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Abstract

Autoregressive (AR) models have long dominated the landscape of large language1

models, driving progress across a wide range of tasks. Recently, diffusion-based2

language models have emerged as a promising alternative, though their advantages3

over AR models remain underexplored. In this paper, we systematically study4

masked diffusion models in data-constrained settings—where training involves5

repeated passes over limited data—and find that they significantly outperform AR6

models when compute is abundant but data is scarce. Diffusion models make better7

use of repeated data, achieving lower validation loss and superior downstream8

performance. We find new scaling laws for diffusion models and derive a closed-9

form expression for the critical compute threshold at which diffusion begins to10

outperform AR. Finally, we explain why diffusion models excel in this regime:11

their randomized masking objective implicitly trains over a rich distribution of12

token orderings, acting as an implicit data augmentation that AR’s fixed left-to-13

right factorization lacks. Our results suggest that when data, not compute, is the14

bottleneck, diffusion models offer a compelling alternative to the standard AR15

paradigm.16
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Figure 1: Pareto frontier of validation loss versus training FLOPs for autoregressive (AR) and
masked diffusion models under data-constrained settings. Each point represents a model trained until
convergence; we report the best validation loss achieved among all models using less than or equal to
the FLOPs shown on the x-axis. AR models initially outperform diffusion models, particularly near
the Chinchilla-optimal compute point [12] (indicated on the plot). However, as training continues
beyond this regime with repeated data, AR models quickly saturate and begin to overfit. In contrast,
diffusion models continue to improve with more compute and exhibit no signs of overfitting.
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1 Introduction17

Training large language models (LLMs) on massive corpora of internet text has become the driver18

of recent AI breakthroughs [4, 28, 40]. This progress has been fueled by scaling two core resources19

proportionately: compute and data [15, 11]. While compute availability has steadily grown—enabled20

by advances in hardware and the construction of larger data centers—the growth in high-quality data21

has been comparatively stagnant. Recent projections, such as those by Villalobos et.al. [42], estimate22

that the global supply of publicly available, human-generated data may be exhausted by 2028, posing23

a serious bottleneck to further scaling. This looming constraint makes it increasingly important to24

develop modeling strategies that are more data-efficient. Furthermore, there are several domains,25

such as robotics and healthcare, where the data, not compute, is a scarce resource even to begin with.26

LLM development has so far been dominated by autoregressive (AR) models, which factorize the27

joint distribution of text in a fixed left-to-right order. While this modeling approach has delivered28

state-of-the-art performance across a range of benchmarks, it remains unclear whether it is the optimal29

strategy going forward. Recently, diffusion-based models—specifically masked diffusion models30

[2, 31, 18, 34, 1]—have emerged as an alternative strategy, framing text generation as an iterative31

masked denoising process rather than next-token prediction. At each step, the model predicts a32

randomly masked subset of tokens conditioned on the remaining ones, implicitly averaging over33

many conditional prediction orders instead of committing to one. Although these models have34

demonstrated similar scaling behavior to AR models [22, 39], their practical benefits have, so far,35

been modest—largely due to their high training compute requirements.36

This high compute demand has become the central obstacle to wider adoption of diffusion-based37

language models. As noted by Nie et al. [22] and Swerdlow et al. [39], masked diffusion models38

require up to 16× more compute than AR models to match validation NLL—a clear disadvantage for39

most applications.40

But a critical nuance is often overlooked: these comparisons are based entirely on single-epoch41

training, where each token is seen only once. This conflates compute efficiency with data efficiency,42

making it unclear whether diffusion models truly need 16× more compute—or simply 16× more data.43

To resolve this ambiguity, we systematically study masked diffusion models in data-constrained44

settings, where repeated training on limited data is the norm rather than the exception. We find45

that under such regimes, diffusion models substantially outperform autoregressive models across a46

variety of data scales and compute budgets. We train hundreds of models spanning multiple orders of47

magnitude in model size, data quantity, and number of training epochs to fit scaling laws for diffusion48

models in the data-constrained setting. We summarize some of our key findings below.49

1. Diffusion models surpass autoregressive models given sufficient compute. Across a50

wide range of unique token budgets, we observe a consistent trend: autoregressive models51

initially outperform diffusion models at low compute, but quickly saturate. Beyond a critical52

compute threshold, diffusion models continue improving and ultimately achieve better53

performance (Section 2.1)54

2. Diffusion models benefit far more from repeated data. Prior work [21] showed that55

repeating the dataset up to 4 epochs is nearly as effective as using fresh data for autoregressive56

models. In contrast, we find that diffusion models can be trained on repeated data for up to57

100 epochs, while having repeated data almost as effective as fresh data (Section 2.2).58

3. Diffusion models have a much higher effective epoch count. Muennighoff et al. [21]59

fit scaling laws for AR models in data-constrainted settings and define R∗
D as a learned60

constant that characterizes the number of epochs after which training more epochs results in61

significantly diminished returns. For autoregressive models, they estimate R∗
D ≈ 15 . In62

contrast, we find R∗
D ≈ 500 for diffusion models, suggesting they can benefit from repeated63

data over far more epochs without major degradation (Section 2.2).64

4. Critical compute point follows a power law with dataset size. We find that the amount of65

compute required for diffusion models to outperform autoregressive models—the critical66

compute point—scales as a power law with the number of unique tokens. This yields a67

closed-form expression that predicts when diffusion becomes the favorable modeling choice68

for any given dataset size (Section 2.3).69
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5. Diffusion models yield better downstream performance. We find the above benefits70

extend beyond validation loss: the best diffusion model trained in data-constrained settings71

consistently outperform the best autoregressive model on a range of downstream language72

tasks (Section 7.1).73

6. Exposure to different token orderings helps explain diffusion’s data efficiency. By74

adding explicit data augmentations to AR training, we find that diffusion models’ advantage75

arises from their exposure to a diverse set of token orderings. Essentially, the random-76

ized masking in diffusion’s objective serves as implicit data augmentation, allowing it to77

generalize beyond the fixed left-to-right factorization of AR models. (Section 2.4)78

