationship with SLR, recent SLT solutions can be roughly divided into three categories: SLR-82

pretrained, SLR-supervised, and SLR-free. SLR-pretrained solutions initialize the visual extractor83

with pretrained SLR models [12, 15] or directly adopt the pretrained SLR models to extract visual84

embeddings [10, 19]. SLR-supervised solutions [22, 14, 15] adopt the multi-task framework and85

leverage the supervision from both SLR and SLT. SLR-free solutions [23–27] attempt to tokenize86

visual information without gloss supervision and leverage more real-life data. Recent empirical87

results [15, 19] indicate that adopting more accurate SLR models in SLR-pretrained and SLR-88

supervised solutions often leads to better translation quality, but little work has been done to investigate89

the association between them.90

On the other side, language-based SLT works focus on the linguistic difference between sign91

languages and spoken languages. The pioneering work [6] regards SLT as a typical NMT task92

and shows the potential of the encoder-decoder framework. Joint-SLRT [10] further adopts the93

transformer architecture [28] to integrate both SLR and SLT into a single framework. However, it94

is costly to collect large amounts of parallel corpora for SLT and recent works [11, 12, 19] reveals95

that data scarcity hinders the further development of SLT. To relieve this problem, Zhou et al. [11]96

leverage rich monolingual data and adopt back-translation to generate synthetic parallel data as a97

supplementary. Chen et al. [12] explore the potential of denoising auto-encoder that pretrained on98

large-scale multilingual corpora and progressively pretrain each task to achieve effective transfer in99

SLT. SLTUNet [19] proposes a unified model for multiple SLT-related tasks to further improve the100

translation. Our motivation is similar with [19] but we focus more on faithfulness, and leverage the101

monotonically aligned nature of SLT subtasks to align visual and linguistic embeddings.102

Faithfulness in NMT. With the rapid development of the NLP techniques [28–31], the robustness103

and interpretability of NMT systems become a crucial issue. A good NMT model should produce104

translations that capture the intended meaning of the source language (faithfulness) while maintaining105

grammatical correctness and naturalness in the target language (fluency) [32, 33]. However, NMT106

models may generate hallucinations due to exposure bias [34], domain shift [35], lack of coverage [36],107

and other factors [20]. To enhance the faithfulness in NMT, Tu et al. [36] maintain a coverage108

vector to encourage NMT models to consider more source words, Wang and Sennrich [35] leverage109

minimum risk training to mitigate domain shift, and Feng [33] propose a faithfulness part to enhance110

the contextual representation of encoder output. Different from general NMT tasks, SLT models111

need to encoder source information from unsegmented video, which makes it harder to learn the112

correspondences between video and language and generate faithful translations. We focus on the113

relationship between visual and language translation tasks rather than diving into specific translation114

module designs, which makes the proposed method compatible with other NMT techniques.115

3 Approach116

In this section, we first introduce notation and background knowledge briefly. Then we explore117

the association among SLT-relevant tasks and present some empirical findings about the lack of118

faithfulness in SLT. After that, we propose a method to improve faithfulness in SLT.119

3.1 Background120

Formally, given a sign sequence X = {x1, · · · ,xT } with T frames, SLR aims to recognize its121

corresponding gloss sequence G = {g1, · · · , gN} with N glosses (N ≤ T in general), which are122

monotonically aligned with sign clips S = {xη1
, · · · ,xηN

} and ηi is the corresponding frame123

indexes of gloss i. The SLR model is generally optimized by CTC, which leverages all possible124

alignments between X and G and can be written as LCTC = − log p(G|X ). Different from SLR,125

the objective of SLT is to translate X into spoken language sentence W = {w1, · · · , wM} with M126

words (M ̸= N in general), which often has different grammar and vocabulary, and the SLT model is127

optimized by minimizing the negative log-likelihood LSLT =
∑M

t=1 − log p(wt|X , w<t).128
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Figure 2: Overview of the proposed method. For baseline (C2T), the visual module is composed of a
lightweight GCN-based module and a Conv1D module, and the contextual module is implemented as
a two-layer BiLSTM. The proposed method has an auxiliary branch that takes the switched gloss and
visual embeddings as input, and both branches share the same translation modules. An additional
consistency loss is adopted to regularize the prediction consistency.
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Figure 3: BLEU-4 scores of different subtasks over epoch on Phoenix14T (a) dev and (b) training
sets. (c) Fluctuation of SLT performance over SLR performance (the upper), and the corresponding
number of samples for each SLR performance interval (the lower) on Phoenix14T dev set.

