© N o oA W N =

- o ©

12

Diffusion Beats Autoregressive
in Data-Constrained Settings

Anonymous Author(s)
Affiliation
Address

email

Abstract

Autoregressive (AR) models have long dominated the landscape of large language
models, driving progress across a wide range of tasks. Recently, diffusion-based
language models have emerged as a promising alternative, though their advantages
over AR models remain underexplored. In this paper, we systematically study
masked diffusion models in data-constrained settings—where training involves
repeated passes over limited data—and find that they significantly outperform AR
models when compute is abundant but data is scarce. Diffusion models make better
use of repeated data, achieving lower validation loss and superior downstream
performance. We find new scaling laws for diffusion models and derive a closed-
form expression for the critical compute threshold at which diffusion begins to
outperform AR. Finally, we explain why diffusion models excel in this regime:
their randomized masking objective implicitly trains over a rich distribution of
token orderings, acting as an implicit data augmentation that AR’s fixed left-to-
right factorization lacks. Our results suggest that when data, not compute, is the
bottleneck, diffusion models offer a compelling alternative to the standard AR

paradigm.
Pareto Frontier on 100M unique data Pareto Frontier on 50M unique data
6.0 1 ! 4.6 !
1 1
1 1
1 1
I 4.4 4 i
1 1
1 1
5.0 1 !
| Critical 424 | Critical
g 1 Compute Point g 1 Compute Point
i . i
1 4.0 !
1
1 1
4.0 | I
\ 1 Epoch: ! . 1 Epoch: \
Chinchilla Optimal k o Chinchilla Optimal |
237¢+15 :\o—_ 1.48¢+14 i
10!8 1OI‘I 102(1 IOIK 10]‘)
FLOPs FLOPs
= Diffusion Pareto Frontier == AR Pareto Frontier —== Where Diffusion beat AR

Figure 1: Pareto frontier of validation loss versus training FLOPs for autoregressive (AR) and
masked diffusion models under data-constrained settings. Each point represents a model trained until
convergence; we report the best validation loss achieved among all models using less than or equal to
the FLOPs shown on the x-axis. AR models initially outperform diffusion models, particularly near
the Chinchilla-optimal compute point [12] (indicated on the plot). However, as training continues
beyond this regime with repeated data, AR models quickly saturate and begin to overfit. In contrast,
diffusion models continue to improve with more compute and exhibit no signs of overfitting.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

50
51
52
53
54

55
56
57
58

59
60
61
62
63
64

65
66
67
68
69

1 Introduction

Training large language models (LLMs) on massive corpora of internet text has become the driver
of recent Al breakthroughs [4} 28] 40]. This progress has been fueled by scaling two core resources
proportionately: compute and data [15,[11]. While compute availability has steadily grown—enabled
by advances in hardware and the construction of larger data centers—the growth in high-quality data
has been comparatively stagnant. Recent projections, such as those by Villalobos et.al. [42]], estimate
that the global supply of publicly available, human-generated data may be exhausted by 2028, posing
a serious bottleneck to further scaling. This looming constraint makes it increasingly important to
develop modeling strategies that are more data-efficient. Furthermore, there are several domains,
such as robotics and healthcare, where the data, not compute, is a scarce resource even to begin with.

LLM development has so far been dominated by autoregressive (AR) models, which factorize the
joint distribution of text in a fixed left-to-right order. While this modeling approach has delivered
state-of-the-art performance across a range of benchmarks, it remains unclear whether it is the optimal
strategy going forward. Recently, diffusion-based models—specifically masked diffusion models
[2} 311 [18} 134, [1]—have emerged as an alternative strategy, framing text generation as an iterative
masked denoising process rather than next-token prediction. At each step, the model predicts a
randomly masked subset of tokens conditioned on the remaining ones, implicitly averaging over
many conditional prediction orders instead of committing to one. Although these models have
demonstrated similar scaling behavior to AR models [22, 39], their practical benefits have, so far,
been modest—Ilargely due to their high training compute requirements.

This high compute demand has become the central obstacle to wider adoption of diffusion-based
language models. As noted by Nie et al. [22] and Swerdlow et al. [39], masked diffusion models
require up to 16x more compute than AR models to match validation NLL—a clear disadvantage for
most applications.

But a critical nuance is often overlooked: these comparisons are based entirely on single-epoch
training, where each token is seen only once. This conflates compute efficiency with data efficiency,
making it unclear whether diffusion models truly need 16x more compute—or simply 16x more data.

To resolve this ambiguity, we systematically study masked diffusion models in data-constrained
settings, where repeated training on limited data is the norm rather than the exception. We find
that under such regimes, diffusion models substantially outperform autoregressive models across a
variety of data scales and compute budgets. We train hundreds of models spanning multiple orders of
magnitude in model size, data quantity, and number of training epochs to fit scaling laws for diffusion
models in the data-constrained setting. We summarize some of our key findings below.

1. Diffusion models surpass autoregressive models given sufficient compute. Across a
wide range of unique token budgets, we observe a consistent trend: autoregressive models
initially outperform diffusion models at low compute, but quickly saturate. Beyond a critical
compute threshold, diffusion models continue improving and ultimately achieve better
performance (Section

2. Diffusion models benefit far more from repeated data. Prior work [21] showed that
repeating the dataset up to 4 epochs is nearly as effective as using fresh data for autoregressive
models. In contrast, we find that diffusion models can be trained on repeated data for up to
100 epochs, while having repeated data almost as effective as fresh data (Section [2.2)).

3. Diffusion models have a much higher effective epoch count. Muennighoff et al. [21]]
fit scaling laws for AR models in data-constrainted settings and define R7, as a learned
constant that characterizes the number of epochs after which training more epochs results in
significantly diminished returns. For autoregressive models, they estimate R}, ~ 15 . In
contrast, we find R}, ~ 500 for diffusion models, suggesting they can benefit from repeated
data over far more epochs without major degradation (Section 2.2).

4. Critical compute point follows a power law with dataset size. We find that the amount of
compute required for diffusion models to outperform autoregressive models—the critical
compute point—scales as a power law with the number of unique tokens. This yields a
closed-form expression that predicts when diffusion becomes the favorable modeling choice
for any given dataset size (Section [2.3).

70
71
72
73

74
75
76
77
78

79
80
81
82
83

84

85
86
87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102

103

104
105
106
107
108
109

110
111
112

113

114
115
116
117

118
119
120

5. Diffusion models yield better downstream performance. We find the above benefits
extend beyond validation loss: the best diffusion model trained in data-constrained settings
consistently outperform the best autoregressive model on a range of downstream language
tasks (Section|[7.1]).

6. Exposure to different token orderings helps explain diffusion’s data efficiency. By
adding explicit data augmentations to AR training, we find that diffusion models’ advantage
arises from their exposure to a diverse set of token orderings. Essentially, the random-
ized masking in diffusion’s objective serves as implicit data augmentation, allowing it to
generalize beyond the fixed left-to-right factorization of AR models. (Section [2.4)

Through detailed scaling law analysis and downstream task evaluations, we demonstrate that dif-
fusion models make significantly better use of repeated data, achieving lower validation loss and
better generalization to downstream tasks. These results suggest that diffusion models may offer a
compelling and underappreciated advantage in scenarios where data—not compute—is the primary
bottleneck.