Through detailed scaling law analysis and downstream task evaluations, we demonstrate that dif-79

fusion models make significantly better use of repeated data, achieving lower validation loss and80

better generalization to downstream tasks. These results suggest that diffusion models may offer a81

compelling and underappreciated advantage in scenarios where data—not compute—is the primary82

bottleneck.83

2 Experiments84

We use the English C4 corpus [29], tokenized with the GPT-2 BPE vocabulary and truncated or85

padded to 2048 tokens per sequence. We consider unique-token budgets of U ∈ {25, 50, 100}M and86

train for up to 800 epochs (80B tokens total). Models are trained ranging from 7M to 2.5B parameters,87

following the Chinchilla scaling strategy where both width and depth are increased proportionally.88

The detailed architectural configurations of each model are provided in Appendix 9. Background on89

Diffusion and Autoregressive models, and data-constrained scaling law formulation can be found in90

Appendix 591

Our goal is to compare the performance of masked diffusion models and autoregressive models in92

data-constrained settings. To this end, we train a total of 200 models—100 diffusion models and93

100 autoregressive models—across varying unique data sizes, model scales, and epoch counts. We94

present the empirical results in Section 2.1. In Section 2.2, we fit scaling laws tailored to data-95

constrained regimes for both model types, following the methodology introduced by Muennighoff96

et al.[21]. These scaling laws allow us to analyze performance trends and identify scenarios where97

diffusion models should be preferred over autoregressive ones (Section 2.3). In Appendix Section98

7.1, we demonstrate that the superior validation loss of diffusion models indeed correlates with99

improved downstream task performance. Finally, in Section 2.4 we investigate the underlying cause100

of diffusion’s advantage in data-constrained settings, showing that its exposure to diverse token101

orderings enables better generalization than AR’s fixed left-to-right factorization.102

2.1 Does Diffusion Beat AR in Data-Constrained Settings?103

Prior comparisons between diffusion and autoregressive (AR) language models have largely focused104

on the single-epoch regime, where each token is seen only once during training [22, 39]. In this105

setting, diffusion models are consistently reported to require substantially more training compute106

(C ∼ 6ND) than AR models to achieve comparable validation loss. For instance, Nie et al. [22] and107

Swerdlow et al. [39] derive scaling laws showing that masked diffusion models can require up to108

16× more compute than AR counterparts.109

Crucially, these studies scale compute by increasing both the model size (N ) and the amount of110

unique training data (D) proportionally. As a result, they do not isolate whether diffusion’s 16x111

inefficiency stems from needing more total compute—or more unique data.112

In other words: is diffusion limited by compute efficiency or by data efficiency?113

To answer this, we systematically study diffusion models in data-constrained settings, where the114

total amount of unique data is fixed and models are trained for many epochs, reusing the same data.115

Unlike prior work, our evaluation explicitly decouples model scaling from data reuse, allowing us to116

disentangle the effects of compute and data.117

We train a large suite of AR and diffusion models across three unique data regimes—25M, 50M,118

and 100M tokens—and a wide range of training compute budgets. In Figure 1, we report empirical119

validation loss as a function of training FLOPs for the 50M and 100M regimes; results for the 25M120
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setting are shown in Appendix Figure 8. We find that AR models initially outperform diffusion121

models when trained with the compute-optimal budget prescribed by Chinchilla scaling laws (denoted122

by the solid vertical line). However, this advantage disappears as training continues beyond this123

point. When models are allowed to train for additional epochs on repeated data, diffusion models124

consistently surpass AR models in validation loss across all data regimes. These findings indicate that125

the previously observed inefficiency of diffusion models is largely a consequence of evaluating them126

solely in the single-epoch regime. In data-constrained settings with repeated exposures, diffusion127

models extract significantly more value from the same data than their AR counterparts.128

A key question remains is how should one go about increasing compute for diffusion models: by129

increasing model size, or by increasing the number of epochs (i.e., data reuse)? To address this,130

we analyze the trade-off between parameters and epochs in Figure 2, which shows validation loss131

contours as a function of both axes. In the 100M unique token regime, for example, we find that132

diffusion achieves its best loss at 500 epochs, while AR model reach its best at just 50 epochs. Each133

point on the contour plot corresponds to a model trained with a specific parameter count and number134

of epochs; we report the actual validation loss at each configuration, without early stopping. We find135

that autoregressive models begin to overfit at high epoch counts, with validation loss worsening as136

training continues beyond a certain point. In contrast, diffusion models show no signs of overfitting137

within our compute budget—the best validation loss is achieved at the highest epoch counts we138

explore. This suggests that diffusion models continue to benefit from additional training on repeated139

data, and that observing overfitting may require significantly more compute.140

To contextualize these results, we highlight two key configurations in Figure 2 for each model141

family: the compute-optimal point for single-epoch training, as identified by prior scaling law142

analyses [12, 24] (marked with a colored star in the bottom-left), and the best validation loss achieved143

under extended multi-epoch training (marked with a black star). At the compute-optimal point,144

which corresponds to training for a single epoch, diffusion models perform substantially worse than145

autoregressive models (10.65 vs. 7.07), consistent with prior findings that diffusion performs worse146

initially. However, as training is extended to hundreds of epochs, diffusion models continue to147

improve and eventually achieve a lower validation loss (3.55) than the best AR models (3.71). While148

