

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HOURGLASS PERSISTENCE FOR GRAPHS, SIMPLICES, AND CELLS

Anonymous authors

Paper under double-blind review

ABSTRACT

Persistent homology (PH) based schemes help encode information, such as cycles, and are thus increasingly being integrated with graph neural networks (GNNs) and higher order message-passing networks. Many PH based schemes in graph learning employ inclusion-based filtration mechanisms that trace a sequence of subgraphs of increasing size, maintaining bookkeeping information about the evolution (e.g., in terms of birth and death of components). We offer a novel perspective that goes beyond this inclusion paradigm. Specifically, we introduce topological descriptors for graphs, simplices, and cells that interleave a sequence of inclusions with a sequence of contractions and related families parametrized by two functions. The resulting descriptors on the extended sequence are provably more expressive than many existing PH methods with suitable stability conditions. Empirical results substantiate the merits of the proposed approach.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Hamilton, 2020) is a powerful paradigm for learning on structured data, yet their expressive power is fundamentally limited by the Weisfeiler–Lehman (WL) hierarchy (Xu et al., 2019; Morris et al., 2019). In particular, message-passing GNNs struggle to capture higher-order topological signals (ex. the presence, interaction, and disappearance of cycles) that often drive downstream performance in molecular learning, physical systems, and network science (Garg et al., 2020; Chen et al., 2020; Tahmasebi et al., 2021). Persistent Homology (PH) (Edelsbrunner et al., 2002) from Topological Data Analysis (TDA), offers a way to extract such signals by tracking the life of topological features in a filtration. Accordingly, PH-based descriptors are increasingly used to augment GNNs and higher-order neural architectures (Papamarkou et al., 2024), and to boost expressivity Ballester & Rieck (2024); Zhang et al. (2025); Li & Leskovec (2022).

However, many PH pipelines in graph learning rely on *inclusion-based filtrations* (“forward persistence”) (Immonen et al., 2023; Ballester & Rieck, 2024; Ying et al., 2024): we monotonically *add* vertices/edges and record when features first appear. This one-sided view leaves information on the table. For instance, in forward time on graphs, *cycles can be born but (in dimension 1) they do not die*; and while *new connected components can appear* as vertices arrive. This is also undesirable in the perspective of *metrizability*, as diagram distances can be ill-defined due to the presence of different number of permanent features. Extended persistence (Cohen-Steiner et al., 2009; Zhao et al., 2020; Carriere et al., 2020; Yan et al., 2022) resolves this by considering both the sublevel and superlevel sets of a given filtration. We instead develop geometric, combinatorial descriptors which achieve the same while capturing information missed by inclusion-only PH.

A filtration can be thought of as a time-forwarding process. Conversely, we can also consider a *time-reversing process* that operate by *contracting* substructures (“backward persistence”). Rather than focusing on superlevel sets, we make the substructures more granular by considering quotients of so called “intermediate complexes”. For graphs, we recover the complementary picture to inclusion: *contractions cannot create new components*, but they can *create and kill cycles* as the graph collapses. Forward and backward capture *different and incomparable* aspects of the same topology.

Our geometric insight motivates a perspective of persistence that *combines* inclusions and contractions. We first propose *Forward–Backward (FB) persistence*, which *concatenates* a forward (inclusion) phase with a backward (contraction) phase. Intuitively, FB links *how features appear* (forward)

054	Persistence Goes Forward and Backward (Section 3):	
055	Construction of Backward PH and Forward-Backward PH	Definition 4 , Definition 5
056	Incomparability for Forward vs. Backward PH	Proposition 1
057	FB-Persistence \succ Forward PH + Backward PH	Theorem 1
058	Construction of (σ, τ) -FB PH and Hourglass Persistence	Definition 6 , Definition 7
059	Hourglass Persistence \succ FB-Persistence	Proposition 2
060		
061		
062	Relation to Extended Persistence and Extensions (Section 4):	
063	Introduce (f, g) -FB Persistence, with (σ, τ) -FB as Example	Definition 8 , Proposition 4
064	FB-Persistence and Extended Persistence Are Different	Proposition 5
065	$FB\text{-Persistence} \neq Extended\text{ Persistence}$	Proposition 5
066	(f, f) -FB persistence = Forward PH in f	Proposition 6
067		
068	Extensions to Higher Complexes and Stability (Section 5, 6):	Proposition 7 ; Theorem 2
069	Algorithmic Design and Experiments (Section 7)	Alg 1 , Alg 2 ; Table 1
070		

Figure 1: Overview of the paper. Each row summarizes a core result and the section where it appears.

with *how they subsequently vanish* (backward), assigning meaningful, finite lifetimes to structures that would otherwise persist to infinity in forward PH. The resulting descriptors are *strictly more expressive* than forward and backward considered in isolation.

Because of the modular nature of how we set-up the intermediate complexes, we can interchange the sequence of intermediate complexes that are included and quotiented at each step. Guided by this combinatorial insight, we introduce *Hourglass persistence*, which *interleaves* inclusions and contractions in *arbitrary order* (subject only to the constraint that a piece must be included before it can be contracted). Hourglass explores a far richer space of “what-if” topological evolutions, enabling it to discriminate structures that FB—constrained to “all forward then all backward”—cannot.

Finally, we propose a general framework of (f, g) -FB persistence with respect to two filtration functions f and g , which extends both extended and FB-persistence. We then discuss how such constructions can be extended to higher order structures and discuss algorithmic designs. We summarize our content in Figure 1 and include detailed proofs in the Appendix.

2 BACKGROUND AND PRELIMINARIES

Let $G = (V, E)$ be a finite undirected graph, possibly with self-loops and multi-edges. A common theme of enhancing graph neural networks (GNNs) is to incorporate persistent topological descriptors derived from a given filtration of G . For our purpose, a filtration is as follows.

Definition 1. Let $f : V \cup E \rightarrow \mathbb{R}$ be a function. We say f is a **filtration function** on G if for every edge $e = (v, w)$, $f(v) \leq f(e)$ and $f(w) \leq f(e)$. Since G is finite, the list $\{f^{-1}((-\infty, t])\}_{t \in \mathbb{R}}$ has only finitely many elements, which gives a list of sequential subsets we call a **filtration**:

$$G_{-1} = \emptyset \subset G_0 \subset G_1 \subset \dots \subset G_n = G.$$

We say f is a **vertex-based filtration** if for every edge $e = (v, w)$, $f(e) = \max(v, w)$. We say that f is an **edge-based filtration** if $f(v) = 0$ for all $v \in V$ and $f(e) > 0$ for all $e \in E$.

For consistency, the function f should not change after relabeling the vertices and edges, rather f should only depend on the intrinsic features the graph G comes with. This property is called **permutation equivariance** (Ballester & Rieck, 2024), and we assume all filtration functions to be permutation equivariant. Here we discuss two relevant examples.

Example 1. Let $\deg : V \cup E \rightarrow \mathbb{R}$ be the **degree-based vertex filtration function** such that for any $v \in V$, $\deg(v)$ is the degree of the vertex in G , and for any $e = (v, w) \in E$, $\deg(e) = \max(\deg(v), \deg(w))$. This is permutation equivariant as it only depends on the structure of G .

Example 2. Suppose G is a **colored graph** (ie. vertices have labels) equipped with an additional structure of a coloring function $c : V \rightarrow C$, where C is a collection of colors. A **vertex-color**

108 **filtration** is a vertex-based filtration $f : V \cup E \rightarrow \mathbb{R}$ such that $f(v) = f(w)$ for all v, w with
 109 $c(v) = c(w)$. Intuitively, f preserves the vertex coloring.
 110

111 Example 1 can be viewed as a special case of vertex-color filtration in Example 2 where c is the
 112 degree function and $f = c$. A common scenario where colored graphs arise is from molecular
 113 graphs (Hoogeboom et al., 2022; Xu et al., 2022; 2023; Song et al., 2024), where multiple instances
 114 of different atom types (e.g., oxygen, carbon) are labeled on nodes within the same molecule.

115 A common descriptor to extract data from a given filtration is **persistent homology** (PH). For the
 116 ease of our discussions in Section 3, we will state a more general definition.

117 **Definition 2.** Let $X_\bullet = (X_0 \xrightarrow{f_1} X_1 \dots X_{n-1} \xrightarrow{f_{n-1}} X_n)$ be a sequence of topological spaces
 118 (ex. **graphs**) X_i with maps $f_i : X_i \rightarrow X_{i+1}$. The k -th **persistent homology** of X_\bullet is the result of
 119 applying $H_k(-)$ (in $\mathbb{Z}/2$ -coefficients) to X_\bullet , that is, it is the sequence of linear maps:
 120

$$121 H_k(X_\bullet) = H_k(X_0) \xrightarrow{(f_0)_*} H_k(X_1) \xrightarrow{(f_1)_*} \dots H_k(X_{n-1}) \xrightarrow{(f_{n-1})_*} H_k(X_n).$$

122 An element $v \in H_k(X_i)$ is said to **born** at i if $v \notin \text{im}((f_{i-1})_*)$. The same element $v \in H_k(X_i)$
 123 **dies** at $d \geq i$ if d is the first element $\geq i$ such that $(f_{d-1})_* \circ \dots \circ (f_i)_*(v) = 0$. The **persistence pair**
 124 associated to v is the pair (b, d) . If no such d exists, we mark the pair as (b, ∞) . If the incoming
 125 complex is of the form $X_\bullet = (X_{-1} = \emptyset \xrightarrow{f_{-1}} X_0 \rightarrow \dots \rightarrow X_n)$ (e.g. from a filtration), by $H_k(X_\bullet)$
 126 we mean $H_k(-)$ of the sequence with the X_{-1} -term truncated.
 127

128 Suppose the vector spaces are all finite dimensional, the k -th **persistence diagram** (ie. barcodes
 129 in Ghrist (2007)) of X_\bullet is the collection of persistent pairs for a specific choice of basis of the
 130 $H_k(X_i)$'s obtained from an interval decomposition of $H_k(X_\bullet)$ (see Theorem 2.7-8 of Chazal et al.
 131 (2016) or Theorem 4.7 of Lesnick (2025) for more details).

132 Appendix B.1 shows its equivalence to the usual definition of graph PH. Here $H_0(-)$ are connected
 133 components, $H_1(-)$ are independent cycles, $H_2(-)$ are voids, and $H_k(-)$ are k -dimensional voids.
 134

135 **Remark 1.** Explicitly, the k -th persistence diagram of X_\bullet can be computed by first picking a non-
 136 zero vector v of $H_k(X_0)$, and consider the sequence of linear subspace generated by the iterated
 137 image of v in $H_k(X_\bullet)$ until it becomes 0. Then we remove this sequence of linear subspaces off of
 138 $H_k(X_\bullet)$. If there is still a non-zero vector w in $H_k(X_0)$, we pick w and repeat the process (if the
 139 linear map sends w to the complement, we consider it becomes 0). Otherwise, we choose a non-zero
 140 vector from what is left in $H_k(X_1)$ (if it exists) and look at its iterated images ahead, and so on.

141 3 PERSISTENCE GOES FORWARD AND BACKWARD

142 For now, we will focus on the case of graphs, but many constructions here can be readily generalized
 143 to the setting of simplicial and cell complexes (see Section 5). Classically, there are numerous
 144 applications in TDA and GNNs that uses an inclusion based persistent homology (Edelsbrunner
 145 & Harer, 2008; Edelsbrunner & Morozov, 2012; Immonen et al., 2023; Ballester & Rieck, 2024).
 146 Concretely, an inclusion based PH may be viewed as an example of Definition 2 as follows.
 147

148 **Example 3** (Inclusion-based/Forward PH). Let $f : G \rightarrow \mathbb{R}$ be a filtration function, and consider
 149 applying $H_0(-)$ and $H_1(-)$ to $G_\bullet : G_{-1} = \emptyset \subset G_0 \subset \dots \subset G_n = G$, where each map is the
 150 inclusion map. Then the **persistent diagram** in Definition 2 recovers all birth/death pairs (b, d) such
 151 that $b < d$ (i.e., it omits trivial births). See Appendix B.1 for a formal proof. We can recover the
 152 trivial births by counting the number of unmarked simplices at each time.

153 The interest that initiated this work is - what if we try to reverse the steps of the inclusion using
 154 **contractions**? More precisely, we would like to contract the following sub-graphs.
 155

156 **Definition 3.** Let $H \subset G$ be a subset, the closure of H is the union of H and all vertices with
 157 incident edges contained in H . Let $\emptyset = G_{-1} \subset G_0 \subset \dots \subset G_n = G$ be a filtration of G induced by
 158 f , we define the **intermediate complexes** $\text{IC}_i(G, f)$ as the closure of $G_i - G_{i-1}$ for $i = 0, \dots, n$. We
 159 omit the symbol f when the context is clear.

160 **Definition 4** (Backward-based PH). Let $G_\bullet : G_{-1} = \emptyset \subset G_0 \subset \dots \subset G_n = G$ be a filtration of G ,
 161 we consider a sequence of **contractions** with respect to G_\bullet as $(G_\bullet)^v$

$$G \rightarrow G_{n+1} := G / \text{IC}_n(G) \rightarrow G_{n+2} := G / (*_{n+1} \cup \text{IC}_{n-1}(G)) \rightarrow G / (*_n \cup \text{IC}_{n-2}(G)) \rightarrow \dots \rightarrow *,$$

162 where $*_{n+1}$ is the point representing the total contracted subcomplex in the previous step, and so
 163 on. The intermediate maps are the natural quotient maps. From here, we define the ***i*-th backward-based PH** of G_\bullet as $H_i((G_\bullet)^v)$, and the ***i*-th backward persistent diagram** as the persistent diagram
 164 associated with $H_i((G_\bullet)^v)$.
 165

166

167

168

169

170

171

172

173

174

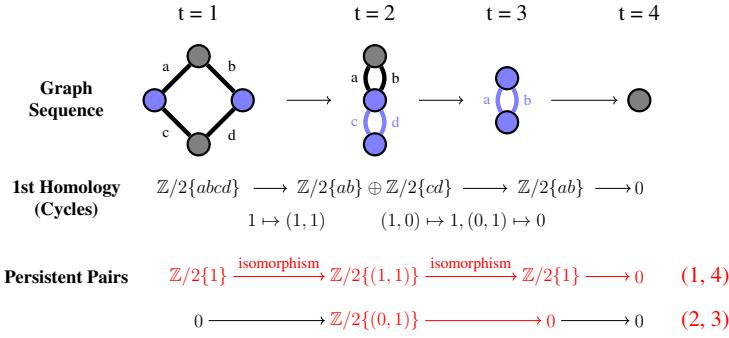
175

176

177

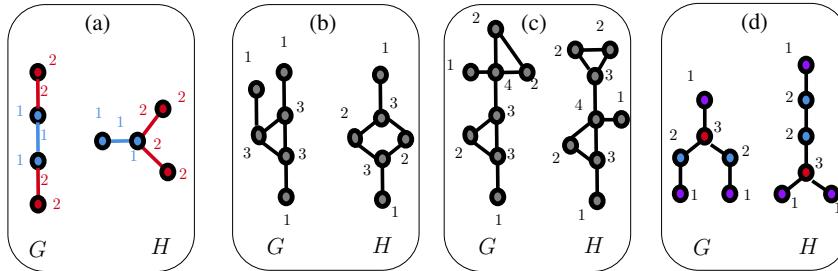
178

179

Figure 2: Backward PH of a graph G . The blue simplices indicate what is being contracted.