Recent SLT architectures [14, 9, 12] commonly contain three components: a visual module, a129

contextual module, and a translation module. The basic architecture used in this paper is visualized130

in Fig. 2. Considering the training efficiency, we use the coordinates of keypoint sequences as inputs.131

As for the visual module, we adopt a lightweight GCN-based module and a two-layer temporal132

convolution block (Conv1D). The outputs of the visual module V = {v1, · · · ,vT } are fed into a133

two-layer BiLSTM to obtain contextual features C = {c1, · · · , cT }. As mentioned in Fig. 1(b), all of134

V , C, and G can be used as the source language for SLT, which are corresponding to V2T, C2T, and135

G2T subtasks, respectively. Similar to VAC [9], we adopt two classifiers on both V and C to provide136

supervision for SLR, and the basic supervision can be formulated as:137

Lbasic = LV
CTC + LC

CTC + λCL
C
SLT , (1)

where the superscript indicates the input features of the loss function and λC is the translation weight.138

3.2 Exploring the Association among SLT-relevant Tasks139

As shown in Fig. 2, the adopted baseline can learn SLR and SLT jointly, and the features of SLR are140

further utilized by the translation module, which provides a sufficient basis to explore the relationship141

between different SLT-relevant subtasks. We first train three individual models for V2T, C2T, and142

G2T, respectively, and visualize the evaluation results during the training on Phoenix14T [3] in143

Fig. 3(a) and 3(b). We can observe different convergence behaviors on SLT subtasks: the G2T model144

converges faster at the beginning and achieves higher performance on the dev set, the S2T model145

achieves comparable performance on the dev set but tends to overfit the training set, while the V2T146

model encounters difficulties in converging. This observation indicates that the C2T model meets the147

issue of overfitting before finding the correct visual signals, especially when adopting a powerful148

translation module, and we identify this issue as the lack of faithfulness.149

Moreover, we divide the dev set into several subsets based on SLR performance, and visualize the150

relationship between SLT and SLR performance of the C2T model in Fig. 3(c). It is surprising151
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to observe that there is no significant negative correlation (i.e., achieving higher BLEU scores152

on the subset with lower WER) between the performance of SLR and SLT, even though lower153

WER indicates the less accumulated error. We analyze results and find that C2T models tend to154

generate hallucinations [20], which are fluent but unrelated to source gloss sequences. This is another155

phenomenon that reflects a lack of faithfulness.156

Based on the above observations, we conclude that enhancing the capability of SLT models to157

accurately identify visual signals is crucial, which can improve the faithfulness of SLT models.158

Besides, we assume imprecise gloss representations may hinder the further development of SLT159

models, and it is essential to increase the utilization of visual information. Different from recent160

works [12, 19] that explore the use of linguistic information to guide the learning of visual features,161

we prefer to take advantage of both modalities based on their different characteristics.162

3.3 Improving Faithfulness in SLT163

Previous works have shown remarkable success in modeling multi-lingual languages [37, 38] and164

cross-modal information [39] with a single transformer-based model [28], which verifies the capability165

of transformer-based models for aligning multi-source domains. Different from exploiting large-scale166

parallel corpora in a self-supervised way, we focus on how to make full use of existing supervised167

data in the low-resource setting. The proposed method includes a joint training scheme and two168

constraints.169

Joint Learning of SLT Subtasks. All of the SLT subtasks (V2T, C2T, and G2T) are monotonically170

aligned and this characteristic of SLT indicates the acquired knowledge about translation can be171

shared across subtasks, which can not only control model complexity but also reduce overfitting.172