2 Experiments

We use the English C4 corpus [29], tokenized with the GPT-2 BPE vocabulary and truncated or
padded to 2048 tokens per sequence. We consider unique-token budgets of U € {25, 50, 100}M and
train for up to 800 epochs (80B tokens total). Models are trained ranging from 7M to 2.5B parameters,
following the Chinchilla scaling strategy where both width and depth are increased proportionally.
The detailed architectural configurations of each model are provided in Appendix [9} Background on
Diffusion and Autoregressive models, and data-constrained scaling law formulation can be found in
Appendix 3]

Our goal is to compare the performance of masked diffusion models and autoregressive models in
data-constrained settings. To this end, we train a total of 200 models—100 diffusion models and
100 autoregressive models—across varying unique data sizes, model scales, and epoch counts. We
present the empirical results in Section In Section we fit scaling laws tailored to data-
constrained regimes for both model types, following the methodology introduced by Muennighoff
et al.[21]]. These scaling laws allow us to analyze performance trends and identify scenarios where
diffusion models should be preferred over autoregressive ones (Section[2.3). In Appendix Section
we demonstrate that the superior validation loss of diffusion models indeed correlates with
improved downstream task performance. Finally, in Section [2.4] we investigate the underlying cause
of diffusion’s advantage in data-constrained settings, showing that its exposure to diverse token
orderings enables better generalization than AR’s fixed left-to-right factorization.

2.1 Does Diffusion Beat AR in Data-Constrained Settings?

Prior comparisons between diffusion and autoregressive (AR) language models have largely focused
on the single-epoch regime, where each token is seen only once during training [22, 39]. In this
setting, diffusion models are consistently reported to require substantially more training compute
(C ~ 6N D) than AR models to achieve comparable validation loss. For instance, Nie et al. [22] and
Swerdlow et al. [39] derive scaling laws showing that masked diffusion models can require up to
16 x more compute than AR counterparts.

Crucially, these studies scale compute by increasing both the model size (V) and the amount of
unique training data (D) proportionally. As a result, they do not isolate whether diffusion’s 16x
inefficiency stems from needing more total compute—or more unique data.

In other words: is diffusion limited by compute efficiency or by data efficiency?

To answer this, we systematically study diffusion models in data-constrained settings, where the
total amount of unique data is fixed and models are trained for many epochs, reusing the same data.
Unlike prior work, our evaluation explicitly decouples model scaling from data reuse, allowing us to
disentangle the effects of compute and data.

We train a large suite of AR and diffusion models across three unique data regimes—25M, 50M,
and 100M tokens—and a wide range of training compute budgets. In Figure[T} we report empirical
validation loss as a function of training FLOPs for the 50M and 100M regimes; results for the 25M

121
122
123
124
125
126
127
128

129

131
132
133
134
135

137
138
139
140

141
142
143
144
145
146
147
148
149
150

151

152
153
154
155
156
157

158
159
160
161
162
163

164
165
166
167
168
169
170
171

172
173
174

setting are shown in Appendix Figure [§] We find that AR models initially outperform diffusion
models when trained with the compute-optimal budget prescribed by Chinchilla scaling laws (denoted
by the solid vertical line). However, this advantage disappears as training continues beyond this
point. When models are allowed to train for additional epochs on repeated data, diffusion models
consistently surpass AR models in validation loss across all data regimes. These findings indicate that
the previously observed inefficiency of diffusion models is largely a consequence of evaluating them
solely in the single-epoch regime. In data-constrained settings with repeated exposures, diffusion
models extract significantly more value from the same data than their AR counterparts.

A key question remains is how should one go about increasing compute for diffusion models: by
increasing model size, or by increasing the number of epochs (i.e., data reuse)? To address this,
we analyze the trade-off between parameters and epochs in Figure[2] which shows validation loss
contours as a function of both axes. In the 100M unique token regime, for example, we find that
diffusion achieves its best loss at 500 epochs, while AR model reach its best at just 50 epochs. Each
point on the contour plot corresponds to a model trained with a specific parameter count and number
of epochs; we report the actual validation loss at each configuration, without early stopping. We find
that autoregressive models begin to overfit at high epoch counts, with validation loss worsening as
training continues beyond a certain point. In contrast, diffusion models show no signs of overfitting
within our compute budget—the best validation loss is achieved at the highest epoch counts we
explore. This suggests that diffusion models continue to benefit from additional training on repeated
data, and that observing overfitting may require significantly more compute.

To contextualize these results, we highlight two key configurations in Figure [2] for each model
family: the compute-optimal point for single-epoch training, as identified by prior scaling law
analyses [12,[24]] (marked with a colored star in the bottom-left), and the best validation loss achieved
under extended multi-epoch training (marked with a black star). At the compute-optimal point,
which corresponds to training for a single epoch, diffusion models perform substantially worse than
autoregressive models (10.65 vs. 7.07), consistent with prior findings that diffusion performs worse
initially. However, as training is extended to hundreds of epochs, diffusion models continue to
improve and eventually achieve a lower validation loss (3.55) than the best AR models (3.71). While
AR models begin to overfit as training progresses, diffusion models show no signs of overfitting
within our budget.

2.2 Fitting Data-Constrained Scaling Laws

To gain deeper insight into the trade-offs between diffusion and autoregressive models in data-
constrained settings, we fit scaling laws to both model families across single-epoch and multi-epoch
regimes, as described in Section[5.3] Our approach systematically varies three key factors: (1) the
amount of unique data, (2) model parameter count, and (3) number of training epochs. This grid
search allows us to disentangle the effects of data quantity, model capacity, and data reuse on final
model performance.

We evaluate the quality of our scaling law fits using the coefficient of determination (R?) and relative
prediction error, as shown in Table [3| For autoregressive models, our R? values closely match
those reported by Muennighoff et al. [21]], indicating consistent behavior under repeated training.
Interestingly, diffusion models yield significantly higher R? values, reflecting a better overall fit. We
attribute this to lower variance in validation loss across training runs, likely due to the absence of
overfitting in diffusion models even at high epoch counts.

Beyond the overall fit, we extract two key parameters from the scaling laws: R7,, which characterizes
the effective half-life of data reuse—i.e., the number of epochs after which additional training on
repeated data yields diminishing returns—and [?3;, which indicates the optimal model size for a given
data budget. Our results reveal a sharp contrast in data reuse half-lives: diffusion models exhibit an
R7Y, of 512.85, compared to just 31.93 for autoregressive models. A higher R7, implies that a model
can benefit from many more repeated exposures before saturating. This suggests that diffusion models
continue to improve across hundreds of epochs, while AR models quickly saturate—highlighting the
superior data efficiency of diffusion models in data-constrained regimes.

