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ABSTRACT

We provide the first convergence guarantee for the Consistency Models (CMs), a
newly emerging type of one-step generative models that is capable of generating
comparable samples to those sampled from state-of-the-art Diffusion Models. Our
main result is that, under the basic assumptions on score-matching errors, consis-
tency errors, and smoothness of the data distribution, CMs can efficiently generate
samples in one step with small W2 error to any real data distribution. Our results
(1) hold for L2-accurate assumptions on both score and consistency functions
(rather than L∞-accurate assumptions); (2) do not require strong assumptions on
the data distribution such as log-Sobelev conditions; (3) scale polynomially in all
parameters; and (4) match the state-of-the-art convergence guarantee for score-
based generative models. We also show that the Multi-step Consistency Sampling
procedure can further reduce the error comparing to one step sampling, which
supports the original statement of Song et al. (2023). Our result can be general-
ized to arbitrary bounded data distributions that may be supported on some low-
dimensional sub-manifolds. Our results further imply TV error guarantees when
making some Langevin-based modifications to the output distributions.

1 INTRODUCTION

Score-based generative models (SGMs), also known as diffusion models (Sohl-Dickstein et al.
(2015); Song & Ermon (2019); Dhariwal & Nichol (2021); Song et al. (2021; 2020)), are a family of
generative models which achieve unprecedented success across multiple fields like image generation
(Dhariwal & Nichol (2021); Nichol et al. (2021); Ramesh et al. (2022); Saharia et al. (2022)), audio
synthesis (Kong et al. (2020); Chen et al. (2020); Popov et al. (2021)) and video generation (Ho
et al. (2022a;b)); see, e.g., the recent surveys (Cao et al. (2022); Croitoru et al. (2022); Yang et al.
(2022)). A key point of diffusion models is the iterative sampling process which gradually reduces
noise from random initial vectors which provides a flexible trade-off of compute and sample qual-
ity, as using extra compute for more iterations usually yields samples of better quality. However,
compared to single-step generative models like GANs, VAEs, or normalizing flows, the generation
process of diffusion models requires 10-2000 times more, limiting it to a small number of real-time
applications.

To overcome this limitation, Song et al. (2023) proposed Consistency Models (CMs) that can di-
rectly map noise to data, which can be seen as an extension of SGMs. CMs support fast one-step
generation by design, while still allowing multistep sampling to trade compute for sampling quality.
CMs can be trained either by distilling pre-trained diffusion models or as stand-alone generative
models altogether. Song et al. (2023) demonstrates its superiority through extensive experiments
outperforming existing distillation techniques for diffusion models, and when trained in isolation,
CMs outperform existing one-step, non-adversarial generative models on standard benchmarks.

Besides the achievements of CMs in saving the the generation costs as well as keeping the sampling
quality, it is a pressing question of both practical and theoretical concern to understand the mathe-
matical underpinnings that explain their startling successes. The theoretical guarantee for SGMs has
been extensively studied and well established Chen et al. (2022); Lee et al. (2022a;b). Despite the
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theoretical successes of SGMs, one would wonder if CMs can inherit the good points from SGMs,
as they are inextricably linked in their underlying mathematical process.

Providing a convergence analysis for CMs and exploring the benefits for CMs compared to SGMs
is a pressing first step towards theoretically understanding why CMs work in practice.

1.1 OUR CONTRIBUTIONS

In this work, we take a step towards connecting theory and practice by providing a convergence
guarantee for CMs, under minimal assumptions that coincide with our intrinsic. For the underlying
SGMs, we make no more assumptions than the state-of-the-art works:

A1 The score function of the forward process is Ls-Lipschitz.
A2 The second moment of the data distribution pdata is bounded.

Note that these two assumptions are standard, no more than what is needed in prior works. The
crucial point to these two assumptions is that they do not need log-concavity, a log-Sobelev inequal-
ity, or dissipativity, which cover arbitrarily non-log-concave data distributions. Our main result is
summarized informally as follows.
Theorem 1. Under Assumptions A1 and A2, and in addition if the consistency model is Lips-
chitz and the consistency error, score estimation error in L2 are at most O(ε) with an appropriate
choice of step size in the training procedure, then, the CM outputs a measure which is ε-close in
Wasserstein-2 (W2) distance to pdata in single step.

We find Theorem 1 surprising, because it shows that CMs can output a distribution arbitrary close
to the data distribution in W2 distance with a single step. The error of CMs is just the same order
as what SGMs achieved, under the assumption that the consistency error is small enough, which
coincides with the incredible success of CMs in many benchmarks. In the fields of neural networks,
our result implies that so long as the neural network succeeds at the score and consistency function
estimation tasks, the remaining part of the CM algorithm is almost understood, as it admits a strong
theoretical justification.

However, learning the score function and consistency function is also difficult in general. Never-
theless, our result still leads the way to further investigations, such as: do consistency function for
real-life data have intrinsic structure which can be well-explored by neural networks? If the answer
is true, this would then provide an end-to-end guarantee for CMs.

Better error bounds by multistep consistency sampling. Beyond the one step CM sampling, Song
et al. (2023) suggests a way for multistep sampling to trade compute for sampling quality. However
in their original work, they did not make any analysis on the positive effect of multistep sampling
comparing to one-step sampling. In our work, we analysis the error bound for each middle state
of multistep sampling, showing an asymptotically convergent error bound that is greatly smaller
than the error bound for one-step sampling. Our analysis reveals the fact that with a suitable choice
of middle time points, the multistep consistency sampling takes a few more steps to achieve the
near-best performance.

Bounding the W2 error for general bounded data distribution. The foregoing results are es-
tablished on the assumption A1, which only holds for Ls-smooth data distribution. When only
assuming the data distribution to be bounded supported, which includes the situation when q is sup-
ported on a lower-dimensional submanifold of Rd, we can still guarantee polynomial convergence
in the Wasserstein metric by early stopping. As the methodology is the same as in Chen et al. (2022)
and Lee et al. (2022b), we do not claim the originality, but just include this part for completeness.

