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ABSTRACT

Persistent homology (PH) based schemes help encode information, such as cycles,
and are thus increasingly being integrated with graph neural networks (GNNs) and
higher order message-passing networks. Many PH based schemes in graph learn-
ing employ inclusion-based filtration mechanisms that trace a sequence of sub-
graphs of increasing size, maintaining bookkeeping information about the evolu-
tion (e.g., in terms of birth and death of components). We offer a novel perspective
that goes beyond this inclusion paradigm. Specifically, we introduce topological
descriptors for graphs, simplices, and cells that interleave a sequence of inclu-
sions with a sequence of contractions and related families parametrized by two
functions. The resulting descriptors on the extended sequence are provably more
expressive than many existing PH methods with suitable stability conditions. Em-
pirical results substantiate the merits of the proposed approach.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Hamilton, 2020) is a powerful paradigm for learning on structured
data, yet their expressive power is fundamentally limited by the Weisfeiler–Lehman (WL) hierar-
chy (Xu et al., 2019; Morris et al., 2019). In particular, message-passing GNNs struggle to capture
higher-order topological signals (ex. the presence, interaction, and disappearance of cycles) that
often drive downstream performance in molecular learning, physical systems, and network science
(Garg et al., 2020; Chen et al., 2020; Tahmasebi et al., 2021). Persistent Homology (PH) (Edels-
brunner et al., 2002) from Topological Data Analysis (TDA), offers a way to extract such signals
by tracking the life of topological features in a filtration. Accordingly, PH-based descriptors are in-
creasingly used to augment GNNs and higher-order neural architectures (Papamarkou et al., 2024),
and to boost expressivity Ballester & Rieck (2024); Zhang et al. (2025); Li & Leskovec (2022).

However, many PH pipelines in graph learning rely on inclusion-based filtrations (“forward persis-
tence”) (Immonen et al., 2023; Ballester & Rieck, 2024; Ying et al., 2024): we monotonically add
vertices/edges and record when features first appear. This one-sided view leaves information on the
table. For instance, in forward time on graphs, cycles can be born but (in dimension 1) they do not
die; and while new connected components can appear as vertices arrive. This is also undesirable
in the perspective of metrizability, as diagram distances can be ill-defined due to the presence of
different number of permanent features. Extended persistence (Cohen-Steiner et al., 2009; Zhao
et al., 2020; Carriere et al., 2020; Yan et al., 2022) resolves this by considering both the sublevel and
superlevel sets of a given filtration. We instead develop geometric, combinatorial descriptors which
achieve the same while capturing information missed by inclusion-only PH.

A filtration can be thought of as a time-forwarding process. Conversely, we can also consider a
time-reversing process that operate by contracting substructures (“backward persistence”). Rather
than focusing on superlevel sets, we make the substructures more granular by considering quotients
of so called “intermediate complexes”. For graphs, we recover the complementary picture to inclu-
sion: contractions cannot create new components, but they can create and kill cycles as the graph
collapses. Forward and backward capture different and incomparable aspects of the same topology.

Our geometric insight motivates a perspective of persistence that combines inclusions and contrac-
tions. We first propose Forward–Backward (FB) persistence, which concatenates a forward (inclu-
sion) phase with a backward (contraction) phase. Intuitively, FB links how features appear (forward)
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Persistence Goes Forward and Backward (Section 3):
Construction of Backward PH and Forward-Backward PH Definition 4, Definition 5
Incomparability for Forward vs. Backward PH Proposition 1
FB-Persistence ≻ Forward PH + Backward PH Theorem 1
Construction of (σ, τ)-FB PH and Hourglass Persistence Definition 6, Definition 7
Hourglass Persistence ≻ FB-Persistence Proposition 2

Relation to Extended Persistence and Extensions (Section 4):
Introduce (f, g)-FB Persistence, with (σ, τ)-FB as Example Definition 8, Proposition 4
FB-Persistence and Extended Persistence Are Different Proposition 5
FB-Persistence ̸= Extended Persistence Proposition 5
(f, f)-FB persistence = Forward PH in f Proposition 6

Extensions to Higher Complexes and Stability (Section 5, 6): Proposition 7; Theorem 2

Algorithmic Design and Experiments (Section 7) Alg 1, Alg 2; Table 1

Figure 1: Overview of the paper. Each row summarizes a core result and the section where it appears.

with how they subsequently vanish (backward), assigning meaningful, finite lifetimes to structures
that would otherwise persist to infinity in forward PH. The resulting descriptors are strictly more
expressive than forward and backward considered in isolation.

Because of the modular nature of how we set-up the intermediate complexes, we can interchange the
sequence of intermediate complexes that are included and quotiented at each step. Guided by this
combinatorial insight, we introduce Hourglass persistence, which interleaves inclusions and con-
tractions in arbitrary order (subject only to the constraint that a piece must be included before it can
be contracted). Hourglass explores a far richer space of “what-if” topological evolutions, enabling
it to discriminate structures that FB—constrained to “all forward then all backward”—cannot.

Finally, we propose a general framework of (f, g)-FB persistence with respect to two filtration func-
tions f and g, which extends both extended and FB-persistence. We then discuss how such construc-
tions can be extended to higher order structures and discuss algorithmic designs. We summarize our
content in Figure 1 and include detailed proofs in the Appendix.

2 BACKGROUND AND PRELIMINARIES

Let G = (V,E) be a finite undirected graph, possibly with self-loops and multi-edges. A common
theme of enhancing graph neural networks (GNNs) is to incorporate persistent topological descrip-
tors derived from a given filtration of G. For our purpose, a filtration is as follows.
Definition 1. Let f : V ∪ E → R be a function. We say f is a filtration function on G if for every
edge e = (v, w), f(v) ≤ f(e) and f(w) ≤ f(e). Since G is finite, the list {f−1((−∞, t])}t∈R has
only finitely many elements, which gives a list of sequential subsets we call a filtration:

G−1 = ∅ ⊂ G0 ⊂ G1 ⊂ ... ⊂ Gn = G.

We say f is a vertex-based filtration if for every edge e = (v, w), f(e) = max(v, w). We say that f
is an edge-based filtration if f(v) = 0 for all v ∈ V and f(e) > 0 for all e ∈ E.

For consistency, the function f should not change after relabeling the vertices and edges, rather
f should only depend on the intrinsic features the graph G comes with. This property is called
permutation equivariance (Ballester & Rieck, 2024), and we assume all filtration functions to be
permutation equivariant. Here we discuss two relevant examples.
Example 1. Let deg : V ∪ E → R be the degree-based vertex filtration function such that for
any v ∈ V , deg(v) is the degree of the vertex in G, and for any e = (v, w) ∈ E, deg(e) =
max(deg(v),deg(w)). This is permutation equivariant as it only depends on the structure of G.
Example 2. Suppose G is a colored graph (ie. vertices have labels) equipped with an additional
structure of a coloring function c : V → C, where C is a collection of colors. A vertex-color
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filtration is a vertex-based filtration f : V ∪ E → R such that f(v) = f(w) for all v, w with
c(v) = c(w). Intuitively, f preserves the vertex coloring.

Example 1 can be viewed as a special case of vertex-color filtration in Example 2 where c is the
degree function and f = c. A common scenario where colored graphs arise is from molecular
graphs (Hoogeboom et al., 2022; Xu et al., 2022; 2023; Song et al., 2024), where multiple instances
of different atom types (e.g., oxygen, carbon) are labeled on nodes within the same molecule.

A common descriptor to extract data from a given filtration is persistent homology (PH). For the
ease of our discussions in Section 3, we will state a more general definition.

Definition 2. Let X• = (X0
f1−→ X1 ... Xn−1

fn−1−−−→ Xn) be a sequence of topological spaces
(ex. graphs) Xi with maps fi : Xi → Xi+1. The k-th persistent homology of X• is the result of
applying Hk(−) (in Z/2-coefficients) to X•, that is, it is the sequence of linear maps:

Hk(X•) = Hk(X0)
(f0)∗−−−→ Hk(X1)

(f1)∗−−−→ ... Hk(Xn−1)
(fn−1)∗−−−−−→ Hk(Xn).

An element v ∈ Hk(Xi) is said to born at i if v /∈ im((fi−1)∗). The same element v ∈ Hk(Xi)
dies at d ≥ i if d is the first element ≥ i such that (fd−1)∗ ◦ ... ◦ (fi)∗(v) = 0. The persistence pair
associated to v is the pair (b, d). If no such d exists, we mark the pair as (b,∞). If the incoming

complex is of the form X• = (X−1 = ∅ f−1−−→ X0 → ...→ Xn) (e.g. from a filtration), by Hk(X•)
we mean Hk(−) of the sequence with the X−1-term truncated.

Suppose the vector spaces are all finite dimensional, the k-th persistence diagram (ie. barcodes
in Ghrist (2007)) of X• is the collection of persistent pairs for a specific choice of basis of the
Hk(Xi)’s obtained from an interval decomposition of Hk(X•) (see Theorem 2.7-8 of Chazal et al.
(2016) or Theorem 4.7 of Lesnick (2025) for more details).

Appendix B.1 shows its equivalence to the usual definition of graph PH. Here H0(−) are connected
components, H1(−) are independent cycles, H2(−) are voids, and Hk(−) are k-dimensional voids.
Remark 1. Explicitly, the k-th persistence diagram of X• can be computed by first picking a non-
zero vector v of Hk(X0), and consider the sequence of linear subspace generated by the iterated
image of v in Hk(X•) until it becomes 0. Then we remove this sequence of linear subspaces off of
Hk(X•). If there is still a non-zero vector w in Hk(X0), we pick w and repeat the process (if the
linear map sends w to the complement, we consider it becomes 0). Otherwise, we choose a non-zero
vector from what is left in Hk(X1) (if it exists) and look at its iterated images ahead, and so on.

3 PERSISTENCE GOES FORWARD AND BACKWARD

For now, we will focus on the case of graphs, but many constructions here can be readily generalized
to the setting of simplicial and cell complexes (see Section 5). Classically, there are numerous
applications in TDA and GNNs that uses an inclusion based persistent homology (Edelsbrunner
& Harer, 2008; Edelsbrunner & Morozov, 2012; Immonen et al., 2023; Ballester & Rieck, 2024).
Concretely, an inclusion based PH may be viewed as an example of Definition 2 as follows.
Example 3 (Inclusion-based/Forward PH). Let f : G → R be a filtration function, and consider
applying H0(−) and H1(−) to G• : G−1 = ∅ ⊂ G0 ⊂ ... ⊂ Gn = G, where each map is the
inclusion map. Then the persistent diagram in Definition 2 recovers all birth/death pairs (b, d) such
that b < d (i.e., it omits trivial births). See Appendix B.1 for a formal proof. We can recover the
trivial births by counting the number of unmarked simplices at each time.

The interest that initiated this work is - what if we try to reverse the steps of the inclusion using
contractions? More precisely, we would like to contract the following sub-graphs.
Definition 3. Let H ⊂ G be a subset, the closure of H is the union of H and all vertices with
incident edges contained in H . Let ∅ = G−1 ⊂ G0 ⊂ ... ⊂ Gn = G be a filtration of G induced by
f , we define the intermediate complexes ICi(G, f) as the closure of Gi−Gi−1 for i = 0, ..., n. We
omit the symbol f when the context is clear.
Definition 4 (Backward-based PH). Let G• : G−1 = ∅ ⊂ G0 ⊂ ... ⊂ Gn = G be a filtration of G,
we consider a sequence of contractions with respect to G• as (G•)

v

G→ Gn+1 := G/ ICn(G)→ Gn+2 := G/(∗n+1∪ICn−1(G))→ G/(∗n∪ICn−2(G))→ ...→ ∗,
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where ∗n+1 is the point representing the total contracted subcomplex in the previous step, and so
on. The intermediate maps are the natural quotient maps. From here, we define the i-th backward-
based PH of G• as Hi((G•)

v), and the i-th backward persistent diagram as the persistent diagram
associated with Hi((G

v
•)).