180 We observe that the backward-based PH introduces new information that inclusion-based PH may
 181 ignore. A high-level reason for this distinction is that a cycle that is born in forward-based PH can
 182 never die, but backward-based PH can both create new cycles (apart from the initial time) and kill
 183 them. Conversely, backward-based PH can never make a new connected component apart from the
 184 initial step, but inclusion-based PH can spawn new components later.

185 **Proposition 1.** *There exists graphs G, H with permutation equivariant filtrations such that the
 186 forward-based PH of their filtrations cannot tell apart G, H but backward-based PH can. Similarly,
 187 there are graphs that backward-based PH cannot tell apart but forward-based PH can. Examples
 188 can be found in Figure 3.*



199 Figure 3: Example graph pairs where (a) color filtration with same **forward-based PH** but different
 200 **backward-based PH**, (b) degree filtration with same **backward-based PH** but different **forward-based PH**,
 201 (c) degree filtration with same **forward** and **backward PH** but different **FB-persistence**,
 202 (d) degree filtration with same **FB-persistence** but different **hourglass persistence**.
 203

204 Another motivation for us to introduce backward-based PH is from the viewpoint of **metrizability**
 205 and **stability**. Classically, the **bottleneck distance** Cohen-Steiner et al. (2006) between 2 persistence
 206 diagrams PD_1, PD_2 of the same size is the infimum of the value $\max_{p \in \text{PD}_1} \|p - \pi(p)\|_\infty$ where
 207 π ranges over all bijections $\pi : \text{PD}_1 \rightarrow \text{PD}_2$. The bottleneck distance is finite for persistence
 208 diagrams coming from the same graph, but for diagrams coming from two different graphs, this
 209 distance may very well be infinite. The reason why is because the number of tuples of the form
 210 $(-, \infty)$ for both graphs may be different, which adds an ∞ to the distance function.

211 One might argue that there can be workarounds by setting the time to die at a finite time N after
 212 both filtrations ended, or make it die at -1 . These modifications are however still not that desirable
 213 because they can be quite sensitively altered by, for example, having many features die around N
 214 or -1 . One solution would be to extend the (inclusion-based) persistent diagrams by killing off
 215 the permanent features topologically via a sequence of contractions. Formally, this motivates our
 definition of **Forward-Backward (FB) persistent homology**.

216 **Definition 5** (Forward-Backward Persistence). *Let $G_\bullet = (\emptyset = G_{-1} \subset G_0 \subset \dots \subset G_n = G)$ be a*
 217 *filtration of G . The i -th forward-backward persistent homology is the diagram $H_i(G_\bullet + (G_\bullet)^v)$,*
 218 *where G_\bullet^v denotes the sequence of contractions in Definition 4 and $+$ denotes the concatenation of*
 219 *the two sequences.*

221 Concretely, the forward-backward persistence diagrams of a filtration G_\bullet can be obtained in the
 222 following way. First compute the inclusion-based PH on G_\bullet ; however, at the end of the filtration,
 223 instead of marking the remaining simplices to die at ∞ , we instead mark them with their death
 224 times in the backward PH (shifted up by $+n$). We also include the additional pairs that arise from
 225 the backward PH. We now establish the expressivity benefits due to FB-persistence.

226 **Theorem 1.** *FB-persistence is strictly more expressive than forward and backward persis-*
 227 *tence combined (see Figure 3(c) for an example). More precisely, for any graph G with*
 228 *filtration f , the FB-persistent diagram with respect to f can recover the correspondent for-*
 229 *ward and backward persistence diagrams. However, there exists a pair of graphs G, H with*
 230 *a permutation equivariant filtration f such that their forward and backward persistence di-*
 231 *agrams are the same, but their FB-persistence diagrams differ.*

233 A high level reason why Theorem 1 holds is that deciding how we concatenate the values from the
 234 forward persistent diagrams with the values from the backward persistent diagrams is rather subtle.

235 Motivated by the perspective of **color-based filtrations** (Ballester & Rieck, 2024; Immonen et al.,
 236 2023; Ji et al., 2025), we observe that there is no canonical reason to contract in the order of
 237 $\text{IC}_n(G), \text{IC}_{n-1}(G), \dots$ in Definition 4 and Definition 5. Since the intermediate complexes satisfy
 238 (i) $\bigcup_{i=0}^n \text{IC}_i(G) = G$ and (ii) $\text{IC}_i(G)$ and $\text{IC}_j(G)$ can only intersect at vertices, any sequence of
 239 contracting the subgraphs in the list $\text{IC}_0(G), \text{IC}_1(G), \dots, \text{IC}_n(G)$ would have terminated at the sin-
 240 gle point set $*$. Likewise, we can also see the filtration step as a special case of spawning the pieces
 241 $\text{IC}_0(X), \text{IC}_1(X), \dots$ in ascending order. There is no reason why we should have included them in
 242 this order. This motivates the following construction.

243 **Definition 6** $((\sigma, \tau)$ -FB persistence). *Let σ, τ be two permutations of the list $[n] = \{0, \dots, n\}$. The*
 244 *i -th (σ, τ) -FB persistence is the persistence diagram associated the persistence module obtained*
 245 *by applying $H_i(-)$ to the sequence*

$$\emptyset = Y_{-1} \subset \dots \subset Y_n = G = Z_0 \rightarrow Z_1 \rightarrow \dots \rightarrow Z_n = *,$$

247 where for $0 \leq i \leq n$, $Y_i = \bigcup_{j \leq i} \text{IC}_{\sigma(j)}(G)$, and for $1 \leq j \leq n$, $Z_j = Z_{j-1}/(*_{j-1} \cup \text{IC}_{\tau(j)}(G))$
 248 where $*_{j-1}$ is previously defined for $j-1 \geq 1$, and $*_0$ is any point in $\text{IC}_{\tau(1)}(G)$.

250 In other words, we apply Definition 2 to the sequence where we filtrate G by spawning the interme-
 251 diate complexes in the order σ , and then contracting G in the order τ . In the case where id is the
 252 identity and re is the reverse list bijection. FB-persistence is (id, re) -FB-persistence.

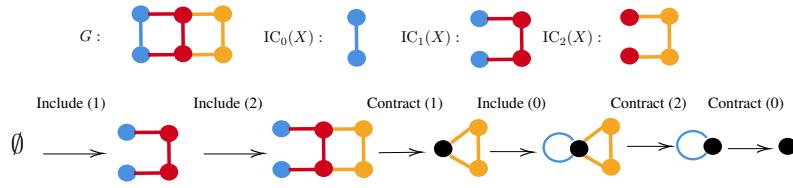
253 A core motivation for Definition 6 comes from color-based filtrations (Example 2). Indeed, recall
 254 that Example 1 is a special case of Example 2 when the vertices are spawned in ascending order
 255 of their degrees. The perspective of coloring filtration is that we can spawn the vertices in any
 256 permutation of the set of possible degree values here, which may lead to more information. On the
 257 other hand, to faithfully adopt the “coloring-based philosophy to this context”, one could also argue
 258 why should we wait until the entire graph has been filtrated to start the contraction process?

259 Indeed, the whole process would still terminate to a point as long as we ensure the intermediate
 260 complex being contracted has appeared earlier in time, and this yields further flexibility in the pro-
 261 cess of switching back and forth between the forward steps and the backward steps (analogous to
 262 the imagery of an **hourglass**). This motivates us to the definition of **hourglass persistence**, which
 263 may be regarded as a “color-based version” of FB-persistence that also has a well-defined metric for
 264 persistence diagrams on different graphs.

265 **Definition 7.** *Let $f : X \rightarrow \mathbb{R}$ be a filtration function with associated intermediate complexes*
 266 *$\text{IC}(X_i)$. An hourglass persistence diagram is the persistence diagram of any sequence of inclusions*
 267 *and contractions, provided that $\text{IC}(X_i)$ is included in the sequence before it is being contracted.*

268 Figure 4 gives an illustration of an example of sequence of maps that occurs in hourglass persistence.
 269 To demonstrate its expressivity, we have that:

270 **Proposition 2.** Hourglass persistence is more expressive than FB-persistence (Figure 2(c)).
 271



279 Figure 4: Example of a sequence of maps arising in the hourglass persistence for a filtration of G .
 280

281 Hourglass persistence has promising potential to tackle a problem that PH-based methods sometimes
 282 struggle to scale on large graphs/simplicial complexes/cell complexes, see Appendix E.4.
 283

284 4 RELATIONSHIP TO EXTENDED PERSISTENCE AND EXTENSIONS

285 Extended and FB-persistence are different as follows: For a filtration function f , extended per-
 286 sistence is obtained by considering a concatenation of PDs with filtrating by f first and by $-f$
 287 back. By Proposition 2.22 of Hatcher (2002), this is essentially akin to shrinking the superlevel sets
 288 $G^a := \{x \in V \cup E \mid f(x) \geq a\}$ as a goes down, but the superlevel sets and the intermediate
 289 complexes coming from f are in general quite different. We make this precise in Proposition 5.
 290

291 We will now introduce a unifying perspective of both methods:
 292

293 **Definition 8** ((f, g)-FB Persistence). *Let f, g be two filtration functions on G with G_\bullet^f, G_\bullet^g being
 294 their induced filtrations respectively. The i -th (f, g)-FB Persistence of G is the persistence diagram
 295 associated with the sequence:*

296
$$\emptyset = G_{-1}^f \subset G_0^f \subset \dots \subset G_n^f = G = G_0^g \rightarrow G_1^g \rightarrow \dots \rightarrow G_m^g = \ast.$$

 297

298 where $\{G_i^f\}_{i \in \{-1, \dots, n\}}$ is the filtration of G induced by f , and the sequence $G_\bullet^g := G_0^g \rightarrow G_1^g \rightarrow \dots \rightarrow G_m^g = \ast$ is a sequence of contractions following the subgraphs that appear in the filtration
 299 induced by g . More precisely, $G_1^g := G / IC_0(G, g)$, $G_2^g := G / (*_1 \cup IC_1(G, g))$, $G_3^g := G / (*_2 \cup$
 300 $IC_2(G, g))$, etc., where $*_i$ is the point representing the total contracted subcomplex from before.
 301

302 The idea of combining different filtration directions have appeared in zigzag filtration (Carlsson &
 303 de Silva, 2010), bipath filtration (Aoki et al., 2025), and extended persistence (for specific pairs).
 304 Our considerations here is different from zigzag and bipath filtrations as we are doing PH on the uni-
 305 directional quiver on the path graph P_n but with maps coming from both inclusions and contractions,
 306 whereas zigzag and bipath filtrations are usually used on different quivers with only inclusions. Our
 307 setup is more general than extended persistence as we can interpret extended persistence in the
 308 framework of (f, g)-FB Persistence. Note that the following result is not difficult to prove; we only
 309 include it here for completeness.

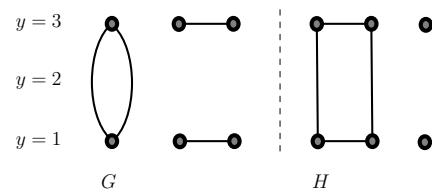
310 **Proposition 3.** The extended persistence of a filtration function f (as defined in Section 2 of Yan
 311 et al. (2022)) has the same expressive power as $(f, -f)$ -FB persistence.
 312

313 Note that the expressivity analysis of extended persistence had been carried out in Yan et al. (2025).
 314

315 **Proposition 4.** Let f be a filtration function. There exist filtration functions f_1, f_2 such that the se-
 316 quence of topological maps in (f_1, f_2) -FB persistence is exactly the sequence of topological maps in
 317 (σ, τ) -FB persistence. If f is vertex-based, we provide an explicit $O(n \log n)$ algorithm to compute
 318 (f_1, f_2) that becomes linear time for FB-persistence. (see Appendix B.3).

319 Now we establish a clear separation between FB per-
 320 sistence and extended persistence.

321 **Proposition 5.** There exists graphs G, H with per-
 322 mutation equivariant filtrations such that FB persis-
 323 tence can tell them apart but extended persistence
 324 cannot, see Figure 5.



325 Figure 5: Example of graphs G and H with **height**
 326 **filtration** such that FB-persistence can differ but
 327 not $(f, -f)$ -FB persistence.
 328

324 Besides the choice of $-f$ or f^b , another candidate
 325 can be f itself. Here we show that (f, f) -hourglass
 326 persistence does not bestow further information.

327 **Proposition 6.** (f, f) -FB persistence has the same
 328 expressive power as forward-PH for f . For graphs, (f, f) -FB persistence can be computed by:

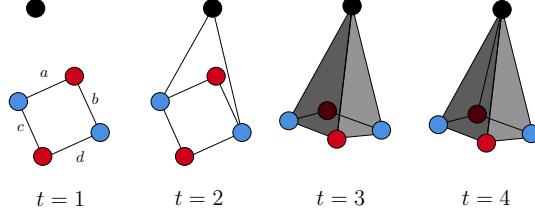
- 330 • Suppose there are n -steps in the filtration, a cycle born in filtration at $t = i$ dies at $t = n + i$.
- 331 • A cycle born in the contraction at $t = n + i$ corresponds exactly to the occurrence of a connected
 332 component at $t = i$ that will be merged into a pre-existing connected component in the filtration
 333 steps. The 1st time $j > i$ in filtration when the cycle does the merge above gives the death time
 334 $n + j$ in contraction.
- 335 • The component death times are recorded as usual by keeping track of vertex representatives.

336 5 EXTENSION TO SIMPLICIAL AND CELLULAR COMPLEXES

339 We now extend the framework to higher dimensions, viewing graphs as 1-dimensional simplicial
 340 complexes (for simple graphs) and 1-dimensional cell complexes.

341 5.1 EXTENSION TO SIMPLICIAL COMPLEXES

343 Definition 2 works for any sequence
 344 of topological spaces, so our construc-
 345 tions may be defined directly. The is-
 346 sue with simplicial complexes is, that
 347 they are not closed under quotients, so
 348 the spaces showing up in the contrac-
 349 tion stage may not be simplicial.



350 We can however adapt a trick to con-
 351 duct “simplicial quotients” (see Cohen-
 352 Steiner et al. (2006); Dey & Wang (2022)) as follows. Add a disjoint vertex v_+ to the simplicial
 353 complex at the beginning, and whenever a simplex σ is asked to be contracted, one instead adds
 354 a simplex $[v_+, \sigma]$ to keep this as a filtration. On graphs, this means that one adds an edge from v
 355 to v_+ for every vertex v being contracted and a triangle (v_1, v_2, v_+) for every edge (v_1, v_2) being
 356 contracted (see Figure 6). One then computes the persistent diagram of this filtration instead.

357 **Proposition 7.** For all methods defined in Section 3, 4, the simplicial quotient method will recover
 358 the k -th dimensional persistence diagrams for $k > 0$ but may differ on the level of $k = 0$. For $k = 0$,
 359 the pairs can be directly computed by keeping track of one vertex representative per component.

361 5.2 EXTENSION TO CELLULAR COMPLEXES

363 The simplicial version adds more simplices to the set-up, which may make the computations more
 364 costly. We should try to exploit the contraction steps geometrically as they would reduce the data.
 365 To do this, we would like to relax the collection of objects we are working with.