AR models begin to overfit as training progresses, diffusion models show no signs of overfitting149

within our budget.150

2.2 Fitting Data-Constrained Scaling Laws151

To gain deeper insight into the trade-offs between diffusion and autoregressive models in data-152

constrained settings, we fit scaling laws to both model families across single-epoch and multi-epoch153

regimes, as described in Section 5.3. Our approach systematically varies three key factors: (1) the154

amount of unique data, (2) model parameter count, and (3) number of training epochs. This grid155

search allows us to disentangle the effects of data quantity, model capacity, and data reuse on final156

model performance.157

We evaluate the quality of our scaling law fits using the coefficient of determination (R2) and relative158

prediction error, as shown in Table 3. For autoregressive models, our R2 values closely match159

those reported by Muennighoff et al. [21], indicating consistent behavior under repeated training.160

Interestingly, diffusion models yield significantly higher R2 values, reflecting a better overall fit. We161

attribute this to lower variance in validation loss across training runs, likely due to the absence of162

overfitting in diffusion models even at high epoch counts.163

Beyond the overall fit, we extract two key parameters from the scaling laws: R∗
D, which characterizes164

the effective half-life of data reuse—i.e., the number of epochs after which additional training on165

repeated data yields diminishing returns—and R∗
N , which indicates the optimal model size for a given166

data budget. Our results reveal a sharp contrast in data reuse half-lives: diffusion models exhibit an167

R∗
D of 512.85, compared to just 31.93 for autoregressive models. A higher R∗

D implies that a model168

can benefit from many more repeated exposures before saturating. This suggests that diffusion models169

continue to improve across hundreds of epochs, while AR models quickly saturate—highlighting the170

superior data efficiency of diffusion models in data-constrained regimes.171

Figure 3 illustrates how the utility of unique data decays with increased repetition. We evaluate this172

effect across three compute budgets—1 × 1019, 3 × 1019, and 1 × 1020 FLOPs—by varying the173

proportion of unique data and parameters while keeping total compute fixed (e.g., 50% of the data for174
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(a) Autoregressive contour: validation loss over
epochs and model sizes.

(b) Diffusion contour: validation loss over epochs
and model sizes.

Figure 2: Validation loss contours over epochs and model sizes for autoregressive (left) and diffusion
(right) models, trained on 100M unique tokens. Each plot shows validation loss as a function of
training epochs (x-axis) and model parameters (y-axis). The colored star marks the compute-optimal
point for single-epoch training, as predicted by prior scaling laws [12, 24], and the black star indicates
the lowest validation loss achieved through extended multi-epoch training. In the single-epoch regime,
diffusion models perform worse than AR models (10.65 vs. 7.07). However, when trained longer,
diffusion models achieve a substantially lower final loss (3.55 vs. 3.71). This corresponds to a 67%
reduction in loss for diffusion models compared to just 48% for AR models, highlighting their superior
ability to leverage repeated data. These results underscore that diffusion models require significantly
more training—both in epochs and compute—to realize their advantages in data-constrained settings.

2 epochs, 25% for 4 epochs, etc.). For each compute budget, we use single-epoch scaling laws to175

determine the optimal model size and unique token count for both AR and diffusion models. This176

experimental design allows us to directly measure how the utility of data diminishes with increased177

repetition. We present both empirical results and fitted curves from our parametric scaling law,178

observing strong agreement between the two. Notably, the decay rate of data value remains consistent179

across compute budgets for both model families. However, diffusion models consistently exhibit a180

substantially slower decay rate than AR models, suggesting they are better able to extract value from181

repeated data.182

Figure 4 shows validation loss versus training tokens using the compute budget of 1e19. The results183

reinforces the trend: AR models overfit with increased repetition, showing diverging loss curves.184

In contrast, diffusion models exhibit overlapping curves across repetitions, indicating no signs of185

overfitting and a very low decay rate with data reuse.186

Figure 5 shows extrapolated training curves at large compute budgets. For each setting, we use the187

compute-optimal model and dataset size derived from single-epoch scaling laws for 1e19, 3e19 and188

1e20. We then extend training to multiple epochs. The dashed lines represent the ideal Chinchilla-189

style scaling behavior, where all training tokens are assumed to be unique. We find that for AR190

models, repeated data provides nearly the same benefit as fresh data only up to about 4 epochs.191

Beyond this point, additional repetition yields diminishing returns. In contrast, diffusion models192

continue to match the unique-data curve for up to 100 epochs, indicating a far greater capacity to193

benefit from repeated data in data-constrained regimes.194

2.3 When to Use Diffusion over AR?195

A key question for practitioners is: when should diffusion be preferred over autoregressive models196

(AR)? To answer this, we compare the fitted data-constrained scaling laws for both model families197

(§5.3).198
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Figure 3: Decay rate of data value under repetition: left shows diffusion, middle AR, and right the
average decay rate for both. Points are empirical results (darker color = higher FLOPs, lighter color =
lower FLOPs; each line = fixed compute), we find that fitted curves (represented as lines) closely
match the empirical points, indicating our scaling laws are representative. The decay rate of value for
repeated data is lower for diffusion, reflecting its greater robustness to repeating.

(a) AR Training Curves. (b) Diffusion Training Curves.

Figure 4: Training curves for different epoch counts, all with using the same total compute. Each
curve shows a different tradeoff between unique data and repetition. For AR models, validation loss
rises with more epochs (overfitting), while for diffusion models, the curves are nearly unchanged,
showing much greater robustness to data repetition.

We define the validation loss gap between diffusion and AR as:199

∆L(C,U) = LDiffusion(C,U)− LAR(C,U),

where C is total training compute and U is the number of unique tokens. Positive values favor AR;200

negative values favor diffusion. The critical compute Ccrit(U) is the point where the models perform201

equally:202

∆L(Ccrit, U) = 0.