Therefore, we first integrate SLT subtasks into a single framework and learn them jointly. We173

adopt the pretrained word embedding of mBart [38] as previous work [15] to obtain the linguistic174

embedding sequence E(G) from a given gloss sequence G. To bridge the gap between visual and175

linguistic modalities, we use a two-layer MLP P to obtain the visual embedding sequences P(V) and176

P(C). Besides, we share P and SLR classifiers for V and C to ensure the alignment between different177

kinds of visual features [40]. All of E(G), P(V), and P(C) are sent to the same translation module,178

and auxiliary translation losses are applied to the outputs of P(V) and E(G) for joint learning:179

Ljoint = Lbasic + λGL
G
SLT + λVL

V
SLT , (2)

where λG and λV are hyperparameters to control the balance among subtasks.180

Alignment Constraint. The joint learning scheme shares the translation module among subtasks, but181

it is hard to identify the relationships between multiple subtasks and we try to further simplify this182

scheme. Code-switching [41] is a phenomenon that the alternation of languages within a conversation183

or utterance, which occurs when speakers are multilingual and familiar with correspondences among184

languages. As mentioned in Fig. 1(b), the source features of SLT subtasks are monotonically aligned,185

which provides a sufficient basis to let the SLT learner train with a multilingual learner jointly and186

make the SLT learner aware of word alignment implicitly. As shown in Fig. 2, we only keep two187

branches for SLT: the primary branch is training for the C2T subtask, and the auxiliary branch needs188

to tackle code-switching translation.189

To generate a synthetic code-switching corpus for the auxiliary branch, we first estimate the alignment190

path π̂ = argmaxπ p(π|X ,G) with the maximal probability [42] from the recognition prediction of191

the primary branch, and then obtain the corresponding frames indexes ηi from π̂ for each gloss i. The192

code-switched sentence embedding CS(V,G) is generated by replacing visual embeddings of each193

gloss in P(V) with the corresponding gloss embeddings E(G) (e.g., replacing P(V)ηi
with E(Gi) for194

gloss i) with a probability of β:195

CS(V,G) = diag (1−m(β))P(V) + diag(m(β))E(G), (3)

where m(β) is the mask vector for replacing and diag(·) convert a vector to the corresponding196

diagonal matirx. In addition to the above gloss-wise code-switching, we also propose a sentence-wise197

generation process, which simply mixes embedding sequences as Mixup [43]:198

CS(V,G) = (1− β)P(V) + βE(G). (4)

It is worth noting that β controls the ratio of gloss embeddings in the code-switched sentence, we199

adopt a larger β at the beginning to leverage the fast convergence of the gloss embedding and then200

5



gradually decay. To balance all subtasks and prevent overfitting, we further adopt a cyclical annealing201

schedule [44], which gradually reduces β within each cycle:202

β = max(0, 1− 2 ∗ mod(t− 1,M)/M), (5)

where t is the epoch number, and M is the number of epochs for each cycle. We adopt a hyperparam-203

eter λCS to weight the auxiliary translation loss and formulate the total process as:204

Lalign = Lbasic + λCSL
CS
SLT . (6)

Consistency Constraint. The alignment constraint implicitly aligns visual and linguistic embeddings205

by sharing the translation module and leveraging synthetic code-switching corpora. However, there is206

a certain degree of complementarity between different kinds of subtasks: G2T takes discrete gloss207

embedding as input, which can easily capture correspondences between source and target languages208

but may lose detailed visual information, while V2T and C2T take continuous embedding as input,209

which contains more useful information about the sign but struggles to converge. To better leverage210

the characteristics of different subtasks and balance the training processes, we further propose a211

consistency constraint to regularize the SLT predictions between two branches:212