366 A **(regular) cell complex** (Hansen & Ghrist, 2019) is a generalization of simplicial complexes that
 367 adds more flexibility by allowing X be built off of k -dimensional disks (called k -cells) as opposed
 368 to k -dimensional triangles. Intuitively, a cell complex is built out inductively by starting with the
 369 0-cells (ie. discrete points), attaching 1-cells to 0-cells, then attaching 2-cells to the complex, and
 370 so on. This process yields a poset structure on the cells where $\tau \leq \sigma$ indicates part of σ is attached
 371 onto τ . We refer to Section 2 of Bodnar et al. (2021) for a thorough explanation.

372 Now we may extend a filtration function on a cell complex X as follows.

373 **Definition 9.** Let $\text{Cell}(X)$ denote the collection of cells on X . A function $f : \text{Cell}(X) \rightarrow \mathbb{R}$ is a
 374 filtration function if $f(\tau) \leq f(\sigma)$ for all $\tau \leq \sigma$ in $\text{Cell}(X)$, which induces a filtration on X .

376 An important feature of cell complexes is that they are closed under quotients of subcomplexes.
 377 Thus, every construction we discussed in Section 3 and 4 extends *mutatis mutandis* - that is, one can
 just replace the word “graph” with the word “cell complex”.

378 **6 STABILITY**
 379

380 Recall one motivation for “concatenating” inclusions and contractions was to compare metrics for
 381 diagrams on different spaces. We would still like to ensure the diagrams are stable if they are on the
 382 same space. This is a desired property as we would like perturbations in the input filtration to not
 383 affect the output drastically. To properly discuss (bottleneck) stability, however, we need to make a
 384 distinction between **combinatorial time** and **function time**.

385 So far, the persistence diagrams in our construction have all been combinatorial time - we use some
 386 function(s) to make a sequence of maps, and the pairs (i, j) record the birth and death steps in the
 387 sequence. However, if we want a notion of bottleneck stability, we need to work with a notion of
 388 function time - that is we change the pair (i, j) to the (a_i, a_j) . Take forward PH for example, if we
 389 use combinatorial time and perturb the filtration function, the output would be locally constant.

390 When extending function time to include contractions, we observe that there are some subtleties in
 391 defining function time for (f, g) -FB persistence, because the functions f and g can be independent.
 392 It can be the case that the values of g are mixed with the values of f on the real line, but to define
 393 a function time we would like the values of g to appear after the values of f . To get a well-defined
 394 notion of function time, we require f and g to both be positive, and that the corresponding function
 395 time of (a) an inclusion step at i in (f, g) -FB persistence to be the i -th value of f and (b) a contraction
 396 step at $n + i$ in (f, g) -FB persistence to $\max(f) +$ the i -th value of g .

397 **Theorem 2** (Stability of (f, g) -FB persistence). *Let X be a graph, **simplicial or cellular**
 398 **complex**. For 2 pairs of filtrations $(f, g), (f', g')$ on X , we have the following for all $i \geq 0$:*

$$400 d_B(\text{PH}_i^{FB}(X, f, g), \text{PH}_i^{FB}(X, f', g')) \leq 2\|f - f'\|_\infty + \|g - g'\|_\infty + |\max(f) - \max(f')|.$$

402 We remark that establishing an appropriate **function time** for hourglass persistence is challenging,
 403 because the function values for each step is not as canonical since we are interleaving the steps of
 404 contractions and inclusions. Hourglass persistence does satisfy the condition of what [Chazal et al.](#)
 405 (2009) called “tame”, which has a **stability** in combinatorial time (see Theorem 4.4 therein).

406 **7 ALGORITHM DESIGN AND EXPERIMENTS**
 407

408 We now present a practical algorithmic framework that supports any filtration
 409 scheme composed of a sequence of inclusions and contractions, assuming that all
 410 contraction intermediates have already appeared previously in the forward filtration.

415 **7.1 FORWARD INCLUSION
 416 WITH AUXILIARY BOOKKEEPING.**

418 In addition to the standard union–find structure, which incrementally tracks connected-
 419 component memberships during the forward filtration, we maintain two further structures:
 420 (i) neighborhood information for the spanning forest being built, and (ii) a fundamental
 421 cycle basis over \mathbb{F}_2 . Each new edge $e = (u, v)$ is then handled in two cases:

422 **Algorithm 1 FORWARDINCLUSION**

```

 1: Input: Filtration  $f$ ; Graph  $G$ 
 2: Output:  $\text{PD}_0, \text{PD}_1$ , cycle basis  $\mathcal{B}$ , union–find UF
 3: Initialize UF on  $V$ ;  $\text{PD}_0, \text{PD}_1, \mathcal{B} \leftarrow \emptyset$ 
 4: Sort edges  $e_1, \dots, e_m$  by  $f(e_j)$ 
 5: for  $j = 1..m$  do
 6:    $(u, v) \leftarrow e_j$ 
 7:   if UF. find( $u$ ) = UF. find( $v$ ) then
 8:     // Cycle-creating edge
 9:     Build  $\gamma \in \{0, 1\}^m$  from  $e_j$  and path  $u \rightsquigarrow v$ 
10:     $\mathcal{B} \leftarrow \mathcal{B} \cup \{\gamma\}$ ;  $\text{PD}_1[\gamma] \leftarrow (f(e_j), \infty)$ 
11:   else
12:      $r_u \leftarrow \text{UF. find}(u)$ ;  $r_v \leftarrow \text{UF. find}(v)$ 
13:      $y \leftarrow \arg \max_{r \in \{r_u, r_v\}} f(r)$ 
14:      $\text{PD}_0 \leftarrow \text{PD}_0 \cup \{(f(y), f(e_j))\}$ 
15:     UF. merge( $u, v$ )
16:     // record mutual neighbors in spanning forest
17:     UF. nbrs  $\cup \{u \leftrightarrow v\}$ 
18:   for each root  $r$  of UF do add  $(f(r), \infty)$  to  $\text{PD}_0$ 
19: return  $\text{PD}_0, \text{PD}_1, \mathcal{B}$ , UF

```

426 (1) If u and v are in different components, e is a *spanning-tree edge*. We update the union–find and
 427 record u and v as neighbors in the spanning forest, thereby incrementally extending the spanning
 428 structure maintained during the filtration.

429 (2) If u and v are already connected, e is a *cycle-creating edge*. Together with the unique forest
 430 path $u \rightsquigarrow v$, this defines a new cycle C_{k+1} , given an existing basis $\{C_1, \dots, C_k\}$. Since e does not
 431 appear in any earlier cycle, C_{k+1} is linearly independent of $\{C_1, \dots, C_k\}$ in the cycle space over
 \mathbb{F}_2 . The basis is thus extended to $\{C_1, \dots, C_k, C_{k+1}\}$, and a new interval $(f(e), \infty)$ is added.

432 We denote by PD_0 and PD_1 the persistence diagrams of H_0 and H_1 , respectively. Algorithm 1
 433 describes the forward stage of our framework. Its input is a filtration function $f : V \cup E \rightarrow$
 434 \mathbb{R} on a graph $G = (V, E)$, and its output consists of the persistence diagrams PD_0 and PD_1 , a
 435 fundamental cycle basis \mathcal{B} represented by indicator vectors in $\{0, 1\}^m$, and a union–find structure
 436 UF that maintains connected-component information and parent pointers for the spanning forest.
 437

438 7.2 BACKWARD CONTRACTION WITH SUPERNODE BOOKKEEPING.

440 The backward stage uses a contraction function g to order contractions. We maintain a
 441 *supernode* that accumulates contracted vertices; a vertex merges when scheduled by g ,
 442 and an edge contracts once both endpoints reside in the supernode. Algorithm 2 summarizes
 443 the contraction process.

444 **Vertex contractions.** The contraction of a vertex into the supernode has two effects:
 445 (1) If the vertex belongs to a different connected component, the younger component
 446 is killed and its H_0 interval is closed. (2) If the vertex lies in the same component, a new
 447 *supernode cycle* is created. Unlike forward cycles, these are not tied to any edge but
 448 arise from merging disconnected subgraphs of the same component.

449 **Edge contractions.** An edge is contracted once it becomes a self-loop on the supernode.
 450 Each such contraction kills one cycle: (1) If the edge participates in some forward
 451 cycle, we remove it from all cycle indicators in \mathcal{B} and reduce the basis. If a younger cycle
 452 becomes dependent on older ones, it is killed and its H_1 interval is closed. (2) If no forward
 453 cycle is removed, the contraction kills the most recent supernode cycle. In either case, the contraction assigns a finite death time to an H_1
 454 interval, completing the bookkeeping of backward updates.

466 7.3 EXPERIMENTAL SETUP AND RESULTS

467 **Datasets.** We evaluate on four standard graph classification datasets (Morris et al., 2020): NCI109,
 468 PROTEINS, IMDB-BINARY, and NCI1 (Accuracy); a graph-regression dataset ZINC (Dwivedi
 469 et al., 2023) (MAE) and the OGBG-MOLHIV (Hu et al., 2020) molecular property dataset (AUC).
 470 All methods use the same GIN (Xu et al., 2018) or GCN (Kipf, 2016) backbone and the same
 471 DeepSets (Zaheer et al., 2017) pooling for encoding persistence diagrams.

472 **Baselines and ablations.** We compare five variants of persistence-based representations. (i) **PH** (Horn et al., 2021) uses a fixed vertex filtration and assigns each edge the maximum filtration of its endpoints, producing standard inclusion-based persistence. (ii) **RePHINE** (Immonen et al., 2023) learns both vertex and edge filtrations and, importantly, augments every 0D persistence point with the filtration value of the earliest incident edge, providing additional early-connectivity information. (iii) **Fwd-only** learns a general vertex–edge filtration but does *not* include RePHINE’s augmentation, and disables all contractions; this isolates the effect of learning the forward filtration alone. (iv) **Bwd-only** learns only the contraction schedule, isolating the backward component of our design. (v) **Ours** implements the full learnable inclusion–contraction (forward–backward) framework, jointly learning both vertex/edge filtrations and contraction order.

484 **Observations.** Table 1 reports performance across all six benchmarks. We observe: (1) Our
 485 method achieves the best or second-best performance in 9 of 12 settings, underscoring the value

Algorithm 2 BACKWARD CONTRACTION

```

1: Input: contraction function  $g$ ; persistence data
2: Output: updated  $\text{PD}_0$ ,  $\text{PD}_1$  with finite deaths
3: Initialize supernode  $S \leftarrow \emptyset$ , stack  $B$ , list  $L$ 
4: for elements  $x \in V \cup E$  in order of  $g(x)$  do
5:   if  $x \in V$  then                                 $\triangleright$  Node contraction
6:      $S \leftarrow S \cup \{x\}$ 
7:     if  $\text{UF}.\text{find}(x) \neq \text{UF}.\text{find}(S)$  then
8:       // kill younger component  $y$ 
9:        $\text{PD}_0 \leftarrow \text{PD}_0 \cup \{(f(y), g(x))\}$ 
10:    else
11:       $B.\text{push}(g(x))$  // Birth supernode cycle
12:       $\text{UF}.\text{merge}(x, S)$ 
13:    else                                          $\triangleright$  Edge contraction
14:      //  $x = e = (u, v) \in E$  with  $u, v \in S$ 
15:      remove  $e$  from all  $\gamma \in \mathcal{B}$ ; reduce basis
16:      if some  $\gamma$  becomes dependent then
17:        // Close forward cycle
18:         $\text{PD}_1[\gamma] \leftarrow (\text{birth}(\gamma), g(x))$ 
19:         $\mathcal{B} \leftarrow \mathcal{B} \setminus \{\gamma\}$ 
20:      else
21:        // Close supernode cycle
22:         $\tau \leftarrow B.\text{pop}(); L \leftarrow L \cup \{(\tau, g(x))\}$ 
23:  $\text{PD}_1 \leftarrow \text{PD}_1 \cup L$ 
24: return  $\text{PD}_0, \text{PD}_1$ 

```

486
 487 Table 1: Comparison of PH variants across six datasets using GIN and GCN backbones. Classification
 488 accuracy and AUC scores are reported in percentage (%), \uparrow and ZINC regression evaluation in
 489 MAE (\downarrow). Best and second-best results per row are shown in **bold** and underline, respectively.

490	Dataset	491	PH	492	RePHINE	493	Fwd-only	494	Bwd-only	495	Ours
496 497 498 499 500 501	498 499 500 501	NCI109 (Acc.%, \uparrow)	76.76 \pm 0.40	77.89 \pm 1.19	77.00 \pm 1.03	76.35 \pm 0.50	77.89\pm1.87				
		PROTEINS (Acc.%, \uparrow)	69.35 \pm 1.83	69.94 \pm 2.76	<u>70.24\pm2.95</u>	70.54 \pm 2.19	73.51\pm1.11				
		IMDB-B (Acc.%, \uparrow)	68.67 \pm 1.25	70.67 \pm 0.94	74.67\pm0.47	74.33 \pm 0.94	72.00 \pm 2.16				
		NCII (Acc.%, \uparrow)	79.24 \pm 1.74	78.75 \pm 2.55	<u>76.72\pm1.13</u>	75.75 \pm 0.94	81.27\pm0.00				
		ZINC (MAE, \downarrow)	0.43 \pm 0.01	0.41 \pm 0.01	0.62 \pm 0.01	0.61 \pm 0.00	0.40\pm0.01				
		MOLHIV (AUC%, \uparrow)	74.34\pm4.57	72.88 \pm 2.15	70.00 \pm 3.11	70.59 \pm 1.83	72.34 \pm 0.74				
502 503 504 505 506 507	503 504 505 506 507	NCI109 (Acc.%, \uparrow)	76.59 \pm 1.32	79.50\pm0.11	71.91 \pm 0.52	74.58 \pm 0.71	75.87 \pm 0.89				
		PROTEINS (Acc.%, \uparrow)	70.54 \pm 0.73	68.75 \pm 2.53	69.35 \pm 1.83	<u>70.54\pm1.46</u>	72.32\pm1.46				
		IMDB-B (Acc.%, \uparrow)	65.00 \pm 1.63	70.00 \pm 0.82	62.67 \pm 3.30	64.33 \pm 3.30	68.00\pm2.16				
		NCII (Acc.%, \uparrow)	78.43 \pm 0.98	78.91\pm0.80	75.59 \pm 1.00	76.24 \pm 1.74	<u>78.67\pm1.69</u>				
		ZINC (MAE, \downarrow)	0.49 \pm 0.02	0.46 \pm 0.01	0.86 \pm 0.01	0.87 \pm 0.01	0.44\pm0.01				
		MOLHIV (AUC%, \uparrow)	75.12 \pm 0.68	<u>75.40\pm0.53</u>	71.02 \pm 2.18	71.55 \pm 1.21	76.37\pm1.45				

508 of jointly learning both inclusion and contraction schedules. (2) **RePHINE** remains a strong baseline and consistently outperforms standard PH in nearly all cases, reflecting the benefit of learning both vertex and edge filtrations. (3) The ablations further clarify the role of each component: **Fwd-only**, which learns vertex–edge filtrations but disables contractions, typically improves over standard PH; **Bwd-only**, which learns only contraction order, also improves over PH on several datasets and performs roughly on par with **Fwd-only** overall, with no clear winner between them. (4) **RePHINE** significantly outperforms both **Fwd-only** and **Bwd-only** on ZINC and MOLHIV, highlighting the effectiveness of its additional 0D augmentation in capturing early connectivity structure. (5) Our full model almost always surpasses both ablations, demonstrating that inclusion and contraction encode complementary structural information, and that jointly learning them is essential for achieving the strongest performance across classification, regression, and molecular prediction tasks.