Figure 6(a) shows a heatmap of ∆L over compute and data. Red regions indicate regimes where203

diffusion outperforms AR (∆L < 0), while blue regions favor AR. As expected, AR performs better204

in low-compute settings due to its efficient per-step learning. However, diffusion models begin to205

outperform AR at higher compute, especially when data is limited and repeated.206

Figure 6(b) plots the critical compute frontier Ccrit(U)—the compute required for diffusion to207

match AR at a given unique token count U . This frontier follows a power law:208

Ccrit(U) ∝ U2.174.

The linear fit in log-log space is:209

log10(U) = 0.460 · log10(C)− 1.050, so Ccrit(U) = 2.12× 101.956 · U2.174.

The green dashed line shows the fitted curve, and the blue crosses represent empirical crossover210

points—where diffusion matches AR performance in experiments. These points align closely with211

the predicted frontier, confirming our fitted equation’s accuracy.212
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Repeating for 4 epochs is almost 
as good as new data

Repeating for 100 epochs is 
almost as good as new data

Repeating for 4 epochs is almost 
as good as new data

Repeating for 100 epochs is 
almost as good as new data

Repeating for 4 epochs is almost 
as good as new data

Repeating for 100 epochs is 
almost as good as new data

Repeating for 4 epochs is almost 
as good as new data

Repeating for 100 epochs is 
almost as good as new data

Figure 5: Predicted validation loss for AR models (left) and Diffusion models (right) under compute-
optimal settings, extrapolated to larger compute budgets. Dotted lines indicate the hypothetical case
where repeated data is as valuable as new data. For AR, this holds up to about 4 epochs; for diffusion,
up to 100 epochs, showing that diffusion models are much more robust to data repetition.

(a) Loss Gap Heatmap. Difference in validation loss
(∆L = LDiffusion − LAR) across unique data sizes and
FLOPs. Red indicates regions where diffusion out-
performs AR models and blue where AR outperforms
diffusion.

(b) Critical Compute Curve. The FLOPs thresh-
old Ccrit(U) beyond which diffusion outperforms
AR models. This follows a power law: Ccrit(U) ∝
U2.174.

Figure 6: When does Diffusion beat AR? Left: Heatmap showing where diffusion models have
lower validation loss than AR models. Right: The critical compute curve defining the compute
threshold needed for diffusion to match autoregressive models at a given unique token count.

2.4 Why do Diffusion models outperform AR models in data-constrained settings?213

To better understand why diffusion models are more data-efficient than autoregressive (AR) models,214

we conducted a series of controlled experiments aimed at isolating the core source of diffusion’s215

advantage.216

Our hypothesis is that masked diffusion models benefit from a form of implicit data augmentation217

arising from their randomized masking and denoising objective. Unlike AR models, which are trained218

exclusively on a fixed left-to-right factorization, diffusion models are exposed to a diverse set of219

conditional prediction tasks due to random masking patterns, enabling them to learn to generate220

tokens in varying orders.221

To test whether the diversity in diffusion training could be replicated in AR models via explicit aug-222

mentation, we first applied standard perturbation-based techniques during AR training. Specifically,223

we used: (i) attention dropout — randomly dropping 25%, 50%, or 75% of attention weights; and224

(ii) token masking — masking a subset of input tokens by zeroing their attention weights across all225

layers, while retaining the standard next-token prediction objective.226
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As shown in Figures 9a and 9b, neither approach improved validation loss. In all cases, AR models227

continued to overfit and remained far behind diffusion models trained for longer epochs. All AR228

baselines here used 140M parameters and were trained for 50 epochs; the red line in the plots marks229

the best diffusion model from Figure 4a, trained for 500 epochs.230

Figure 7: Validation loss improves as the number
of token orderings N increases in AR training. At
N = 16, performance approaches that of diffusion
models.

We next investigated whether diffusion’s advantage231

stems from exposure to diverse token orderings. To232

test this, we trained AR models with varying numbers233

of orderings: N = 1 denotes standard left-to-right234

training, while N = k adds k−1 random permuta-235

tions of the sequence order. All the AR models in236

this setting had 278M parameters and were trained237

for 100 epochs.238

As shown in Figure 7, increasing N consistently239

lowered validation loss and delayed overfitting. At240

N = 16, the 100-epoch validation loss of AR models241

approached that of diffusion, suggesting that diverse242

orderings are indeed a key driver of diffusion’s data243

efficiency.244

These results support our interpretation that diffusion245

models outperform AR models in low-data regimes246

because they are implicitly trained on a richer distri-247

bution of conditional prediction tasks.248

Finally, this analysis suggests a natural continuum between the two paradigms: by controlling task249

diversity—through masking or reordering—we could design hybrid models that interpolate between250

compute efficiency (AR-like) and data efficiency (diffusion-like). Exploring this continuum is a251

promising direction for future work. Details of our permutation process are in Section 10.252

3 Limitations253

In this work, we examined two extremes of generative modeling: masked diffusion models, which254

learn over random condition prediction tasks and are more data-efficient, and autoregressive (AR)255

models, which follow a fixed left-to-right order and are more compute-efficient. While our results256

highlight a clear trade-off, this need not be binary—hybrid models that interpolate between AR and257

diffusion would offer a better balance. Although prior works have explored such hybrids [1, 13], they258

have not been evaluated through the lens of data-compute efficiency. We explore part of this question259

in Section 2.4, however it will be useful to study this in more detail. Additionally, our scaling laws260

are currently fit over a limited range of unique data sizes; extending them to larger regimes may261

improve predictive accuracy and reveal further insights.262

4 Conclusion263

As the availability of high-quality data plateaus, improving data efficiency becomes essential for264

scaling deep learning. In this work, we show that masked diffusion models consistently outperform265

autoregressive (AR) models in data-constrained regimes — when training involves repeated passes266

over a limited dataset. We establish new scaling laws for diffusion models, revealing their ability to267

extract value from repeated data far beyond what AR models can achieve. These results challenge268

the conventional belief that AR models are universally superior and highlight diffusion models as a269

compelling alternative when data—not compute—is the primary bottleneck. Looking ahead, efficient270

use of finite data may define the next frontier in scaling deep learning models. Although the studies271

have been performed in the context of language models, we believe these findings should apply across272

any kind of sequence modeling data, such as in robotics or healthcare.273

For practitioners, our takeaway is simple: if you are compute-constrained, use autoregressive274

models; if you are data-constrained, use diffusion models.275
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5 Preliminaries381