Bounding the Total Variational error. As the mathematical foundation of CMs established on
the reverse probability flow ODE, they share the same shortcoming compared to the probability
flow SDE: they can not get an error bound in Total Variational (TV) distance or Kullback-Leibler
divergence by only controlling the score-matching objective, thus may even fail to estimate the like-
lihood of very simple data distributions (Fig.1 in Lu et al. (2022)). To solve this potential problem,
we offered two modification processes to control the TV error: we can take an OU-type smoothing
which takes no more evaluation costs to get a relatively larger TV error bound; we can also apply
a Langevin dynamics for correcting purpose with the score model to get a smaller TV error bound,
while it needs additional O(ε−1d1/2) evaluation steps.
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1.2 PRIOR WORKS

As far as we know, this is the first work to establish a systematical analysis of the convergence
property of CMs. As the CMs and SGMs share a similar mathematical essence in the asymptotic
situation, our result can be compared to a vast list of literature on the convergence of SGMs.

SDE-type SGMs. The Langevin Monte Carlo (LMC) algorithm (Rossky et al. (1978)) can be seen
as the predecessor to the SDE-type SGMs, and literature on the convergence of LMCs is extensive,
such as Durmus & Moulines (2015); Cheng & Bartlett (2017); Cheng et al. (2017). However, these
works mainly consider the case of exact or stochastic gradients. By the structure of the score-
matching loss function, only an L2-accurate gradient can be guaranteed for SDE-type SGMs. [Lee
et al. (2022a)] is the first to give a polynomial convergence guarantee in TV distance under an L2-
accurate score. However, they rely on the data distribution satisfying smoothness conditions and a
log-Sobolev inequality, which essentially limits the guarantees to unimodal distributions.

Bortoli (2022) instead only make minimal data assumptions, giving convergence in Wasserstein dis-
tance for distributions with bounded support M. In particular, this covers the case of distributions
supported on lower-dimensional manifolds, where guarantees in TV distance are unattainable. How-
ever, their guarantees have exponential dependence on the diameter of M or other parameters such
as the Lipstchitz constant of score function.

Recently, Chen et al. (2022) and Lee et al. (2022b) concurrently obtained theoretical guarantees for
SGMs under similar general assumptions on the data distribution. They give Wasserstein bounds for
any distribution of bounded support (or sufficiently decaying tails), and TV bounds for distributions
under minimal smoothness assumptions, that are polynomial in all parameters. This gives theoretical
grounding to the success of SGM of data distribution that is often non-smooth and multimodal.

ODE-type SGMs. Instead of implementing the time-reversed diffusion as an SDE, it is also possible
to implement it as an ordinary differential equation (ODE). However, current analyses of SGMs
cannot provide a polynomial-complexity TV bound of the probability flow ODE under minimal
assumption on data distribution. Lu et al. (2022) first bounded the KL divergence gap (and thus
TV error) by higher-order gradients of the score function, and thus suggested controlling this bound
by minimizing the higher order score-matching objectives, which causes much more difficulties in
training the score model.

Instead of changing the training procedure, Chen et al. (2023b) obtained a discretization analysis
for the probability flow ODE in KL divergence, though their bounds have a large dependency on d,
exponential in the Lipschitz constant of the score integrated over time, which rely on higher order
regularities of the log-data density.

To overcome the difficulty on strong data density regularities assumptions, Chen et al. (2023a) sug-
gest to interleave steps of the discretized probability flow ODEs with Langevin diffusion correctors
using the estimated score, and get a better convergence guarantee than SDEs thanks to the C1 trajec-
tory for ODEs comparing to the C 1

2− trajectory for SDEs. This approach only need to assume the
data density to be L-smooth.

2 PRELIMINARY

2.1 DIFFUSION MODELS

Consistency models are heavily relied on the denoising diffusion probabilistic modeling (DDPM).
We start with a forward process defined in Rd, which is expressed as a stochastic differential equation

dxt = µ(xt, t)dt+ σ(t)dwt (1)

where t ∈ [0, T ], T > 0 is a fixed constant, µ(·, ·) and σ(·) are the drift and diffusion coefficients
respectively, and {wt}t∈[0,T ] denotes the d-dimensional standard Brownian motion. Denote the
disbribution of xt as pt(x), therefore p0(x) = pdata(x). A remarkable property is the existence
of an ordinary differential equation dubbed the probability flow ODE, whose solution trajectories
sampled at t are distributed according to pt(x):

dxt =

[
µ(xt, t)−

1

2
σ(t)2∇ log pt(xt)

]
dt (2)
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here ∇ log pt(x) is the score function of pt(x).

For clarity, we consider the simplest possible noise schedule choice, which is the Ornstein-
Uhlenbeck (OU) process as in Chen et al. (2023a), where µ(x, t) = −x and σ(t) ≡

√
2,

dxt = −xtdt+
√
2dwt,x0 ∼ pdata, (3)

The corresponding backward ODE is

dxt = (−xt −∇ log pt(x))dt. (4)

In this case we have
pt(x) = edtpdata(e

tx) ∗ N (0, (1− e−2t)Id), (5)
where ∗ denotes the convolution operator. We take π(x) = N (0, Id), which is a tractable Gaussian
distribution close to pT (x). For sampling, we first train a score model sϕ ≈ ∇ log pt(x) via score
matching (Hyvärinen (2005); Song & Ermon (2019); Ho et al. (2020)), then plug into equation 4 to
get the empirical estimation of the PF ODE, which takes the form of

dxt = (−xt − sϕ(xt, t))dt. (6)

We call equation 6 the empirical PF ODE. Denote the distribution of xt in equation 6 as qt(x).
Empirical PF ODE gradually transforms qT (x) = π(x) into q0(x), which can be viewed as an
approximation of pdata(x).

2.2 CONSISTENCY MODELS

For any ordinary differential equation defined on Rd with vector field v : Rd × R+ → Rd,

dxt = v(xt, t)dt,

we may define the associate backward mapping fv : Rd × R+ → Rd such that

fv(xt, t) = xδ. (7)

with an early-stopping time δ > 0. Under mild conditions on v, such a mapping fv exists for any
t ∈ R+, and is smoothly relied on x and t. Note that equation 7 is equivalent to the following
conditions

fv(xt, t) = fv(xs, τ), ∀ 0 ≤ τ, t ≤ T, and

fv(x, δ) = x, ∀x ∈ Rd

which playing the essential role in constructing consistency loss.