Graph
Sequence

ba

c d

1st Homology
(Cycles)

Z/2{abcd}

a b

c d

Z/2{ab} ⊕ Z/2{cd}

a b

Z/2{ab}

1 7→ (1, 1) (1, 0) 7→ 1, (0, 1) 7→ 0

0

Persistent Pairs Z/2{1} Z/2{(1, 1)} Z/2{1} 0
isomorphism isomorphism

0 Z/2{(0, 1)} 0 0

t = 1 t = 2 t = 3 t = 4

(1, 4)

(2, 3)

Figure 2: Backward PH of a graph G. The blue simplices indicate what is being contracted.

We observe that the backward-based PH introduces new information that inclusion-based PH may
ignore. A high-level reason for this distinction is that a cycle that is born in forward-based PH can
never die, but backward-based PH can both create new cycles (apart from the initial time) and kill
them. Conversely, backward-based PH can never make a new connected component apart from the
initial step, but inclusion-based PH can spawn new components later.
Proposition 1. There exists graphs G,H with permutation equivariant filtrations such that the
forward-based PH of their filtrations cannot tell apart G,H but backward-based PH can. Similarly,
there are graphs that backward-based PH cannot tell apart but forward-based PH can. Examples
can be found in Figure 3.
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Figure 3: Example graph pairs where (a) color filtration with same forward-based PH but different
backward-based PH, (b) degree filtration with same backward-based PH but different forward-
based PH, (c) degree filtration with same forward and backward PH but different FB-persistence,
(d) degree filtration with same FB-persistence but different hourlgass persistence.

Another motivation for us to introduce backward-based PH is from the viewpoint of metrizability
and stability. Classically, the bottleneck distance Cohen-Steiner et al. (2006) between 2 persistence
diagrams PD1,PD2 of the same size is the infimum of the value maxp∈PD1

||p − π(p)||∞ where
π ranges over all bijections π : PD1 → PD2. The bottleneck distance is finite for persistence
diagrams coming from the same graph, but for diagrams, coming from two different graphs, this
distance may very well be infinite. The reason why is because the number of tuples of the form
(−,∞) for both graphs may be different, which adds an∞ to the distance function.

One might argue that there can be workarounds by setting the time to die at a finite time N after
both filtrations ended, or make it die at −1. These modifications are however still not that desirable
because they can be quite sensitively altered by, for example, having many features die around N
or −1. One solution would be to extend the (inclusion-based) persistent diagrams by killing off
the permanent features topologically via a sequence of contractions. Formally, this motivates our
definition of Forward-Backward (FB) persistent homology.
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Definition 5 (Forward-Backward Persistence). Let G• = (∅ = G−1 ⊂ G0 ⊂ ... ⊂ Gn = G) be a
filtration of G. The i-th forward-backward persistent homology is the diagram Hi(G• + (G•)

v),
where Gv• denotes the sequence of contractions in Definition 4 and + denotes the concatenation of
the two sequences.

Concretely, the forward-backward persistence diagrams of a filtration G• can be obtained in the
following way. First compute the inclusion-based PH on G•; however, at the end of the filtration,
instead of marking the remaining simplices to die at ∞, we instead mark them with their death
times in the backward PH (shifted up by +n). We also include the additional pairs that arise from
the backward PH. We now establish the expressivity benefits due to FB-persistence.

Theorem 1. FB-persistence is strictly more expressive than forward and backward persis-
tence combined (see Figure 3(c) for an example). More precisely, for any graph G with
filtration f , the FB-persistent diagram with respect to f can recover the correspondent for-
ward and backward persistence diagrams. However, there exists a pair of graphs G,H with
a permutation equivariant filtration f such that their forward and backward persistence di-
agrams are the same, but their FB-persistence diagrams differ.

A high level reason why Theorem 1 holds is that deciding how we concatenate the values from the
forward persistent diagrams with the values from the backward persistent diagrams is rather subtle.

Motivated by the perspective of color-based filtrations (Ballester & Rieck, 2024; Immonen et al.,
2023; Ji et al., 2025), we observe that there is no canonical reason to contract in the order of
ICn(G), ICn−1(G), ... in Definition 4 and Definition 5. Since the intermediate complexes satisfy
(i)

⋃n
i=0 ICi(G) = G and (ii) ICi(G) and ICj(G) can only intersect at vertices, any sequence of

contracting the subgraphs in the list IC0(G), IC1(G), ..., ICn(G) would have terminated at the sin-
gle point set ∗. Likewise, we can also see the filtration step as a special case of spawning the pieces
IC0(X), ICi(X), ... in ascending order. There is no reason why we should have included them in
this order. This motivates the following construction.
Definition 6 ((σ, τ)-FB persistence). Let σ, τ be two permutations of the list [n] = {0, ..., n}. The
i-th (σ, τ)−FB persistence is the persistence diagram associated the persistence module obtained
by applying Hi(−) to the sequence

∅ = Y−1 ⊂ ... ⊂ Yn = G = Z0 → Z1 → ...→ Zn = ∗,
where for 0 ≤ i ≤ n, Yi =

⋃
j≤i ICσ(j)(G), and for 1 ≤ j ≤ n, Zj = Zj−1/(∗j−1 ∪ ICτ(j)(G))

where ∗j−1 is previously defined for j − 1 ≥ 1, and ∗0 is any point in ICτ(1)(G).

In other words, we apply Definition 2 to the sequence where we filtrate G by spawning the interme-
diate complexes in the order σ, and then contracting G in the order τ . In the case where id is the
identity and re is the reverse list bijection. FB-persistence is (id, re)-FB-persistence.

A core motivation for Definition 6 comes from color-based filtrations (Example 2). Indeed, recall
that Example 1 is a special case of Example 2 when the vertices are spawned in ascending order
of their degrees. The perspective of coloring filtration is that we can spawn the vertices in any
permutation of the set of possible degree values here, which may lead to more information. On the
other hand, to faithfully adopt the “coloring-based philosophy to this context”, one could also argue
why should we wait until the entire graph has been filtrated to start the contraction process?

Indeed, the whole process would still terminate to a point as long as we ensure the intermediate
complex being contracted has appeared earlier in time, and this yields further flexibility in the pro-
cess of switching back and forth between the forward steps and the backward steps (analogous to
the imagery of an hourglass). This motivates us to the definition of hourglass persistence, which
may be regarded as a “color-based version” of FB-persistence that also has a well-defined metric for
persistence diagrams on different graphs.
Definition 7. Let f : X → R be a filtration function with associated intermediate complexes
IC(Xi). An hourglass persistence diagram is the persistence diagram of any sequence of inclusions
and contractions, provided that IC(Xi) is included in the sequence before it is being contracted.

Figure 4 gives an illustration of an example of sequence of maps that occurs in hourglass persistence.
To demonstrate its expressivity, we have that:
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Proposition 2. Hourglass persistence is more expressive than FB-persistence (Figure 2(c)).

G : IC0(X) : IC1(X) : IC2(X) :

∅
Include (1) Include (2) Contract (1) Include (0) Contract (2) Contract (0)

Figure 4: Example of a sequence of maps arising in the hourglass persistence for a filtration of G.

Hourglass persistence has promising potential to tackle a problem that PH-based methods sometimes
struggle to scale on large graphs/simplicial complexes/cell complexes, see Appendix E.4.

4 RELATIONSHIP TO EXTENDED PERSISTENCE AND EXTENSIONS

Extended and FB-persistence are different as follows: For a filtration function f , extended per-
sistence is obtained by considering a concatenation of PDs with filtrating by f first and by −f
back. By Proposition 2.22 of Hatcher (2002), this is essentially akin to shrinking the superlevel sets
Ga := {x ∈ V ∪ E | f(x) ≥ a} as a goes down, but the superlevel sets and the intermediate
complexes coming from f are in general quite different. We make this precise in Proposition 5.

We will now introduce a unifying perspective of both methods:

Definition 8 ((f, g)-FB Persistence). Let f, g be two filtration functions on G with Gf• , G
g
• being

their induced filtrations respectively. The i-th (f, g)-FB Persistence of G is the persistence diagram
associated with the sequence:

∅ = Gf−1 ⊂ G
f
0 ⊂ ... ⊂ Gfn = G = Gg0 → Gg1 → ...→ Ggm = ∗.

where {Gfi }i∈{−1,...,n} is the filtration of G induced by f , and the sequence Gg• := Gg0 → Gg1 →
... → Ggm = ∗ is a sequence of contractions following the subgraphs that appear in the filtration
induced by g. More precisely, Gg1 := G/ IC0(G, g), G

g
2 := G/(∗1 ∪ IC1(G, g)), G

g
3 := G/(∗2 ∪

IC2(G, g)), etc., where ∗i is the point representing the total contracted subcomplex from before.

The idea of combining different filtration directions have appeared in zigzag filtration (Carlsson &
de Silva, 2010), bipath filtration (Aoki et al., 2025), and extended persistence (for specific pairs).
Our considerations here is different from zigzag and bipath filtrations as we are doing PH on the uni-
directional quiver on the path graph Pn but with maps coming from both inclusions and contractions,
whereas zigzag and bipath filtrations are usually used on different quivers with only inclusions. Our
setup is more general than extended persistence as we can interpret extended persistence in the
framework of (f, g)-FB Persistence. Note that the following result is not diffcult to prove; we only
include it here for completeness.

Proposition 3. The extended persistence of a filtration function f (as defined in Section 2 of Yan
et al. (2022)) has the same expressive power as (f,−f)-FB persistence.

Note that the expressivity analysis of extended persistence had been carried out in Yan et al. (2025).

Proposition 4. Let f be a filtration function. There exist filtration functions f1, f2 such that the se-
quence of topological maps in (f1, f2)-FB persistence is exactly the sequence of topological maps in
(σ, τ)-FB persistence. If f is vertex-based, we provide an explicit O(n log n) algorithm to compute
(f1, f2) that becomes linear time for FB-persistence. (see Appendix B.3).

y = 3

y = 2

y = 1

G H

Figure 5: Example of graphs G and H with height
filtration such that FB-persistence can differ but
not (f,−f)-FB persistence.

Now we establish a clear separation between FB per-
sistence and extended persistence.

Proposition 5. There exists graphs G,H with per-
mutation equivariant filtrations such that FB persis-
tence can tell them apart but extended persistence
cannot, see Figure 5.
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Besides the choice of −f or f b, another candidate
can be f itself. Here we show that (f, f)-hourglass
persistence does not bestow further information.
Proposition 6. (f, f)-FB persistence has the same
expressive power as forward-PH for f . For graphs, (f, f)-FB persistence can be computed by:

• Suppose there are n-steps in the filtration, a cycle born in filtration at t = i dies at t = n+ i.
• A cycle born in the contraction at t = n+ i corresponds exactly to the occurrence of a connected

component at t = i that will be merged into a pre-existing connected component in the filtration
steps. The 1st time j > i in filtration when the cycle does the merge above gives the death time
n+ j in contraction.

• The component death times are recorded as usual by keeping track of vertex representatives.

5 EXTENSION TO SIMPLICIAL AND CELLULAR COMPLEXES

We now extend the framework to higher dimensions, viewing graphs as 1-dimensional simplicial
complexes (for simple graphs) and 1-dimensional cell complexes.