Lconsist = DKL(pC ||pCS) +DKL(pCS ||pC) (7)

where pC and pCS are the predicted distribution over words based on features C and CS , respectively,213

and DKL(·, ·) denotes Kullback-Leibler divergence. When applying both constraints, the consistency214

constraint encourages the C2T model to find correct correspondences at the beginning of each cycle215

and gradually improves the importance of visual information as β decays. The consistency constraint216

can also be explained from mutual learning [45] and learning from noisy labels [46].217

Since the proposed method is based on the Monotonically aligned nature of SLT subtasks, we named218

it MonoSLT and its final objective function is:219

Lfinal = Lalign + λcLconsist, (8)

where λc is the hyperparameter to balance constraints.220

4 Experiments221

4.1 Datasets and Evalution Metrics222

Datasets. We evaluate MonoSLT on RWTHPHOENIX-Weather 2014T (Phoenix14T) and CSL-Daily223

datasets, and both datasets provide gloss and translation annotations.224

⋄ Phoenix14T [6] is an extension of the previous SLR dataset [3] by redefining segmentation225

boundaries and providing parallel gloss annotation and German translation. It is collected from226

weather forecast broadcasts and manually annotated, which indicates the gloss annotations may227

be imprecise. It has 8,257 sentences signed by 9 signers with vocabularies of around 1k glosses228

and 3k German words. There are 7096, 519, and 642 samples in training, dev, and test sets.229

⋄ CSL-Daily [11] is a Chinese sign language dataset with vocabularies of around 2k glosses and230

2.3k Chinese characters. Different from Phoenix14T, CSL-Daily is collected by first designing231

the sign language corpus based on Chinese Sign Language textbooks and some Chinese corpora,232

and then inviting 10 signers to sign reference texts, which indicates the gloss annotations are quite233

precise. There are 18401, 1077, and 1176 samples in training, dev, and test sets.234

Evalution Metrics. Similar to machine translation, BLEU [47] and ROUGH [48] scores (higher is235

better) are used to measure translation performance. We also report word error rate (WER, lower is236

better) to reflect the performance of SLR modules as previous works [3, 9, 15] do.237

4.2 Implementation Details238

For efficiency, we utilize MMPose [49] to estimate keypoint sequences from sign videos, and it239

generates 133 2D keypoints for each frame. We select 77 keypoints and divided them into five groups:240

9 for body, 21 for each hand, 8 for mouth, and 18 for face. Group-wise modified ST-GCN [50] blocks241

are adopted to extract features from each group, and extracted features are projected to a vector of242

1024 dimensions for each frame. For Conv1D, we adopt a ‘C3-P2-C3-P2’ structure, where C and P243
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Table 1: Performance comparison (%) on Phoenix14T dataset. The highest performance is highlighted
in bold, while the second is underlined. ‡ denotes methods without using gloss annotations. † denotes
methods only taking skeleton sequences as input. (R and B denote ROUGE and BLEU.)

Sign2Text Dev Test
R B4 WER R B1 B2 B3 B4 WER

SL-Luong‡ [6] 31.80 9.94 - 31.80 32.24 19.03 12.83 8.58 -
TSPNet‡ [23] - - - 34.96 36.10 23.12 16.88 13.41 -
JointSLRT [22] - 22.38 24.98 - 46.61 33.73 26.19 21.32 26.16
STMC-T [14] 48.24 24.09 21.1 46.65 46.98 36.09 28.70 23.65 20.7
SignBT [11] 50.29 24.45 22.7 49.54 50.80 37.75 29.72 24.32 23.9
MMTLB [12] 53.10 27.61 21.90 52.65 53.97 41.75 33.84 28.39 22.45
SLTUNet [19] 52.23 27.87 19.24 52.11 52.92 41.76 33.99 28.47 -
TwoStream-SLT-K† [15] 53.21 27.83 27.14 52.87 53.58 41.78 33.60 27.98 27.19
TwoStream-SLT [15] 54.08 28.66 17.72 53.48 54.90 42.43 34.46 28.95 19.32
Baseline† 53.22 27.55 21.5 52.56 53.69 40.96 32.84 27.37 21.1
MonoSLT† 55.41 29.96 21.2 55.73 57.05 44.70 36.73 31.15 21.4

Table 2: Performance comparison4 on CSL-Daily dataset. The highest performance is highlighted in
bold, while the second is underlined. * denotes methods with the inconsistent punctuation bug. The
results of [6, 22] are reproduced by SignBT [11]. (R and B denote ROUGE and BLEU.)