Our objective is to determine whether masked diffusion language models are more effective than382

standard autoregressive models in data-constrainted settings. The main difference between AR and383

diffusion models is the way they factorize the joint distribution of the sequence. Masked diffusion384

factorizes the joint distribution of the sequence in a random order, while AR factorizes the joint385

distribution of the sequence in a left-to-right order. To isolate the impact of this, we keep the386

architecture and data pipeline fixed across both families and vary only the factorization of the joint387

distribution.388

5.1 Autoregressive and Diffusion Model389

Autoregressive models. In Autoregressive LLMs [40, 28, 4] we predict each token based on a390

growing prefix of prior tokens, defining a left-to-right factorization of the sequence probability:391

pAR(x1, . . . , xL) =

L∏
j=1

p(xj | x<j).

This structure is implemented using a causal attention mask, which prevents each token from attending392

to future positions. The model is trained via next-token prediction over clean, uncorrupted sequences.393

Diffusion models. Masked diffusion language models [2, 31, 22, 39] treat generation as iterative394

denoising. For each training sequence x = (x1, . . . , xL) we395

1. Corrupt the sequence by sampling a masking ratio r ∼ U(0, 1) and independently replacing each396

token with a special [MASK] symbol with probability r. This yields a corrupted sequence x̃ and a397

mask set398

M = { i ∈ [1, L] : x̃i = [MASK] }.

2. Denoise by predicting the original tokens at the masked positions with full (bidirectional) attention399

over x̃:400

pDiffusion(x | x̃) =
∏
i∈M

pθ
(
xi | x̃

)
.

Because the mask pattern is resampled for every example, the model is implicitly trained on a vast401

collection of token–ordering tasks; the standard left-to-right ordering used by AR models is just one402

ordering within this ensemble. The absence of a causal mask allows each prediction to attend to both403

past and future unmasked tokens, making the factorization fundamentally non-sequential.404

5.2 Modeling Details for AR and Masked Diffusion405

Our goal is to isolate the impact of the factorization—fixed left-to-right versus random-order denois-406

ing—while keeping every other design choice constant. Unless noted otherwise, both model families407

share the same Transformer backbone (GPT-2 style with rotary positional embeddings, RoPE [38])408

and identical training hyper-parameters across the full parameter sweep (7 M – 2 B).409

Given a clean input sequence x = (x1, . . . , xL) ∈ VL, both models minimize a token-level cross-410

entropy loss, yet they differ in the conditioning context:411

Autoregressive (AR) objective. AR models predict each token conditioned on its prefix using a412

causal attention mask:413

LAR = −
L∑

j=2

log pθ
(
xj | x<j

)
.

Masked Diffusion objective. For masked diffusion we first sample a masking ratio r ∼ U(0, 1)414

and construct a corrupted sequence x̃ by independently replacing each token with [MASK] with415

probability r. LetM = { i : x̃i = [MASK] } be the set of masked positions. The loss is then416

LDiffusion = −Er Ex̃∼qr

1

r

∑
i∈M

log pθ
(
xi | x̃

)
.
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Beyond the attention mechanism and input corruption, all other variables are held constant. We417

follow the hyperparameter configuration proposed by Muennighoff et al. [21] for all training runs. In418

particular, we use a dynamic learning rate schedule that adapts to the number of training epochs. The419

only distinctions between AR and diffusion models in our implementation are:420

1. Attention mechanism: Causal attention for AR; full self-attention for masked diffusion.421

2. Prediction target: AR models predict the next token; diffusion models predict the masked422

tokens.423

5.3 Scaling Framework in Data-Constrained Settings424

Classical scaling laws, such as those proposed by [15, 12], model validation loss as a function of425

total parameters (N ) and training tokens (D), assuming all data is unique. These laws have been426

instrumental in guiding compute-optimal training of language models. However, this assumption427

becomes unrealistic as the community approaches the limits of high-quality text data available on the428

internet.429

To address this, Muennighoff et al.[21] extend the Chinchilla framework to explicitly account for430

repeated data — a common necessity in data-constrained regimes. They show that repeating training431

data beyond a few epochs yields diminishing returns and propose a new scaling law that incorporates432

the decaying utility of repeated tokens.433

We briefly outline their formulation below.434

Definitions:435

• U : number of unique tokens available for training,436

• E: number of epochs (i.e., how many times each unique token is reused),437

• D = U · E: total number of tokens seen by the model.438

To model diminishing returns from repeated data, Muennighoff et al. [21] introduce an effective439

unique data size D′, motivated by the idea that each additional epoch contributes less useful signal440

than the previous. Specifically, they assume the value extracted from the kth exposure to the same441

data follows a geometric progression, where the utility of a token on its k-th repetition is (1− δ)k−1.442

Summing over all epochs the total effective data becomes: D′ = U ·
∑E

k=1(1−δ)k−1 = U · 1−(1−δ)E

δ443

where δ is the decay factor. Defining R⋆
D = 1−δ

δ , the expression simplifies to the exponential-decay444

form:445

D′ = U + U ·R⋆
D

(
1− e−(E−1)/R⋆

D

)
.