5.1 EXTENSION TO SIMPLICIAL COMPLEXES

a

b

c

d

t = 1 t = 2 t = 3 t = 4

Figure 6: The contraction steps in Figure 2 interpreted as adding
simplices instead.

Definition 2 works for any sequence
of topological spaces, so our construc-
tions may be defined directly. The is-
sue with simplicial complexes is, that
they are not closed under quotients, so
the spaces showing up in the contrac-
tion stage may not be simplicial.

We can however adapt a trick to con-
duct “simplicial quotients” (see Cohen-
Steiner et al. (2006); Dey & Wang (2022)) as follows. Add a disjoint vertex v+ to the simplicial
complex at the beginning, and whenever a simplex σ is asked to be contracted, one instead adds
a simplex [v+, σ] to keep this as a filtration. On graphs, this means that one adds an edge from v
to v+ for every vertex v being contracted and a triangle (v1, v2, v+) for every edge (v1, v2) being
contracted (see Figure 6). One then computes the persistent diagram of this filtration instead.
Proposition 7. For all methods defined in Section 3, 4, the simplicial quotient method will recover
the k-th dimensional persistence diagrams for k > 0 but may differ on the level of k = 0. For k = 0,
the pairs can be directly computed by keeping track of one vertex representative per component.

5.2 EXTENSION TO CELLULAR COMPLEXES

The simplicial version adds more simplices to the set-up, which may make the computations more
costly. We should try to exploit the contraction steps geometrically as they would reduce the data.
To do this, we would like to relax the collection of objects we are working with.

A (regular) cell complex (Hansen & Ghrist, 2019) is a generalization of simplicial complexes that
adds more flexibility by allowing X be built off of k-dimensional disks (called k-cells) as opposed
to k-dimensional triangles. Intuitively, a cell complex is built out inductively by starting with the
0-cells (ie. discrete points), attaching 1-cells to 0-cells, then attaching 2-cells to the complex, and
so on. This process yields a poset structure on the cells where τ ≤ σ indicates part of σ is attached
onto τ . We refer to Section 2 of Bodnar et al. (2021) for a thorough explanation.

Now we may extend a filtration function on a cell complex X as follows.
Definition 9. Let Cell(X) denote the collection of cells on X . A function f : Cell(X) → R is a
filtration function if f(τ) ≤ f(σ) for all τ ≤ σ in Cell(X), which induces a filtration on X .

An important feature of cell complexes is that they are closed under quotients of subcomplexes.
Thus, every construction we discussed in Section 3 and 4 extends mutatis mutandis - that is, one can
just replace the word “graph” with the word “cell complex”.
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6 STABILITY

Recall one motivation for “concatenating” inclusions and contractions was to compare metrics for
diagrams on different spaces. We would still like to ensure the diagrams are stable if they are on the
same space. This is a desired property as we would like perturbations in the input filtration to not
affect the output drastically. To properly discuss (bottleneck) stability, however, we need to make a
distinction between combinatorial time and function time.

So far, the persistence diagrams in our construction have all been combinatorial time - we use some
function(s) to make a sequence of maps, and the pairs (i, j) record the birth and death steps in the
sequence. However, if we want a notion of bottleneck stability, we need to work with a notion of
function time - that is we change the pair (i, j) to the (ai, aj). Take forward PH for example, if we
use combinatorial time and perturb the filtration function, the output would be locally constant.

When extending function time to include contractions, we observe that there are some subtleties in
defining function time for (f, g)-FB persistence, because the functions f and g can be independent.
It can be the case that the values of g are mixed with the values of f on the real line, but to define
a function time we would like the values of g to appear after the values of f . To get a well-defined
notion of function time, we require f and g to both be positive, and that the corresponding function
time of (a) an inclusion step at i in (f, g)-FB persistence to be the i-th value of f and (b) a contraction
step at n+ i in (f, g)-FB persistence to max(f)+ the i-th value of g.

Theorem 2 (Stability of (f, g)-FB persistence). Let X be a graph, simplicial or cellular
complex. For 2 pairs of filtrations (f, g), (f ′, g′) on X , we have the following for all i ≥ 0:

dB(PH
FB
i (X, f, g),PHFBi (X, f ′, g′)) ≤ 2||f−f ′||∞+ ||g−g′||∞+ |max(f)−max(f ′)|.

We remark that establishing an appropriate function time for hourglass persistence is challenging,
because the function values for each step is not as canonical since we are interleaving the steps of
contractions and inclusions. Hourglass persistence does satisfy the condition of what Chazal et al.
(2009) called “tame”, which has a stability in combinatorial time (see Theorem 4.4 therein).

7 ALGORITHM DESIGN AND EXPERIMENTS
Algorithm 1 FORWARDINCLUSION

1: Input: Filtration f ; Graph G
2: Output: PD0, PD1, cycle basis B, union–find UF
3: Initialize UF on V ; PD0,PD1,B ← ∅
4: Sort edges e1, . . . , em by f(ej)
5: for j = 1..m do
6: (u, v)← ej
7: if UF.find(u) = UF. find(v) then
8: // Cycle-creating edge
9: Build γ ∈ {0, 1}m from ej and path u⇝ v

10: B ← B ∪ {γ}; PD1[γ]← (f(ej),∞)
11: else
12: ru ← UF. find(u); rv ← UF.find(v)
13: y ← argmaxr∈{ru,rv} f(r)
14: PD0 ← PD0 ∪ {(f(y), f(ej))}
15: UF.merge(u, v)
16: // record mutual neighbors in spanning forest
17: UF.nbrs∪{u↔ v}
18: for each root r of UF do add (f(r),∞) to PD0

19: return PD0,PD1,B,UF

We now present a practical algorith-
mic framework that supports any filtration
scheme composed of a sequence of inclu-
sions and contractions, assuming that all
contraction intermediates have already ap-
peared previously in the forward filtration.

7.1 FORWARD INCLUSION
WITH AUXILIARY BOOKKEEPING.

In addition to the standard union–find struc-
ture, which incrementally tracks connected-
component memberships during the forward
filtration, we maintain two further struc-
tures: (i) neighborhood information for the
spanning forest being built, and (ii) a funda-
mental cycle basis over F2. Each new edge
e = (u, v) is then handled in two cases:

(1) If u and v are in different components, e is a spanning-tree edge. We update the union–find and
record u and v as neighbors in the spanning forest, thereby incrementally extending the spanning
structure maintained during the filtration.

(2) If u and v are already connected, e is a cycle-creating edge. Together with the unique forest
path u⇝ v, this defines a new cycle Ck+1, given an existing basis {C1, . . . , Ck}. Since e does not
appear in any earlier cycle, Ck+1 is linearly independent of {C1, . . . , Ck} in the cycle space over
F2. The basis is thus extended to {C1, . . . , Ck, Ck+1}, and a new interval (f(e),∞) is added.
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We denote by PD0 and PD1 the persistence diagrams of H0 and H1, respectively. Algorithm 1
describes the forward stage of our framework. Its input is a filtration function f : V ∪ E →
R on a graph G = (V,E), and its output consists of the persistence diagrams PD0 and PD1, a
fundamental cycle basis B represented by indicator vectors in {0, 1}m, and a union–find structure
UF that maintains connected-component information and parent pointers for the spanning forest.

7.2 BACKWARD CONTRACTION WITH SUPERNODE BOOKKEEPING.

Algorithm 2 BACKWARDCONTRACTION

1: Input: contraction function g; persistence data
(PD0,PD1,B) and union–find UF from Alg. 1

2: Output: updated PD0,PD1 with finite deaths
3: Initialize supernode S ← ∅, stack B, list L
4: for elements x ∈ V ∪ E in order of g(x) do
5: if x ∈ V then ▷ Node contraction
6: S ← S ∪ {x}
7: if UF. find(x) ̸= UF. find(S) then
8: // kill younger component y
9: PD0 ← PD0 ∪ {(f(y), g(x))}

10: else
11: B.push(g(x)) // Birth supernode cycle
12: UF.merge(x, S)
13: else ▷ Edge contraction
14: // x = e = (u, v) ∈ E with u, v ∈ S
15: remove e from all γ ∈ B; reduce basis
16: if some γ becomes dependent then
17: // Close forward cycle
18: PD1[γ]← (birth(γ), g(x))
19: B ← B \ {γ}
20: else
21: // Close supernode cycle
22: τ ← B.pop(); L← L ∪ {(τ, g(x))}
23: PD1 ← PD1 ∪ L
24: return PD0,PD1

The backward stage uses a contraction func-
tion g to order contractions. We maintain a
supernode that accumulates contracted ver-
tices; a vertex merges when scheduled by g,
and an edge contracts once both endpoints
reside in the supernode. Algorithm 2 sum-
marizes the contraction process.
Vertex contractions. The contraction of a
vertex into the supernode has two effects:
(1) If the vertex belongs to a different con-
nected component, the younger component
is killed and its H0 interval is closed. (2) If
the vertex lies in the same component, a new
supernode cycle is created. Unlike forward
cycles, these are not tied to any edge but
arise from merging disconnected subgraphs
of the same component.
Edge contractions. An edge is contracted
once it becomes a self-loop on the supern-
ode. Each such contraction kills one cycle:
(1) If the edge participates in some forward
cycle, we remove it from all cycle indicators
in B and reduce the basis. If a younger cycle
becomes dependent on older ones, it is killed
and its H1 interval is closed. (2) If no for-
ward cycle is removed, the contraction kills
the most recent supernode cycle. In either case, the contraction assigns a finite death time to an H1

interval, completing the bookkeeping of backward updates.

7.3 EXPERIMENTAL SETUP AND RESULTS

Datasets. We evaluate on four standard graph classification datasets (Morris et al., 2020): NCI109,
PROTEINS, IMDB-BINARY, and NCI1 (Accuracy); a graph-regression dataset ZINC (Dwivedi
et al., 2023) (MAE) and the OGBG-MOLHIV (Hu et al., 2020) molecular property dataset (AUC).
All methods use the same GIN (Xu et al., 2018) or GCN (Kipf, 2016) backbone and the same
DeepSets (Zaheer et al., 2017) pooling for encoding persistence diagrams.

Baselines and ablations. We compare five variants of persistence-based representations. (i)
PH (Horn et al., 2021) uses a fixed vertex filtration and assigns each edge the maximum filtra-
tion of its endpoints, producing standard inclusion-based persistence. (ii) RePHINE (Immonen
et al., 2023) learns both vertex and edge filtrations and, importantly, augments every 0D persistence
point with the filtration value of the earliest incident edge, providing additional early-connectivity
information. (iii) Fwd-only learns a general vertex–edge filtration but does not include RePHINE’s
augmentation, and disables all contractions; this isolates the effect of learning the forward filtra-
tion alone. (iv) Bwd-only learns only the contraction schedule, isolating the backward component
of our design. (v) Ours implements the full learnable inclusion–contraction (forward–backward)
framework, jointly learning both vertex/edge filtrations and contraction order.

Observations. Table 1 reports performance across all six benchmarks. We observe: (1) Our
method achieves the best or second-best performance in 9 of 12 settings, underscoring the value

9
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Table 1: Comparison of PH variants across six datasets using GIN and GCN backbones. Classifica-
tion accuracy and AUC scores are reported in percentage (%, ↑) and ZINC regression evaluation in
MAE (↓). Best and second-best results per row are shown in bold and underline, respectively.