514 7.4 COMPARISON WITH EXTENDED PERSISTENCE

515 We further compare our framework to
 516 methods based on extended persistence,
 517 which incorporate both sublevel and superlevel
 518 information. PersLay (Carriere et al., 2020) implements this by
 519 first computing extended-persistence diagrams
 520 and then applying a learnable
 521 layer on top. In contrast, motivated by
 522 Proposition 3, which shows that classi-
 523 cal extended persistence has the same
 524 expressive power as $(f, -f)$ -FB persis-
 525 tence, we integrate extended persistence directly into our forward–backward framework by using
 526 $-f$ as a backward schedule. In Table 2, we observe: (1) Our $(f, -f)$ adaptation of extended
 527 persistence consistently outperforms PersLay under both GIN and GCN backbones, showing that
 528 embedding extended-persistence structure directly into the forward–backward framework is more
 529 effective than processing extended-persistence diagrams through a post-hoc learnable layer. (2) Our
 530 full (f, g) -forward–backward model further exceeds both PersLay and the extended variant, indicat-
 531 ing that jointly learning inclusion and contraction provides expressive topological features beyond
 532 what extended persistence alone can capture.

533 8 CONCLUSION

535 We formalize *backward*, (f,g) -*forward–backward*, and *hourglass* persistence and develop a system-
 536 atic expressivity theory, certified by minimal witness graphs and constructive proofs, accompanied
 537 by algorithms that realize the general (f, g) framework. These constructions extend to simplicial
 538 and cellular complexes and admit a functional stability guarantee, offering principled tools for in-
 539 clusion–contraction schedules beyond the classical PH. While hourglass persistence satisfies combi-
 natorial stability, establishing a functional stability result is a compelling direction for future work.

540 Table 2: Accuracy (%) with GIN and GCN backbones.
 541 Best score per row is in **bold**.

Dataset	GIN			GCN		
	ExtP	PersLay	Ours	ExtP	PersLay	Ours
NCI109	78.21	68.28	78.21	77.48	68.28	77.48
PROTEINS	74.11	66.07	73.21	72.32	66.07	72.32
IMDB-B	63.00	70.00	73.00	66.00	70.00	70.00
NCII	78.59	68.86	81.51	80.05	68.86	80.78

540 ETHICS STATEMENT

541

542 This paper presents work whose goal is to advance the interaction of topological descriptors with
 543 neural networks. Topological neural networks have many usage in the applied science, including
 544 medicine, finance, recommendation algorithms. There are many potential societal consequences of
 545 our work, none of which we feel must be specifically highlighted here.

546 REPRODUCIBILITY STATEMENT
547

548 We provide an anonymized artifact at <https://anonymous.4open.science/r/Hourglass-4AC2> containing everything needed to reproduce our results: complete source
 549 code for all methods in PyTorch and C++; scripts to download datasets and generate deterministic
 550 splits with fixed seeds; exact configuration files and a pinned environment.yml with a
 551 README giving step-by-step commands to run all experiments; config files specifying hyper-
 552 parameters and training protocols (optimizer, learning rate, batch size, epochs, scheduler, early
 553 stopping, and seeds) and a Jupyter notebook to generate results table. The appendix contains the
 554 full statements and proofs of all theorems, and the paper includes extensive diagrams that illustrate
 555 the separation examples and clarify our theoretical claims.

556

557 REFERENCES

558

559 Toshitaka Aoki, Emerson G. Escolar, and Shunsuke Tada. Bipath persistence. *Japan Journal of
 560 Industrial and Applied Mathematics*, 42(1):453–486, Jan 2025. ISSN 1868-937X. doi: 10.1007/
 561 s13160-024-00681-3. URL <https://doi.org/10.1007/s13160-024-00681-3>.

562

563 Rubén Ballester and Bastian Rieck. On the expressivity of persistent homology in graph learning,
 564 2024. URL <https://arxiv.org/abs/2302.09826>.

565

566 Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montufar, and
 567 Michael M. Bronstein. Weisfeiler and lehman go cellular: CW networks. In A. Beygelzimer,
 568 Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing
 Systems*, 2021. URL <https://openreview.net/forum?id=uVPZCMVtsSG>.

569

570 Gunnar Carlsson and Vin de Silva. Zigzag persistence. *Foundations of Computational Mathematics*,
 571 10(4):367–405, Aug 2010. ISSN 1615-3383. doi: 10.1007/s10208-010-9066-0. URL <https://doi.org/10.1007/s10208-010-9066-0>.

572

573 Mathieu Carriere, Frederic Chazal, Yuichi Ike, Theo Lacombe, Martin Royer, and Yuhei Umeda.
 574 Perslay: A neural network layer for persistence diagrams and new graph topological signatures. In
 575 Silvia Chiappa and Roberto Calandra (eds.), *Proceedings of the Twenty Third International
 Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning
 Research*, pp. 2786–2796. PMLR, 26–28 Aug 2020. URL <https://proceedings.mlr.press/v108/carriere20a.html>.

576

577 Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y. Oudot. Prox-
 578 imity of persistence modules and their diagrams. In *Proceedings of the Twenty-Fifth Annual
 579 Symposium on Computational Geometry*, SCG ’09, pp. 237–246, New York, NY, USA, 2009.
 580 Association for Computing Machinery. ISBN 9781605585017. doi: 10.1145/1542362.1542407.
 581 URL <https://doi.org/10.1145/1542362.1542407>.

582

583 Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. *The Structure and Stabil-
 584 ity of Persistence Modules*. SpringerBriefs in Mathematics. Springer, 2016. ISBN 978-3-
 585 319-42544-3. doi: 10.1007/978-3-319-42545-0. URL <https://doi.org/10.1007/978-3-319-42545-0>.

586

587 Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count sub-
 588 structures? In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
 589 Hsuan-Tien Lin (eds.), *NeurIPS*, 2020. URL <http://dblp.uni-trier.de/db/conf/nips/neurips2020.html#Chen0VB20>.

590

591 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. *Dis-
 592 crete & Computational Geometry*, 37(1):103–120, Dec 2006. doi: 10.1007/s00454-006-1276-5.

594 David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using poincaré
 595 and lefschetz duality. *Found. Comput. Math.*, 9(1):79–103, February 2009. ISSN 1615-3375.
 596

597 Michel Coste. An Introduction to O-minimal Geometry. 2002.

598 Tamal Krishna Dey and Yusu Wang. *Computational Topology for Data Analysis*. Cambridge Uni-
 599 versity Press, 2022.
 600

601 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
 602 Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*,
 603 24(43):1–48, 2023.

604 Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. *Discrete
 605 & Computational Geometry*, 28(4):511–533, Nov 2002. ISSN 1432-0444. doi: 10.1007/
 606 s00454-002-2885-2. URL <https://doi.org/10.1007/s00454-002-2885-2>.

607

608 Herbert Edelsbrunner and John Harer. Persistent homology—a survey. *Contemporary Mathematics*,
 609 pp. 257–282, 2008. doi: 10.1090/conm/453/08802.
 610

611 Herbert Edelsbrunner and Dmitriy Morozov. Persistent homology: Theory and practice. In *Pro-
 ceedings of the European Congress of Mathematics*, 2012.

612

613 V. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph neural
 614 networks. In *International Conference on Machine Learning (ICML)*, 2020.

615

616 Robert Ghrist. Barcodes: The persistent topology of data. *Bulletin of the American Mathematical
 617 Society*, 45:61–75, 2007.

618

619 William L. Hamilton. *The Graph Neural Network Model*, pp. 51–70. Springer International Pub-
 620 lishing, Cham, 2020. ISBN 978-3-031-01588-5. doi: 10.1007/978-3-031-01588-5_5. URL
 621 https://doi.org/10.1007/978-3-031-01588-5_5.

622

623 Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. *Journal of Applied
 624 and Computational Topology*, 3(4):315–358, August 2019. ISSN 2367-1734. doi: 10.1007/
 625 s41468-019-00038-7. URL <http://dx.doi.org/10.1007/s41468-019-00038-7>.

626

627 Allen Hatcher. *Algebraic Topology*. New York : Cambridge University Press, 2002.

628

629 Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
 630 sion for molecule generation in 3D. In *ICML*, 2022.

631

632 Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borg-
 633 wardt. Topological graph neural networks. *arXiv preprint arXiv:2102.07835*, 2021.

634

635 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 636 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances
 637 in neural information processing systems*, 33:22118–22133, 2020.

638

639 Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using per-
 640 sistent homology. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
 641 (eds.), *Advances in Neural Information Processing Systems*, volume 36, pp. 63150–63173. Cur-
 642 ran Associates, Inc., 2023.

643

644 Mattie Ji, Amauri H. Souza, and Vikas Garg. Graph persistence goes spectral, 2025. URL <https://arxiv.org/abs/2506.06571>.

645

646 TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint
 647 arXiv:1609.02907*, 2016.

648

649 Michael Lesnick. Notes on multiparameter persistence (for amat 840). Course notes, University
 650 at Albany, SUNY, 2025. URL https://www.albany.edu/~ML644186/840_2022/Math840_Notes_22.pdf. Last updated April 12, 2025.

648 Pan Li and Jure Leskovec. *The Expressive Power of Graph Neural Networks*, pp. 63–98.
 649 Springer Nature Singapore, Singapore, 2022. ISBN 978-981-16-6054-2. doi: 10.1007/
 650 978-981-16-6054-2_5. URL https://doi.org/10.1007/978-981-16-6054-2_5.

651 Cordelia Laura Elizabeth Henderson Moggach. *A Homotopical Categorification of the Euler
 652 Calculus*. Ph.d. thesis, University of Liverpool, 2020. URL <https://docslib.org/doc/8977190/classifying-types-topics-in-synthetic-homotopy-theory>.
 653 Minor modifications: Grenoble, 28 July 2020.

654 C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler
 655 and leman go neural: Higher-order graph neural networks. In *AAAI Conference on Artificial
 656 Intelligence (AAAI)*, 2019.

657 Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 658 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. *arXiv preprint
 659 arXiv:2007.08663*, 2020.

660 Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A
 661 roadmap for the computation of persistent homology. *EPJ Data Science*, 6(1), August 2017.
 662 ISSN 2193-1127. doi: 10.1140/epjds/s13688-017-0109-5. URL <http://dx.doi.org/10.1140/epjds/s13688-017-0109-5>.

663 Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue
 664 Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Mi-
 665 olane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane,
 666 Michael T Schaub, Petar Veličković, Bei Wang, Yusu Wang, Guowei Wei, and Ghada Zamzmi.
 667 Position: Topological deep learning is the new frontier for relational learning. In Ruslan Salakhut-
 668 dinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix
 669 Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, vol-
 670 ume 235 of *Proceedings of Machine Learning Research*, pp. 39529–39555. PMLR, 21–27 Jul
 671 2024. URL <https://proceedings.mlr.press/v235/papamarkou24a.html>.

672 The GUDHI Project. *GUDHI User and Reference Manual*. GUDHI Editorial Board, 3.11.0 edition,
 673 2025. URL <https://gudhi.inria.fr/doc/3.11.0/>.

674 Patrick Schnider. Chapter 6: Distances and stability. Lecture notes for the course “Introduction to
 675 Topological Data Analysis (TDA)”, ETH Zürich, 2024. URL <https://ti.inf.ethz.ch/ew/courses/TDA24/Chapter6.pdf>.

676 Primož Skraba and Katharine Turner. Notes on an elementary proof for the stability of persistence
 677 diagrams, 2021. URL <https://arxiv.org/abs/2103.10723>.

678 Yuxuan Song, Jingjing Gong, Hao Zhou, Mingyue Zheng, Jingjing Liu, and Wei-Ying Ma. Unified
 679 generative modeling of 3d molecules with bayesian flow networks. In *The Twelfth International
 680 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=NSVtmmzeRB>.

681 Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. Counting substructures with higher-order
 682 graph neural networks: Possibility and impossibility results, 2021. URL <https://arxiv.org/abs/2012.03174>.

683 Lou van den Dries. *Tame Topology and O-minimal Structures*, volume 248. Cambridge university
 684 press, 1998.

685 K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In *Inter-
 686 national Conference on Learning Representations (ICLR)*, 2019.

687 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 688 networks? *arXiv preprint arXiv:1810.00826*, 2018.

689 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geom-
 690 etric diffusion model for molecular conformation generation. In *ICLR*, 2022.

702 Minkai Xu, Alexander S. Powers, Ron O. Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
 703 diffusion models for 3d molecule generation. In *Proceedings of the 40th International Conference*
 704 *on Machine Learning*, ICML’23. JMLR.org, 2023.

705

706 Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, and Chao Chen. Neural approx-
 707 imation of graph topological features. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 708 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
<https://openreview.net/forum?id=qwjr07Rewqy>.

709

710 Zuoyu Yan, Qi Zhao, Ze Ye, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, and Chao Chen.
 711 Enhancing graph representation learning with localized topological features. *Journal of Machine*
 712 *Learning Research*, 26(5):1–36, 2025. URL <http://jmlr.org/papers/v26/23-1424.html>.

713

714 Chaolong Ying, Xinjian Zhao, and Tianshu Yu. Boosting graph pooling with persistent homology,
 715 2024. URL <https://arxiv.org/abs/2402.16346>.

716

717 Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
 718 Alexander J Smola. Deep sets. *Advances in neural information processing systems*, 30, 2017.

719

720 Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai Huang, and Zhong
 721 Liu. The expressive power of graph neural networks: A survey. *IEEE Transactions on Knowledge*
 722 *and Data Engineering*, 37(3):1455–1474, March 2025. ISSN 2326-3865. doi: 10.1109/TKDE.2024.
 723 3523700. URL <http://dx.doi.org/10.1109/TKDE.2024.3523700>.

724

725 Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence enhanced graph neural network. In
 726 Silvia Chiappa and Roberto Calandra (eds.), *Proceedings of the Twenty Third International Con-*
 727 *ference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning*
 728 *Research*, pp. 2896–2906. PMLR, 26–28 Aug 2020. URL <https://proceedings.mlr.press/v108/zhao20d.html>.

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

Hourglass Persistence for

Graphs, Simplices, and Cells

(Appendix)

761 A PROOFS FOR SECTION 3

763 In this section, we will provide the proofs for the results in Section 3.

765 *Proof of Proposition 1.* Let G be a path graph on 4 vertices colored in the order R, B, B, R. Let H
 766 be a star graph of 4 vertices such that the unique vertex with degree 3 has color B, and the other 3
 767 vertices have color B, R, R (see Figure 3(a)). Consider a filtration of G and H by first spawning the
 768 induced subgraph on blue vertices, and then the induced subgraph on blue and red vertices. In other
 769 words, we have filtrations of the form

$$770 \quad \emptyset \subset P_2 \subset G \text{ and } \emptyset \subset P_2 \subset H,$$

771 where P_2 is the path graph on two vertices both colored blue. The inclusion-based PH of both
 772 filtrations are the same (see Figure 4 in [Immonen et al. \(2023\)](#)). However for backward-based PH,
 773 we observe that $G / \text{IC}_1(G)$ creates a cycle but $H / \text{IC}_1(H)$ does not create a cycle. Thus, they can
 774 be told apart in the contraction stage.