Sign2Text Dev Test
R B4 WER R B1 B2 B3 B4 WER

MMTLB* [12] 53.38 24.42 - 53.25 53.31 40.41 30.87 23.92 -
TwoStream-SLT* [15] 55.1 25.76 25.4 55.72 55.44 42.59 32.87 25.79 25.3
Baseline* 50.85 22.83 29.1 50.96 52.11 38.97 29.46 22.74 28.2
MonoSLT* 52.58 23.67 29.1 52.58 52.65 39.72 30.27 23.53 28.2
SL-Luong [6] 34.28 7.96 - 34.54 34.16 19.47 11.84 7.56 -
Joint-SLRT [22] 27.06 11.88 - 36.74 37.38 24.36 16.55 11.79 -
Sign-BT [11] 49.49 20.8 33.2 49.31 51.42 37.26 27.76 21.34 32.2
SLTUNet [19] 53.58 23.99 - 54.08 54.98 41.44 31.84 25.01 -
Baseline 53.47 25.90 29.1 53.71 55.30 41.91 32.56 25.91 28.2
MonoSLT 55.28 26.91 29.1 55.35 55.87 42.75 33.52 26.83 28.2

denote 1D-CNN and max-pooling layer, respectively. Following [12], we utilize the official release244

of mBART-large-cc25 2, which is pretrained on CC25 3, as the initialization of the translation module.245

The default setting for hyperparameters: λC , λG , λV are set to 1.0 and λc is set to 0.1 for simplicity.246

The beam width for the CTC decoder and the SLT decoder are 10 and 4, respectively. We train247

each model for 80 epochs with the cosine annealing schedule and an Adam optimizer, and the initial248

learning rate for each module: 1e-3 for the MLP, 1e-5 for the translation module, and 3e-3 for others.249

Each experiment is conducted on a single NVIDIA GeForce RTX 3090 GPU. Other details can be250

found in the supplementary.251

4.3 Comparison with State-of-the-art252

Quantitative Comparison. We report the performance of our MonoSLT model and relevant methods253

on Phoenix14T in Table 1. Because this paper mainly focuses on improving faithfulness, we put254

results of the Sign2Gloss2Text task in the supplementary. As shown in Table 1, we adopt a strong255

baseline, and the proposed method can bring further improvement (+3.79 BLEU-4). Besides, the256

proposed MonoSLT is not the best SLR approach, but outperforms the previous SLT method [15]257

with the best SLR performance by 2.2% (WER: 21.4% vs.19.3%, BLEU-4: 31.15% vs.28.95%).258

MonoSLT also surpasses other previous methods with similar SLR performance, which indicates259

MonoSLT can increase the utilization of visual signals. This observation also reveals the lack of260

faithfulness in recent SLT methods, e.g., TwoStream-SLT [15] with multi-modality inputs (both261

skeleton sequence and video) achieve much better SLR performance than with skeleton sequence262

only (WER: 27.14% vs.17.72%), but it achieves comparable SLT performance (BLEU-4: 28.23%263

2https://huggingface.co/facebook/mbart-large-cc25
3https://commoncrawl.org/
4Our translation module is based on MMTLB (https://github.com/FangyunWei/SLRT), and we find it has an

inconsistent punctuation bug during tokenization. For a fair comparison, we report results under both settings.
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Table 3: A translation example of the lack of visual faithfulness on Phoenix14T dev set. We highlight
the hallucination in red, and its corresponding correct translation and gloss in blue.