Dataset PH RePHINE Fwd-only Bwd-only Ours
G

IN


NCI109 (Acc.%, ↑) 76.76±0.40 77.89±1.19 77.00±1.03 76.35±0.50 77.89±1.87

PROTEINS (Acc.%, ↑) 69.35±1.83 69.94±2.76 70.24±2.95 70.54±2.19 73.51±1.11

IMDB-B (Acc.%, ↑) 68.67±1.25 70.67±0.94 74.67±0.47 74.33±0.94 72.00±2.16

NCI1 (Acc.%, ↑) 79.24±1.74 78.75±2.55 76.72±1.13 75.75±0.94 81.27±0.00

ZINC (MAE, ↓) 0.43±0.01 0.41±0.01 0.62±0.01 0.61±0.00 0.40±0.01

MOLHIV (AUC%, ↑) 74.34±4.57 72.88±2.15 70.00±3.11 70.59±1.83 72.34±0.74

G
C

N



NCI109 (Acc.%, ↑) 76.59±1.32 79.50±0.11 71.91±0.52 74.58±0.71 75.87±0.89

PROTEINS (Acc.%, ↑) 70.54±0.73 68.75±2.53 69.35±1.83 70.54±1.46 72.32±1.46

IMDB-B (Acc.%, ↑) 65.00±1.63 70.00±0.82 62.67±3.30 64.33±3.30 68.00±2.16

NCI1 (Acc.%, ↑) 78.43±0.98 78.91±0.80 75.59±1.00 76.24±1.74 78.67±1.69

ZINC (MAE, ↓) 0.49±0.02 0.46±0.01 0.86±0.01 0.87±0.01 0.44±0.01

MOLHIV (AUC%, ↑) 75.12±0.68 75.40±0.53 71.02±2.18 71.55±1.21 76.37±1.45

of jointly learning both inclusion and contraction schedules. (2) RePHINE remains a strong base-
line and consistently outperforms standard PH in nearly all cases, reflecting the benefit of learning
both vertex and edge filtrations. (3) The ablations further clarify the role of each component: Fwd-
only, which learns vertex–edge filtrations but disables contractions, typically improves over standard
PH; Bwd-only, which learns only contraction order, also improves over PH on several datasets and
performs roughly on par with Fwd-only overall, with no clear winner between them. (4) RePHINE
significantly outperforms both Fwd-only and Bwd-only on ZINC and MOLHIV, highlighting the
effectiveness of its additional 0D augmentation in capturing early connectivity structure. (5) Our full
model almost always surpasses both ablations, demonstrating that inclusion and contraction encode
complementary structural information, and that jointly learning them is essential for achieving the
strongest performance across classification, regression, and molecular prediction tasks.

7.4 COMPARISON WITH EXTENDED PERSISTENCE

Table 2: Accuracy (%) with GIN and GCN backbones.
Best score per row is in bold.

GIN GCN

Dataset ExtP PersLay Ours ExtP PersLay Ours

NCI109 78.21 68.28 78.21 77.48 68.28 77.48
PROTEINS 74.11 66.07 73.21 72.32 66.07 72.32
IMDB-B 63.00 70.00 73.00 66.00 70.00 70.00
NCI1 78.59 68.86 81.51 80.05 68.86 80.78

We further compare our framework to
methods based on extended persistence,
which incorporate both sublevel and su-
perlevel information. PersLay (Car-
riere et al., 2020) implements this by
first computing extended-persistence di-
agrams and then applying a learnable
layer on top. In contrast, motivated by
Proposition 3, which shows that classi-
cal extended persistence has the same
expressive power as (f,−f)–FB persis-
tence, we integrate extended persistence directly into our forward–backward framework by using
−f as a backward schedule. In Table 2, we observe: (1) Our (f,−f) adaptation of extended
persistence consistently outperforms PersLay under both GIN and GCN backbones, showing that
embedding extended-persistence structure directly into the forward–backward framework is more
effective than processing extended-persistence diagrams through a post-hoc learnable layer. (2) Our
full (f, g)-forward–backward model further exceeds both PersLay and the extended variant, indicat-
ing that jointly learning inclusion and contraction provides expressive topological features beyond
what extended persistence alone can capture.

8 CONCLUSION

We formalize backward, (f,g)-forward–backward, and hourglass persistence and develop a system-
atic expressivity theory, certified by minimal witness graphs and constructive proofs, accompanied
by algorithms that realize the general (f, g) framework. These constructions extend to simplicial
and cellular complexes and admit a functional stability guarantee, offering principled tools for in-
clusion–contraction schedules beyond the classical PH. While hourglass persistence satisfies combi-
natorial stability, establishing a functional stability result is a compelling direction for future work.
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and lefschetz duality. Found. Comput. Math., 9(1):79–103, February 2009. ISSN 1615-3375.

Michel Coste. An Introduction to O-minimal Geometry. 2002.

Tamal Krishna Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge Uni-
versity Press, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research,
24(43):1–48, 2023.

Edelsbrunner, Letscher, and Zomorodian. Topological persistence and simplification. Discrete
& Computational Geometry, 28(4):511–533, Nov 2002. ISSN 1432-0444. doi: 10.1007/
s00454-002-2885-2. URL https://doi.org/10.1007/s00454-002-2885-2.

Herbert Edelsbrunner and John Harer. Persistent homology—a survey. Contemporary Mathematics,
pp. 257–282, 2008. doi: 10.1090/conm/453/08802.

Herbert Edelsbrunner and Dmitriy Morozov. Persistent homology: Theory and practice. In Pro-
ceedings of the European Congress of Mathematics, 2012.

V. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph neural
networks. In International Conference on Machine Learning (ICML), 2020.

Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of the American Mathematical
Society, 45:61–75, 2007.

William L. Hamilton. The Graph Neural Network Model, pp. 51–70. Springer International Pub-
lishing, Cham, 2020. ISBN 978-3-031-01588-5. doi: 10.1007/978-3-031-01588-5 5. URL
https://doi.org/10.1007/978-3-031-01588-5_5.

Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of Applied
and Computational Topology, 3(4):315–358, August 2019. ISSN 2367-1734. doi: 10.1007/
s41468-019-00038-7. URL http://dx.doi.org/10.1007/s41468-019-00038-7.

Allen Hatcher. Algebraic Topology. New York : Cambridge University Press, 2002.

Emiel Hoogeboom, Vı́ctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3D. In ICML, 2022.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten Borg-
wardt. Topological graph neural networks. arXiv preprint arXiv:2102.07835, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Johanna Immonen, Amauri Souza, and Vikas Garg. Going beyond persistent homology using per-
sistent homology. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 63150–63173. Cur-
ran Associates, Inc., 2023.

Mattie Ji, Amauri H. Souza, and Vikas Garg. Graph persistence goes spectral, 2025. URL https:
//arxiv.org/abs/2506.06571.

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Michael Lesnick. Notes on multiparameter persistence (for amat 840). Course notes, University
at Albany, SUNY, 2025. URL https://www.albany.edu/˜ML644186/840_2022/
Math840_Notes_22.pdf. Last updated April 12, 2025.

12

https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/978-3-031-01588-5_5
http://dx.doi.org/10.1007/s41468-019-00038-7
https://arxiv.org/abs/2506.06571
https://arxiv.org/abs/2506.06571
https://www.albany.edu/~ML644186/840_2022/Math840_Notes_22.pdf
https://www.albany.edu/~ML644186/840_2022/Math840_Notes_22.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pan Li and Jure Leskovec. The Expressive Power of Graph Neural Networks, pp. 63–98.
Springer Nature Singapore, Singapore, 2022. ISBN 978-981-16-6054-2. doi: 10.1007/
978-981-16-6054-2 5. URL https://doi.org/10.1007/978-981-16-6054-2_5.

Cordelia Laura Elizabeth Henderson Moggach. A Homotopical Categorification of the Euler
Calculus. Ph.d. thesis, University of Liverpool, 2020. URL https://docslib.org/doc/
8977190/classifying-types-topics-in-synthetic-homotopy-theory.
Minor modifications: Grenoble, 28 July 2020.

C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler
and leman go neural: Higher-order graph neural networks. In AAAI Conference on Artificial
Intelligence (AAAI), 2019.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A
roadmap for the computation of persistent homology. EPJ Data Science, 6(1), August 2017.
ISSN 2193-1127. doi: 10.1140/epjds/s13688-017-0109-5. URL http://dx.doi.org/10.
1140/epjds/s13688-017-0109-5.

Theodore Papamarkou, Tolga Birdal, Michael M. Bronstein, Gunnar E. Carlsson, Justin Curry, Yue
Gao, Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, Vasileios Maroulas, Nina Mi-
olane, Farzana Nasrin, Karthikeyan Natesan Ramamurthy, Bastian Rieck, Simone Scardapane,
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Hourglass Persistence for
Graphs, Simplices, and Cells

(Appendix)

A PROOFS FOR SECTION 3

In this section, we will provide the proofs for the results in Section 3.

Proof of Proposition 1. Let G be a path graph on 4 vertices colored in the order R, B, B, R. Let H
be a star graph of 4 vertices such that the unique vertex with degree 3 has color B, and the other 3
vertices have color B, R, R (see Figure 3(a)). Consider a filtration of G and H by first spawning the
induced subgraph on blue vertices, and then the induced subgraph on blue and red vertices. In other
words, we have filtrations of the form

∅ ⊂ P2 ⊂ G and ∅ ⊂ P2 ⊂ H,
where P2 is the path graph on two vertices both colored blue. The inclusion-based PH of both
filtrations are the same (see Figure 4 in Immonen et al. (2023)). However for backward-based PH,
we observe that G/ IC1(G) creates a cycle but H/ IC1(H) does not create a cycle. Thus, they can
be told apart in the contraction stage.

For the second part, consider the following pair of graphs in Figure 3(b), equipped with a vertex-
based filtration using degree. In this case, we observe that the filtration of G (left) and H (right)
respectively is a sequence of discrete vertices until all the edges are spawned at the last time. This is
because every edge is connected to a vertex of maximal degree equal to 3 for both G and H . Thus,
the backward persistence for both G and H would be to quotient out the entire graph, which cannot
distinguish G and H since they have the same number of components and independent cycles. On
the other hand, FB-persistence can tell G and H apart since in the filtration step spawning degree 1
vertices, 3 vertices are spawned for G while 2 vertices are spawned for H .

Proof of Theorem 1. We first see how the FB-persistence diagram can recover the forward persis-
tence diagrams and the backward persistence diagrams. Indeed, at n be the time the filtration com-
pletes and we are about to start contraction. The tuples that are born before or on time n (which
appears at the last step of the filtration) are of the form (b, d) where d is possibly greater than n.
From here, we can recover the persistence diagram in the forward filtration as by sending each pair

(b, d), with b ≤ n 7→
{
(b, d) if d ≤ n
(b,∞) if d > n

where we note that if the pair (b, d) has death after time n, than it must have died in the contraction
step, which means that the feature lived to∞ in the filtration step.

Similarly, we may obtain the backward persistence diagram by focusing on the persistent pairs (b, d)
such that d > n. We can recover them by the function

(b, d) with d > n 7→
{
(0, d), if b ≤ n
(b, d), if b > n

.

The reason why is because all the features that have not died yet at the start of contraction in FB-PH
are the same as the features that are born at the initial step of the contraction scheme in backward
PH. Thus, the elder rule applies to the same features when we decide what pairs to kill off. The
only difference is that in backward PH, the features from the filtration steps all appeared at the
same time, so it does not matter which one to kill if we do have to kill them, but for FB persistence
we would need to be more careful. Evidently, though, this gives a straightforward reduction of
backward PH from FB PH.