Now let us take vex(x, t) = −x − ∇ log pt(x) and vem(x, t) = −x − sϕ(xt, t), and denote the
corresponding backward mapping function as f ex, for exact vector field vex, and f em, for empirical
vector field vem, respectively. We aim to construct a parametric model fθ to approximate f ex. Song
et al. (2023) first implement the boundary condition using the skip connection,

fθ(x, t) = cskip(t)x+ cout(t)Fθ(x, t)

with differentiable cskip(t), cout(t) such that cskip(δ) = 1, cout(δ) = 0, and then define the following
Consistency Distillation object:

LN
CD(θ,θ

−;ϕ) := E[λ(tn)∥fθ(xtn+1
, tn+1)− fθ−(x̂ϕ

tn , tn)∥
2
2], (8)

where 0 < t1 = δ < t2 · · · < tN = T , n uniformly distributed over {1, 2, · · · , N − 1}, x ∼ pdata,
xtn+1

= e−tx+
√
1− e−2tξ, ξ ∼ N (0, Id). Here x̂ϕ

tn is calculated by

x̂ϕ
tn := Φ(xtn+1

, tn+1, tn;ϕ) (9)

where Φ(· · · ;ϕ) represents the update function of a ODE solver applied to the empirical PF ODE 6.
In our noise scheduler 3, We may use the exponential integrator (i.e., exactly integrating the linear
part),

x̂ϕ
tn = etn+1−tnxtn+1 + (etn+1−tn − 1)sϕ(xtn+1 , tn+1). (10)
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For simplicity, we assume λ(tn) ≡ 1, and only consider the square of l2 distance to build the loss
metric, Song et al. (2023) also considered other distance metric such as l1 distance ∥x − y∥1, and
the Learned Perceptual Image Patch Similarity (LPIPS, Zhang et al. (2018)).

To stabilize the training process, Song et al. (2023) introduce an additional parameter θ− and update
it by an exponential moving average (EMA) strategy. That is, given a decay rate 0 ≤ µ < 1, the
author perform the following update after each optimizaiton step: θ− = stopgrad(µθ−+(1−µ)θ).
Besides the distillation strategy that needs an existing score model sϕ, Song et al. (2023) also in-
troduced a way to train without any pre-trained score models called the Consistency Training (CT)
objective. We refer Lemma 15 for the expression of CT objective under the OU scheduler 5 and the
exponential integrator 9.

Song et al. (2023) gave a asymptotic analysis on the approximation error in their original work. If
LN

CD(θ,θ;ϕ) = 0, we have supn,x ∥fθ(x, tn) − f em(x, tn)∥2 = O((∆t)p) when the numerical
integrator has local error uniformly bounded by O((∆t)p+1) with p ≥ 1. However, when LN

CD ̸= 0,
we also need a quantitative analysis on how far between fθ and f em, and further, a quantitative
analysis between fθ and f ex, and thus the distance between generated distribution and true data
distribution.

3 MAIN RESULTS

In this section, we formally state our assumptions and our main results. We denote fθ,t(x) =
fθ(x, t) to emphasize the mapping over x at time t. We summarized definition of some notations
in the Appendix A.

3.1 ASSUMPTIONS

We assume the following mild conditions on the data distribution pdata.

Assumption 1. The data distribution has finite 2nd moment, that is, Ex0∼pdata
[∥x0∥22] = m2 <∞.

Assumption 2. The score function ∇ log pt(x) is Lipschitz on the variable x with Lipschitz constant
Ls ≥ 1, ∀t ∈ [0, T ].

This two assumptions are standard and has been used in prior works Block et al. (2020); Lee et al.
(2022a;b); Chen et al. (2022). As Lee et al. (2022b); Chen et al. (2022), we do not assume Lips-
chitzness of the score estimate; unlike Block et al. (2020); Bortoli et al. (2021), we do not assume
any convexity or dissipativity assumptions on the potential U = − log(pdata), and unlike Lee et al.
(2022a) we do not assume pdata satisfies a log-Sobolev inequality. Thus our assumptions are gen-
eral enough to cover the highly non-log-concave data distributions. Our assumption could be further
weaken to only be compactly supported, which will be further discussed in 3.4.

We also assume bounds on the score estimation error and consistency error.

Assumption 3. Assume Extn∼ptn
[∥sϕ(xtn , tn)−∇ log ptn(xtn)∥22] ≤ ε2sc,∀n ∈ [[1, N ]].

Assumption 4. Assume Extn∼ptn
[∥fθ(xtn+1 , tn+1) − fθ(x̂

ϕ
tn , tn)∥

2
2] ≤ ε2cm(tn+1 − tn)

2,∀n ∈
[[1, N − 1]], where x̂ϕ

tn is the exponential integrator defined as in equation 10.

The score estimation error is the same as in Lee et al. (2022a); Chen et al. (2022). As discussed
in Section 2, these two assumption are nature and realistic in light of the derivation of the score
matching objective and consistency distillation object.

The following Lipschitz condition for the consistency model is nature and has been used in prior
work ( Song et al. (2023), Theorem 1).

Assumption 5. The consistency model fθ(x, tn) is Lipschitz on the variable x with Lipschitz con-
stant Lf > 1, ∀n ∈ [[1, N ]].