Figure |3|illustrates how the utility of unique data decays with increased repetition. We evaluate this
effect across three compute budgets—1 x 10*°, 3 x 109, and 1 x 10?° FLOPs—by varying the
proportion of unique data and parameters while keeping total compute fixed (e.g., 50% of the data for

175
176
177
178
179
180
181
182

183
184
185
186

187
188
189
190
191
192
193
194

196
197
198

1000M
1000M

416M

T Loss = 3.55
& Loss

144M ==~

100M
100M

Params

Params

10M

10M

"?‘Lossﬂm % Lowest Loss for 100M Tokens Y Lowest Loss for 100M Tokens
| Y% Compute-Optimal model for 100M tokens 0.68M ”’?‘Lnss 10.65 Y& Compute-Optimal model for 100M tokens

i 10 5‘0 100 1000 i 10 100 5(‘)0 1000
Epochs Epochs
(a) Autoregressive contour: validation loss over (b) Diffusion contour: validation loss over epochs
epochs and model sizes. and model sizes.

Figure 2: Validation loss contours over epochs and model sizes for autoregressive (left) and diffusion
(right) models, trained on 100M unique tokens. Each plot shows validation loss as a function of
training epochs (x-axis) and model parameters (y-axis). The colored star marks the compute-optimal
point for single-epoch training, as predicted by prior scaling laws [12,[24], and the black star indicates
the lowest validation loss achieved through extended multi-epoch training. In the single-epoch regime,
diffusion models perform worse than AR models (10.65 vs. 7.07). However, when trained longer,
diffusion models achieve a substantially lower final loss (3.55 vs. 3.71). This corresponds to a 67%
reduction in loss for diffusion models compared to just 48% for AR models, highlighting their superior
ability to leverage repeated data. These results underscore that diffusion models require significantly
more training—both in epochs and compute—to realize their advantages in data-constrained settings.

2 epochs, 25% for 4 epochs, etc.). For each compute budget, we use single-epoch scaling laws to
determine the optimal model size and unique token count for both AR and diffusion models. This
experimental design allows us to directly measure how the utility of data diminishes with increased
repetition. We present both empirical results and fitted curves from our parametric scaling law,
observing strong agreement between the two. Notably, the decay rate of data value remains consistent
across compute budgets for both model families. However, diffusion models consistently exhibit a
substantially slower decay rate than AR models, suggesting they are better able to extract value from
repeated data.

Figure {] shows validation loss versus training tokens using the compute budget of 1e19. The results
reinforces the trend: AR models overfit with increased repetition, showing diverging loss curves.
In contrast, diffusion models exhibit overlapping curves across repetitions, indicating no signs of
overfitting and a very low decay rate with data reuse.

Figure 5] shows extrapolated training curves at large compute budgets. For each setting, we use the
compute-optimal model and dataset size derived from single-epoch scaling laws for 1e19, 3e19 and
1e20. We then extend training to multiple epochs. The dashed lines represent the ideal Chinchilla-
style scaling behavior, where all training tokens are assumed to be unique. We find that for AR
models, repeated data provides nearly the same benefit as fresh data only up to about 4 epochs.
Beyond this point, additional repetition yields diminishing returns. In contrast, diffusion models
continue to match the unique-data curve for up to 100 epochs, indicating a far greater capacity to
benefit from repeated data in data-constrained regimes.

2.3 When to Use Diffusion over AR?

A key question for practitioners is: when should diffusion be preferred over autoregressive models
(AR)? To answer this, we compare the fitted data-constrained scaling laws for both model families

(§5.3).

199

200
201
202

203

204

206

207

209

210
211
212

® AR Mean Points
© Diffusion Mean Points

Loss
w
L]
Delta Loss
o
2
&

£ 36
S r R . SR [2 * ®
»
I L g g 0.04
35 30
¥ 0.02 S
34 29 . .
. e ° o) '} — - L 0004 o $ »-
100% 50% 25% 10% % 100% 50% 25% 10% 5% 100% 50% 25% 10% 5%
Data Fraction Data Fraction Data Fraction
Diffusion le19 ® Diffusion 3e19 e Diffusion 120 Predicted loss if repeating data value the same as unique
AR lel9 ® AR3el9 ® ARIe20

Figure 3: Decay rate of data value under repetition: left shows diffusion, middle AR, and right the
average decay rate for both. Points are empirical results (darker color = higher FLOPs, lighter color =
lower FLOPs; each line = fixed compute), we find that fitted curves (represented as lines) closely
match the empirical points, indicating our scaling laws are representative. The decay rate of value for
repeated data is lower for diffusion, reflecting its greater robustness to repeating.

—— AR 100 Ep. —— Diffusion 100 Ep.
~—— Diffusion 50 Ep.
Diffusion 20 Ep.

55 —— Diffusion 10 Ep.
—— Diffusion 4 Ep.
Diffusion 2 Ep.

Validation loss
Validation loss

40

1G 2G 3G 4G 5G 6G 7G 8G 0 2G 4G 6G 8G 10G 12G 14G
Training Tokens Training Tokens
(a) AR Training Curves. (b) Diffusion Training Curves.

Figure 4: Training curves for different epoch counts, all with using the same total compute. Each
curve shows a different tradeoff between unique data and repetition. For AR models, validation loss
rises with more epochs (overfitting), while for diffusion models, the curves are nearly unchanged,
showing much greater robustness to data repetition.

We define the validation loss gap between diffusion and AR as:
AL(C,U) = Lpismusion(C, U) — LAr(C, V),

where C'is total training compute and U is the number of unique tokens. Positive values favor AR;
negative values favor diffusion. The critical compute C..;;(U) is the point where the models perform
equally:

AL(Ccrim U) = 0

Figure [f[a) shows a heatmap of AL over compute and data. Red regions indicate regimes where
diffusion outperforms AR (AL < 0), while blue regions favor AR. As expected, AR performs better
in low-compute settings due to its efficient per-step learning. However, diffusion models begin to
outperform AR at higher compute, especially when data is limited and repeated.

Figure Ekb) plots the critical compute frontier C.,;;(U)—the compute required for diffusion to
match AR at a given unique token count U. This frontier follows a power law:

Ccrit(U) x U2'174.
The linear fit in log-log space is:
log,o(U) = 0.460 - log,(C) — 1.050, so Ceq(U) = 2.12 x 10*956 . 72174,
The green dashed line shows the fitted curve, and the blue crosses represent empirical crossover

points—where diffusion matches AR performance in experiments. These points align closely with
the predicted frontier, confirming our fitted equation’s accuracy.

213

214
215
216

217
218
219
220
221

222
223
224
225
226

AR validation loss over training length Diffusion validation loss over training length

\ === Unique Scaling === Unique Scaling
\ 217"7M AR 117M Diffusion
; —— 425MAR —— 217M Diffusion
2 ' E — T72dM AR 2 —— 425M Diffusion
o Q
~ Repeating for 4 epochs is almost - Repeating for 100 epochs is
AE E,P/ as good as new data & E‘p almost as good as new data
el S SEp 5]
3 . A =]
g s
1B 10B 100B 1T 10T 100 1B 10B 100B 1T 10T 100T
Training Tokens Training Tokens

Figure 5: Predicted validation loss for AR models (left) and Diffusion models (right) under compute-
optimal settings, extrapolated to larger compute budgets. Dotted lines indicate the hypothetical case
where repeated data is as valuable as new data. For AR, this holds up to about 4 epochs; for diffusion,
up to 100 epochs, showing that diffusion models are much more robust to data repetition.