To see that FB PH is strictly more expressive than forward and backward PH, we consider the graphs
G and H in Figure 3(c) using degree as a vertex-based filtration. Using the gudhi library (Project,
2025)’s persistence pairs computation, we can directly apply it to the following code in Python:
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1 import gudhi
2

3 VG = [0, 1, 2, 3, 4, 5, 6, 7]
4 EG = [(0, 1), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (4, 6), (4, 7), (6,

7)]
5 G_values = [1, 3, 2, 3, 4, 1, 2, 2]
6

7 VH = [0, 1, 2, 3, 4, 5, 6, 7]
8 EH = [(0, 1), (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (5, 6), (5, 7), (6,

7)]
9 H_values = [1, 3, 2, 4, 1, 3, 2, 2]

10

11 # Compute PDs for G
12 stG = gudhi.SimplexTree()
13 for i in range(0, len(VG)):
14 current_v = VG[i]
15 v_val = G_values[i]
16 stG.insert([current_v], filtration=v_val)
17

18 # Adding edges
19 for i in range(0, len(EG)):
20 current_e = EG[i]
21 e_val = max(G_values[current_e[0]],G_values[current_e[1]])
22 stG.insert(current_e, filtration=e_val)
23

24 stG.make_filtration_non_decreasing()
25 G_dgms = stG.persistence(min_persistence=-1, persistence_dim_max=True)
26 print(G_dgms)
27

28 # Compute PDs for H
29 stH = gudhi.SimplexTree()
30 for i in range(0, len(VH)):
31 current_v = VH[i]
32 v_val = H_values[i]
33 stH.insert([current_v], filtration=v_val)
34

35 # Adding edges
36 for i in range(0, len(EH)):
37 current_e = EH[i]
38 e_val = max(H_values[current_e[0]],H_values[current_e[1]])
39 stH.insert(current_e, filtration=e_val)
40

41 stH.make_filtration_non_decreasing()
42 H_dgms = stH.persistence(min_persistence=-1, persistence_dim_max=True)
43 print(H_dgms)
44

45 print(G_dgms == H_dgms)

The output would say that for graphs have the persistence diagrams of the form [(1, (3.0, inf)), (1,
(4.0, inf)), (0, (1.0, inf)), (0, (1.0, 4.0)), (0, (2.0, 4.0)), (0, (2.0, 3.0)), (0, (2.0, 2.0)), (0, (3.0, 3.0)),
(0, (3.0, 3.0)), (0, (4.0, 4.0))].

Now we show that they have the same backward persistence diagrams. At the initial time, they have
the same number of connected components and cycles, so there are no distinctions for G and H .
In the first step, we contract the IC3(G) or IC3(H) (which is the closed star containing the unique
vertex labeled with the value 4). This is a connected subtree for both G and H , so the contraction
does not produce non-trivial persistence pairs. Then we contract IC2(G) (or IC2(H)), which would
kill a cycle on both sides. Since the birth time of the cycles are the same, we just mark one of
the (0,−) to die at the time. But by the time we contract IC1(G) (or IC1(H)), we will kill the
remaining cycle on both sides, which marks another one, and we are done after the last step. Thus,
we see that they will have the same backward persistence diagram.
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Now to see that G and H have different FB-persistence, we note that the birth time of the two cycles
when contracting IC2(G) (or IC1(H)) are different. For G, the cycle being contracted is born when
the degree 3 vertices are spawned. For H , the cycle being contracted is born when the degree 4
vertices are spawned. This would create a different persistent pair and hence FB-persistence can tell
them apart.

Proof of Proposition 2. Clearly FB-persistence is an example of hourglass persistence, so hourglass
has at least as much expressivity as FB. Let G,H be graphs constructed in the NetworkX library,
with filtration function f being degree-based vertex-level filtrations, as:

G = nx.from_edgelist([(0, 1), (1, 2), (2, 3), (1, 4), (4, 5)])
H = nx.from_edgelist([(0, 1), (1, 2), (1, 3), (3, 4), (4, 5)])

See Figure 3(d) for a visualization of the two graphs above. We wish to show they have the same
FB-persistence but different hourglass persistence.

In this case, we note that the two graphs would have the same FB-persistence diagram with respect
to f . Indeed, at t = 1, all the vertices labeled 1 are spawned for both G and H , which gives three
copies of the form (1,−). At t = 2, the induced subgraph on vertices labeled 1 and 2 appears. We
note here that on both G and H , by the elder’s rule, the two new vertices are both killed, thus both
diagrams have the form

(1,−), (1,−), (1,−), (2, 2), and (2, 2).

Finally, at t = 3, the vertex labeled 3 appears which makes bothG andH connected at the step. The
vertex labeled 3 dies at the same time, and two of the tuples labeled (1,−) also dies. This gives

(1,−), (1, 1), (1, 1), (2, 2), (2, 2), and (3.3).

Now we enter the contraction steps. Indeed, we first contract IC2(G) (or the corresponding
version for H), evidently we are contracting isomorphic connected subtrees on G and H , so the
process would neither create non-trivial cycles or non-trivial steps. Then we contract IC1(G) (or
the corresponding version for H), for H this is a subtree, so the contraction does not create new
non-trivial tuples. For G, one might be tempted to think that this is contracting a disconnected
graph. However, since we contracted IC2(G) already, the two edges are actually connected here
and forms a tree, so this also does not incur a change.

Finally, at the end, we remark the unique remaining tuple to die at∞.

(1,∞), (1, 1), (1, 1), (2, 2), (2, 2), and (3.3).

Remark: Note also that in the proof here we computed the persistence tuples in function time as
opposed to combinatorial time (see Section 6 for a discussion), but this does not matter in terms of
expressivity.

Finally, to see why hourglass persistence can tell them apart, we see that if we spawn IC1(G) (resp.
IC1(H)) first in the sequence, then they would incur two connected components for G but only one
for H , so hourglass persistence can tell them apart.
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B PROOFS FOR SECTION 4

We split the discussion for the proofs for Section 4 into three parts:

1. In Appendix B.1, we establish a lemma that will be helpful in streamlining the proof of
Proposition 6 in Appendix B.2. For completeness, we will also use a special case of this
lemma to show how persistence modules can derive the usual interpretation of persistence
pairs for a graph filtration. We will also introduce some concepts helpful in understanding
the proof of Proposition 6.

2. In Appendix B.2, we prove Proposition 3, Proposition 5, and Proposition 6 (ie. the expres-
sivity parts of the section).

3. In Appendix B.3, we will explain the two algorithms for Proposition 4 and prove it.

B.1 KEY LEMMA AND THE USUAL PERSISTENT PAIRS INTERPRETATION FOR GRAPH
FILTRATIONS

Before we give a proof of Proposition 6, we first note that the description of death times for con-
nected components holds on an elevated generality that both the proofs of Proposition 6 and (later)
Proposition 7 would use, so we might as well extract it out as a formal lemma.

For completeness, we will also give a self-contained proof of how Definition 2 recovers the usual
way to compute persistent pairs for graph filtrations (for instance, see Section 4 of Horn et al. (2021)
or Algorithm 1 of Immonen et al. (2023)).

The lemma is as follows.

Lemma 1. Let X• = (∅ = X−1 → X0 → X1 → ... → XN ) be a sequence of inclusions and
contractions of graphs (ie. the set-up of hourglass persistence). Note that by necessity the first step
X−1 → X0 has to include in a graph. The persistence pairs1 for H0(X•) can be computed algo-
rithmically as follows - the method of which we called “keeping track of one vertex representative
per component”:

1. In the filtration step X−1 → X0, we pick 1 vertex per connected component in X0 and
mark a tuple (0,−) corresponding to that. We fix one of these vertices to be called the
supernode (denoted ∗), in the sense that any time we compare a vertex v with ∗ to decide
which one to kill off, we always kill off v.

2. For i ≥ 0, if the step Xi → Xi+1 is a filtration, then one treats this in algorithmic time as
a procedure to spawn every new vertex that appears first and mark them as tuples (i,−),
and then spawn edges between them. For each edge between spawned, if an edge is joined
between 2 different components represented by vertices v and w, we mark the vertex born
later to die at time i and pick v as the representative of the new component. (Since we do
not focus on trivial deaths, we can discard them after this step). If the two vertices are born
at the same time, we randomly pick 1 to kill off unless one of them is the supernode ∗, in
which case we always kill off the other vertex.

3. For i ≥ 0, if the step Xi → Xi+1 is a contraction, say contracting a subgraph G. We
loop through each connected component Xj of G, we find the vertex vj representing the
component Xj belongs in and kill vj unless (1) it got killed already in some index j′ < j
when looping through the Xj’s or (2) it is the supernode ∗.

4. After i = N , for every tuple not dead yet, we mark it to die at time∞.

Remark 2. Note that the statement of Lemma 1 does not require XN to terminate with only the
point ∗ left, so the case of hourglass persistence in Definition 7 is a special case in this lemma.
A more specific case of Lemma 1 is when the maps are all inclusions. This will recover the usual
procedure to compute the 0-dimensional PH of a graph filtration (as we just ignore Step 3).

Proof of Lemma 1. Indeed let us recall from Remark 1 how one way to compute persistence dia-
grams are done. Let us interpret how the remark tells us how to compute the quantities here explic-
itly:

1Recall here we are not accounting for trivial deaths
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1. We pick a non-zero vector v of H0(X0), and consider the sequence of linear subspaces
generated by the iterated image of v in H0(X•) until it becomes 0.

2. Then we remove this sequence of linear subspaces off ofH0(X•). If there is still a non-zero
vector w in Hk(X0), we pick w and repeat the process (if the linear map sends w outside.
Otherwise, we choose a non-zero vector from what is left in Hk(X1) (if it exists) and look
at its iterated images ahead, and so on.

Let us also recall the following standard fact in algebraic topology - suppose f : A→ B is a map of
(say) cellular complexes, then the induced map f∗ : H0(A;Z/2) → H0(B;Z/2) can be described
exactly as follows - recall H0(A;Z/2) and H0(B;Z/2) are respectively isomorphic to the direct
sum of copies over Z/2 indexed over their path-connected components. For each path component
Ai, let 1Ai be the unique non-zero vector representing that component. The continuous image of a
path-connected component is path-connected, so f(Ai) lies in a path-connected component of B,
say Bj , then the map described above sends f∗(1Ai

) = 1Bj
.

Remark 3. This description might deceptively suggest that f∗ is not the zero map on all of
H0(A;Z/2), but this is clearly not the case, it just happens that we chose a convenient basis on
both sides such that f∗ is not zero on the chosen basis vectors. The subtlety in the persistence calcu-
lation is that we want to choose the basis in the H0(−) of the next space consistently with the basis
of the previous one to nicely compute the persistence pairs.

By the remark in the line above, though, we see that it follows that there exists a non-zero vector
v1 ∈ H0(X0) (as long as X0 is not empty, by requirement) such that the successive images of v
are never 0 when passing through H0(X•), thanks to the convenient choice of basis, and v can in
fact come from representing some connected component. We then choose v here to represent the
supernode ∗. In the next step of the remark, we then remove the subspace generated by successive
images of ∗ off H0(X0), and if the next vector we pick lands in this subspace, we consider it dead.
Note that on the level of H0, a vector 1C ∈ H0(Xi) representing a component could land in this
subspace at H0(Xi+1) if and only if fi(C) belongs in the component of the supernode at time
i+ 1. Thus, we see that asking a vector representing 1C to die if it enters this subspace corresponds
exactly to the property of the supernode.

Now we proceed by induction and suppose the i-th vector vi we pick following the remark (1)
represents a component, (2) gives the correct persistence pair according to the outline of this lemma,
and (3) has been picked according to the rules of Remark 1. Now we wish to show we can pick
the i + 1-th vector vi+1 such that they still satisfy (1) and (2). Now we would stop if we have ran
out of vectors to pick, so there is at least some non-zero vector in the complement of the subspace
generated by vectors v1, ..., vi and their iterated images (call this Wi for convenience). So there
exists some vector vi+1 that represents a component C and say vi+1 ∈ H0(Xj).