For technique reason, we divide our discretization schedule into two stages: in the first stage, which
lasts from T to h, we keep the step size equal to h; in the second stage, which lasts from h to δ, we
take a geometric reducing sequence 2−1h, 2−2h, · · · until 2−lh ≤ δ for some l ≥ 1.
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Assumption 6. Assume the discretization schedule 0 < δ = t1 < t2 < · · · < tN = T , hk =
tk+1 − tk to equation 6 is divided into two stages:

1. hk ≡ h for all k ∈ [[N1, N − 1]], and (N −N1 − 1)h < T ≤ (N −N1)h;

2. hk = 2−(N1−k)h = hk+1

2 for k ∈ [[1, N1 − 1]], N1 satisfies h2 = 2−(N1−2)h ≤ 2δ.

note that in this case h1 = T −
∑N

k=2 hk − δ ≤ h− (1− 2−(N1−2))h− δ ≤ δ, and tN1
≤ h

0

t1

t2

t3

t4 · · · tN1
tN1+1 tN1+2 · · · tN = T

Figure 1: Illustration of the discretization schedule in Assumption 6

3.2 W2 ERROR GUARANTEE FOR ONE-STEP CONSISTENCY GENERATING

In this section we introduce our main results. The first result bounds the Consistency Model estima-
tion error in an expectation mean.
Theorem 2 (see Section B.1 of Appendix). Under Assumptions 1-5, assume we choose Φ as the
exponential integrator, and assume the timestep schedule satisfies assumption 6, for 1 ≤ n ≤ N−1:(
Extn∼ptn

[∥fθ(xtn , tn)− f ex(xtn , tn)∥22]
)1/2

≲ tn(εcm + Lfεsc + LfL
3
2
s d

1
2h) + t

1
2
nLfLsd

1
2h.

Now we can get our first theorem that analysis the W2 distance after Consistency Model mapping.
Theorem 3 (see Section B.2 of Appendix). Under Assumptions 1-6, let µ(x) be any probability
density, pt(x) = edtpdata(e

tx) ∗ N (0, (1− e−2t)Id), then the following estimation holds,

W2(fθ,tn♯µ, pδ) ≲ LfW2(µ, ptn) + tn(εcm + Lfεsc + LfL
3
2
s d

1
2h) + t

1
2
nLfLsd

1
2h. (11)

As a consequence, we directly get the one-step generation error.
Corollary 4 (see Section B.2 of Appendix). Under Assumptions 1-6, when T > L−1

s , the one-step
generating error is bounded as follows,

W2(fθ,T ♯N (0, Id), pdata) ≲ (d
1
2 ∨m)Lfe

−T +T (εcm +Lfεsc +LfL
3
2
s d

1
2h)+(d

1
2 ∨m)δ

1
2 . (12)

In particular, for any ε > 0, if we set δ ≍ ε2

d∨m2 , T ≥ O(log(
Lf (

√
d∨R)
ε )), step size h =

O( ε

TLfL
3/2
s d1/2

), εcm = O( ε
T ), εsc = O( ε

LfT
), we can guarantee W2(fθ,T ♯N (0, Id), pdata) ≲ ε.

We remark that our discretization complexity N = O(Th log( 1h )) = O(
LfL

3/2
s d1/2

ε ) matches state-
of-the-art complexity for ODE-type SGMs Chen et al. (2023a;b). This provides some evidence that
our descretization bounds are of the correct order.

Note that the error bound in 12 relied on the final time T , consistency error εcm, score error εsc
and step size h. Actually we can refine the error and reduce the linear dependency on T to log
dependency by Multistep Consistency Sampling that will be introduced in the next section.

3.3 MULTISTEP CONSISTENCY SAMPLING CAN REDUCE THE W2 ERROR

Now let us analysis the effect of Multistep Consistency Sampling introduced in original CM work,
Algorithm 1, Song et al. (2023), which has been introduced to improve the sample quality by alter-
nating denoising and noise injection steps. Given a sequence of time points T = tn1 ≥ tn2 ≥ · · · ,
adapted to the OU noise scheduler 3 , the generating procedure can be written as

z1 := fθ(ξ1, T ),

uk := e−(tnk
−δ)zk−1 +

√
1− e−2(tnk

−δ)ξk,

zk := fθ(uk, tnk
), (13)
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with ξi i.i.d. N(0, Id) distributed, and qk := law(zk) satisfies the following relationship:

q1 = fθ,T ♯N (0, Id),

µk :=
(
ed(tnk

−δ)qk−1(e
(tnk

−δ)x)
)
∗ N (0, (1− e−2(tnk

−δ))Id).

qk = fθ,tnk
♯µk, (14)

We thus have the following upper bound of the W2 distance between qk and pδ .
Corollary 5 (see Section B.3 of Appendix). Under Assumptions 1-6, when T > L−1

s , the W2

distance between qk and pδ can be controlled by qk−1 and pδ as follows,

W2(qk, pδ) ≲ Lfe
−tnkW2(qk−1, pδ) + tnk

(εcm + Lfεsc + LfL
3
2
s d

1
2h). (15)

Note that in equation 15, we have an exponentially small multiplier e−tnk gradually reduce the error
introduced from the previous steps, and a tnk

-linear term representing the error introduced from the
current step. By choosing a suitable time schedule {tnk

}k≥1, we can get a finer bound in W2.
Corollary 6 (see Section B.3 of Appendix). Under Assumptions 1-6, there exists T ≥ tn̂ ≥
max(log(2Lf ) + δ, L−1

s ), n̂ ∈ [[1, N ]], such that when taking nk ≡ n̂ for all k,

W2(qk, pdata) ≲ (log(Lf )+2−kT )(εcm+Lfεsc+LfL
3
2
s d

1
2h)+2−k(d

1
2 ∨m)Lfe

−T +(d
1
2 ∨m)δ

1
2 .

Thus, for any ε > 0, if we set δ ≍ ε2

d∨m2 , k = O(log(T ∨ (
(d∨m2)Lf

ε ))), h = O( ε

log(Lf )LfL
3/2
s d1/2

),

εcm = O( ε
log(Lf )

), εsc = O( ε
Lf log(Lf )

), we can guarantee W2(qk, pdata) ≲ ε.

Remark 1. Comparing the result between multistep sampling error 6 and one step sampling error
4, the main improvement of multistep sampling is getting rid of the linear dependency from T . In
one step sampling, one should take the step size smaller, and train the consistency model and score
model better. Besides, multistep sampling 6 only requires T ≥ max(log(2Lf ) + δ, L−1

s ), while one

step sampling 4 requires T ≥ O(log(
Lf (

√
d∨R)
ε )), which is an added benefit that multistep sampling

requires lower training complexity comparing to one step sampling.