here R∗
D represents the half-life of data reuse, repeating data beyond R∗

D epochs will result in446

significant diminishing returns. This form approximates the geometric sum well and captures447

diminishing returns over repeated epochs. As the number of epochs E →∞, the exponential term448

vanishes and D′ asymptotically approaches: D′ → U + U ·R⋆
D, implying that no matter how many449

times data is repeated, the maximum usable signal is bounded by (1+R⋆
D) ·U . This defines a natural450

saturation point on returns: even infinite compute yields no additional effective data beyond this limit.451

A symmetric formulation is applied to model parameters for mathetmatical convenience which is452

used to define N ′. Finally, a modified Chinchilla-style loss function incorporates these effective453

quantities N ′ and D′:454

L(N,D) =
A

(N ′)α
+

B

(D′)β
+ E0,

with A,B, α, β,E0, R
⋆
D, N⋆

D fitted empirically from training runs. This formulation accurately455

captures loss behavior in regimes where data is reused multiple times and serves as a powerful tool456

for guiding training under data scarcity.457

In this work, we adopt this framework to study how diffusion models and autoregressive models458

compare in their ability to extract value from repeated data, enabling apples-to-apples comparisons459

across compute, data, and model scale.460
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5.4 Training setup461

For all training runs, we adopt the hyperparameter configuration introduced by Muennighoff et462

al. [21]. This may provide a slight advantage to autoregressive models, as these hyperparameters463

were originally tuned for that family. For all models, we use the following hyperparameters: batch464

size of 256 sequences, AdamW optimizer with β1=0.9, β2=0.95, ϵ=10−8, a learning rate schedule465

with peak 2e-4, minimum 2e-5, 1% warm-up, cosine decay, weight decay 0.1, and gradient clipping466

of 1.0.467

6 Related Work468

Deep Learning in Data-Constrainted Settings. Deep learning progress has been largely driven469

by the scaling of both data and compute. However, recent analyses suggest we may soon face a470

data bottleneck that could inhibit continued advancement [42]. In language modeling, the dominant471

paradigm has been autoregressive (AR) models [41, 28, 4], which are typically trained for a single472

epoch to maximize exposure to unique tokens [11]. In light of looming data constraints, Muennighoff473

et al.[21] show that AR models can still benefit from data reuse: training for up to four epochs474

on repeated data achieves performance nearly on par with training on fresh data, suggesting an475

effective strategy for improving data efficiency. In contrast, computer vision has long embraced476

multi-epoch training along with aggressive data augmentation—such as random cropping, flipping,477

and color jittering—to expand effective dataset size and improve generalization[36, 43], particularly478

for discriminative tasks like classification and detection. Despite these practices, data efficiency in479

generative modeling remains underexplored, and the trade-offs between leading paradigms such as480

diffusion and AR models under constrained data regimes are still poorly understood.481

Diffusion-Based Language Models. Diffusion models, originally developed for image genera-482

tion [10], have recently been adapted to text, offering a fundamentally different paradigm for language483

modeling [2, 17, 9]. Broadly, diffusion language models fall into two categories: continuous and484

discrete. Continuous approaches [9] inject Gaussian noise in the forward process, whereas discrete485

methods [2] corrupt tokens with noise sampled from distributions such as Bernoulli. Among the two486

classes, continuous diffusion has proven more difficult to scale on language data [9, 19]. In contrast,487

recent advances in discrete diffusion—particularly masked diffusion—have shown encouraging488

results. Recent work [1, 7, 31, 19] has significantly narrowed the performance gap between diffusion489

and AR models. Notably, LLaDA [23] scales masked diffusion models to 8B parameters and achieves490

results similar to LLaMA3-8B across both pretraining and instruction-tuned evaluations. Furthermore,491

Nie et al. [22] provide scaling law analysis showing that diffusion models follow similar power-law492

trends as AR models, though they may require up to 16× more compute under single-epoch training,493

Swerdlow et al. [39] find similar trends on multimodal data containing both image and text. However,494

these evaluations are restricted to single-pass training and do not examine the data-constrained,495

multi-epoch regimes which is the focus of our work.496

7 More Experiments497

7.1 Downstream Results498

We evaluate the best-performing diffusion and autoregressive (AR) models on several downstream499

benchmarks to assess whether the gains in validation loss translate to practical improvements in500

generalization.501

Motivated by the critical compute threshold equation identified in Section 2.3, we scale the training502

data to 500M unique tokens and train a 2.3B parameter diffusion model using the compute budget503

predicted by the critical compute limit. We train the model for 130 epochs, during which we observe504

no signs of convergence. We terminate the training due to compute constraints.505

Across a diverse set of tasks and data scales, diffusion models consistently outperform their AR506

counterparts. This validates our findings in Section 2.3, also confirms that the data efficiency gains507

observed in validation loss translate into stronger downstream performance. Table 2 reports the508

negative log-likelihood (NLL; lower is better) on four diverse corpora: OSCAR [25], TinyStories[8],509
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WikiText [20], and IndustryCorpus2 EN Sub [35]. These datasets span open-domain, narrative,510

encyclopedic, and industry-specific text.511

Table 1: Downstream Results for the best autoregressive and diffusion trained in different data-
constrainted settings. We report the results for the models with the best validation loss in 100M and
500M unique data regime.To better understand the difficulty of each benchmark we also report the
accuracy of random baseline

Benchmarks Random Baseline 100M unique tokens 500M unique tokens

AR Diffusion AR Diffusion

ARC-Easy [6] 25.00 35.63 37.84 43.79 45.95
BoolQ [5] 50.00 46.00 49.38 51.87 55.26
COPA [30] 50.00 56.33 59.00 67.00 64.83
HellaSwag [45] 25.00 27.37 30.24 32.28 35.33
PiQA 50.00 60.94 60.72 65.71 65.61
RACE [16] 25.00 25.28 28.96 28.28 31.44
WinoGrande XL [32] 50.00 48.87 50.97 50.61 51.51
SciQ [14] 25.00 58.05 68.67 67.82 79.13
Lambada [27] 00.00 10.91 15.19 15.07 22.30
Note: All values represent accuracy (%). Best results shown in bold.