775 For the second part, consider the following pair of graphs in Figure 3(b), equipped with a vertex-
 776 based filtration using degree. In this case, we observe that the filtration of G (left) and H (right)
 777 respectively is a sequence of discrete vertices until all the edges are spawned at the last time. This is
 778 because every edge is connected to a vertex of maximal degree equal to 3 for both G and H . Thus,
 779 the backward persistence for both G and H would be to quotient out the entire graph, which cannot
 780 distinguish G and H since they have the same number of components and independent cycles. On
 781 the other hand, FB-persistence can tell G and H apart since in the filtration step spawning degree 1
 782 vertices, 3 vertices are spawned for G while 2 vertices are spawned for H . \square

784 *Proof of Theorem 1.* We first see how the FB-persistence diagram can recover the forward persis-
 785 tence diagrams and the backward persistence diagrams. Indeed, at n be the time the filtration com-
 786 pletes and we are about to start contraction. The tuples that are born before or on time n (which
 787 appears at the last step of the filtration) are of the form (b, d) where d is possibly greater than n .
 788 From here, we can recover the persistence diagram in the forward filtration as by sending each pair

$$789 \quad (b, d), \text{ with } b \leq n \mapsto \begin{cases} (b, d) & \text{if } d \leq n \\ (b, \infty) & \text{if } d > n \end{cases}$$

790 where we note that if the pair (b, d) has death after time n , than it must have died in the contraction
 791 step, which means that the feature lived to ∞ in the filtration step.

792 Similarly, we may obtain the backward persistence diagram by focusing on the persistent pairs (b, d)
 793 such that $d > n$. We can recover them by the function

$$794 \quad (b, d) \text{ with } d > n \mapsto \begin{cases} (0, d), & \text{if } b \leq n \\ (b, d), & \text{if } b > n \end{cases}.$$

800 The reason why is because all the features that have not died yet at the start of contraction in FB-PH
 801 are the same as the features that are born at the initial step of the contraction scheme in backward
 802 PH. Thus, the elder rule applies to the same features when we decide what pairs to kill off. The
 803 only difference is that in backward PH, the features from the filtration steps all appeared at the
 804 same time, so it does not matter which one to kill if we do have to kill them, but for FB persistence
 805 we would need to be more careful. Evidently, though, this gives a straightforward reduction of
 806 backward PH from FB PH.

807 To see that FB PH is strictly more expressive than forward and backward PH, we consider the graphs
 808 G and H in Figure 3(c) using degree as a vertex-based filtration. Using the gudhi library ([Project](#),
 809 [2025](#))'s persistence pairs computation, we can directly apply it to the following code in Python:

```

810 1 import gudhi
811 2
812 3 VG = [0, 1, 2, 3, 4, 5, 6, 7]
813 4 EG = [(0, 1), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (4, 7), (6,
814 7)]
815 5 G_values = [1, 3, 2, 3, 4, 1, 2, 2]
816 6
817 7 VH = [0, 1, 2, 3, 4, 5, 6, 7]
818 8 EH = [(0, 1), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (5, 6), (5, 7), (6,
819 7)]
820 9 H_values = [1, 3, 2, 4, 1, 3, 2, 2]
821 10
822 11 # Compute PDs for G
823 12 stG = gudhi.SimplexTree()
824 13 for i in range(0, len(VG)):
825 14     current_v = VG[i]
826 15     v_val = G_values[i]
827 16     stG.insert([current_v], filtration=v_val)
828 17
829 18 # Adding edges
830 19 for i in range(0, len(EG)):
831 20     current_e = EG[i]
832 21     e_val = max(G_values[current_e[0]], G_values[current_e[1]])
833 22     stG.insert(current_e, filtration=e_val)
834 23
835 24 stG.make_filtration_non_decreasing()
836 25 G_dgms = stG.persistence(min_persistence=-1, persistence_dim_max=True)
837 26 print(G_dgms)
838 27
839 28 # Compute PDs for H
840 29 stH = gudhi.SimplexTree()
841 30 for i in range(0, len(VH)):
842 31     current_v = VH[i]
843 32     v_val = H_values[i]
844 33     stH.insert([current_v], filtration=v_val)
845 34
846 35 # Adding edges
847 36 for i in range(0, len(EH)):
848 37     current_e = EH[i]
849 38     e_val = max(H_values[current_e[0]], H_values[current_e[1]])
850 39     stH.insert(current_e, filtration=e_val)
851 40
852 41 stH.make_filtration_non_decreasing()
853 42 H_dgms = stH.persistence(min_persistence=-1, persistence_dim_max=True)
854 43 print(H_dgms)
855 44
856 45 print(G_dgms == H_dgms)

```

851 The output would say that for graphs have the persistence diagrams of the form $[(1, (3.0, \text{inf})), (1, (4.0, \text{inf})), (0, (1.0, \text{inf})), (0, (1.0, 4.0)), (0, (2.0, 4.0)), (0, (2.0, 3.0)), (0, (2.0, 2.0)), (0, (3.0, 3.0)), (0, (3.0, 3.0)), (0, (4.0, 4.0))]$.

855 Now we show that they have the same backward persistence diagrams. At the initial time, they have
856 the same number of connected components and cycles, so there are no distinctions for G and H .
857 In the first step, we contract the $\text{IC}_3(G)$ or $\text{IC}_3(H)$ (which is the closed star containing the unique
858 vertex labeled with the value 4). This is a connected subtree for both G and H , so the contraction
859 does not produce non-trivial persistence pairs. Then we contract $\text{IC}_2(G)$ (or $\text{IC}_2(H)$), which would
860 kill a cycle on both sides. Since the birth time of the cycles are the same, we just mark one of
861 the $(0, -)$ to die at the time. But by the time we contract $\text{IC}_1(G)$ (or $\text{IC}_1(H)$), we will kill the
862 remaining cycle on both sides, which marks another one, and we are done after the last step. Thus,
863 we see that they will have the same backward persistence diagram.

864 Now to see that G and H have different FB-persistence, we note that the birth time of the two cycles
 865 when contracting $IC_2(G)$ (or $IC_1(H)$) are different. For G , the cycle being contracted is born when
 866 the degree 3 vertices are spawned. For H , the cycle being contracted is born when the degree 4
 867 vertices are spawned. This would create a different persistent pair and hence FB-persistence can tell
 868 them apart. \square

869
 870 *Proof of Proposition 2.* Clearly FB-persistence is an example of hourglass persistence, so hourglass
 871 has at least as much expressivity as FB. Let G, H be graphs constructed in the NetworkX library,
 872 with filtration function f being degree-based vertex-level filtrations, as:

873
 874 $G = nx.from_edgelist([(0, 1), (1, 2), (2, 3), (1, 4), (4, 5)])$
 875 $H = nx.from_edgelist([(0, 1), (1, 2), (1, 3), (3, 4), (4, 5)])$

876
 877 See Figure 3(d) for a visualization of the two graphs above. We wish to show they have the same
 878 FB-persistence but different hourglass persistence.
 879

880
 881 In this case, we note that the two graphs would have the same FB-persistence diagram with respect
 882 to f . Indeed, at $t = 1$, all the vertices labeled 1 are spawned for both G and H , which gives three
 883 copies of the form $(1, -)$. At $t = 2$, the induced subgraph on vertices labeled 1 and 2 appears. We
 884 note here that on both G and H , by the elder's rule, the two new vertices are both killed, thus both
 885 diagrams have the form

$$(1, -), (1, -), (1, -), (2, 2), \text{ and } (2, 2).$$

886 Finally, at $t = 3$, the vertex labeled 3 appears which makes both G and H connected at the step. The
 887 vertex labeled 3 dies at the same time, and two of the tuples labeled $(1, -)$ also dies. This gives
 888

$$(1, -), (1, 1), (1, 1), (2, 2), (2, 2), \text{ and } (3, 3).$$

889 Now we enter the contraction steps. Indeed, we first contract $IC_2(G)$ (or the corresponding
 890 version for H), evidently we are contracting isomorphic connected subtrees on G and H , so the
 891 process would neither create non-trivial cycles or non-trivial steps. Then we contract $IC_1(G)$ (or
 892 the corresponding version for H), for H this is a subtree, so the contraction does not create new
 893 non-trivial tuples. For G , one might be tempted to think that this is contracting a disconnected
 894 graph. However, since we contracted $IC_2(G)$ already, the two edges are actually connected here
 895 and forms a tree, so this also does not incur a change.

896 Finally, at the end, we remark the unique remaining tuple to die at ∞ .

$$(1, \infty), (1, 1), (1, 1), (2, 2), (2, 2), \text{ and } (3, 3).$$

901
 902 **Remark:** Note also that in the proof here we computed the persistence tuples in function time as
 903 opposed to combinatorial time (see Section 6 for a discussion), but this does not matter in terms of
 904 expressivity.

905
 906 Finally, to see why hourglass persistence can tell them apart, we see that if we spawn $IC_1(G)$ (resp.
 907 $IC_1(H)$) first in the sequence, then they would incur two connected components for G but only one
 908 for H , so hourglass persistence can tell them apart. \square

909
 910
 911
 912
 913
 914
 915
 916
 917

918 **B PROOFS FOR SECTION 4**
 919

920 We split the discussion for the proofs for Section 4 into three parts:
 921

922 1. In Appendix B.1, we establish a lemma that will be helpful in streamlining the proof of
 923 Proposition 6 in Appendix B.2. For completeness, we will also use a special case of this
 924 lemma to show how persistence modules can derive the usual interpretation of persistence
 925 pairs for a graph filtration. We will also introduce some concepts helpful in understanding
 926 the proof of Proposition 6.
 927 2. In Appendix B.2, we prove Proposition 3, Proposition 5, and Proposition 6 (ie. the expres-
 928 sivity parts of the section).
 929 3. In Appendix B.3, we will explain the two algorithms for Proposition 4 and prove it.
 930

931 **B.1 KEY LEMMA AND THE USUAL PERSISTENT PAIRS INTERPRETATION FOR GRAPH
 932 FILTRATIONS**
 933

934 Before we give a proof of Proposition 6, we first note that the description of death times for
 935 connected components holds on an elevated generality that both the proofs of Proposition 6 and (later)
 936 Proposition 7 would use, so we might as well extract it out as a formal lemma.
 937

938 For completeness, we will also give a self-contained proof of how Definition 2 recovers the usual
 939 way to compute persistent pairs for graph filtrations (for instance, see Section 4 of [Horn et al. \(2021\)](#)
 940 or Algorithm 1 of [Immonen et al. \(2023\)](#)).

941 The lemma is as follows.

942 **Lemma 1.** *Let $X_\bullet = (\emptyset = X_{-1} \rightarrow X_0 \rightarrow X_1 \rightarrow \dots \rightarrow X_N)$ be a sequence of inclusions and
 943 contractions of graphs (ie. the set-up of hourglass persistence). Note that by necessity the first step
 944 $X_{-1} \rightarrow X_0$ has to include in a graph. The persistence pairs¹ for $H_0(X_\bullet)$ can be computed algo-
 945 rithmically as follows - the method of which we called “keeping track of one vertex representative
 946 per component”:*

947 1. *In the filtration step $X_{-1} \rightarrow X_0$, we pick 1 vertex per connected component in X_0 and
 948 mark a tuple $(0, -)$ corresponding to that. We fix one of these vertices to be called the
 949 **supernode** (denoted $*$), in the sense that any time we compare a vertex v with $*$ to decide
 950 which one to kill off, we always kill off v .*
 951 2. *For $i \geq 0$, if the step $X_i \rightarrow X_{i+1}$ is a filtration, then one treats this in algorithmic time as
 952 a procedure to spawn every new vertex that appears first and mark them as tuples $(i, -)$,
 953 and then spawn edges between them. For each edge between spawned, if an edge is joined
 954 between 2 different components represented by vertices v and w , we mark the vertex born
 955 later to die at time i and pick v as the representative of the new component. (Since we do
 956 not focus on trivial deaths, we can discard them after this step). If the two vertices are born
 957 at the same time, we randomly pick 1 to kill off unless one of them is the supernode $*$, in
 958 which case we always kill off the other vertex.*
 959 3. *For $i \geq 0$, if the step $X_i \rightarrow X_{i+1}$ is a contraction, say contracting a subgraph G . We
 960 loop through each connected component X_j of G , we find the vertex v_j representing the
 961 component X_j belongs in and kill v_j unless (1) it got killed already in some index $j' < j$
 962 when looping through the X_j ’s or (2) it is the supernode $*$.*
 963 4. *After $i = N$, for every tuple not dead yet, we mark it to die at time ∞ .*

964 **Remark 2.** Note that the statement of Lemma 1 does not require X_N to terminate with only the
 965 point $*$ left, so the case of hourglass persistence in Definition 7 is a special case in this lemma.
 966 A more specific case of Lemma 1 is when the maps are all inclusions. This will recover the usual
 967 procedure to compute the 0-dimensional PH of a graph filtration (as we just ignore Step 3).
 968

969 *Proof of Lemma 1.* Indeed let us recall from Remark 1 how one way to compute persistence dia-
 970 grams are done. Let us interpret how the remark tells us how to compute the quantities here explic-
 971 itly:

¹Recall here we are not accounting for trivial deaths

972 1. We pick a non-zero vector v of $H_0(X_0)$, and consider the sequence of linear subspaces
 973 generated by the iterated image of v in $H_0(X_\bullet)$ until it becomes 0.
 974

975 2. Then we remove this sequence of linear subspaces off of $H_0(X_\bullet)$. If there is still a non-zero
 976 vector w in $H_k(X_0)$, we pick w and repeat the process (if the linear map sends w outside.
 977 Otherwise, we choose a non-zero vector from what is left in $H_k(X_1)$ (if it exists) and look
 978 at its iterated images ahead, and so on.

979 Let us also recall the following standard fact in algebraic topology - suppose $f : A \rightarrow B$ is a map of
 980 (say) cellular complexes, then the induced map $f_* : H_0(A; \mathbb{Z}/2) \rightarrow H_0(B; \mathbb{Z}/2)$ can be described
 981 exactly as follows - recall $H_0(A; \mathbb{Z}/2)$ and $H_0(B; \mathbb{Z}/2)$ are respectively isomorphic to the direct
 982 sum of copies over $\mathbb{Z}/2$ indexed over their path-connected components. For each path component
 983 A_i , let 1_{A_i} be the unique non-zero vector representing that component. The continuous image of a
 984 path-connected component is path-connected, so $f(A_i)$ lies in a path-connected component of B ,
 985 say B_j , then the map described above sends $f_*(1_{A_i}) = 1_{B_j}$.

987 **Remark 3.** *This description might deceptively suggest that f_* is not the zero map on all of
 988 $H_0(A; \mathbb{Z}/2)$, but this is clearly not the case, it just happens that we chose a convenient basis on
 989 both sides such that f_* is not zero on the chosen basis vectors. The subtlety in the persistence calcula-
 990 tion is that we want to choose the basis in the $H_0(-)$ of the next space consistently with the basis
 991 of the previous one to nicely compute the persistence pairs.*

993 By the remark in the line above, though, we see that it follows that there exists a non-zero vector
 994 $v_1 \in H_0(X_0)$ (as long as X_0 is not empty, by requirement) such that the successive images of v
 995 are never 0 when passing through $H_0(X_\bullet)$, thanks to the convenient choice of basis, and v can in
 996 fact come from representing some connected component. We then choose v here to represent the
 997 **supernode** *. In the next step of the remark, we then remove the subspace generated by successive
 998 images of v off $H_0(X_0)$, and if the next vector we pick lands in this subspace, we consider it dead.
 999 Note that on the level of H_0 , a vector $1_C \in H_0(X_i)$ representing a component could land in this
 1000 subspace at $H_0(X_{i+1})$ if and only if $f_i(C)$ belongs in the component of the supernode at time
 1001 $i+1$. Thus, we see that asking a vector representing 1_C to die if it enters this subspace corresponds
 1002 **exactly** to the property of the supernode.