SLR Ref: morgen / sonne / ueberall / kueste / region / wolke / moeglich / regen neg-viel
( tomorrow / sun / everywhere / coast / region / cloud / possible / rain )

SLR Hyp: morgen / sonne / himmel (sky) / kueste / region / wolke / moeglich / regen neg-viel

SLT Ref: am mittwoch im süden und an den küsten etwas regen sonst ist es meist freundlich .
(on wednesday in the south deland on the coasts some rain otherwise it is mostly friendly .)

Baseline Hyp: am mittwoch im süden und nordosten hier und da regen sonst zum teil freundlich .
(on wednesday in the south and northeast here and there rain otherwise partly friendly .)

MonoSLT Hyp: am mittwoch im süden und an den küsten etwas regen sonst ist es recht freundlich .
(on wednesday in the south and on the coasts some rain otherwise it is quite friendly .)

Table 4: Ablation results (BLEU-4, %) of joint learning of SLT subtasks on Phoenix14T.
Loss Weights V2T C2T G2T

λV λC λG Dev Test Dev Test Dev Test
1.0 - - 22.58 22.59 - - - -
- 1.0 - - - 28.00 28.53 - -
- - 1.0 - - - - 28.05 26.36

1.0 1.0 - 28.30 28.18 28.87 29.73 - -
- 1.0 1.0 - - 28.82 27.67 28.19 27.38

1.0 1.0 1.0 27.11 27.85 28.03 27.66 27.42 26.98

vs.28.95%) under these two settings. Besides, the proposed method improves faithfulness through264

joint learning and two constraints, which can be applied to any SLR model and has the potential to265

achieve better translation performance with a more powerful SLR model.266

To show the generalization of the proposed method, we also report relevant performance on CSL-Daily267

in Table 2. As mentioned in Sect. 4.1, the CSL-Daily dataset has more precise gloss annotations,268

which indicates models with lower SLR performance can often achieve better SLT results. The269

proposed MonoSLT achieves inferior SLR and SLT performance than previous works [12, 15] but is270

still better than other works. Besides, the proposed method achieves better SLT performance than271

the baseline, which indicates that although glosses are precise intermediate tokenization, the lack of272

faithfulness still exists.273

Qualitative Comparison. To provide a more intuitive understanding of the proposed method, we274

present a translation example in Table 3. It can be observed that part of the translation cannot find275

corresponding glosses, which indicates glosses are imprecise representations. Besides, the baseline276

generates hallucination ‘and northeast here and there’, while the corresponding gloss ‘kueste’ is277

correctly recognized but ignored by the translation module. The proposed MonoSLT can improve278

faithfulness and translate ‘on the coasts’ correctly. More results can be found in the supplementary.279

4.4 Ablation and Discussion280

Ablation on Joint Learning. As we mentioned in Sect. 3.3, the acquired knowledge about translation281

can be shared across SLT subtasks. We first evaluate different combinations of subtasks and present282

results in Table. 4. We notice that learning V2T and C2T subtasks jointly obtain the most significant283

improvements (5.72% for V2T and 0.87% for C2T), which shows V2T can achieve comparable284

results to G2T with proper regularization and the performance of V2T and C2T can be mutually285

improved. This observation also reveals a clear difference between the SLTUNet [19] and the286

proposed method: we pay more attention to the association between visual translation subtasks.287

Moreover, simply sharing more subtasks can not bring further improvements, which indicates the288

importance of designing proper solutions to exploit SLT subtasks.289

Ablation on Design Choices of MonoSLT. To investigate the effectiveness of the proposed method,290

we present the ablation results of each design in Table 5. Both token-wise and sentence-wise code-291

switching achieve better performance than the best performance of joint learning, and we notice they292

can also accelerate training process and increase training stability. Adopting the cyclical annealing293

schedule can improve the G2T performance at the cost of a little performance loss of V2T and S2T,294

and combining it with the consistency constraint can bring further improvement. Besides, we can295

also observe that the proposed method can also improve the performance of G2T, which indicates296

S2T is also beneficial for G2T, and the previous ‘G2T first’ paradigm not fully exploits the potential297

of visual information.298
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Table 5: Ablation results (BLEU-4, %) of design choices of MonoSLT on Phoenix14T.