3.4 W2 CONVERGENCE GUARANTEE FOR ARBITRARILY DATA DISTRIBUTIONS WITH
BOUNDED SUPPORT

In this section, we consider a much more general case: in fact for any compactly supported distri-
bution pdata, supp pdata ⊆ B(0, R), for any t0, we can get a positive Ls(t0), such that Assumption
2 is satisfied for any t > t0 with Lipschitz constant Ls(t0). This include a wide range of situations
even when p do not have smooth density w.r.t. Lebesgue measure such as when p supported on
a lower-dimensional submanifold of Rd, which recently investigated in Bortoli (2022); Lee et al.
(2022b); Chen et al. (2022).

Namely, based on the following lemma, we can conduct regularity properties for the score functions.
Lemma 7 (see Section B.4 of Appendix). Suppose that supp pdata ⊆ B(0, R) where R ≥ 1, and
let pt denote the law of the OU process at time t, started at p: that is, pt(x) = edtpdata(e

tx) ∗
N (0, (1− e−2t)Id). Then the Hessian of the score function satisfies:

∥∇2 log pt(x)∥op ≤ e−2tR2

(1− e−2t)2
+

1

1− e−2t
.

Note that in our proof of Corollary 4 and 6, we only use the Assumption 2 over t ∈ [δ, T ]. Combining
Lemma 7, we immediately get the following corollary.
Corollary 8 (see Section B.4 of Appendix). Under Assumptions 3-6, suppose that supp pdata ⊆
B(0, R) where R ≥ 1. Let δ ≍ ε2

R2∨d , then (1) the one-step generating error satis-

fies W2(q1, pdata) ≲ ε, provided that T = O(log(
Lf (

√
d∨R)
ε )), h = O( ε7

d1/2R3(R6∨d3)LfT
),

εcm = O( ε
T ), εsc = O( ε

LfT
) ; (2) the multi-step generating error satisfies W2(qk, pdata) ≲

ε, provided that k = O(log(T ∨ (
(d∨m2)LfLs

ε ))), T = O(max(log(2Lf ) + δ, L−1
s )), h =

O( ε7

d1/2R3(R6∨d3)Lf log(Lf )
), εcm = O( ε

log(Lf )
), εsc = O( ε

Lf log(Lf )
).
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3.5 BOUNDING THE TV ERROR

In the sections before, we have showed that the generated distribution of Consistency Models are
close to the true data distribution in the metric of Wasserstein-2 distance. When we turn to the Total
Variational (TV) distance, however, the error bound is deficient as the situation for the probabil-
ity flow ODEs, in contrast to the situation for the probability flow SDEs. Here we introduce two
operations that can further bound the TV error.

3.5.1 BOUNDING THE TV ERROR BY FORWARD OU PROCESS

Let the forward OU process be
dxt = −xtdt+

√
2dwt, (16)

and denote the associate Markov kernel as P s
OU, that is, if xt ∼ p, xt+s ∼ pP s

OU. Let q be the output
of our Consistency Models, either the one step consistency sampling result, or the k-th multistep
consistency sampling result. To control the TV error, we smooth the generated sample by the for-
ward OU process with a small time that is the same as the early stopping time δ, and then we can
get the TV distence between qP δ

OU and pdata:

Corollary 9 (see Section B.5 of Appendix). Under Assumptions 1-6, suppose q is: (1) the one step
consistency sampling result, q = q1 = fθ,T ♯N (0, Id); (2) the k-th multistep consistency sampling
result, q = qk defined as in equation 14 with multistep schedule as in Corollary 6. Choose the early
stopping time δ ≍ ε2

L2
s(d∨m2) for some ε > 0, then if T ≥ max(log(2Lf ) + δ, L−1

s ),

TV(q1P δ
OU, pdata)

≲
LsLf (d ∨m2)

ε
e−T +

Ls(d
1
2 ∨m)

ε
T (εcm + Lfεsc + LfL

3
2
s d

1
2h) + ε,

TV(qkP δ
OU, pdata)

≲
Ls(d

1
2 ∨m)

ε

(
(logLf +

T

2k
)(εcm + Lfεsc + LfL

3
2
s d

1
2h) +

(d
1
2 ∨m)Lf

2keT
)
+ ε.

In particular,

1. If we set T = O(log(
(d∨m2)LfLs

ε4 )), h = O( ε2

LfL
5/2
s (d∨m2)T

), and if εsc ≤

O( ε2

TLfLs(d1/2∨m)
), εcm ≤ O( ε2

TLs(d1/2∨m)
), then we can guarantee TV error O(ε) with

one step prediction and one additional OU correction (with no NN evaluation);

2. If we set k = O(log(T ∨ (
(d∨m2)LfLs

ε ))), h = O( ε2

log(Lf )LfL
5/2
s (d∨m2)

) and if εsc ≤

O( ε2

log(Lf )LfLs(d1/2∨m)
), εcm ≤ O( ε2

log(Lf )Ls(d1/2∨m)
), then we can guarantee TV error

O(ε) with k steps prediction and one additional OU correction (with no NN evaluation).

3.5.2 BOUNDING THE TV ERROR BY UNDERDAMPED LANGEVIN CORRECTOR

We may adopt the idea from Chen et al. (2023a), who introduce the Langevin-correcting procedure
into the probability flow ODEs to get a TV error guarantee.

The Langevin dynamics for correcting purpose is defined as follows: let p be a distribution over Rd,
and write U as a shorthand for the potential − log p.

Given a friction parameter γ > 0, consider the following discretized process with step size τ , where
−∇U is replaced by a score estimator s. Let (ẑt, v̂t)t≥0 over Rd ⊗ Rd be given by

dẑt = v̂tdt,

dv̂t = (s(ẑ⌊t/τ⌋τ )− γv̂t)dt+
√
2γdwt. (17)

Denote the Markov kernel P̂ULMC to be defined by the equation 17, that is, if (ẑkτ , v̂kτ ) ∼ µ for
some µ be a distribution over Rd×d, (ẑ(k+1)τ , v̂(k+1)τ ) ∼ µP̂ULMC. We denote the k-th composition

8
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P̂ k
ULMC = P̂ULMC ◦ P̂ k−1

ULMC, and q = q⊗N (0, Id),p = p⊗N (0, Id). In what follows, we abuse the
notation as follows. Given a distribution q on Rd, we write qP̂ULMC to denote the projection onto
the z−coordinates of qP̂ULMC. It’s obvious that

TV(qP̂N
ULMC, p) ≤ TV(qP̂N

ULMC,p).