1003 Now we proceed by induction and suppose the i -th vector v_i we pick following the remark (1)
 1004 represents a component, (2) gives the correct persistence pair according to the outline of this lemma,
 1005 and (3) has been picked according to the rules of Remark 1. Now we wish to show we can pick
 1006 the $i+1$ -th vector v_{i+1} such that they still satisfy (1) and (2). Now we would stop if we have ran
 1007 out of vectors to pick, so there is at least some non-zero vector in the complement of the subspace
 1008 generated by vectors v_1, \dots, v_i and their iterated images (call this W_i for convenience). So there
 1009 exists some vector v_{i+1} that represents a component C and say $v_{i+1} \in H_0(X_j)$.

1011 By assumption, v_{i+1} cannot be in the image of any previous vector, so the component C must be a
 1012 new component that appears from $X_{j-1} \rightarrow X_j$ (by the description of what the correspondent map
 1013 in H_0 is like). Now we have two descriptions of how C gets killed:

1014 1. C is killed in the sense of this lemma if and only if when (a) it merges with an earlier
 1015 component during filtration or (b) a subgraph of C was asked to be contracted in the future.
 1016 2. Remark 1 says that C is killed if and only if the iterated image of 1_C gets landed in W_i .

1018 We will go from the remark and see why it is equivalent to the first item. Based on the description
 1019 of how the induced map on $H_0(-)$ behaves, we see that 1_C can land into W_i at time $j' > j$ if and
 1020 only if there is some $0 \leq k \leq i$ such that $f_{j'-1} \circ \dots \circ f_j(C)$ and $f_{j'-1} \circ \dots \circ f_j(C_k)$ represents the
 1021 same connected component, where C_k is the component component v_k represents at the time it was
 1022 born.

1023 Without loss, we can choose j' to be the first time step $> j$ such that $(f_{j'-1})_* \circ \dots \circ (f_j)_*(1_C)$ is
 1024 in W_i and k to be the first v_k whose component C merges with. Then it follows that in the step
 1025 $f_{j'-1} : X_{j'-1} \rightarrow X_{j'}$, C dies by merging into $f_{j'-1} \circ \dots \circ f_j(C_k)$. If $f_{j'-1}$ is a filtration, this can

1026 only happen if some edge is spawned between them. If $f_{j'-1}$ is a contraction, this can only happen
 1027 if $k = 0$ (ie. it goes into the supernode). Thus, we see that these are exactly the two conditions
 1028 proposed by the scenario in the lemma. Furthermore, the birth and death times proposed by the
 1029 lemma and Remark 1 agrees.
 1030

1031 We then induct repeatedly ahead and conclude the proof. \square
 1032

1033 As noted earlier, Lemma 1 recovers the usual algorithm to compute persistence pairs for graph
 1034 filtrations on the 0th dimensions. We now explain how to obtain the one for the 1st dimension from
 1035 Definition 2. This will follow from the following more general fact.
 1036

1037 **Lemma 2.** *Let X be a (finite) cell complex of dimension D and $X_\bullet := \emptyset = X_{-1} \rightarrow X_0 \rightarrow \dots \rightarrow$
 1038 $X_n = X$ be a filtration of X by cellular sub-complexes, then the persistence pairs of $H_D(X_\bullet)$ may
 1039 be computed as follows:*

- 1040 1. At $t = 0$, we instantiate $\dim H_D(X_0)$ many tuples of the form $(0, \infty)$.
 1041
2. For $t > 0$, we instantiate $\dim H_D(X_t) - \dim H_D(X_{t-1})$ many tuples of the form (t, ∞) .
 1042
3. We end at $t = n$.
 1043

1044 We first look at how Lemma 2 specializes for graphs, before proving it. When $D = 1$, a 1-
 1045 dimensional cell complex is the same as a graph, and the lemma recovers the usual way to calculate
 1046 1-dimensional PH's.
 1047

1048 Indeed, $H_1(-)$ of a graph corresponds exactly to its list of independent cycles. For completeness,
 1049 by “independent cycles”, we mean the following interpretation:
 1050

1051 **Definition 10.** *Let C, C' be two cycles of the graph G . The $C \boxtimes C'$ as the XOR of $E(C)$ and $E(C')$
 1052 (ie. their symmetric difference). For a list of cycles D_1, \dots, D_n , the XOR span of the list is the
 1053 following set:*

$$1054 \{D_{i_1} \boxtimes D_{i_2} \boxtimes \dots \boxtimes D_{i_k} \mid i_1, i_2, \dots, i_k \subseteq \{1, \dots, n\}\}$$

1055 **Definition 11.** *Let C_1, C_2, \dots, C_k be a list of cycles of G . The list is a list of **independent cycles** if
 1056 for any C_i , C_i is not contained in the XOR span of $C_1, \dots, C_{i-1}, C_{i+1}, \dots, C_k$
 1057*

1058 The following is a well-known interpretation of $H_1(-)$ of a graph and can be interpreted as the
 1059 definition.
 1060

Fact: The maximal list of independent cycles on G forms a basis for $H_1(G)$.
 1061

1062 The usual algorithm for 1st dimensional persistence diagrams of a graph filtration keeps track of
 1063 vertex representatives for the components, and they mark the birth-time of cycles of the form (t, ∞)
 1064 at filtration time t for each edge drawn from a component to itself at time t .
 1065

1066 **Proposition 8.** *Lemma 2 recovers the usual algorithm described above.*

1067 *Proof.* Let us start from the algorithm side and work to Definition 2. Indeed, each (t, ∞) corre-
 1068 sponds to an edge e that is born in G_t (the subgraph at time t). Choose C_e to be a cycle in G_t
 1069 containing the edge e , we choose this for every such edge arising above.
 1070

1071 By Lemma 2, it suffices for us to check that for each time step T , $H_1(G_t)$ has a basis being
 1072 $\{C_e\}_{e \in E}$, where E is the collection of edge-creating cycle that is born in time $\leq T$. We first check
 1073 that this is linearly independent. Indeed, we choose a total ordering \leq on E such that $e_1 < e_2$ if e_1
 1074 appeared earlier than e_2 in the algorithm, (even if they are born at the same filtration time, there is
 1075 an ordering of which one is born first in algorithmic time). Under this total ordering, we rewrite the
 1076 elements of E into e^1, e^2, \dots, e^N .
 1077

1078 Clearly the list $\{C_{e^1}\}$ is independent, since C_{e^1} is a non-trivial cycle. Suppose by induction
 1079 $\{C_{e^1}, \dots, C_{e^k}\}$ is independent, we wish to show adding $C_{e^{k+1}}$ into the list remains independent.

1080 Indeed, the XOR span of any sublist of $\{C_{e^1}, \dots, C_{e^k}\}$ is always contained in the union of edges of
 1081 C_{e^1}, \dots, C_{e^k} 's, which does not contain the edge e^{k+1} because of the total ordering we picked. Thus,
 1082 $C_{e^{k+1}}$, which contains e^{k+1} by construction, is not in the XOR span. Thus, we have verified this is
 1083 a **list of independent cycles**.
 1084

1085 Now, to show that this is a maximal list. We observe that removing the set E from G_t will turn G_t
 1086 into a forest. This implies that there are no additional cycles left, which concludes the proof. \square
 1087

1088 Now we will prove Lemma 2.
 1089

1090 *Proof of Lemma 2.* This lemma follows from the fact that the induced map $H_D(X_t) \rightarrow H_D(X_{t+1})$
 1091 by inclusion has to be injective for all t . Indeed, this comes from the long exact sequence in ho-
 1092 mology for the pair (X_{t+1}, X_t) (see Theorem 2.16 of [Hatcher \(2002\)](#)), since $H_{D+1}(X_{t+1}, X_t)$ is
 1093 evidently zero as X_{t+1} and X_t are both at most D -dimensional. Since this is injective, Remark 1
 1094 tells us that a chosen component according to the steps of the remark can never merge into a pre-
 1095 existing component, so all the vectors picked survive to ∞ . Once we move from X_t to X_{t+1} , the new
 1096 pairs that are created are exactly $\dim H_D(X_{t+1}) - \dim H_D(X_t)$ many pairs of the form $(t+1, \infty)$.
 1097 This concludes the proof. \square
 1098

1099 B.2 PROOFS FOR THE EXPRESSIVITY PARTS OF SECTION 4

1100 *Proof of Proposition 3.* As defined in Section 2 of [Yan et al. \(2022\)](#), the extended persistence of a
 1101 filtration function f is equivalent to the persistent pairs associated to the persistence module:
 1102

$$1103 0 = H(G_{-\infty}) \rightarrow \dots H(G_a) \rightarrow H(G) = H(G, G^\infty) \rightarrow \dots H(G, G^a) \rightarrow H(G, G^{-\infty}).$$

1104 Here, G_a means $\{x \in G \mid f(x) \leq a\}$ and G^a means $\{x \in G \mid f(x) \geq a\}$, and H denotes either H_0
 1105 or H_1 . Here we note that the paper [Yan et al. \(2022\)](#) wrote $\emptyset = H(G_{-\infty}) = H(\emptyset)$, but some prefer
 1106 the convention that $H(-)$ of the empty set is 0, as opposed to the empty set. One motivating reason
 1107 is that the empty set is not a vector space. This does not affect the persistence pairs produced since
 1108 they start at the non-zero parts.
 1109

1110 Although a is indexed over the entire extended real numbers $[-\infty, +\infty]$, since f takes only finitely
 1111 many values (or, if f is a real valued function taken on a graph G , viewed as a non-discrete topolog-
 1112 ical space, the topological changes only occur when a vertex is spawned), the persistence module
 1113 reduces to a finite length persistence module of the form
 1114

$$0 \rightarrow H(G_{a_0}) \rightarrow \dots \rightarrow H(G_{a_n}) = H(G) \rightarrow H(G, G^{a_n}) \rightarrow \dots \rightarrow H(G, G^{a_0}),$$

1115 where $a_0 < \dots < a_n$ is the sequence of filtration values of f . By Proposition 2.22 of [Hatcher \(2002\)](#),
 1116 there is a morphism of persistence modules of the form:
 1117

$$\begin{array}{ccccccccccc} 0 & \longrightarrow & H(G_{a_0}) & \longrightarrow & \dots & \longrightarrow & H(G_{a_n}) & \longrightarrow & H(G, G^{a_n}) & \longrightarrow & \dots & \longrightarrow & H(G, G^{a_0}) \\ & & \downarrow & & \downarrow & & \downarrow & & \downarrow & & & & \downarrow \\ 0 & \longrightarrow & H(G_{a_0}) & \longrightarrow & \dots & \longrightarrow & H(G_{a_n}) & \longrightarrow & H(G/G^{a_n}) & \longrightarrow & \dots & \longrightarrow & H(G/G^{a_0}) \end{array}$$

1122 where the second row is analogous to the construction of (f, g) -FB persistence we did. Observe
 1123 we can rewrite G^{a_i} as $\{x \in G \mid -f(x) \leq -a_i\}$. By and the successive union of the intermediate
 1124 complexes arising in the definition of $(f, -f)$ -FB persistence up to step i is exactly the same as
 1125 G^{a_i} , so the persistence module of the second row arises exactly from the $(f, -f)$ -FB persistence.
 1126

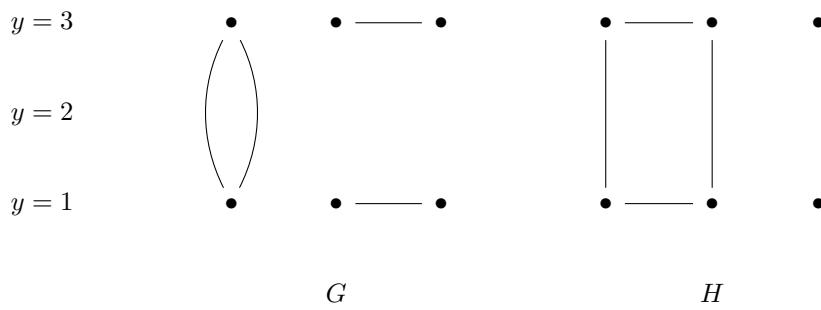
1127 Proposition 2.22 of [Hatcher \(2002\)](#) also implies that the morphism above is an isomorphism of
 1128 persistence modules if H is $H_1(-)$, so they will have the same 1-dimensional persistent diagrams.
 1129

1130 If H is $H_0(-)$, then the maps $H(G, G^{a_i}) \rightarrow H(G/G^{a_i})$ injects onto a direct summand $\tilde{H}(G/G^{a_i})$
 1131 of $H(G/G^{a_i})$ such that $H(G/G^{a_i}) = \tilde{H}(G/G^{a_i}) \oplus \mathbb{Z}/2$. On the other hand, there is a very explicit
 1132 interpretation on what the generator of the $\mathbb{Z}/2$ summand is - it is exactly the image of the chosen
 1133 **supernode** (see Lemma 1). The difference here is that the supernode in the second row becomes the

only vertex feature that does not die, of the form $(0, \infty)$, and the supernode in the first row becomes the vertex feature of the form $(0, d)$ where d achieves the maximum death time among all vertices of the graph (concretely, it is the first i (from n to 0) such that G/G^{a_i} is a connected graph). By the decision rule we imposed on the supernode, we see that the first and second row agree on all 0-dimensional persistence pairs except for the supernode, but clearly we can invert from one to another.

This concludes the discussion that they have the same expressivity.

Proof of Proposition 5. Indeed, consider the pair of graphs G and H from Figure 5 with the filtration function f being the vertex-based filtration function induced by the height function on the vertices. For convenience, we also redraw the two graphs below as:



In the forward time, we observe that the respective filtrations for G and H only change twice as $\emptyset = G_{-1} \subset G_0 \subset G_1 = G$ and $\emptyset = H_{-1} \subset H_0 \subset H_1 = H$, where G_0 and H_0 are identical. The same number of vertex births/deaths and cycle births occur at $y = 3$, and hence G and H cannot be told apart in forward time. If we apply the backward contraction with respect to $-f$ (ie. extended persistence), then at $y = 3$, the subgraph being contracted is the same, and they both only kill 1 connected component. No changes happen until we get back to $y = 0$, but by then the entire remaining graphs are contracted, and no differences are detected. Thus, we conclude that forward with respect to f + backward with respect to $-f$ cannot tell apart G and H .

On the other hand, we observe that FB-persistence can clearly tell them apart. This is because $\text{IC}_1(G)$ has a cycle and $\text{IC}_1(H)$ does not, so contracting G by $\text{IC}_1(G)$ kills a cycle but contracting H by $\text{IC}_1(H)$ does not. \square

Proof of Proposition 6. From a similar proof to that of Theorem 1, we know that (f, f) -FB has at least the same expressivity as forward PH with f . Note that the explicit description of how to compute (f, f) -FB persistence means that it is actually a function of the filtraiton function f , so if the explicit description holds then forward PH with f is at least as expressive as (f, f) -FB persistence, which will show they have the same expressive power.