By assumption, vi+1 cannot be in the image of any previous vector, so the component C must be a
new component that appears from Xj−1 → Xj (by the description of what the correspondent map
in H0 is like). Now we have two descriptions of how C gets killed:

1. C is killed in the sense of this lemma if and only if when (a) it merges with an earlier
component during filtration or (b) a subgraph of C was asked to be contracted in the future.

2. Remark 1 says that C is killed if and only if the iterated image of 1C gets landed in Wi.

We will go from the remark and see why it is equivalent to the first itme. Based on the description
of how the induced map on H0(−) behaves, we see that 1C can land into Wi at time j′ > j if and
only if there is some 0 ≤ k ≤ i such that fj′−1 ◦ ... ◦ fj(C) and fj′−1 ◦ ... ◦ fj(Ck) represents the
same connected component, where Ck is the component component vk represents at the time it was
born.

Without loss, we can choose j′ to be the first time step > j such that (fj′−1)∗ ◦ ... ◦ (fj)∗(1C) is
in Wi and k to be the first vk whose component C merges with. Then it follows that in the step
fj′−1 : Xj′−1 → Xj′ , C dies by mergining into fj′−1 ◦ ... ◦ fj(Ck). If fj′−1 is a filtration, this can
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only happen if some edge is spawned between them. If fj′−1 is a contraction, this can only happen
if k = 0 (ie. it goes into the supernode). Thus, we see that these are exactly the two conditions
proposed by the scenario in the lemma. Furthermore, the birth and death times proposed by the
lemma and Remark 1 agrees.

We then induct repeatedly ahead and conclude the proof.

As noted earlier, Lemma 1 recovers the usual algorithm to compute persistence pairs for graph
filtrations on the 0th dimensions. We now explain how to obtain the one for the 1st dimension from
Definition 2. This will follow from the following more general fact.
Lemma 2. Let X be a (finite) cell complex of dimension D and X• := ∅ = X−1 → X0 → ... →
Xn = X be a filtration of X by cellular sub-complexes, then the persistence pairs of HD(X•) may
be computed as follows:

1. At t = 0, we instantiate dimHD(X0) many tuples of the form (0,∞).

2. For t > 0, we instantie dimHD(Xt)− dimHD(Xt−1) many tuples of the form (t,∞).

3. We end at t = n.

We first look at how Lemma 2 specializes for graphs, before proving it. When D = 1, a 1-
dimensional cell complex is the same as a graph, and the lemma recovers the usual way to calculate
1-dimensional PH’s.

Indeed, H1(−) of a graph corresponds exactly to its list of independent cycles. For completeness,
by “independent cycles”, we mean the following interpretation:
Definition 10. Let C,C ′ be two cycles of the graph G. The C⊠C ′ as the XOR of E(C) and E(C ′)
(ie. their symmetric difference). For a list of cycles D1, ..., Dn, the XOR span of the list is the
following set:

{Di1 ⊠Di2 ⊠ ...⊠Dik |i1, i2, ..., ik ⊆ {1, ..., n}}
Definition 11. Let C1, C2, ..., Ck be a list of cycles of G. The list is a list of independent cycles if
for any Ci, Ci is not contained in the XOR span of C1, ..., Ci−1, Ci+1, ..., Ck

The following is a well-known interpretation of H1(−) of a graph and can be interpreted as the
definition.

Fact: The maximal list of independent cycles on G forms a basis for H1(G).

The usual algorithm for 1st dimensional persistence diagrams of a graph filtration keeps track of
vertex representatives for the components, and they mark the birth-time of cycles of the form (t,∞)
at filtration time t for each edge drawn from a component to itself at time t.
Proposition 8. Lemma 2 recovers the usual algorithm described above.

Proof. Let us start from the algorithm side and work to Definition 2. Indeed, each (t,∞) corre-
sponds to an edge e that is born in Gt (the subgraph at time t). Choose Ce to be a cycle in Gt
containing the edge e, we choose this for every such edge arising above.

By Lemma 2, it suffices for us to check that for each time step T , H1(Gt) has a basis being
{Ce}e∈E , where E is the collection of edge-creating cycle that is born in time ≤ T . We first check
that this is linearly independent. Indeed, we choose a total ordering ≤ on E such that e1 < e2 if e1
appeared earlier than e2 in the algorithm, (even if they are born at the same filtration time, there is
an ordering of which one is born first in algorithmic time). Under this total ordering, we rewrite the
elements of E into e1, e2, ..., eN .

Clearly the list {Ce1} is independent, since Ce1 is a non-trivial cycle. Suppose by induction
{Ce1 , ..., Cek} is independent, we wish to show adding Cek+1 into the list remains independent.
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Indeed, the XOR span of any sublist of {Ce1 , ..., Cek} is always contained in the union of edges of
Ce1 , ..., Cek ’s, which does not contain the edge ek+1 because of the total ordering we picked. Thus,
Cek+1 , which contains ek+1 by construction, is not in the XOR span. Thus, we have verified this is
a list of independent cycles.

Now, to show that this is a maximal list. We observe that removing the set E from Gt will turn Gt
into a forest. This implies that there are no additional cycles left, which concludes the proof.

Now we will prove Lemma 2.

Proof of Lemma 2. This lemma follows from the fact that the induced map HD(Xt)→ HD(Xt+1)
by inclusion has to be injective for all t. Indeed, this comes from the long exact sequence in ho-
mology for the pair (Xt+1, Xt) (see Theorem 2.16 of Hatcher (2002)), since HD+1(Xt+1, Xt) is
evidently zero as Xt+1 and Xt are both at most D-dimensional. Since this is injective, Remark 1
tells us that a chosen component according to the steps of the remark can never merge into a pre-
existing component, so all the vectors picked survive to∞. Once we move fromXt toXt+1, the new
pairs that are created are exactly dimHD(Xt+1)−dimHD(Xt) many pairs of the form (t+1,∞).
This concludes the proof.

B.2 PROOFS FOR THE EXPRESSIVITY PARTS OF SECTION 4

Proof of Proposition 3. As defined in Section 2 of Yan et al. (2022), the extended persistence of a
filtration function f is equivalent to the persistent pairs associated to the persistence module:

0 = H(G−∞)→ ...H(Ga)→ H(G) = H(G,G∞)→ ...H(G,Ga)→ H(G,G−∞).

Here, Ga means {x ∈ G | f(x) ≤ a} and Ga means {x ∈ G | f(x) ≥ a}, and H denotes either H0

or H1. Here we note that the paper Yan et al. (2022) wrote ∅ = H(G−∞) = H(∅), but some prefer
the convention that H(−) of the empty set is 0, as opposed to the empty set. One motivating reason
is that the empty set is not a vector space. This does not affect the persistence pairs produced since
they start at the non-zero parts.

Although a is indexed over the entire extended real numbers [−∞,+∞], since f takes only finitely
many values (or, if f is a real valued function taken on a graph G, viewed as a non-discrete topolog-
ical space, the topological changes only occur when a vertex is spawned), the persistence module
reduces to a finite length persistence module of the form

0→ H(Ga0)→ ...→ H(Gan) = H(G)→ H(G,Gan)→ ...→ H(G,Ga0),

where a0 < ... < an is the sequence of filtration values of f . By Proposition 2.22 of Hatcher (2002),
there is a morphism of persistence modules of the form:

0 H(Ga0) ... H(Gan) H(G,Gan) ... H(G,Ga0)

0 H(Ga0) ... H(Gan) H(G/Gan) ... H(G/Ga0)

= = =

where the second row is analogous to the construction of (f, g)-FB persistence we did. Observe
we can rewrite Gai as {x ∈ G | − f(x) ≤ −ai}. By and the successive union of the intermediate
complexes arising in the definition of (f,−f)-FB persistence up to step i is exactly the same as
Gai , so the persistence module of the second row arises exactly from the (f,−f)-FB persistence.

Proposition 2.22 of Hatcher (2002) also implies that the morphism above is an isomorphism of
persistence modules if H is H1(−), so they will have the same 1-dimensional persistent diagrams.

If H is H0(−), then the maps H(G,Gai)→ H(G/Gai) injects onto a direct summand H̃(G/Gai)

of H(G/Gai) such that H(G/Gai) = H̃(G/Gai)⊕Z/2. On the other hand, there is a very explicit
interpretation on what the generator of the Z/2 summand is - it is exactly the image of the chosen
supernode (see Lemma 1). The difference here is that the supernode in the second row becomes the
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only vertex feature that does not die, of the form (0,∞), and the supernode in the first row becomes
the vertex feature of the form (0, d) where d achieves the maximum death time among all vertices
of the graph (concretely, it is the first i (from n to 0) such that G/Gai is a connected graph). By
the decision rule we imposed on the supernode, we see that the first and second row agree on all 0-
dimensional persistence pairs except for the supernode, but clearly we can invert from one to another.

This concludes the discussion that they have the same expressivity.

Proof of Proposition 5. Indeed, consider the pair of graphsG andH from Figure 5 with the filtration
function f being the vertex-based filtration function induced by the height function on the vertices.
For convenience, we also redraw the two graphs below as:

y = 3 • • • • • •

y = 2

y = 1 • • • • • •

G H

In the forward time, we observe that the respective filtrations for G and H only change twice
as ∅ = G−1 ⊂ G0 ⊂ G1 = G and ∅ = H−1 ⊂ H0 ⊂ H1 = H , where G0 and H0 are
identical. The same number of vertex births/deaths and cycle births occur at y = 3, and hence G
and H cannot be told apart in forward time. If we apply the backward contraction with respect
to −f (ie. extended persistence), then at y = 3, the subgraph being contracted is the same, and
they both only kill 1 connected component. No changes happen until we get back to y = 0,
but by then the entire remaining graphs are contracted, and no differences are detected. Thus,
we conclude that forward with respect to f + backward with respect to−f cannot tell apartG andH .

On the other hand, we observe that FB-persistence can clearly tell them apart. This is because
IC1(G) has a cycle and IC1(H) does not, so contracting G by IC1(G) kills a cycle but contracting
H by IC1(H) does not.

Proof of Proposition 6. From a similar proof to that of Theorem 1, we know that (f, f)-FB has
at least the same expressivity as forward PH with f . Note that the explicit description of how
to compute (f, f)-FB persistence means that it is actually a function of the filtraiton function f ,
so if the explicit description holds then forward PH with f is at least as expressive as (f, f)-FB
persistence, which will show they have the same expressive power.

Thus, it suffices for us to verify this explicit description. The case for connected components is
resolved by Lemma 1 already, so we will examine how to compute the case of cycles.

By a similar procedure to the explaination in Theorem 1 (essentially due to elder’s rule), the cycles
that appear in the contraction steps for (f, f)-FB persistence are exactly the cycles (that are not born
at the beginning) in the backward persistence diagram that contracts the intermediate complexes
in the order IC0(G, f), IC1(G, f), ..., ICn(G, f). Note that a cycle can be born in the contraction
stage if and only if we are being asked to contract two components that belong to the same connected
component of the entire graphG (note that, without loss in algorithmic time, we can always contract
two components at a time).

Since the intermediate complexes being contracted are in the same order they appear in the filtration,
we see that the birth of cycles in the contraction steps corresponds exactly to the appearance of
connected components in filtraiton that will be merged to connected components that are born
earlier. The death time of such cycle also corresponds to when the two components actually merge.
Perhaps one way to see this is to note that in the simplicial quotient interpretation (see Section 5),
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this fills in a list of triangles to the disjoint base point v+ on top of a path connects the two vertex
representatives. Prior to the filling, the two vertex representatives would each have an edge to v+
(which is a cycle since they are in the same component for the entire graph G). The filling of the
triangles here would kill the cycle. This proves the case for cycles born in contraction.