Traning Scheme Annealing Consistency V2T C2T G2T
Dev Test Dev Test Dev Test

Joint Learning 28.30 28.18 28.87 29.73 28.19 27.38

Sentence-wise
Code-switching

28.35 29.13 29.20 29.07 26.92 26.30
✓ 27.42 28.88 28.73 29.37 28.98 28.41
✓ ✓ 28.91 30.18 29.69 30.76 29.67 28.08

Token-wise
Code-switching

27.12 28.44 28.90 29.17 26.54 26.10
✓ 28.42 29.14 28.77 29.87 29.26 29.71
✓ ✓ 29.73 30.03 29.96 31.15 30.39 30.20

Table 6: Ablation results (BLEU-4, %) of source features and frozen layers on Phoenix14T.
Source Feature Frozen Layer V2T C2T G2T

Features Logits GCN module Conv1D Dev Test Dev Test Dev Test
✓ 29.73 30.03 29.96 31.15 30.39 30.20

✓ 28.26 29.55 28.99 29.77 28.08 27.55
✓ ✓ 28.59 29.73 29.20 30.21 28.89 29.66
✓ ✓ ✓ 29.29 31.45 29.68 31.21 30.06 30.98

Ablation on Other Designs. Compared to visual features, logits are a closer representation of299

glosses. As shown in Table 6, adopting logits as input leads to a little performance degradation, which300

also indicates glosses are imprecise representations of signs on Phoenix14T. To further explore the301

origin of performance gain, we evaluate the effects of frozen modules in Table 6. Frozing both the302

GCN-based module and Conv1D can achieve comparable results, which indicates the improvement303

mainly comes from making better use of existing features, rather than extracting new visual features.304

Adopting the frozen version of MonoSLT can also improve training efficiency.305

Limitations and Discussions. Although the proposed MonoSLT achieves competitive results on two306

benchmarks, we notice several limitations of our model. First, the proposed method is motivated to307

solve the hallucination problem of SLT, however, we have not found proper metrics to quantitatively308

evaluate the faithfulness of SLT models and still use BLEU and ROUGE for evaluation. We believe309

faithfulness is important when SLT is applied in real life because an unfaithful SLT model may310

produce unexpected consequences. Secondly, although the proposed method can improve faithfulness311

in SLT, as shown in Table. 6, it does not extract new visual features, which indicates that expensive312

gloss annotations are still essential. Designing effective gloss-free is a fascinating route for SLT.313

Third, although we design several approaches to make the training stable, it still encounters difficulties314

in converging occasionally, and we will continue to enhance its stability.315

5 Conclusion316

Faithfulness is one of the desired criteria to evaluate the applicability of SLT models. In this paper,317

we explore the association among different SLT-relevant tasks and reveal that the lack of faithfulness318

exists in recent SLT methods. To improve faithfulness in SLT, we attempt to increase the utilization of319

visual signals in SLT and propose a framework named MonoSLT, which leverages the monotonically320

aligned nature of SLT subtasks to train them jointly. We further propose two kinds of constraints to321

align visual and linguistic embeddings and leverage the advantage of subtasks. Experimental results322

show that the proposed MonoSLT is competitive against previous SLT methods by increasing the323

utilization of visual signals, especially when glosses are imprecise. We hope the proposed method324

and empirical conclusions can inspire future studies on SLT and relevant tasks.325

Broader Impact This paper focuses on improving faithfulness in SLT to bridge the communication326

gap between the Deaf and hearing communities. Although the MonoSLT has made some progress327

there still seems a long way to go. Please note this research is limited to public datasets which have328

limited samples and are collected under constrained conditions, and the findings may not directly329

transfer to other scenarios or domains. Domain expertise and human supervision are essential when330

using it to make critical decisions, which may generate erroneous or potentially harmful translations.331

Moreover, potential biases in the training data or method may introduce limitations or assumptions332

that need to be considered when using it.333
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