Heatmap of Predicted ALoss (Diffusion - AR)

10 Linear Fit of Critical Compute
22
07 - Fitted line o
& ©® Critical Compute Points ’B"
—~ 107 % Diffusion Match AR e
z e
= . e . S
z g
g o z i 10 ,o,_a
= B E s
S £ S K
£ E 19
S o = = 1073 *
10 3 2
ks * &
] e
4 &
10 -
18 o
10 N
@
Y "
2 10 10

10 10’ 10
Unique Data (Million)

Unique Data (Million)

(a) Loss Gap Heatmap. Difference in validation loss (b) Critical Compute Curve. The FLOPs thresh-
(AL = Lpifiusion — L£ar) across unique data sizes and old Ceyit(U) beyond which diffusion outperforms
FLOPs. Red indicates regions where diffusion out- AR models. This follows a power law: Coeyit (U) o<
performs AR models and blue where AR outperforms Ui,

diffusion.

Figure 6: When does Diffusion beat AR? Left: Heatmap showing where diffusion models have
lower validation loss than AR models. Right: The critical compute curve defining the compute
threshold needed for diffusion to match autoregressive models at a given unique token count.

2.4 Why do Diffusion models outperform AR models in data-constrained settings?

To better understand why diffusion models are more data-efficient than autoregressive (AR) models,
we conducted a series of controlled experiments aimed at isolating the core source of diffusion’s
advantage.

Our hypothesis is that masked diffusion models benefit from a form of implicit data augmentation
arising from their randomized masking and denoising objective. Unlike AR models, which are trained
exclusively on a fixed left-to-right factorization, diffusion models are exposed to a diverse set of
conditional prediction tasks due to random masking patterns, enabling them to learn to generate
tokens in varying orders.

To test whether the diversity in diffusion training could be replicated in AR models via explicit aug-
mentation, we first applied standard perturbation-based techniques during AR training. Specifically,
we used: (i) attention dropout — randomly dropping 25%, 50%, or 75% of attention weights; and
(i) token masking — masking a subset of input tokens by zeroing their attention weights across all
layers, while retaining the standard next-token prediction objective.

244

245
246
247
248

249

251
252

253

254
255
256
257
258
259

261
262

263

264
265
266
267
268
269
270
271
272
273

274
275

As shown in Figures [Oaland [0b] neither approach improved validation loss. In all cases, AR models
continued to overfit and remained far behind diffusion models trained for longer epochs. All AR
baselines here used 140M parameters and were trained for 50 epochs; the red line in the plots marks
the best diffusion model from Figure a] trained for 500 epochs.

We next investigated whether diffusion’s advantage

stems from exposure to diverse token orderings. To Impact of N-1 Random Orderings on Autoregressive(AR)
test this, we trained AR models with varying numbers 30 —o— Sundard AR
of orderings: N = 1 denotes standard left-to-right “-3 e i
training, while N = k adds k—1 random permuta- 46 —e— ARwithN-16

44 ---" Diffusion Best Loss

tions of the sequence order. All the AR models in
this setting had 278M parameters and were trained
for 100 epochs.

Validation Loss
IS
o

As shown in Figure [7] increasing N consistently
lowered validation loss and delayed overfitting. At
N = 16, the 100-epoch validation loss of AR models Training Epochs
approached that of diffusion, suggesting that diverse
orderings are indeed a key driver of diffusion’s data
efficiency.

Figure 7: Validation loss improves as the number
of token orderings IV increases in AR training. At
N = 16, performance approaches that of diffusion
These results support our interpretation that diffusion models.

models outperform AR models in low-data regimes

because they are implicitly trained on a richer distri-

bution of conditional prediction tasks.

Finally, this analysis suggests a natural continuum between the two paradigms: by controlling task
diversity—through masking or reordering—we could design hybrid models that interpolate between
compute efficiency (AR-like) and data efficiency (diffusion-like). Exploring this continuum is a
promising direction for future work. Details of our permutation process are in Section

3 Limitations

In this work, we examined two extremes of generative modeling: masked diffusion models, which
learn over random condition prediction tasks and are more data-efficient, and autoregressive (AR)
models, which follow a fixed left-to-right order and are more compute-efficient. While our results
highlight a clear trade-off, this need not be binary—hybrid models that interpolate between AR and
diffusion would offer a better balance. Although prior works have explored such hybrids [1,|13], they
have not been evaluated through the lens of data-compute efficiency. We explore part of this question
in Section [2.4] however it will be useful to study this in more detail. Additionally, our scaling laws
are currently fit over a limited range of unique data sizes; extending them to larger regimes may
improve predictive accuracy and reveal further insights.

4 Conclusion

As the availability of high-quality data plateaus, improving data efficiency becomes essential for
scaling deep learning. In this work, we show that masked diffusion models consistently outperform
autoregressive (AR) models in data-constrained regimes — when training involves repeated passes
over a limited dataset. We establish new scaling laws for diffusion models, revealing their ability to
extract value from repeated data far beyond what AR models can achieve. These results challenge
the conventional belief that AR models are universally superior and highlight diffusion models as a
compelling alternative when data—not compute—is the primary bottleneck. Looking ahead, efficient
use of finite data may define the next frontier in scaling deep learning models. Although the studies
have been performed in the context of language models, we believe these findings should apply across
any kind of sequence modeling data, such as in robotics or healthcare.

For practitioners, our takeaway is simple: if you are compute-constrained, use autoregressive
models; if you are data-constrained, use diffusion models.

276

277
278
279

280
281
282

283
284

285
286
287

288
289

290
291
292

294
295

296
297

298
299

300
301
302

303
304
305
306

307
308

309

310
311
312

313
314

315
316
317

319

320
321

References

[1] M. Arriola, A. Gokaslan, J. T. Chiu, Z. Yang, Z. Qi, J. Han, S. S. Sahoo, and V. Kuleshov. Block
diffusion: Interpolating between autoregressive and diffusion language models. arXiv preprint
arXiv:2503.09573, 2025.

[2] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg. Structured denoising
diffusion models in discrete state-spaces. Advances in neural information processing systems,
34:17981-17993, 2021.

[3] J. Bai, S. Bai, Y. Chu, Z. Cui, K. Dang, X. Deng, Y. Fan, W. Ge, Y. Han, F. Huang, et al. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

[5] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. Boolq:
Exploring the surprising difficulty of natural yes/no questions. In NAACL, 2019.

[6] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

[7] S. Dieleman. Diffusion language models, 2023.

[8] R. Eldan and Y. Li. Tinystories: How small can language models be and still speak coherent
english?, 2023.

[9] I. Gulrajani and T. B. Hashimoto. Likelihood-based diffusion language models. Advances in
Neural Information Processing Systems, 36:16693-16715, 2023.

[10] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840-6851, 2020.

[11] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas,
L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556, 2022.

[12] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. de Las Casas,
L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. van den Driessche,
B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals, and L. Sifre.
Training compute-optimal large language models, 2022.

[13] E. Hoogeboom, A. A. Gritsenko, J. Bastings, B. Poole, R. v. d. Berg, and T. Salimans. Autore-
gressive diffusion models. arXiv preprint arXiv:2110.02037, 2021.

[14] M. G. Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions. 2017.