Finally, for the cycles born in filtration, we would like to predict their death time in contraction.
Recall from the proof of Proposition 8 that there is an explicit description of the compatible basis
of H1(G

fil
• ), where Gfil

• denotes the sequence of inclusions of subgraphs induced by the filtration
function f . The basis of H1(G) correspond to edge-creating cycles, and an explicit ordered
basis of independent cycles C1 < ... < CN can be found by choosing cycles Ci that contain the
edge-creating cycles ei in an inductive way (see the proof of Proposition 8 for more details). The
upshot is that this would give a linearly independent list of cycles because the edge-creating cycle
Ci contains is not contained in Cj for j < i.

In the contraction step, we observe that a necessary condition for the list {C1, ..., CN} to degenerate
(ie. become linearly dependent) is when some cycle creating edge ei is contracted. Furthermore, if
ei is the last edge in the cycle Ci to be contracted, the cycle Ci would die right there. The diffcult
with general (f, g)-FB persistence is that, due to the arbitrariness of g, often times the cycle creating
edge ei is not the last edge being contracted in Ci. In the case of (f, f)-FB persistence, however, we
observe that we can always choose ei to die last in algorithmic time. Thus, this shows that each cycle
Ci born at time k dies exactly at time n + k (when the same cycle is being asked to be contracted
with respect to f ).

B.3 ALGORITHM TO COMPUTE (σ, τ)-FORWARD-BACKWARD FILTRATIONS

In this section, we will prove Proposition 4 and explain the algorithms behind in the case when f
is vertex-based. We also remark that a similar algorithm exists in the arbitrary case when f is not
vertex-based, just one also has to carefully permute the edge based values. We chose to present the
case when f is vertex-based for simplicity.

Before we start explaining the algorithm, we first explain why (f1, f2) exists in general. Indeed, this
will follow immediately from the following more general fact.

Lemma 3. Let G be a graph and G• = (∅ = G−1 ⊂ G0 ⊂ G2 ⊂ ... ⊂ Gn) be a strict inclusion of
subgraphs onG, then there exists a filtration function f : G→ R with filtration values a0 < ... < an
such that f−1((−∞, ai]) = Gai .

Proof. For each vertex or edge x ∈ G, we define f(x) to be mini∈{0,1,...,n} x ∈ Gi. Since G• is an
inclusion of subgraphs, an edge e cannot appear earlier than the vertices that support it, so it follows
that f is a filtration function. This concludes the proof.

From now on in this subsection, we assume that f is vertex-based for simplicity. Let us first look at
the algorithm for FB-persistence specifically and see why it is only linear time.

Proposition 9. Let f be a filtration function, then there exists a filtration function f b such that the
sequence of topological maps in (f, f b)-persistence is the same as the ones in FB-persistence with
respect to f . Furthermore, Algorithm 3 computes f b in with a runtime of O(|V |+ |G|).

Proof. To show that Algorithm 3 correctly computes f b, it suffices for us to show that ICi(G; f b) is
exactly ICn−i(G; f). Indeed, the intermediate complexes produced for the pair (G, f) are “upward
closed” in the sense that the edges of ICi(G; f) all have the same value ai, but the value of vertices
are in general only ≤ ai.

If we want ICn(G; f) to be the first intermediate complex that appears in the filtration f b, we would
want to relabel all of its vertices to the maximal value an, which is precisely what the algorithm
does. Since f is vertex-based, we only need to do this on vertices and we can modify the edges
later.
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Algorithm 3 Computing the Backward Filtration Function
Input→ Output: The graph G and filtration function f → The function f b

1: f bvertex ← {v : −∞ | for each v ∈ V (G)} ▷ Initialize f b on vertices with values in −∞.
2: for edge e = (v, w) in E(G) do
3: f bvertex[v]← max(f(e), f bvertex[v]).
4: for vertex v in V (G) do
5: if f bvertex[v] = −∞ then
6: f bvertex[v]← f(v) ▷ Mark isolated vertices to their value under f .
7: (f bvertex, f

b
edge)← (map(x 7→ −x; f bvertex),map(x 7→ −x; fedge)).

8: return (f bvertex, f
b
edge).

If we want ICn−1(G; f) to be the second intermediate complex that appears in the filtration f b, we
would want all vertices that have not been marked an already to be marked an−1. This amounts to
a maximality comparison in the for loop in the algorithm.

If we want ICn−2(G; f) to be the third that appears, we similarly want to label all vertices not
marked an, an−1 yet to be marked as such, so repeating this process yields the correctness of the
algorithm.

The algorithm has runtime O(|V | + |G|) since it only requires looping through the vertex set and
the edge set linearly.

Now we move on to Proposition 4. In fact, Algorithm 3 before is a special case of the algorithms for
this. In order to create a backward-filtration function that contracts in a permutation of the intended
order specified by a permutation σ, we observe that Algorithm 3 would actually hold if the max
function is operated with respect to an “ordering given by σ” as opposed to the natural ordering of
the reals.

Instead of changing the ordering system of the reals in our algorithm, we will instead change the
filtration function f inside the parameter of the max function to this ordering. To do this, we define
the following variant of f :
Definition 12. Let f : G→ R be a filtration function with filtration values a1 < a2 < ... < an. Let
σ be a permutation of the list {1, ..., n}, we define σ · f as the function

σ · f : G→ R, σ · f(x) = aσ(i) if f(x) = ai,

where x is either a vertex or an edge.

Algorithm 4 Computing the τ -Backward Filtration Function
Input→ Output: The graph G, function f , permutation τ−1→ The function fτ

1: g ← (re ◦τ−1) · f
2: fτvertex ← {v : −∞ | for each v ∈ V (G)} ▷ Initialize fτ on vertices with values in −∞.
3: for edge e = (v, w) in E(G) do
4: fτvertex[v]← max(g(e), fτvertex[v]).
5: for vertex v in V (G) do
6: if fτvertex[v] = −∞ then
7: fτvertex[v]← g(v) ▷ Mark isolated vertices to their value under f .
8: fτvertex ← map(x 7→ −x; fτvertex).
9: fτedge ← map(x 7→ −x; gedge). ▷ gedge is the function g on E(G).

10: return (fτvertex, f
τ
edge).

In practice, a permutation σ can be realized as a dictionary with entry being i and output being σ(i).
We can use this to make an associated dictionary whose entry is ai and output is aσ(i). Depending
on how the filtration function f is represented as a data structure, this may require a sorting of the
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list of filtration values if the values are not sorted already. We can then produce σ · f by a linear
scan through the entries of f and swap out its output using the associated dictionary.

A slight modification of Algorithm 3 now produces Algorithm 4. In the special case when τ = re
(the reverse list permutation), this will recover Algorithm 3. This gives f2 as requested in Propo-
sition 4, but note that plugging σ into τ also gives the desired f1 in the proposition. A slight
modification of the proof for Algorithm 3 will ensure the correctness of the algorithm here. Because
we possibly may need to sort a list, this would incur a worst-case runtime of O(n log n), where
n = |V (G)|+ |E(G)|.
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C PROOFS FOR SECTION 5

Proof of Proposition 7. Let Y be a simplicial complex, and let Y• be a sequence of inclusions and
contractions in some arbitrary order, of the form:

∅ = Y−1 → Y0 → Y1 → ...→ Ym → Ym+1 = ∗.
Using the simplicial quotient method, we adjoin a disjoint base point v+ to Y and also form a
sequence of inclusions Z• of the form

v+ → Z0 → Z1 → ...→ Zm → Zm+1.

Taking Hk(−) gives the sequence

Hk(Z•) : 0→ Hk(Z0)→ Hk(Z1)→ ...→ Hk(Zm)→ Hk(Zm+1).

Fix k > 0, we also let Hk(Y•) be the k-th persistent module for this from Definition 2.

Now for each Zi, let Ci be the closed star of the vertex v+ (ie. the union of all simplices containing
v+ and their faces). Observe that Yi is isomorphic to the quotient Zi/Ci. We also note that Ci is
actually contractible - indeed, in the standard geometric realization of Zi, there is an explicit straight
line homotopy based on line segments from the simplicial link of v+ to v+ from construction,
which shows that Ci’s are contractible.

It is a general fact that for a simplicial complex K and contractible subcomplex K ′, the quotient
map K → K/K ′ is a homotopy equivalence (see Proposition 0.17 of Hatcher (2002)).

0 Hk(Z0) Hk(Z1) ... Hk(Zm) Hk(Zm+1) = 0

0 Hk(Z0/C0) Hk(Z1/C1) ... Hk(Zm/Cm) Hk({∗}) = 0

0 Hk(Y0) Hk(Y1) ... Hk(Ym) Hk({∗}) = 0

∼= ∼= ∼= ∼= =

∼= ∼= ∼= ∼= =

Here Hk(Zm+1) = 0 because Cm+1 = Zm+1 in this case. Thus, we have an isomorphism of
persistence modules between Hk(Z•) and Hk(Y•), so they have the same persistence diagrams.

To see what goes wrong in the case k = 0, we observe that the placement of the node v+ can affect
the birth / death time of vertices since v+ is now the oldest node, so the birth times of the vertices
would shift. This can be remedied, for FB-persistence or (σ, τ)-persistence, where we instead place
v+ to spawn after filtration finishes and before contraction begins. However, this does not work for
hourglass persistence, since we can contract before all the filtration finishes.

Thus, we would like to consider a different method, as described in the proposition. For a simplicial
complex K, we write (K)1 to denote the 1-skeleton of the simplicial complex K (ie. the union of
all vertices and edges). On the level of k = 0, observe that the inclusion of the 1-skeleton of X
induces a map of persistence modules of the form:

0 H0((Y0)
1) H0((Y1)

1) ... H0((Ym)1) H0({∗})

0 H0(Y0) H0(Y1) ... H0(Ym) H0({∗})

= .

Here each verticial arrow is an isomorphism because the inclusion map (Yi)
1 → Yi is a bijection on

connected components. Thus, we have an isomorphism of persistence modules and hence the top and
bottom row have the same persistence diagrams. What this means is that 0-th dimensional persistent
homology for the simplicial complex is equivalent to the 0-th dimensional persistent homology for
its restriction to the 1-skeleton. Thus, this reduces to the scenario in Lemma 1, and this concludes
the proof.
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D PROOFS FOR SECTION 6

Proof of Theorem 2. We split the proof of stability into two parts - the case where k > 0 and the
case where k = 0.

LetX be a simplicial complex andHk(X•, f, g) andHk(X•, f
′, g′) be the two persistence modules

in (f, g)-FB persistence and (f ′, g′)-FB persistence respectively.

For k > 0, and when X is a simplicial complex, we use the simplicial quotient interpretation of the
persistence modules here (in the sense of Section 5). By Proposition 7, we see that the persistence
pairs associated to Hk(X•, f, g) is the same as the persistence pairs associated to the persistence
homology of a simplicial filtrations of a simplicial complex Z, which we will write the filtration
function as h. Similarly, for Hk(X•, f

′, g′), we will get a (possibly) different simplicial filtration of
the same simplicial complex Z, which we will write the filtration function as h′.

Thus, we see that dB(Hk(X•, f, g), HK(X•, f
′, g′) = dB(Hk(Z•, h), Hk(Z•, h

′)) is the bottle-
neck distance of the persistence diagrams coming from two filtration functions h and h′. By the
classic bottleneck stability of Cohen-Steiner et al. (2006), we have that

dB(Hk(Z•, h), Hk(Z•, h
′)) ≤ ||h− h′||∞.