Now let’s take p = pdata as the data distribution, and q = qk for some k ≥ 1 as the output
distribution of k-th multistep consistency sampling defined as in equation 14. We can use the score
model sϕ(x, δ) ≈ ∇ log pδ(x) to do corrector steps. The end-to-end error now can be written as
follows:
Corollary 10 (see Section B.6 of Appendix). Under Assumptions 1-6, suppose q is: (1) the one step
consistency sampling result, q = q1 = fθ,T ♯N (0, Id); (2) the k-th multistep consistency sampling
result, q = qk defined as in equation 14 with multistep schedule as in Corollary 6. Choose γ ≍ Ls,
and δ ≍ ε2

L2
s(d∨m2) for some ε > 0, then if T ≥ max(log(2Lf ) + δ, L−1

s ), Nτ ≍ 1√
Ls

,

TV(q1P̂N
ULMC, pdata)

≲ (d
1
2 ∨m)LfL

1
2
s e

−T + TL
1
2
s (εcm + Lfεsc + LfL

3
2
s d

1
2h) + L

− 1
2

s εsc + L
1
2
s d

1
2 τ + ε,

TV(qkP̂N
ULMC, pdata)

≲ (log(Lf ) +
T

2k
)L

1
2
s (εcm + Lfεsc + LfL

3
2
s d

1
2h) +

(d
1
2 ∨m)L

1
2
s Lf

2keT
+ L

− 1
2

s εsc + L
1
2
s d

1
2 τ + ε.

In particular,

1. if we set T = O(log(
(d∨m2)L2

fLs

ε2 )), h = O( ε
LfL2

sd
1/2T

), τ = O( ε

L
1/2
s d1/2

), and if

εsc ≤ O( ε

TLfL
1/2
s

), εcm ≤ O( ε

TL
1/2
s

), then we can obtain TV error O(ε) with one step

consistency prediction and O(
√
d
ε ) steps correcting;

2. if we set k = O(log(T ∨ (
(d∨m2)LfLs

ε ))), h = O( ε
log(Lf )LfL2

sd
1/2 ), τ = O( ε

L
1/2
s d1/2

) and

if εsc ≤ O( ε

log(Lf )LfL
1/2
s

), εcm ≤ O( ε

log(Lf )L
1/2
s

), then we can obtain TV error O(ε) with

k steps consistency prediction and O(
√
d
ε ) steps correcting.

Remark 2. In case of missing the score model sϕ but only remain the consistency model fθ, such
as training the consistency model by CT objective 46 without a pretrained score model, we can also
recover a score model ŝθ that approx ∇ log pt2(x): in fact ŝθ(x) :=

fθ(x,t2)−eh1x
eh1−1

is a score model
that approximate ∇ log pt2(x) with L2 error εcm + εsc ( proved in Appendix, Lemma 14). Hence, we
may run similar procedure as in Theorem 10, where the output distribution qk of consistency model
should firstly be transformed with forward OU process equation 3 under a small time h1 = t2−δ <
δ, then apply the Underdamped Langevin Corrector Operator with ŝθ(x).

4 CONCLUSIONS AND LIMITATIONS

In this work, we provided a first convergence guarantee for CMs which holds true under realistic
assumptions (L2-accurate score and consistency function surrogates; arbitrarily data distributions
with smooth densities respect to Lebesgue measure, or bounded distributions) and which scale at
most polynomially in all relavent parameters. Our results take a step towards explaining the success
of CMs. We also provide theoretical evidence that multistep CM sampling technique can further
reduce the error comparing to one step CM sampling .

There are mainly three shortcomings in our work. Firstly, our proofs relied on the lipschitz con-
ditions of the surrogate model fθ, which is somehow unrealistic. We will keep in improving our
results by replacing this condition on the exact consistency function f ex in our future works. Sec-
ondly, to bound the TV error, we introduced an additional smoothing procedure after the original
CM sampling steps. It would be better to remove this unnatural procedure by introduce new as-
sumptions or techniques. Lastly, we did not address the question of when the score and consistency
function can be learned well enough. We believe that the resolution of these problem would shed
considerable light on Consistency Models.

9
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A COMMON SYMBOLS

• ∗: the convolution operator defined for two functions f, g ∈ L2(Rd).
f ∗ g(x) :=

∫
Rd f(x− u)g(u)du.

• ≲: less or similar to. If a ≲ b, it means a ≤ Cb for some constant C.

• ♯ the push-forward operator associated with a measurable map f : M → N . For any
measure µ over M, we may define the push-forward measure f♯µ over N by: f♯µ(A) =
µ(f−1(A)), for any A be measurable set in N .

• ∨: take the larger one. a ∨ b = max(a, b);
∧: take the smaller one. a ∧ b = min(a, b).

• ≍: asymptotic to. If an ≍ bn, it means limn→∞ an/bn = C for some constant C.

• [[a, b]] := [a, b] ∩ Z. For example, [[1, N ]] = {1, 2, 3, · · · , N}, for any N ∈ Z+

B PROOFS

B.1 PROOFS FOR THEOREM 2

Before we proof our main theorem, we introduce a score perturbation lemma which comes from
Lemma 1 in Chen et al. (2023a).