Thus, it suffices for us to verify this explicit description. The case for connected components is resolved by Lemma 1 already, so we will examine how to compute the case of cycles.

By a similar procedure to the explanation in Theorem 1 (essentially due to elder's rule), the cycles that appear in the contraction steps for (f, f) -FB persistence are exactly the cycles (that are not born at the beginning) in the backward persistence diagram that contracts the intermediate complexes in the order $\text{IC}_0(G, f), \text{IC}_1(G, f), \dots, \text{IC}_n(G, f)$. Note that a cycle can be born in the contraction stage if and only if we are being asked to contract two components that belong to the same connected component of the entire graph G (note that, without loss in algorithmic time, we can always contract two components at a time).

Since the intermediate complexes being contracted are in the same order they appear in the filtration, we see that the birth of cycles in the contraction steps corresponds exactly to the appearance of connected components in filtraiton that will be merged to connected components that are born earlier. The death time of such cycle also corresponds to when the two components actually merge. Perhaps one way to see this is to note that in the simplicial quotient interpretation (see Section 5),

1188 this fills in a list of triangles to the disjoint base point v_+ on top of a path connects the two vertex
 1189 representatives. Prior to the filling, the two vertex representatives would each have an edge to v_+
 1190 (which is a cycle since they are in the same component for the entire graph G). The filling of the
 1191 triangles here would kill the cycle. This proves the case for cycles born in contraction.
 1192

1193 Finally, for the cycles born in filtration, we would like to predict their death time in contraction.
 1194 Recall from the proof of Proposition 8 that there is an explicit description of the compatible basis
 1195 of $H_1(G_\bullet^{\text{fil}})$, where G_\bullet^{fil} denotes the sequence of inclusions of subgraphs induced by the filtration
 1196 function f . The basis of $H_1(G)$ correspond to edge-creating cycles, and an explicit ordered
 1197 basis of independent cycles $C_1 < \dots < C_N$ can be found by choosing cycles C_i that contain the
 1198 edge-creating cycles e_i in an inductive way (see the proof of Proposition 8 for more details). The
 1199 upshot is that this would give a linearly independent list of cycles because the edge-creating cycle
 1200 C_i contains is not contained in C_j for $j < i$.
 1201

1202 In the contraction step, we observe that a necessary condition for the list $\{C_1, \dots, C_N\}$ to degenerate
 1203 (ie. become linearly dependent) is when some cycle creating edge e_i is contracted. Furthermore, if
 1204 e_i is the last edge in the cycle C_i to be contracted, the cycle C_i would die right there. The difficult
 1205 with general (f, g) -FB persistence is that, due to the arbitrariness of g , often times the cycle creating
 1206 edge e_i is not the last edge being contracted in C_i . In the case of (f, f) -FB persistence, however, we
 1207 observe that we can always choose e_i to die last in algorithmic time. Thus, this shows that each cycle
 1208 C_i born at time k dies exactly at time $n + k$ (when the same cycle is being asked to be contracted
 1209 with respect to f). \square
 1210

1211 B.3 ALGORITHM TO COMPUTE (σ, τ) -FORWARD-BACKWARD FILTRATIONS

1212 In this section, we will prove Proposition 4 and explain the algorithms behind in the case when f
 1213 is vertex-based. We also remark that a similar algorithm exists in the arbitrary case when f is not
 1214 vertex-based, just one also has to carefully permute the edge based values. We chose to present the
 1215 case when f is vertex-based for simplicity.
 1216

1217 Before we start explaining the algorithm, we first explain why (f_1, f_2) exists in general. Indeed, this
 1218 will follow immediately from the following more general fact.
 1219

Lemma 3. *Let G be a graph and $G_\bullet = (\emptyset = G_{-1} \subset G_0 \subset G_1 \subset \dots \subset G_n)$ be a strict inclusion of
 1220 subgraphs on G , then there exists a filtration function $f : G \rightarrow \mathbb{R}$ with filtration values $a_0 < \dots < a_n$
 1221 such that $f^{-1}((-\infty, a_i]) = G_{a_i}$.*

1222 *Proof.* For each vertex or edge $x \in G$, we define $f(x)$ to be $\min_{i \in \{0, 1, \dots, n\}} x \in G_i$. Since G_\bullet is an
 1223 inclusion of subgraphs, an edge e cannot appear earlier than the vertices that support it, so it follows
 1224 that f is a filtration function. This concludes the proof. \square
 1225

1226 From now on in this subsection, we assume that f is vertex-based for simplicity. Let us first look at
 1227 the algorithm for FB-persistence specifically and see why it is only linear time.
 1228

Proposition 9. *Let f be a filtration function, then there exists a filtration function f^b such that the
 1229 sequence of topological maps in (f, f^b) -persistence is the same as the ones in FB-persistence with
 1230 respect to f . Furthermore, Algorithm 3 computes f^b in with a runtime of $O(|V| + |G|)$.*
 1231

1232 *Proof.* To show that Algorithm 3 correctly computes f^b , it suffices for us to show that $\text{IC}_i(G; f^b)$ is
 1233 exactly $\text{IC}_{n-i}(G; f)$. Indeed, the intermediate complexes produced for the pair (G, f) are “upward
 1234 closed” in the sense that the edges of $\text{IC}_i(G; f)$ all have the same value a_i , but the value of vertices
 1235 are in general only $\leq a_i$.
 1236

1237 If we want $\text{IC}_n(G; f)$ to be the first intermediate complex that appears in the filtration f^b , we would
 1238 want to relabel all of its vertices to the maximal value a_n , which is precisely what the algorithm
 1239 does. Since f is vertex-based, we only need to do this on vertices and we can modify the edges
 1240 later.
 1241

1242

Algorithm 3 Computing the Backward Filtration Function

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

Input → Output: The graph G and filtration function $f \rightarrow$ The function f^b

```

1:  $f_{\text{vertex}}^b \leftarrow \{v : -\infty \mid \text{for each } v \in V(G)\}$            ▷ Initialize  $f^b$  on vertices with values in  $-\infty$ .
2: for edge  $e = (v, w)$  in  $E(G)$  do
3:    $f_{\text{vertex}}^b[v] \leftarrow \max(f(e), f_{\text{vertex}}^b[v]).$ 
4: for vertex  $v$  in  $V(G)$  do
5:   if  $f_{\text{vertex}}^b[v] = -\infty$  then
6:      $f_{\text{vertex}}^b[v] \leftarrow f(v)$                                ▷ Mark isolated vertices to their value under  $f$ .
7:    $(f_{\text{vertex}}^b, f_{\text{edge}}^b) \leftarrow (\text{map}(x \mapsto -x; f_{\text{vertex}}^b), \text{map}(x \mapsto -x; f_{\text{edge}})).$ 
8: return  $(f_{\text{vertex}}^b, f_{\text{edge}}^b).$ 

```

1258

1259

1260

1261

If we want $\text{IC}_{n-1}(G; f)$ to be the second intermediate complex that appears in the filtration f^b , we would want all vertices that have not been marked a_n already to be marked a_{n-1} . This amounts to a maximality comparison in the for loop in the algorithm.

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

If we want $\text{IC}_{n-2}(G; f)$ to be the third that appears, we similarly want to label all vertices not marked a_n, a_{n-1} yet to be marked as such, so repeating this process yields the correctness of the algorithm.

1265

1266

1267

1268

1269

1270

Now we move on to Proposition 4. In fact, Algorithm 3 before is a special case of the algorithms for this. In order to create a backward-filtration function that contracts in a permutation of the intended order specified by a permutation σ , we observe that Algorithm 3 would actually hold if the max function is operated with respect to an “ordering given by σ ” as opposed to the natural ordering of the reals.

1271

1272

1273

Instead of changing the ordering system of the reals in our algorithm, we will instead change the filtration function f inside the parameter of the max function to this ordering. To do this, we define the following variant of f :

1274

1275

1276

Definition 12. Let $f : G \rightarrow \mathbb{R}$ be a filtration function with filtration values $a_1 < a_2 < \dots < a_n$. Let σ be a permutation of the list $\{1, \dots, n\}$, we define $\sigma \cdot f$ as the function

1277

$$\sigma \cdot f : G \rightarrow \mathbb{R}, \quad \sigma \cdot f(x) = a_{\sigma(i)} \text{ if } f(x) = a_i,$$

1278

where x is either a vertex or an edge.

1279

1280

Algorithm 4 Computing the τ -Backward Filtration Function

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Input → Output: The graph G , function f , permutation $\tau^{-1} \rightarrow$ The function f^τ

```

1:  $g \leftarrow (\text{re} \circ \tau^{-1}) \cdot f$ 
2:  $f_{\text{vertex}}^\tau \leftarrow \{v : -\infty \mid \text{for each } v \in V(G)\}$            ▷ Initialize  $f^\tau$  on vertices with values in  $-\infty$ .
3: for edge  $e = (v, w)$  in  $E(G)$  do
4:    $f_{\text{vertex}}^\tau[v] \leftarrow \max(g(e), f_{\text{vertex}}^\tau[v]).$ 
5: for vertex  $v$  in  $V(G)$  do
6:   if  $f_{\text{vertex}}^\tau[v] = -\infty$  then
7:      $f_{\text{vertex}}^\tau[v] \leftarrow g(v)$                                ▷ Mark isolated vertices to their value under  $f$ .
8:    $f_{\text{vertex}}^\tau \leftarrow \text{map}(x \mapsto -x; f_{\text{vertex}}^\tau).$ 
9:    $f_{\text{edge}}^\tau \leftarrow \text{map}(x \mapsto -x; g_{\text{edge}}).$                    ▷  $g_{\text{edge}}$  is the function  $g$  on  $E(G)$ .
10: return  $(f_{\text{vertex}}^\tau, f_{\text{edge}}^\tau).$ 

```

1293

1294

1295

In practice, a permutation σ can be realized as a dictionary with entry being i and output being $\sigma(i)$. We can use this to make an associated dictionary whose entry is a_i and output is $a_{\sigma(i)}$. Depending on how the filtration function f is represented as a data structure, this may require a sorting of the

1296 list of filtration values if the values are not sorted already. We can then produce $\sigma \cdot f$ by a linear
1297 scan through the entries of f and swap out its output using the associated dictionary.
1298

1299 A slight modification of Algorithm 3 now produces Algorithm 4. In the special case when $\tau = \text{re}$
1300 (the reverse list permutation), this will recover Algorithm 3. This gives f_2 as requested in Propo-
1301 sition 4, but note that plugging σ into τ also gives the desired f_1 in the proposition. A slight
1302 modification of the proof for Algorithm 3 will ensure the correctness of the algorithm here. Because
1303 we possibly may need to sort a list, this would incur a worst-case runtime of $O(n \log n)$, where
1304 $n = |V(G)| + |E(G)|$.
1305

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 **C PROOFS FOR SECTION 5**
13511352 *Proof of Proposition 7.* Let Y be a simplicial complex, and let Y_\bullet be a sequence of inclusions and
1353 contractions in some arbitrary order, of the form:
1354

1355
$$\emptyset = Y_{-1} \rightarrow Y_0 \rightarrow Y_1 \rightarrow \dots \rightarrow Y_m \rightarrow Y_{m+1} = \ast.$$

1356 Using the simplicial quotient method, we adjoin a disjoint base point v_+ to Y and also form a
1357 sequence of inclusions Z_\bullet of the form
1358

1359
$$v_+ \rightarrow Z_0 \rightarrow Z_1 \rightarrow \dots \rightarrow Z_m \rightarrow Z_{m+1}.$$

1360 Taking $H_k(-)$ gives the sequence
1361

1362
$$H_k(Z_\bullet) : 0 \rightarrow H_k(Z_0) \rightarrow H_k(Z_1) \rightarrow \dots \rightarrow H_k(Z_m) \rightarrow H_k(Z_{m+1}).$$

1363

Fix $k > 0$, we also let $H_k(Y_\bullet)$ be the k -th persistent module for this from Definition 2.
13641365 Now for each Z_i , let C_i be the closed star of the vertex v_+ (ie. the union of all simplices containing
1366 v_+ and their faces). Observe that Y_i is isomorphic to the quotient Z_i/C_i . We also note that C_i is
1367 actually contractible - indeed, in the standard geometric realization of Z_i , there is an explicit straight
1368 line homotopy based on line segments from the simplicial link of v_+ to v_+ from construction,
1369 which shows that C_i 's are contractible.
13701371 It is a general fact that for a simplicial complex K and contractible subcomplex K' , the quotient
1372 map $K \rightarrow K/K'$ is a homotopy equivalence (see Proposition 0.17 of [Hatcher \(2002\)](#)).
1373

1374
$$\begin{array}{ccccccc} 0 & \longrightarrow & H_k(Z_0) & \longrightarrow & H_k(Z_1) & \longrightarrow & \dots \longrightarrow H_k(Z_m) \longrightarrow H_k(Z_{m+1}) = 0 \\ & & \cong \downarrow & & \cong \downarrow & & \cong \downarrow & & \cong \downarrow & & \downarrow \\ 0 & \longrightarrow & H_k(Z_0/C_0) & \longrightarrow & H_k(Z_1/C_1) & \longrightarrow & \dots \longrightarrow H_k(Z_m/C_m) \longrightarrow H_k(\{\ast\}) = 0 \\ & & \cong \downarrow & & \cong \downarrow & & \cong \downarrow & & \cong \downarrow & & \downarrow \\ 0 & \longrightarrow & H_k(Y_0) & \longrightarrow & H_k(Y_1) & \longrightarrow & \dots \longrightarrow H_k(Y_m) \longrightarrow H_k(\{\ast\}) = 0 \end{array}$$

1375
1376
1377
1378
1379
1380

1381 Here $H_k(Z_{m+1}) = 0$ because $C_{m+1} = Z_{m+1}$ in this case. Thus, we have an isomorphism of
1382 persistence modules between $H_k(Z_\bullet)$ and $H_k(Y_\bullet)$, so they have the same persistence diagrams.
13831384 To see what goes wrong in the case $k = 0$, we observe that the placement of the node v_+ can affect
1385 the birth / death time of vertices since v_+ is now the oldest node, so the birth times of the vertices
1386 would shift. This can be remedied, for FB-persistence or (σ, τ) -persistence, where we instead place
1387 v_+ to spawn after filtration finishes and before contraction begins. However, this does not work for
1388 hourglass persistence, since we can contract before all the filtration finishes.
13891390 Thus, we would like to consider a different method, as described in the proposition. For a simplicial
1391 complex K , we write $(K)^1$ to denote the 1-skeleton of the simplicial complex K (ie. the union of
1392 all vertices and edges). On the level of $k = 0$, observe that the inclusion of the 1-skeleton of X
1393 induces a map of persistence modules of the form:
1394

1395
$$\begin{array}{ccccccc} 0 & \longrightarrow & H_0((Y_0)^1) & \longrightarrow & H_0((Y_1)^1) & \longrightarrow & \dots \longrightarrow H_0((Y_m)^1) \longrightarrow H_0(\{\ast\}) \\ & & \downarrow \\ 0 & \longrightarrow & H_0(Y_0) & \longrightarrow & H_0(Y_1) & \longrightarrow & \dots \longrightarrow H_0(Y_m) \longrightarrow H_0(\{\ast\}) \end{array}.$$

1396
1397
1398

1399 Here each vertical arrow is an isomorphism because the inclusion map $(Y_i)^1 \rightarrow Y_i$ is a bijection on
1400 connected components. Thus, we have an isomorphism of persistence modules and hence the top and
1401 bottom row have the same persistence diagrams. What this means is that 0-th dimensional persistent
1402 homology for the simplicial complex is equivalent to the 0-th dimensional persistent homology for
1403 its restriction to the 1-skeleton. Thus, this reduces to the scenario in Lemma 1, and this concludes
1404 the proof. \square

1404 **D PROOFS FOR SECTION 6**

1405

1406 *Proof of Theorem 2.* We split the proof of stability into two parts - the case where $k > 0$ and the
 1407 case where $k = 0$.