[15] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[16] G.Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. Race: Large-scale reading comprehension dataset
from examinations. arXiv preprint arXiv:1704.04683, 2017.

[17] X. Li, J. Thickstun, I. Gulrajani, P. S. Liang, and T. B. Hashimoto. Diffusion-lm improves
controllable text generation. Advances in neural information processing systems, 35:4328-4343,
2022.

[18] A.Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the
data distribution, 2024. URL hittps.//arxiv. org/abs/2310.16834.

[19] A.Lou, C. Meng, and S. Ermon. Discrete diffusion modeling by estimating the ratios of the
data distribution. arXiv preprint arXiv:2310.16834, 2023.

322

323
324

326
327

328
329

330
331

332
333
334
335

336
337

338
339
340

341
342

343
344
345

346
347
348

349
350
351

352
353

354

355
356

357

358
359

360

362
363

364
365

[20] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models, 2016.

[21] N. Muennighoff, A. Rush, B. Barak, T. Le Scao, N. Tazi, A. Piktus, S. Pyysalo, T. Wolf, and
C. A. Raffel. Scaling data-constrained language models. Advances in Neural Information
Processing Systems, 36:50358-50376, 2023.

[22] S. Nie, F. Zhu, C. Du, T. Pang, Q. Liu, G. Zeng, M. Lin, and C. Li. Scaling up masked diffusion
models on text. arXiv preprint arXiv:2410.18514, 2024.

[23] S. Nie, F. Zhu, Z. You, X. Zhang, J. Ou, J. Hu, J. Zhou, Y. Lin, J.-R. Wen, and C. Li. Large
language diffusion models. arXiv preprint arXiv:2502.09992, 2025.

[24] Y. Nie, A. Williams, E. Dinan, M. Bansal, J. Weston, and D. Kiela. Adversarial nli: A new
benchmark for natural language understanding. arXiv preprint arXiv:1910.14599, 2019.

[25] P.J. Ortiz Su’arez, B. Sagot, and L. Romary. Asynchronous pipelines for processing huge
corpora on medium to low resource infrastructures. Proceedings of the Workshop on Challenges
in the Management of Large Corpora (CMLC-7) 2019. Cardiff, 22nd July 2019, pages 9 — 16,
Mannheim, 2019. Leibniz-Institut f"ur Deutsche Sprache.

[26] A. Pannatier, E. Courdier, and F. Fleuret. o-gpts: A new approach to autoregressive models,
2024.

[27] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,
G. Boleda, and R. Ferndndez. The lambada dataset: Word prediction requiring a broad discourse
context. arXiv preprint arXiv:1606.06031, 2016.

[28] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, 1. Sutskever, et al. Language models are
unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

[29] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
machine learning research, 21(140):1-67, 2020.

[30] M. Roemmele, C. A. Bejan, and A. S. Gordon. Choice of plausible alternatives: An evaluation
of commonsense causal reasoning. In AAAI spring symposium: logical formalizations of
commonsense reasoning, pages 90-95, 2011.

[31] S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. Chiu, A. Rush, and V. Kuleshov.
Simple and effective masked diffusion language models. Advances in Neural Information
Processing Systems, 37:130136-130184, 2024.

[32] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. Communications of the ACM, 64(9):99-106, 2021.

[33] N. Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

[34] J. Shi, K. Han, Z. Wang, A. Doucet, and M. Titsias. Simplified and generalized masked diffusion
for discrete data. Advances in neural information processing systems, 37:103131-103167, 2024.

[35] X. Shi, L. Zhao, H. Zhou, and D. Hao. Industrycorpus2, 2024.

[36] C. Shorten and T. M. Khoshgoftaar. A survey on image data augmentation for deep learning.
Journal of big data, 6(1):1-48, 2019.

[37] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding. Neurocomputing, 568:127063, 2024.

[38] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen, and Y. Liu. Roformer: Enhanced transformer with
rotary position embedding, 2023.

[39] A. Swerdlow, M. Prabhudesai, S. Gandhi, D. Pathak, and K. Fragkiadaki. Unified multimodal
discrete diffusion. arXiv preprint arXiv:2503.20853, 2025.

10

366
367
368

369
370
371

372
373
374

375
376

377
378

379
380

[40] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[42] P. Villalobos, A. Ho, J. Sevilla, T. Besiroglu, L. Heim, and M. Hobbhahn. Will we run out of
data? limits of llm scaling based on human-generated data. arXiv preprint arXiv:2211.04325,
2022.

[43] S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen. Image data augmentation for deep
learning: A survey. arXiv preprint arXiv:2204.08610, 2022.

[44] Q. Yu, J. He, X. Deng, X. Shen, and L.-C. Chen. Randomized autoregressive visual generation.
arXiv preprint arXiv:2411.00776, 2024.

[45] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

11

381

382
383
384
385
386
387
388

389

390
391

392
393

394
395

396
397
398

399

401
402
403
404

405

407
408
409

410
411

412
413

414
415
416

5 Preliminaries

Our objective is to determine whether masked diffusion language models are more effective than
standard autoregressive models in data-constrainted settings. The main difference between AR and
diffusion models is the way they factorize the joint distribution of the sequence. Masked diffusion
factorizes the joint distribution of the sequence in a random order, while AR factorizes the joint
distribution of the sequence in a left-to-right order. To isolate the impact of this, we keep the
architecture and data pipeline fixed across both families and vary only the factorization of the joint
distribution.

5.1 Autoregressive and Diffusion Model

Autoregressive models. In Autoregressive LLMs [40, 28] 4] we predict each token based on a
growing prefix of prior tokens, defining a left-to-right factorization of the sequence probability:

L
PAR(T1, ..., 7L) = HP(CUJ‘ | 2<j)-
j=1

This structure is implemented using a causal attention mask, which prevents each token from attending
to future positions. The model is trained via next-token prediction over clean, uncorrupted sequences.

Diffusion models. Masked diffusion language models [2, 31} 22} 139] treat generation as iterative
denoising. For each training sequence x = (x1, ..., 1) we

1. Corrupt the sequence by sampling a masking ratio r ~ ¢/(0, 1) and independently replacing each
token with a special [MASK] symbol with probability 7. This yields a corrupted sequence z and a
mask set

M = {ie[l,L]:z; = [MASK]}.

2. Denoise by predicting the original tokens at the masked positions with full (bidirectional) attention

over I:
Pbiffusion (Z |) = H po(z; |).
ieM

Because the mask pattern is resampled for every example, the model is implicitly trained on a vast
collection of token—ordering tasks; the standard left-to-right ordering used by AR models is just one
ordering within this ensemble. The absence of a causal mask allows each prediction to attend to both
past and future unmasked tokens, making the factorization fundamentally non-sequential.

5.2 Modeling Details for AR and Masked Diffusion

Our goal is to isolate the impact of the factorization—fixed left-to-right versus random-order denois-
ing—while keeping every other design choice constant. Unless noted otherwise, both model families
share the same Transformer backbone (GPT-2 style with rotary positional embeddings, RoPE [38])
and identical training hyper-parameters across the full parameter sweep (7 M — 2 B).