Lemma 11 (Lemma 1 in Chen et al. (2023a)). (Score perturbation for xt). Suppose pt(x) =
edtpdata(e

tx)∗N (0, (1−e−2t)Id) started at p0, and x0 ∼ p0, dxt = −xt−∇ log pt(x). Suppose
that ∥∇2 log pt(x)∥op ≤ L for all x ∈ Rd and t ∈ [0, T ], where L ≥ 1. Then,

E

[∥∥∥∥ ∂∂t∇ log pt(xt)

∥∥∥∥2
2

]
≲ L2d(L+

1

t
)

Proof of Theorem 2. We divide the left-hand side by Cauchy-Schwarz inequality as follows: let xt

be the solution to the probability flow ODE 4. Notice that f ex(xtn , tn) = xδ = fθ(xt1 , t1)(
Extn∼ptn

[∥fθ(xtn , tn)− f ex(xtn , tn)∥22]
)1/2

=

Extn∼ptn

∥∥∥∥∥
n−1∑
k=1

(fθ(xtk+1
, tk+1)− fθ(xtk , tk))

∥∥∥∥∥
2

2

1/2

≤
n−1∑
k=1

(
Extn∼ptn

[∥∥fθ(xtk+1
, tk+1)− fθ(xtk , tk)

∥∥2
2

])1/2
=

n−1∑
k=1

(
Extn∼ptn

[∥∥∥fθ(xtk+1
, tk+1)− fθ(x̂

ϕ
tk
, tk) + fθ(x̂

ϕ
tk
, tk)− fθ(xtk , tk)

∥∥∥2
2

])1/2

≤
n−1∑
k=1

(
Extn∼ptn

[∥∥∥fθ(xtk+1
, tk+1)− fθ(x̂

ϕ
tk
, tk)

∥∥∥2
2

])1/2

+

n−1∑
k=1

(
Extn∼ptn

[∥∥∥fθ(x̂
ϕ
tk
, tk)− fθ(xtk , tk)

∥∥∥2
2

])1/2

:=E1 + E2 (18)
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We can bound E1 by assumption 4: note that

E1 =

n−1∑
k=1

(
Extn∼ptn

[∥∥∥fθ(xtk+1
, tk+1)− fθ(x̂

ϕ
tk
, tk)

∥∥∥2
2

])1/2

=

n−1∑
k=1

(
Extk+1

∼ptk+1

[∥∥∥fθ(xtk+1
, tk+1)− fθ(x̂

ϕ
tk
, tk)

∥∥∥2
2

])1/2

≤εcm

n−1∑
k=1

hk = εcm(tn − t1), (19)

where the last equality we use the fact that when xt satisfies equation 4 and xtn ∼ ptn ,xtk ∼ ptk
for all k ≤ N .

Now we turn to bounding the second term. We notice that by Lipschitz assumption 5,

E2 =

(
n−1∑
k=1

Extn∼ptn

[∥∥∥fθ(x̂
ϕ
tk
, tk)− fθ(xtk , tk)

∥∥∥2
2

])1/2

≤
n−1∑
k=1

Lf

(
Extn∼ptn

[
∥x̂ϕ

tk
− xtk∥22

])1/2
=

n−1∑
k=1

Lf

(
Extk+1

∼ptk+1

[
∥x̂ϕ

tk
− xtk∥22

])1/2
(20)

Now let us bound the term ∥x̂ϕ
tk

− xtk∥22. Note that x̂ϕ
tk

is the exponential integrator solution to the
ODE 6, we have

dxt = −(xt +∇ log pt(xt))dt,

dx̂ϕ
t = −(x̂ϕ

t + s(x̂ϕ
tk+1

, tk+1))dt. (21)

for tk ≤ t ≤ tk+1 with x̂ϕ
tk+1

= xtk+1
. Denote hk = tk+1 − tk, then,

∂

∂t
∥x̂ϕ

t − xt∥22 = 2⟨x̂ϕ
t − xt,

∂

∂t
(x̂ϕ

t − xt)⟩

= 2
(
∥x̂ϕ

t − xt∥22 + ⟨x̂ϕ
t − xt, s(xtk+1

, tk+1)−∇ log pt(xt)⟩
)

≤ (2 +
1

hk
)∥x̂ϕ

t − xt∥22 + hk∥s(xtk+1
, tk+1)−∇ log pt(xt)∥22. (22)

By Grönwall’s inequality,

Extk+1
∼ptk+1

[
∥x̂ϕ

tk
− xtk∥22

]
≤ exp((2 +

1

hk
)hk)

∫ tk+1

tk

hkExtk+1
∼ptk+1

[
∥s(xtk+1

, tk+1)−∇ log pt(xt)∥22
]
dt

≲ hk

∫ tk+1

tk

Extk+1
∼ptk+1

[
∥s(xtk+1

, tk+1)−∇ log pt(xt)∥22
]
dt. (23)

We split up the error term as

∥s(xtk+1
, tk+1)−∇ log pt(xt)∥22

≲ ∥s(xtk+1
, tk+1)−∇ log ptk+1

(xtk+1
)∥22 + ∥∇ log ptk+1

(xtk+1
)−∇ log pt(xt)∥22.

(24)
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By assumption 3, the first term is bounded in expectation by ε2sc. By Lemma 11 and tk ≤ t ≤ tk+1,
the second term is bounded by

Extk+1
∼ptk+1

[
∥∇ log ptk+1

(xtk+1
)−∇ log pt(xt)∥22

]
= Extk+1

∼ptk+1

[∥∥∥∥∫ tk+1

t

∂

∂u
∇ log pu(xu)du

∥∥∥∥2
2

]

≤ (tk+1 − t)

∫ tk+1

t

E

[∥∥∥∥ ∂∂u∇ log pu(xu)

∥∥∥∥2
2

]
du

≤ hk

∫ tk+1

t

L2
sd(Ls +

1

u
)du

≲ L2
sdh

2
k(Ls +

1

tk
), (25)

thus

Extk+1
∼ptk+1

[
∥x̂ϕ

tk
− xtk∥22

]
≤ h2k(L

2
sdh

2
k(Ls +

1

tk
) + ε2sc),

Now take it back to equation 20

E2 ≲ LfL
3
2
s d

1
2

N∑
k=1

h2k + LfLsd
1
2

N∑
k=1

h2k

t
1
2

k

+ Lfεsc

N∑
k=1

hk

≲ LfL
3
2
s d

1
2h(tn − t1) + LfLsd

1
2h(tn − t1)

1
2 + Lfεsc(tn − t1) (26)

as we specially designed hk for k ∈ [[1, N1]] such that hk ≤ tk+1

2 , which implies
∑N

k=1
hk

t
1
2
k

is a

constant-factor approximation of the integral
∫ tn
t1

1

t
1
2
dt ≲

√
tn − t1.

Combining equations 19 and 26, we immediately get the result.