Table 2: Downstream NLL of best diffusion and AR models at 100M unique data points.
Model Type Flops OSCAR TinyStories WikiText IndustryCorpus2

Best ARM 4.32e18 3.98 2.96 4.94 / 4.96 3.58
Best MDM 1.24e20 3.83 2.93 4.50 / 4.52 3.44

7.2 More Figures and Tables512

In Figure 8 we extend the pareto frontier of valdiation loss and Flops to 25M unique dataset setting. In513

Table 3 we provide fitting metrics of our fitted scaling laws. In Figure 9 we explore adding common514

data augmentations in AR training.515

Diffusion Pareto Frontier 

Figure 8: Pareto frontier of validation loss (negative log-likelihood) versus training FLOPs for
autoregressive (AR) and diffusion models under data-constrained settings, on three different unique
data settings 25M, 50M and 100M.

8 Discussion516

Why are autoregressive (AR) models more compute-efficient than diffusion models? We517

hypothesize two main contributing factors. (i) Order specialization: AR models are trained with a518

fixed left-to-right factorization, so every gradient update reinforces the same prediction task, allowing519

them to specialize effectively. In contrast, diffusion models must generalize across many random520

token orderings, which hinders specialization. (ii) Stronger supervision per update: In AR training,521

15



(a) Validation loss under varying attention dropout
levels in AR training.

(b) Validation loss under varying token masking levels
in AR training.

Figure 9: Impact of common data augmentations on AR models. Despite applying attention dropout
and token masking, AR models still overfit and underperform compared to diffusion models. We
believe this gap arises because diffusion models learn random factorizations of the joint distribution,
rather than a fixed left-to-right ordering.

Table 3: Fitting metrics of the scaling law model for Diffusion and AR. Diffusion and AR achieve a
strong fit across both phases.

(a) Initial fit.

Model R2 Loss
Diffusion 0.9447 0.0002
AR 0.9439 7.7532e−05

(b) Second step fit with extracted scaling parameters.

Model R2 Loss R∗
D R∗

N

Diffusion 0.9784 0.00079 493.89 1265.65
AR 0.7628 0.00361 31.19 55.16

every token in a training sequence serves as a supervised target, and the causal structure enables dense522

gradient updates, resulting in stable, low-variance learning. Diffusion models, however, compute loss523

only on a subset of masked tokens, making supervision sparser per sequence, even though gradients524

propagate through the entire input. As a result, each update carries less direct learning signal. Arriola525

et al. [1] show that tuning the masking schedule can help reduce gradient variance and improve526

training compute efficiency.527

9 Experiment Details528

For all training runs, we adopt the hyperparameter configuration introduced by Muennighoff et529

al. [21]. This may provide a slight advantage to autoregressive models, as these hyperparameters530

were originally tuned for that family. For all models, we use the following hyperparameters: batch531

size of 256 sequences, AdamW optimizer with β1=0.9, β2=0.95, ϵ=10−8, a learning rate schedule532

with peak 2e-4, minimum 2e-5, 1% warm-up, cosine decay, weight decay 0.1, and gradient clipping533

of 1.0.534

We adopt the Megatron-DeepSpeed framework as the foundation of our implementation, upon which535

we build our training and evaluation setup for the masked Diffusion Model. Similar to the “extended536

version of the architectures” proposed in [22], our model adheres to the general transformer design537

while introducing several architectural modifications to better align with modern LLM practices.538

Specifically, we replace absolute positional embeddings with Rotary Positional Embeddings (RoPE)539

[37], which improve extrapolation to longer contexts and reduce parameter count. Furthermore, we540

adopt the SwiGLU activation function in the MLP blocks, which has been shown to outperform541

standard GELU or ReLU in both convergence and downstream performance [33]. To further simplify542

the architecture and enhance training stability, we substitute standard LayerNorm with RMSNorm543

and eliminate all bias terms. These design choices are consistent with [3, 40].544
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To preserve the original MLP capacity while aligning with hardware-friendly parameter sizes, we545

compute the feed-forward hidden size hf as:546

hf =

⌊
8 · dmodel

3 · 64

⌋
· 64

This rounding scheme ensures that the FFN hidden size remains divisible by 64 while closely547

matching the effective dimensionality used in SwiGLU layers.548

We slightly modify the parameter count estimation formula from the original:549

P = 12lh2

(
1 +

13

12h
+

V + s

12lh

)
to better reflect our revised architecture. The original formula can be decomposed into: 4lh2 (atten-550

tion), 8lh2 (MLP), 13lh (LayerNorm and biases), and (V + s)h (token and positional embeddings).551

After applying our architectural adjustments—namely, using a SwiGLU-based MLP of dimension552

hf , switching to RoPE (eliminating sh), and removing bias terms—we arrive at the revised formula:553

P = 4lh2 + 3lh · hf + 6lh+ V h

Table 4 presents all model configurations used in our experiments along with their parameter counts.554

10 Order Permutation Details555

In this experiment, we train autoregressive models using different token orderings. We do not556

introduce target positional embeddings as done in works such as RAR [44, 26]. We evaluated the557

trained models using left-to-right ordering. We define the perturbations in the token ordering by558

adding varying levels of noise to the left-to-right ordering.559

Specifically, we generate a list of N orderings, where the first order is the standard left-to-right (l2r)560

order. Subsequent permutations are created by adding Gaussian noise to the left-to-right position ids,561

with the standard deviation of the noise directly proportional to the permutation’s index. This method562

allows us to create a spectrum of orderings, from the standard l2r order to more heavily permuted563

sequences, as detailed in Algorithm 1.564

During training, we apply these predefined orders to the input sequences. For each sequence in a565

batch, we randomly sample a permutation from our predefined list. This process is summarized in566