Given a clean input sequence = = (z1,...,21) € VL, both models minimize a token-level cross-
entropy loss, yet they differ in the conditioning context:

Autoregressive (AR) objective. AR models predict each token conditioned on its prefix using a

causal attention mask:
L

Lar = —ZIOgPG(Ij |$<j)-

j=2
Masked Diffusion objective. For masked diffusion we first sample a masking ratio r ~ (0, 1)

and construct a corrupted sequence ¥ by independently replacing each token with [MASK] with
probability . Let M = {4 : ; = [MASK] } be the set of masked positions. The loss is then

1
Lpitfusion = —Ey Eiqu - Z logpg(mz ‘ i’)
" ieM

12

417
418
419
420

421

422
423

424

425
426
427
428
429

430
431
432
433

434

435

436

437

439
440
441
442

443

444
445

446
447
448
449
450
451

452
453
454

Beyond the attention mechanism and input corruption, all other variables are held constant. We
follow the hyperparameter configuration proposed by Muennighoff et al. [21] for all training runs. In
particular, we use a dynamic learning rate schedule that adapts to the number of training epochs. The
only distinctions between AR and diffusion models in our implementation are:

1. Attention mechanism: Causal attention for AR; full self-attention for masked diffusion.

2. Prediction target: AR models predict the next token; diffusion models predict the masked
tokens.

5.3 Scaling Framework in Data-Constrained Settings

Classical scaling laws, such as those proposed by [15} [12], model validation loss as a function of
total parameters (/V) and training tokens (D), assuming all data is unique. These laws have been
instrumental in guiding compute-optimal training of language models. However, this assumption
becomes unrealistic as the community approaches the limits of high-quality text data available on the
internet.

To address this, Muennighoff et al.[21]] extend the Chinchilla framework to explicitly account for
repeated data — a common necessity in data-constrained regimes. They show that repeating training
data beyond a few epochs yields diminishing returns and propose a new scaling law that incorporates
the decaying utility of repeated tokens.

We briefly outline their formulation below.

Definitions:

* U: number of unique tokens available for training,
e E: number of epochs (i.e., how many times each unique token is reused),

e D = U - E: total number of tokens seen by the model.

To model diminishing returns from repeated data, Muennighoff ez al. [21] introduce an effective
unique data size D', motivated by the idea that each additional epoch contributes less useful signal
than the previous. Specifically, they assume the value extracted from the k™ exposure to the same
data follows a geometric progression, where the utility of a token on its k-th repetition is (1 — §)*—1,

Summing over all epochs the total effective data becomes: D' = U - Z,le (1-0)k1=U. ﬂ

where 0 is the decay factor. Defining R}, = 1—55, the expression simplifies to the exponential-decay
form:

D'=U+U-R, (1 - e—<E—1>/RB) .

here R}, represents the half-life of data reuse, repeating data beyond R7, epochs will result in
significant diminishing returns. This form approximates the geometric sum well and captures
diminishing returns over repeated epochs. As the number of epochs E© — oo, the exponential term
vanishes and D’ asymptotically approaches: D’ — U + U - R},, implying that no matter how many
times data is repeated, the maximum usable signal is bounded by (1 + R},) - U. This defines a natural
saturation point on returns: even infinite compute yields no additional effective data beyond this limit.

A symmetric formulation is applied to model parameters for mathetmatical convenience which is
used to define N’. Finally, a modified Chinchilla-style loss function incorporates these effective
quantities N’ and D’:
A B
L(N,D)= ——+ ——= + Ej,
D)= e+ e T

with A, B, o, 8, Ey, R},, N, fitted empirically from training runs. This formulation accurately
captures loss behavior in regimes where data is reused multiple times and serves as a powerful tool
for guiding training under data scarcity.

In this work, we adopt this framework to study how diffusion models and autoregressive models
compare in their ability to extract value from repeated data, enabling apples-to-apples comparisons
across compute, data, and model scale.

13

461

462
463
464
465

467

468

469
470
471
472
473
474
475
476
477
478
479
480
481

482
483
484

486
487
488
489
490
491
492
493
494
495
496

497

498

499
500
501

502
503
504
505

506

508
509

5.4 Training setup

For all training runs, we adopt the hyperparameter configuration introduced by Muennighoff et
al. [21]. This may provide a slight advantage to autoregressive models, as these hyperparameters
were originally tuned for that family. For all models, we use the following hyperparameters: batch
size of 256 sequences, AdamW optimizer with 51=0.9, 5,=0.95, e=10"%, a learning rate schedule
with peak 2e-4, minimum 2e-5, 1% warm-up, cosine decay, weight decay 0.1, and gradient clipping
of 1.0.

6 Related Work

Deep Learning in Data-Constrainted Settings. Deep learning progress has been largely driven
by the scaling of both data and compute. However, recent analyses suggest we may soon face a
data bottleneck that could inhibit continued advancement [42]]. In language modeling, the dominant
paradigm has been autoregressive (AR) models [41} 28| 4], which are typically trained for a single
epoch to maximize exposure to unique tokens [11]. In light of looming data constraints, Muennighoff
et al.[21] show that AR models can still benefit from data reuse: training for up to four epochs
on repeated data achieves performance nearly on par with training on fresh data, suggesting an
effective strategy for improving data efficiency. In contrast, computer vision has long embraced
multi-epoch training along with aggressive data augmentation—such as random cropping, flipping,
and color jittering—to expand effective dataset size and improve generalization[36, 43|, particularly
for discriminative tasks like classification and detection. Despite these practices, data efficiency in
generative modeling remains underexplored, and the trade-offs between leading paradigms such as
diffusion and AR models under constrained data regimes are still poorly understood.

Diffusion-Based Language Models. Diffusion models, originally developed for image genera-
tion [10]], have recently been adapted to text, offering a fundamentally different paradigm for language
modeling [2| [17,19]. Broadly, diffusion language models fall into two categories: continuous and
discrete. Continuous approaches [9] inject Gaussian noise in the forward process, whereas discrete
methods [2] corrupt tokens with noise sampled from distributions such as Bernoulli. Among the two
classes, continuous diffusion has proven more difficult to scale on language data [9,19]. In contrast,
recent advances in discrete diffusion—particularly masked diffusion—have shown encouraging
results. Recent work [[1, 7,131} [19] has significantly narrowed the performance gap between diffusion
and AR models. Notably, LLaDA [23] scales masked diffusion models to 8B parameters and achieves
results similar to LLaMA3-8B across both pretraining and instruction-tuned evaluations. Furthermore,
Nie et al. [22] provide scaling law analysis showing that diffusion models follow similar power-law
trends as AR models, though they may require up to 16 x more compute under single-epoch training,
Swerdlow et al. [39] find similar trends on multimodal data containing both image and text. However,
these evaluations are restricted to single-pass training and do not examine the data-constrained,
multi-epoch regimes which is the focus of our work.

7 More Experiments

7.1 Downstream Results

We evaluate the best-performing diffusion and autoregressive (AR) models on several downstream
benchmarks to assess whether the gains in validation loss translate to practical improvements in
generalization.

Motivated by the critical compute threshold equation identified in Section[2.3] we scale the training
data to 500M unique tokens and train a 2.3B parameter diffusion model using the compute budget
predicted by the critical compute limit. We train the model for 130 epochs, during which we observe
no signs of convergence. We terminate the training due to compute constraints.