Let us unwrap the construction of h and h′ here. Indeed, recall Z is the simplicial cone of X . For
(f, g), the function h agrees with f when restricted to the base of the simplicial cone (which is a
copy of X). Every other simplex must contain the disjoint basepoint v+, and is obtained by joining
v+ to a base simplex σ inX . We write all such simplices as (σ, v+). In this case, h(σ, v+) is defined
to be max(f)+g(σ). Finally, one also specifies that h(v+) to be born before all the other persistence
values, say 0 for uniformity (this does not affect the persistence pairs of dimension higher than 0).
There is a similar description for h′, and hence we see that

||h− h′||∞ = max(||f − f ′||∞, ||g − g′ + (max(f)−max(f ′))||∞)

≤ ||f − f ′||∞ + ||g − g′ + (max(f)−max(f ′))||∞
≤ ||f − f ′||∞ + ||g − g′||∞ + |max(f)−max(f ′)|.

Remark: Note that there is no coefficient 2 here. For brevity, in the main paper, we added a 2
because that is the bound we will get for k = 0.

WhenX is a (regular) cell complex, we evidently can still take the cone of a cell complex, which has
cell decomposition according to the subcomplex of the base. The arguments above would still hold
in this case. This is because the original Bottleneck stability Cohen-Steiner et al. (2006) was proven
for all triangulable spaces and tame functions on them. Because of its finiteness and regularity
constraint, the geometric realization for the regular cell complex can be taken to be from what is
called an o-minimal structure (see Coste (2002) or van den Dries (1998) - note this is called an
“o-minimal expansion of the real field” in the second reference). See also Section 1 of Moggach
(2020) for a detailed description between cell complexes and o-minimal structures. Elements in such
o-minimal structures are known to be triangulable by the so-called Hardt’s triangulation theorem
and the filtration is clearly still tame, and the bound above applies through.

The case of k = 0 is different because the persistence tuples differ. First of all, by the same argument
in the proof of Proposition 7, we can reduce this to the case where X is a graph. We will still
work in the simplicial quotient perspective. The reader might wonder - there are some graphs that
are technically not simplicial complexes (ie. has self-loops or multiple edges), does the simplicial
quotient also work for them? The answer is yes because for such graphs, one can always discretize
further by labeling the mid-point of exceptional edges (ie. self-loops and multi-edges) as a vertex of
the graph. This then becomes a simplicial complex and makes no difference in filtration since we
will be spawning the midpoints at the same time as the edges, so we can ignore these trivial deaths.

Thus, we without loss reduce to the case where X is a simplicial graph, and we can try to apply
a variant of the simplicial quotient method. Indeed, we observe that, - if we move the adjoined
formal basepoint v+ to be spawned after we have filtrated the entire graph X first using f and
before we start the contraction using g, then the 0-th dimensional persistence diagram with the pair
representing v+ removed is the 0-th dimensional persistence diagram from the 0-th dimensional
(f, g)-persistence diagram. Indeed, this is because, v+, being the last vertex spawned, will die
immediately when the first vertex in g appears and asks to be contracted (which will not change the
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other outputs).

To go further, we would need to work explicitly with a proof strategy of bottleneck stability (ex.
Skraba & Turner (2021), Schnider (2024), or Ji et al. (2025)) and adapt it to our scenario. Indeed,
let Z be the simplicial cone of X , and h and h′ be the filtrations corresponding to the pairs (f, g)
and (f ′, g′). But also, because we are working with k = 0, we can again restrict to the 1-skeleton
Z ′ of Z, which is now a graph.

For each simplex (either an edge or a vertex) x ∈ Z ′, we consider a linear interpolation function
ht(y) = (1 − t)h(x) + th′(x) with t values in [0, 1]. We can divide the interval [0, 1] into a
finite collection of intervals [t0, t1], [t1, t2], ..., [tn, tn+1] with t0 = 0 and tn+1 = 1 such that, for
every pair of simplices x and y and t ∈ [ti, ti+1], we either have that ht(x) ≥ ht(y) for all t or
ht(x) ≤ ht(y) for all t.

Since the relative ordering of simplices are not changed in this interval, the 0-dimensional persis-
tence diagrams for hti and hti+1 are the same in combinatorial time. Now choose any bijection
π of the function time persistence diagrams for PHF0 (Z

′;hti) and PHF0 (Z
′;hti+1

) (by which we
denote their forward time 0-diemnsional persistence diagrams) such that π(bt, dt) = (bt+1, dt+1)
if and only if both tuples represent the same tuple in combinatorial time. Note that due to the
placement of v+, this will necessarily pair the two pairs associated to v+ together (call them
(b+, d+) and (b′+, d

′
+). Notably the restriction π1 of π to the tuples excluding the one corresponding

to v+ is still a bijection.

For any two filtrations ϕ, ψ of Z ′ (the 1-skeleton of the cone of X). We write
d′B(PH

F
0 (Z

′;ϕ),PHF0 (Z
′;hti+1)) as the term

inf
φ bijections PHF

0 (Z′;ϕ)−(b+,d+)→PHF
0 (Z′;ψ)−(b′+,d

′
+)
||(b, d)− φ(b, d)||∞.

Observe that when ϕ = h and ψ = h′, one has that

dFBB (H0(X, f, g), H0(X, f
′, g′)) = d′B(PH

F
0 (Z

′;h),PHF0 (Z
′;h′)).

Now d′B can fail the non-degeneracy condition for being a metric, but it will still have a triangle
inequality!

Now each tuple in the persistence diagram here actually comes from a vertex-edge pair (v, e),
where v makes birth to the tuple and e kills it. Choosing π1 as the bijection here, we have

d′B(PH
F
0 (Z

′;hti),PH
F
0 (Z

′;hti+1
)) ≤ ||(b, d)− π1(b, d)||
≤ max

(v,e)∈X
||(hti(v), hti(e))− (hti+1

(v), hti+1
(e)||∞

Definition of π1 and associating pairs
≤ max

v∈X
||hti(v)− hti+1

(v)||∞ +max
e∈X
||hti(e)− hti+1

(e)||∞

≤ (ti+1 − ti)||f − f ′||∞ +max
e∈X
||hti(e)− hti+1

(e)||∞

For the second term, there are two possibilities for the edge e - either it comes from the filtration or
it comes from the contraction. Thus, we have that
max
e∈X
||hti(e)− hti+1(e)||∞ ≤ max((ti+1 − ti)||f − f ′||∞,

(ti+1 − ti)||(g − g′) + (max(f)−max(f ′)||∞)

≤ (ti+1 − ti)(||f − f ′||∞ + ||(g − g′)||∞ + |max(f)−max(f ′)|)

Now decomposing d′B(PH
F
0 (Z

′;h),PHF0 (Z
′;h′)) into the sum∑m

i=0 d
′
B(PH

F
0 (Z

′;hti),PH
F
0 (Z

′;hti+1)) and using the bound above, we have that

dFBB (H0(X, f, g), H0(X, f
′, g′)) ≤ 2||f − f ′||∞ + ||(g − g′)||∞ + |max(f)−max(f ′)|.
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E MORE DISCUSSIONS ON COMPARISON WITH OTHER METHODS

E.1 ZIGZAG FILTRATION

In the definition of (f,g)-FB-persistence, the filtration function g is specifying the order of subgraphs
being contracted. This is different from the use case of zigzag filtration Carlsson & de Silva (2010),
where they are looking at a sequence of insertions and removals of a graph, but the removal process
is fundamentally not continuous, so their persistence diagrams do not follow a linear time (whereas
our set-up does).

To give an example, consider G the path graph on 2 vertices, H1 the emptyset, H2 a sub-
graph of G which is discrete with 2 vertices. Then the following is a diagram that can occur in
zigzag filtration

H1 ⊂ G ⊃ H2

Observe that there is no map from G to H2 that is continuous, since we cannot split G into 2
components. In general, the arrows in zigzag filtration go in different directions, and they are all
inclusion maps. On the other hand, the class of diagrams we always consider in (f,g)-FB persistence
is a sequence of continuous maps

G1 → G2 → G3 → ...→ Gn

which are inclusions followed by contractions. Here the arrows all go in the same direction, but
they can be either inclusions or contractions (this is even more apparent in the setting of hourglass
persistence).

More technically, zigzag filtration is considering quiver spaces on the path graph Pn with
any possible orientations but with inclusions, whereas we are considering quiver spaces on Pn
oriented in a uniform direction with both inclusions and contractions. Generally, we expect zigzag
persistence and (f, g)-FB persistence to be incomparable, and their methods can complement each
other.

E.2 BIPATH FILTRATION

In Aoki et al. (2025), the authors introduced bipath persistence built on bipath filtrations, which are
quiver spaces on the Hasse quiver Bn,m, which is of the form

n • ... •

• •

m • ... •

Similar to the case of zigzag filtration, the filtrations that appear in bipath filtration on Page 1 of Aoki
et al. (2025) is again using inclusions only, whereas our settings consider the usage of contractions
along with inclusions. Furthermore, bipath filtration considers quiver spaces on the Hasse quiver
Bn,m with inclusions, but we study quiver spaces on Pn oriented in a uniform direction with both
inclusions and contractions. Therefore, we expect that the two methods in general do not subsume
one another but are complementary ideas.

E.3 EFFICIENCY COMPARISON

For persistence diagrams (PDs) of dimension > 0 on simplicial complexes, hourglass persistence
itself can be computed using the ”simplicial quotient” trick mentioned in Section 5 of the paper
using Proposition 7. Proposition 4 reduces the question to computing inclusion-based PH on a
simplicial complex, which has a standard runtime dominated by the runtime to perform matrix
reduction algorithms (see Otter et al. (2017)). For PDs of dimension 0, this can be reduced to
looking at PDs of just underlying 1-skeleton (ie. a graph). In this case, there is a way to optimize the
calculation with union-find with a runtime dominated by O(n log n + m), where n is the number
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of edges and m is the number of vertices (see Horn et al. (2021) for more details). Although Horn
et al. (2021) only discuss the runtime in the filtration steps, tracking vertex representatives in the
contraction steps would also have the same runtime.

When focusing on FB-persistence and (f, g)−FB-persistence, though, we expect the algo-
rithms presented in Section 7 (which are not using the “simplicial quotient” trick) to be faster
empirically. In general, the ability to reduce the size of object using contractions (ie. using the
cellular complex extension in Section 5 instead) would lead to a decrease in the memory complexity.
We therefore expect the cellular-based methods of hourglass persistence, (f, g)−FB persistence,
etc. to have more efficient algorithms in the future.

E.4 SCALING ON LARGE GRAPHS

Interleaving the filtration and contraction steps avoids the need to filtrate the entire graph before
starting contractions, which allows the total size of the graph that appears in its entire lifetime to be
bounded.

This can improve over the runtime on general simplicial complexes. Let K be a simplicial
complex with n total simplicies. To give a heuristic/informal estimation from a practitioner
perspective - the typical runtime of inclusion based PH on K scales approximately O(n3) as it
requires a matrix reduction algorithm.

Suppose we bound the threshold to d simplicies, and a practitioner equipped with the con-
traction framework can implement a specific instance of hourglass persistence as follows: as soon
as we reach more than d simplicies in a given step, we contract everything to a point, and so on.
Then we believe the runtime should roughly to be O(nd · (d)

3).

For practical purposes, it may also be beneficial to not contract everything to a point when
the threshold is exceeded. If the contractions are done in multiple stages, then we believe a similar
runtime analysis holds. We are excited at the possibilities that this framework can allow our
community to address the problem of PH scaling on large graphs/simplicial complexes.

F THE USE OF LARGE LANGUAGE MODELS

We used large language models to aid in the writing process of the introduction, to help check gram-
mar / suggest edits for the main paper, and to double-check some algorithmic discussions arising
from the paper.
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