Algorithm 2 and further detailed below:567

For each sequence, the first token is kept fixed. This ensures that the position ID 0 is always assigned568

to the first token, providing a soft absolute positional anchor for the sequence when using RoPE[38].569

Under RoPE, attention depends only on relative position offsets rather than absolute information,570

i.e. ⟨R(i)q,R(j)k⟩ = qR(i− j)k. Therefore, fixing position 0 on the first token keeps the control571

anchor unrotated R(0) = I and removes global sequence-wise phase shifts induced by permutations,572

which stabilized the optimization and reduced variance under permutation augmentation.573

As an example, suppose that the number of predicted tokens is T (e.g. T = 2048 in our default574

setting) and the total input length is L = T + 1 including the label shift. Only the indices in [1:T ]575

are shuffled and assigned position IDs from {1, . . . , T}. For instance, with T = 6 and a permutation576

π = [2, 0, 1, 4, 5, 3], the resulting token and label orders are:577

tokens: [ 0, 3, 1, 2, 5, 6 ],

labels: [ 3, 1, 2, 5, 6, 4 ].
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Table 4: Model Architectures
Name param (M) d_model origin_ffw_size ffw_size kv_size n_heads n_layers
7 7.0 128 512 320 32 4 3
14 13.6 224 896 576 32 7 4
20 19.5 288 1152 768 32 7 5
35 36.6 448 1792 1152 32 7 6
44 50.7 512 2048 1344 64 8 8
57 64.8 576 2304 1536 64 9 9
74 80.5 640 2560 1664 64 10 10
90 95.0 640 2560 1664 64 10 13
106 109.6 640 2560 1664 64 10 16
117 123.6 768 3072 2048 64 12 12
140 144.8 768 3072 2048 64 12 15
163 166.1 768 3072 2048 64 12 18
175 179.2 896 3584 2368 64 14 14
196 198.3 896 3584 2368 64 14 16
217 217.5 896 3584 2368 64 14 18
251 250.8 1024 4096 2688 64 16 16
278 275.7 1024 4096 2688 64 16 18
306 300.6 1024 4096 2688 64 16 20
425 416.9 1280 5120 3392 128 10 18
489 475.6 1280 5120 3392 128 10 21
509 495.9 1408 5632 3712 128 11 18
552 534.4 1280 5120 3392 128 10 24
587 566.7 1408 5632 3712 128 11 21
632 615.3 1536 6144 4096 128 12 19
664 637.6 1408 5632 3712 128 11 24
724 700.3 1536 6144 4096 128 12 22
816 785.2 1536 6144 4096 128 12 25
893 856.4 1792 7168 4736 128 14 20
1018 971.3 1792 7168 4736 128 14 23
1143 1086.3 1792 7168 4736 128 14 26
1266 1207.6 2048 8192 5440 128 16 22
1424 1353.6 2176 8704 5760 128 17 22
1429 1358.2 2048 8192 5440 128 16 25
1593 1508.9 2048 8192 5440 128 16 28
1609 1523.2 2176 8704 5760 128 17 25
1731 1644.9 2304 9216 6144 128 18 24
1794 1692.9 2176 8704 5760 128 17 28
2007 1899.8 2304 9216 6144 128 18 28
2283 2154.7 2304 9216 6144 128 18 32
2298 2165.3 2560 10240 6784 128 20 26
2639 2478.6 2560 10240 6784 128 20 30
2980 2791.9 2560 10240 6784 128 20 34
3530 3257.0 2688 10752 7168 128 21 36
3802 3561.3 2816 11264 7488 128 22 36
4084 3879.2 2944 11776 7808 128 23 36
4516 4231.9 3072 12288 8192 128 24 36
6796 6337.4 3584 14336 9536 128 28 40
9293 8640.6 4096 16384 10880 128 32 42
11452 10889.0 4352 17408 11584 128 32 47
12295 11444.2 4608 18432 12288 128 36 44
12569 12208.7 4608 18432 12288 128 32 47
13735 13560.0 4864 19456 12928 128 32 47
14940 14905.3 4992 19968 13312 128 32 49
16183 15028.3 5120 20480 13632 128 40 47
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Algorithm 1 Generating a Random Order List with Predefined Permutations
Input: Sequence length L, number of orders N , random seed s
Output: Order list O of N orderings

1: Initialize order list O ← []
2: Append raster order: O ← O ∪ {[0, 1, . . . , L− 1]}
3: for i = 1 to N − 1 do
4: b← [0, 1, . . . , L− 1] {base raster order}
5: ϵ ∼ N (0, i2I) {add Gaussian noise with scale i}
6: s← b+ ϵ {perturbed scores}
7: π ← argsort(s) {permutation order}
8: O ← O ∪ {π}
9: end for

10:
11: return O

Algorithm 2 Shuffling Tokens Using Predefined Order Lists
Input: Token matrix tokens ∈ ZB×L+1 (including last label), order list O of K permutations
Output: Shuffled tokens and position IDs

1: Let B ← number of sequences in batch
2: Let L← sequence length
3: Initialize position_ids← 0B×L

4: Sample index vector I ∼ Uniform({0, . . . ,K−1})B {select random order for each sequence}
5: for i = 1 to B do
6: π ← O[Ii] {retrieve i-th random order}
7: tokens[i, 1:]← tokens[i, 1:][π] {shuffle tokens except first token}
8: π ← π + 1 {shift positions by 1 to reserve position 0}
9: position_ids[i, 1:]← π[0:L−1] {assign shifted positions}

10: end for
11:
12: return tokens, position_ids
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