Across a diverse set of tasks and data scales, diffusion models consistently outperform their AR
counterparts. This validates our findings in Section[2.3] also confirms that the data efficiency gains
observed in validation loss translate into stronger downstream performance. Table [2] reports the
negative log-likelihood (NLL; lower is better) on four diverse corpora: OSCAR [235]], TinyStories[8]],

14

510
511

512

513
514
515

516

517
518

520
521

WikiText [20], and IndustryCorpus2 EN Sub [35]. These datasets span open-domain, narrative,
encyclopedic, and industry-specific text.

Table 1: Downstream Results for the best autoregressive and diffusion trained in different data-
constrainted settings. We report the results for the models with the best validation loss in 100M and
500M unique data regime.To better understand the difficulty of each benchmark we also report the
accuracy of random baseline

100M unique tokens 500M unique tokens

Benchmarks Random Baseline
AR Diffusion AR Diffusion

ARC-Easy [6] 25.00 35.63 37.84 43.79 45.95
BoolQ [5] 50.00 46.00 49.38 51.87 55.26
COPA [30]] 50.00 56.33 59.00 67.00 64.83
HellaSwag [45]] 25.00 27.37 30.24 32.28 35.33
PiQA 50.00 60.94 60.72 65.71 65.61
RACE [16] 25.00 25.28 28.96 28.28 31.44
WinoGrande XL [32]] 50.00 48.87 50.97 50.61 51.51
SciQ [14]] 25.00 58.05 68.67 67.82 79.13
Lambada [27]] 00.00 10.91 15.19 15.07 22.30

Note: All values represent accuracy (%). Best results shown in bold.

Table 2: Downstream NLL of best diffusion and AR models at 100M unique data points.
Model Type Flops | OSCAR TinyStories WikiText IndustryCorpus2

Best ARM 4.32e18 3.98 2.96 4.94/4.96 3.58
Best MDM 1.24e20 | 3.83 293 4.50/4.52 3.44

7.2 More Figures and Tables

In Figure 8] we extend the pareto frontier of valdiation loss and Flops to 25M unique dataset setting. In
Table 3] we provide fitting metrics of our fitted scaling laws. In Figure[9] we explore adding common
data augmentations in AR training.

Pareto Frontier on 100M unique data Pareto Frontier on S0M unique data Pareto Frontier on 25M unique data

44
= Bl =45
« 40 _

18 19 20 18 19 4.0 18 19
10 10 10 10 10 10 10
FLOPs FLOPs FLOPs

=== Diffusion Pareto Frontier === Where diffusion beat AR
== AR Pareto Frontier —— Chinchilla Optimal

Figure 8: Pareto frontier of validation loss (negative log-likelihood) versus training FLOPs for
autoregressive (AR) and diffusion models under data-constrained settings, on three different unique
data settings 25M, 50M and 100M.

8 Discussion

Why are autoregressive (AR) models more compute-efficient than diffusion models? We
hypothesize two main contributing factors. (i) Order specialization: AR models are trained with a
fixed left-to-right factorization, so every gradient update reinforces the same prediction task, allowing
them to specialize effectively. In contrast, diffusion models must generalize across many random
token orderings, which hinders specialization. (ii) Stronger supervision per update: In AR training,

15

522
523
524
525

527

528

529
530
531
532
533
534

535
536
537
538

539
540
541
542
543
544

Impact of Attention Dropout on AR Impact of Token Masking on AR

Default Setting

12.5% Token Masking
25.0% Token Masking
37.5% Token Masking
50.0% Token Masking
Diffusion Best Loss

—— Default Dropout 4.6
44 —&— 25% Attention Drop
50% Attention Drop
75% Attention Drop
=== Diffusion Best Loss

Validation Loss
& &
< 8]
Validation Loss

ot
%

@
N

1b Zb 3‘0 4‘0 5‘0 1b Zb 3‘0 4‘0 5‘0
Training Epochs Training Epochs
(a) Validation loss under varying attention dropout (b) Validation loss under varying token masking levels
levels in AR training. in AR training.

Figure 9: Impact of common data augmentations on AR models. Despite applying attention dropout
and token masking, AR models still overfit and underperform compared to diffusion models. We
believe this gap arises because diffusion models learn random factorizations of the joint distribution,
rather than a fixed left-to-right ordering.

Table 3: Fitting metrics of the scaling law model for Diffusion and AR. Diffusion and AR achieve a
strong fit across both phases.

(a) Initial fit. (b) Second step fit with extracted scaling parameters.
Model R? Loss Model R? Loss R, Ry
Diffusion 0.9447 0.0002 Diffusion 0.9784 0.00079 493.89 1265.65
AR 0.9439 7.7532e—05 AR 0.7628 0.00361 31.19 55.16

every token in a training sequence serves as a supervised target, and the causal structure enables dense
gradient updates, resulting in stable, low-variance learning. Diffusion models, however, compute loss
only on a subset of masked tokens, making supervision sparser per sequence, even though gradients
propagate through the entire input. As a result, each update carries less direct learning signal. Arriola
et al. [L] show that tuning the masking schedule can help reduce gradient variance and improve
training compute efficiency.

9 Experiment Details

For all training runs, we adopt the hyperparameter configuration introduced by Muennighoff e?
al. [21]. This may provide a slight advantage to autoregressive models, as these hyperparameters
were originally tuned for that family. For all models, we use the following hyperparameters: batch
size of 256 sequences, AdamW optimizer with 81=0.9, $2=0.95, e=10"%, a learning rate schedule
with peak 2e-4, minimum 2e-5, 1% warm-up, cosine decay, weight decay 0.1, and gradient clipping
of 1.0.

We adopt the Megatron-DeepSpeed framework as the foundation of our implementation, upon which
we build our training and evaluation setup for the masked Diffusion Model. Similar to the “extended
version of the architectures” proposed in [22], our model adheres to the general transformer design
while introducing several architectural modifications to better align with modern LLM practices.

Specifically, we replace absolute positional embeddings with Rotary Positional Embeddings (RoPE)
[37], which improve extrapolation to longer contexts and reduce parameter count. Furthermore, we
adopt the SwiGLU activation function in the MLP blocks, which has been shown to outperform
standard GELU or ReLU in both convergence and downstream performance [33]. To further simplify
the architecture and enhance training stability, we substitute standard LayerNorm with RMSNorm
and eliminate all bias terms. These design choices are consistent with [3} 40].

16

545
546

547
548

549

550
551
552
553

554

555

556
557
558
559

560
561
562
563
564

565
566
567

568
569
570
571
572
573

574
575
576
577

To preserve the original MLP capacity while aligning with hardware-friendly parameter sizes, we
compute the feed-forward hidden size hy as:

8'dmodel
= —_— . 4
hs { 364 J 0

This rounding scheme ensures that the FFN hidden size remains divisible by 64 while closely
matching the effective dimensionality used in SwiGLU layers.