1408 Let X be a simplicial complex and $H_k(X_\bullet, f, g)$ and $H_k(X_\bullet, f', g')$ be the two persistence modules
 1409 in (f, g) -FB persistence and (f', g') -FB persistence respectively.

1410 For $k > 0$, and when X is a simplicial complex, we use the simplicial quotient interpretation of the
 1411 persistence modules here (in the sense of Section 5). By Proposition 7, we see that the persistence
 1412 pairs associated to $H_k(X_\bullet, f, g)$ is the same as the persistence pairs associated to the persistence
 1413 homology of a simplicial filtrations of a simplicial complex Z , which we will write the filtration
 1414 function as h . Similarly, for $H_k(X_\bullet, f', g')$, we will get a (possibly) different simplicial filtration of
 1415 the same simplicial complex Z , which we will write the filtration function as h' .

1416 Thus, we see that $d_B(H_k(X_\bullet, f, g), H_k(X_\bullet, f', g')) = d_B(H_k(Z_\bullet, h), H_k(Z_\bullet, h'))$ is the bottle-
 1417 neck distance of the persistence diagrams coming from two filtration functions h and h' . By the
 1418 classic bottleneck stability of Cohen-Steiner et al. (2006), we have that

$$1419 d_B(H_k(Z_\bullet, h), H_k(Z_\bullet, h')) \leq \|h - h'\|_\infty.$$

1420 Let us unwrap the construction of h and h' here. Indeed, recall Z is the simplicial cone of X . For
 1421 (f, g) , the function h agrees with f when restricted to the base of the simplicial cone (which is a
 1422 copy of X). Every other simplex must contain the disjoint basepoint v_+ , and is obtained by joining
 1423 v_+ to a base simplex σ in X . We write all such simplices as (σ, v_+) . In this case, $h(\sigma, v_+)$ is defined
 1424 to be $\max(f) + g(\sigma)$. Finally, one also specifies that $h(v_+)$ to be born before all the other persistence
 1425 values, say 0 for uniformity (this does not affect the persistence pairs of dimension higher than 0).
 1426 There is a similar description for h' , and hence we see that

$$1427 \begin{aligned} \|h - h'\|_\infty &= \max(\|f - f'\|_\infty, \|g - g' + (\max(f) - \max(f'))\|_\infty) \\ &\leq \|f - f'\|_\infty + \|g - g' + (\max(f) - \max(f'))\|_\infty \\ &\leq \|f - f'\|_\infty + \|g - g'\|_\infty + |\max(f) - \max(f')|. \end{aligned}$$

1428 **Remark:** Note that there is no coefficient 2 here. For brevity, in the main paper, we added a 2
 1429 because that is the bound we will get for $k = 0$.

1430 When X is a (regular) cell complex, we evidently can still take the cone of a cell complex, which has
 1431 cell decomposition according to the subcomplex of the base. The arguments above would still hold
 1432 in this case. This is because the original Bottleneck stability Cohen-Steiner et al. (2006) was proven
 1433 for all triangulable spaces and tame functions on them. Because of its finiteness and regularity
 1434 constraint, the geometric realization for the regular cell complex can be taken to be from what is
 1435 called an **o-minimal structure** (see Coste (2002) or van den Dries (1998) - note this is called an
 1436 “o-minimal expansion of the real field” in the second reference). See also Section 1 of Moggach
 1437 (2020) for a detailed description between cell complexes and o-minimal structures. Elements in such
 1438 o-minimal structures are known to be triangulable by the so-called **Hardt’s triangulation theorem**
 1439 and the filtration is clearly still tame, and the bound above applies through.

1440 The case of $k = 0$ is different because the persistence tuples differ. First of all, by the same argument
 1441 in the proof of Proposition 7, we can reduce this to the case where X is a graph. We will still
 1442 work in the simplicial quotient perspective. The reader might wonder - there are some graphs that
 1443 are technically not simplicial complexes (ie. has self-loops or multiple edges), does the simplicial
 1444 quotient also work for them? The answer is yes because for such graphs, one can always discretize
 1445 further by labeling the mid-point of exceptional edges (ie. self-loops and multi-edges) as a vertex of
 1446 the graph. This then becomes a simplicial complex and makes no difference in filtration since we
 1447 will be spawning the midpoints at the same time as the edges, so we can ignore these trivial deaths.

1448 Thus, we without loss reduce to the case where X is a simplicial graph, and we can try to apply
 1449 a variant of the simplicial quotient method. Indeed, we observe that, - if we move the adjoined
 1450 formal basepoint v_+ to be spawned after we have filtrated the entire graph X first using f and
 1451 before we start the contraction using g , then the 0-th dimensional persistence diagram with the pair
 1452 representing v_+ removed is the 0-th dimensional persistence diagram from the 0-th dimensional
 1453 (f, g) -persistence diagram. Indeed, this is because, v_+ , being the last vertex spawned, will die
 1454 immediately when the first vertex in g appears and asks to be contracted (which will not change the

1458 other outputs).

1460
 1461 To go further, we would need to work explicitly with a proof strategy of bottleneck stability (ex.
 1462 [Skraba & Turner \(2021\)](#), [Schnider \(2024\)](#), or [Ji et al. \(2025\)](#)) and adapt it to our scenario. Indeed,
 1463 let Z be the simplicial cone of X , and h and h' be the filtrations corresponding to the pairs (f, g)
 1464 and (f', g') . But also, because we are working with $k = 0$, we can again restrict to the 1-skeleton
 1465 Z' of Z , which is now a graph.

1466
 1467 For each simplex (either an edge or a vertex) $x \in Z'$, we consider a linear interpolation function
 1468 $h_t(y) = (1 - t)h(x) + th'(x)$ with t values in $[0, 1]$. We can divide the interval $[0, 1]$ into a
 1469 finite collection of intervals $[t_0, t_1], [t_1, t_2], \dots, [t_n, t_{n+1}]$ with $t_0 = 0$ and $t_{n+1} = 1$ such that, for
 1470 every pair of simplices x and y and $t \in [t_i, t_{i+1}]$, we either have that $h_t(x) \geq h_t(y)$ for all t or
 1471 $h_t(x) \leq h_t(y)$ for all t .

1472
 1473 Since the relative ordering of simplices are not changed in this interval, the 0-dimensional persis-
 1474 tence diagrams for h_{t_i} and $h_{t_{i+1}}$ are the same in **combinatorial time**. Now choose any bijection
 1475 π of the **function time** persistence diagrams for $\text{PH}_0^F(Z'; h_{t_i})$ and $\text{PH}_0^F(Z'; h_{t_{i+1}})$ (by which we
 1476 denote their forward time 0-diemnsional persistence diagrams) such that $\pi(b_t, d_t) = (b_{t+1}, d_{t+1})$
 1477 if and only if both tuples represent the same tuple in **combinatorial time**. Note that due to the
 1478 placement of v_+ , this will necessarily pair the two pairs associated to v_+ together (call them
 1479 (b_+, d_+) and (b'_+, d'_+)). Notably the restriction π_1 of π to the tuples excluding the one corresponding
 1480 to v_+ is still a bijection.

1481
 1482 For any two filtrations ϕ, ψ of Z' (the 1-skeleton of the cone of X). We write
 1483 $d'_B(\text{PH}_0^F(Z'; \phi), \text{PH}_0^F(Z'; \psi))$ as the term

$$\inf_{\varphi \text{ bijections } \text{PH}_0^F(Z'; \phi) - (b_+, d_+) \rightarrow \text{PH}_0^F(Z'; \psi) - (b'_+, d'_+)} \|(b, d) - \varphi(b, d)\|_\infty.$$

1484
 1485 Observe that when $\phi = h$ and $\psi = h'$, one has that

$$d_B^{\text{FB}}(H_0(X, f, g), H_0(X, f', g')) = d'_B(\text{PH}_0^F(Z'; h), \text{PH}_0^F(Z'; h')).$$

1486
 1487 Now d'_B can fail the non-degeneracy condition for being a metric, but it will still have a triangle
 1488 inequality!

1489
 1490 Now each tuple in the persistence diagram here actually comes from a **vertex-edge pair** (v, e) ,
 1491 where v makes birth to the tuple and e kills it. Choosing π_1 as the bijection here, we have

$$\begin{aligned} d'_B(\text{PH}_0^F(Z'; h_{t_i}), \text{PH}_0^F(Z'; h_{t_{i+1}})) &\leq \|(b, d) - \pi_1(b, d)\| \\ &\leq \max_{(v, e) \in X} \|(h_{t_i}(v), h_{t_i}(e)) - (h_{t_{i+1}}(v), h_{t_{i+1}}(e))\|_\infty \\ &\quad \text{Definition of } \pi_1 \text{ and associating pairs} \\ &\leq \max_{v \in X} \|h_{t_i}(v) - h_{t_{i+1}}(v)\|_\infty + \max_{e \in X} \|h_{t_i}(e) - h_{t_{i+1}}(e)\|_\infty \\ &\leq (t_{i+1} - t_i) \|f - f'\|_\infty + \max_{e \in X} \|h_{t_i}(e) - h_{t_{i+1}}(e)\|_\infty \end{aligned}$$

1492
 1493 For the second term, there are two possibilities for the edge e - either it comes from the filtration or
 1494 it comes from the contraction. Thus, we have that

$$\begin{aligned} \max_{e \in X} \|h_{t_i}(e) - h_{t_{i+1}}(e)\|_\infty &\leq \max((t_{i+1} - t_i) \|f - f'\|_\infty, \\ &\quad (t_{i+1} - t_i) \|(g - g') + (\max(f) - \max(f'))\|_\infty) \\ &\leq (t_{i+1} - t_i) (\|f - f'\|_\infty + \|(g - g')\|_\infty + |\max(f) - \max(f')|) \end{aligned}$$

1495
 1496 Now decomposing $d'_B(\text{PH}_0^F(Z'; h), \text{PH}_0^F(Z'; h'))$ into the sum
 1497 $\sum_{i=0}^m d'_B(\text{PH}_0^F(Z'; h_{t_i}), \text{PH}_0^F(Z'; h_{t_{i+1}}))$ and using the bound above, we have that
 1498 $d_B^{\text{FB}}(H_0(X, f, g), H_0(X, f', g')) \leq 2\|f - f'\|_\infty + \|(g - g')\|_\infty + |\max(f) - \max(f')|$.

1499
 1500 \square

1512 E MORE DISCUSSIONS ON COMPARISON WITH OTHER METHODS
15131514 E.1 ZIGZAG FILTRATION
15151516 In the definition of (f,g) -FB-persistence, the filtration function g is specifying the order of subgraphs
1517 being contracted. This is different from the use case of zigzag filtration Carlsson & de Silva (2010),
1518 where they are looking at a sequence of insertions and removals of a graph, but the removal process
1519 is fundamentally not continuous, so their persistence diagrams do not follow a linear time (whereas
1520 our set-up does).1521 To give an example, consider G the path graph on 2 vertices, H_1 the emptyset, H_2 a sub-
1522 graph of G which is discrete with 2 vertices. Then the following is a diagram that can occur in
1523 zigzag filtration

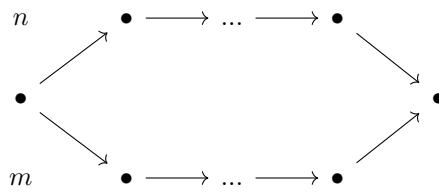
1524
$$H_1 \subset G \supset H_2$$

1525

1526 Observe that there is no map from G to H_2 that is continuous, since we cannot split G into 2
1527 components. In general, the arrows in zigzag filtration go in different directions, and they are all
1528 inclusion maps. On the other hand, the class of diagrams we always consider in (f,g) -FB persistence
1529 is a sequence of continuous maps

1530
$$G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow \dots \rightarrow G_n$$

1531

1532 which are inclusions followed by contractions. Here the arrows all go in the same direction, but
1533 they can be either inclusions or contractions (this is even more apparent in the setting of hourglass
1534 persistence).1535 More technically, zigzag filtration is considering quiver spaces on the path graph P_n with
1536 any possible orientations but with inclusions, whereas we are considering quiver spaces on P_n
1537 oriented in a uniform direction with both inclusions and contractions. Generally, we expect zigzag
1538 persistence and (f,g) -FB persistence to be incomparable, and their methods can complement each
1539 other.1540 E.2 BIPATH FILTRATION
15411542 In Aoki et al. (2025), the authors introduced bipath persistence built on bipath filtrations, which are
1543 quiver spaces on the Hasse quiver $B_{n,m}$, which is of the form
1544

1566 of edges and m is the number of vertices (see Horn et al. (2021) for more details). Although Horn
 1567 et al. (2021) only discuss the runtime in the filtration steps, tracking vertex representatives in the
 1568 contraction steps would also have the same runtime.
 1569

1570 When focusing on FB-persistence and (f, g) -FB-persistence, though, we expect the algo-
 1571 rithms presented in Section 7 (which are not using the “simplicial quotient” trick) to be faster
 1572 empirically. In general, the ability to reduce the size of object using contractions (ie. using the
 1573 cellular complex extension in Section 5 instead) would lead to a decrease in the memory complexity.
 1574 We therefore expect the cellular-based methods of hourglass persistence, (f, g) -FB persistence,
 1575 etc. to have more efficient algorithms in the future.
 1576

1577 E.4 SCALING ON LARGE GRAPHS

1578 Interleaving the filtration and contraction steps avoids the need to filtrate the entire graph before
 1579 starting contractions, which allows the total size of the graph that appears in its entire lifetime to be
 1580 bounded.
 1581

1582 This can improve over the runtime on general simplicial complexes. Let K be a simplicial
 1583 complex with n total simplices. To give a heuristic/informal estimation from a practitioner
 1584 perspective - the typical runtime of inclusion based PH on K scales approximately $O(n^3)$ as it
 1585 requires a matrix reduction algorithm.
 1586

1587 Suppose we bound the threshold to d simplices, and a practitioner equipped with the con-
 1588 traction framework can implement a specific instance of hourglass persistence as follows: as soon
 1589 as we reach more than d simplices in a given step, we contract everything to a point, and so on.
 1590 Then we believe the runtime should roughly to be $O(\frac{n}{d} \cdot (d)^3)$.
 1591

1592 For practical purposes, it may also be beneficial to not contract everything to a point when
 1593 the threshold is exceeded. If the contractions are done in multiple stages, then we believe a similar
 1594 runtime analysis holds. We are excited at the possibilities that this framework can allow our
 1595 community to address the problem of PH scaling on large graphs/simplicial complexes.
 1596

F THE USE OF LARGE LANGUAGE MODELS

1598 We used large language models to aid in the writing process of the introduction, to help check gram-
 1599 mar / suggest edits for the main paper, and to double-check some algorithmic discussions arising
 1600 from the paper.
 1601

1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619