We slightly modify the parameter count estimation formula from the original:

P=1200% 1+ — + ——

< + 12h + 12[h)
to better reflect our revised architecture. The original formula can be decomposed into: 41h? (atten-
tion), 8/h? (MLP), 13lh (LayerNorm and biases), and (V' + s)h (token and positional embeddings).
After applying our architectural adjustments—namely, using a SwiGLU-based MLP of dimension
h¢, switching to RoPE (eliminating sh), and removing bias terms—we arrive at the revised formula:

P =41h* 4+ 3lh-hy +6lh + Vh

Table] presents all model configurations used in our experiments along with their parameter counts.

10 Order Permutation Details

In this experiment, we train autoregressive models using different token orderings. We do not
introduce target positional embeddings as done in works such as RAR [44] 26]. We evaluated the
trained models using left-to-right ordering. We define the perturbations in the token ordering by
adding varying levels of noise to the left-to-right ordering.

Specifically, we generate a list of N orderings, where the first order is the standard left-to-right (12r)
order. Subsequent permutations are created by adding Gaussian noise to the left-to-right position ids,
with the standard deviation of the noise directly proportional to the permutation’s index. This method
allows us to create a spectrum of orderings, from the standard 12r order to more heavily permuted
sequences, as detailed in Algorithm [T}

During training, we apply these predefined orders to the input sequences. For each sequence in a
batch, we randomly sample a permutation from our predefined list. This process is summarized in
Algorithm [2]and further detailed below:

For each sequence, the first token is kept fixed. This ensures that the position ID 0 is always assigned
to the first token, providing a soft absolute positional anchor for the sequence when using RoPE[3§]].
Under RoPE, attention depends only on relative position offsets rather than absolute information,
i.e. (R(i)q, R(j)k) = qR(i — j)k. Therefore, fixing position 0 on the first token keeps the control
anchor unrotated R(0) = I and removes global sequence-wise phase shifts induced by permutations,
which stabilized the optimization and reduced variance under permutation augmentation.

As an example, suppose that the number of predicted tokens is 7" (e.g. T" = 2048 in our default
setting) and the total input length is L = T + 1 including the label shift. Only the indices in [1:7]
are shuffled and assigned position IDs from {1, ..., T'}. For instance, with 7' = 6 and a permutation
T =1[2,0,1,4,5, 3], the resulting token and label orders are:

tokens: [0, 3,1, 2, 5, 6],

labels: [3, 1,2, 5,6, 4].

17

Table 4: Model Architectures

Name param (M) | d_model origin_ffw_size ffw_size kv_size n_heads n_layers
7 7.0 128 512 320 32 4 3
14 13.6 224 896 576 32 7 4
20 19.5 288 1152 768 32 7 5
35 36.6 448 1792 1152 32 7 6
44 50.7 512 2048 1344 64 8 8
57 64.8 576 2304 1536 64 9 9
74 80.5 640 2560 1664 64 10 10
90 95.0 640 2560 1664 64 10 13
106 109.6 640 2560 1664 64 10 16
117 123.6 768 3072 2048 64 12 12
140 144.8 768 3072 2048 64 12 15
163 166.1 768 3072 2048 64 12 18
175 179.2 896 3584 2368 64 14 14
196 198.3 896 3584 2368 64 14 16
217 217.5 896 3584 2368 64 14 18
251 250.8 1024 4096 2688 64 16 16
278 275.7 1024 4096 2688 64 16 18
306 300.6 1024 4096 2688 64 16 20
425 416.9 1280 5120 3392 128 10 18
489 475.6 1280 5120 3392 128 10 21
509 4959 1408 5632 3712 128 11 18
552 534.4 1280 5120 3392 128 10 24
587 566.7 1408 5632 3712 128 11 21
632 615.3 1536 6144 4096 128 12 19
664 637.6 1408 5632 3712 128 11 24
724 700.3 1536 6144 4096 128 12 22
816 785.2 1536 6144 4096 128 12 25
893 856.4 1792 7168 4736 128 14 20
1018 971.3 1792 7168 4736 128 14 23
1143 1086.3 1792 7168 4736 128 14 26
1266 1207.6 2048 8192 5440 128 16 22
1424 1353.6 2176 8704 5760 128 17 22
1429 1358.2 2048 8192 5440 128 16 25
1593 1508.9 2048 8192 5440 128 16 28
1609 1523.2 2176 8704 5760 128 17 25
1731 1644.9 2304 9216 6144 128 18 24
1794 1692.9 2176 8704 5760 128 17 28
2007 1899.8 2304 9216 6144 128 18 28
2283 2154.7 2304 9216 6144 128 18 32
2298 2165.3 2560 10240 6784 128 20 26
2639 2478.6 2560 10240 6784 128 20 30
2980 2791.9 2560 10240 6784 128 20 34
3530 3257.0 2688 10752 7168 128 21 36
3802 3561.3 2816 11264 7488 128 22 36
4084 3879.2 2944 11776 7808 128 23 36
4516 4231.9 3072 12288 8192 128 24 36
6796 63374 3584 14336 9536 128 28 40
9293 8640.6 4096 16384 10880 128 32 42
11452 10889.0 4352 17408 11584 128 32 47
12295 11444.2 4608 18432 12288 128 36 44
12569 12208.7 4608 18432 12288 128 32 47
13735 13560.0 4864 19456 12928 128 32 47
14940 14905.3 4992 19968 13312 128 32 49
16183 15028.3 5120 20480 13632 128 40 47

18

Algorithm 1 Generating a Random Order List with Predefined Permutations

Input: Sequence length L, number of orders /V, random seed s
Output: Order list O of N orderings

1: Initialize order list O «]

2: Append raster order: O < O U {[0,1,...,L — 1]}

3: fori=1to N —1do

4: b+ [0,1,...,L — 1] {base raster order}

5. €~ N(0,4%I) {add Gaussian noise with scale 7}
6: s < b+ e {perturbed scores}

7: 7+ argsort(s) {permutation order}

8: O+ O0uU{n}

9: end for
10:

11: return O

Algorithm 2 Shuffling Tokens Using Predefined Order Lists

Input: Token matrix tokens € ZB>*L+1 (including last label), order list O of K permutations
Output: Shuffled tokens and position IDs

: Let B < number of sequences in batch

Let L < sequence length

Initialize position_ids < 0B*F

fori =1to B do
7 O|I;] {retrieve i-th random order}
tokens[i, 1:] « tokensl|i, 1:|[x] {shuffle tokens except first token}
7 <— 7 + 1 {shift positions by 1 to reserve position 0}

9: position_idsl[i, 1:] < w[0:L—1] {assign shifted positions}

10: end for

PRI AR

12: return tokens, position_ids

Sample index vector I ~ Uniform({0, ..., K—1})? {select random order for each sequence}

19

	Introduction
	Experiments
	Does Diffusion Beat AR in Data-Constrained Settings?
	Fitting Data-Constrained Scaling Laws
	When to Use Diffusion over AR?
	Why do Diffusion models outperform AR models in data-constrained settings?

	Limitations
	Conclusion
	Preliminaries
	Autoregressive and Diffusion Model
	Modeling Details for AR and Masked Diffusion
	Scaling Framework in Data-Constrained Settings
	Training setup

	Related Work
	More Experiments
	Downstream Results
	More Figures and Tables

	Discussion
	Experiment Details
	Order Permutation Details