B.2 PROOF OF THEOREM 3 AND COROLLARY 4

Proof of Theorem 3. Take a couple of (Y ,Z) ∼ γ(y, z) where γ ∈ Γ(µ, ptn) is a coupling be-
tween µ and ptn , that is, ∫

Rd

γ(y, z)dz = µ(y), (27)∫
Rd

γ(y, z)dy = ptn(z). (28)

then we have fθ(Y , tn) ∼ fθ,tn♯µ, f ex(Z, tn) ∼ pδ , thus

W2(fθ,tn♯µ, pδ) ≤
(
Eγ

[
∥fθ(Y , tn)− f ex(Z, tn)∥22

])1/2
≤
(
Eγ

[
∥fθ(Y , tn)− fθ(Z, tn)∥22

])1/2
+
(
Eγ

[
∥fθ(Z, tn)− f ex(Z, tn)∥22

])1/2
≤ Lf

(
Eγ

[
∥Y −Z∥22

])1/2
+ tn(εcm + Lfεsc + LfL

3
2
s d

1
2h) + t

1
2
nLfLsd

1
2h.

(29)

Note that γ can be any coupling between µ and ptn , this implies

W2(fθ,tn♯µ, pδ) ≤ LfW2(µ, ptn) + tn(εcm + Lfεsc + LfL
3
2
s d

1
2h) + t

1
2
nLfLsd

1
2h

14
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Proof of Corollary 4. We first proof that

W2(fθ,T ♯N (0, Id), pδ) ≲ (d
1
2 ∨m)Lfe

−T + T (εcm + Lfεsc + LfL
3
2
s d

1
2h). (30)

This follows directly from the fact that e−Tx0 +
√
1− e−2T ξ ∼ pT (x), if ξ ∼ N (0, Id), thus

W2(N (0, (1− e−2T )Id), pT ) ≤
(
Epdata

[∥e−Tx0 + (
√
1− e−2T − 1)ξ∥22]

)1/2
≲ (

√
d ∨m)e−T

and Theorem 3, where we taking µ = N (0, Id).

The corollary then follow from a simple triangular inequality and the fact that

W2(pδ, p0) ≤
(
Epdata

[∥(1− e−δ)x0 + (
√

1− e−2δ)ξ∥22]
)1/2

≤ ((1− e−δ)2m2 + (1− e−2δ)d)1/2

≲ (
√
d ∨m)

√
δ. (31)

B.3 PROOFS FOR COROLLARY 5 AND 6

Proof of Corollary 5. Take a couple of (Y ,Z) ∼ γ(y, z) where γ ∈ Γ(qk−1, pδ), take ξ ∼
N (0, Id), then we have

Ŷ = e−(tkn−δ)Y +
√

1− e−2(tkn−δ)ξ ∼ µk,

Ẑ = e−(tkn−δ)Z +
√

1− e−2(tkn−δ)ξ ∼ ptnk
, (32)

The statement follows from the fact that

W2(fθ,tnk
♯µk, pδ) ≲ LfW2(µk, ptnk

) + tn(εcm + Lfεsc + LfL
3
2
s d

1
2h) + t

1
2
nLfLsd

1
2h

≤ Lf (Eγ∥Ŷ − Ẑ∥22)1/2 + tn(εcm + Lfεsc + LfL
3
2
s d

1
2h) + t

1
2
nLfLsd

1
2h

= Lfe
−(tkn−δ)(Eγ∥Y −Z∥22)1/2 + tn(εcm + Lfεsc + LfL

3
2
s d

1
2h) + t

1
2
nLfLsd

1
2h

(33)

and γ can be arbitrary coupling between qk−1 and pδ , which means

W2(qk, pδ) ≲ Lfe
−(tnk

−δ)W2(qk−1, pδ) + tnk
(εcm + Lfεsc + LfL

3
2
s d

1
2h) + t

1
2
nkLfLsd

1
2h.

Proof of Corollary 6. For the first statement, fix nk ≡ n̂, note that Ls ≥ 1, tn̂ ≥ log(2Lf ) + δ,
according to the proof of Corollary 5, we may assume C is the constant factor such that

W2(qk, pδ) ≤ Lfe
−(tn̂−δ)W2(qk−1, pδ) + Ctn̂(εcm + Lfεsc + LfL

3
2
s d

1
2h).

where we omit the term with t
1
2

n̂ as it is controlled by the terms with tn̂. Denote

D = C(εcm + Lfεsc + LfL
3
2
s d

1
2h) and Ek =W2(qk, pdata)

for short, we have
Ek ≤ Lfe

−(tn̂−δ)Ek−1 + tn̂D,

which means

Ek − tn̂D

1− Lfe−(tn̂−δ)
≤ Lfe

−(tn̂−δ)

(
Ek−1 −

tn̂D

1− Lfe−(tn̂−δ)

)
,

thus,

1. if Ek−1 ≤ tn̂D
1−Lfe

−(tn̂−δ) , EK ≤ tn̂D
1−Lfe

−(tn̂−δ) for all K ≥ k;

15
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2. if Ek−1 >
tn̂D

1−Lfe
−(tn̂−δ) ,

Ek ≤ tn̂D

1− Lfe−(tn̂−δ)
+
(
Lfe

−(tn̂−δ)
)k−1

(
E1 −

tn̂D

1− Lfe−(tn̂−δ)

)
. (34)

These observation shows that Ek is exponentially upper-bounded by tn̂D
1−Lfe

−(tn̂−δ) , and such an
upper bound can be further minimized over n̂ ∈ [[1, N ]]: in fact if we take tn̂ ≈ log(2Lf ) + δ, then

tn̂D

1− Lfe−(tn̂−δ)
≈ 2 log(2Lf )D = O(log(Lf )D).

together with Lfe
−(tn̂−δ) ≈ 1

2 , E1 = O((d
1
2 ∨ m)Lfe

−T + T (εcm + Lfεsc + LfL
3
2
s d

1
2h)), this

completes the proof of the first statement.

The second statement follows from the fact that

W2(pδ, p0) ≤
(
Epdata

[∥(1− e−δ)x0 + (
√

1− e−2δ)ξ∥22]
)1/2

≤ ((1− e−δ)2m2 + (1− e−2δ)d)1/2

≲ (
√
d ∨m)

√
δ. (35)

and a simple use of triangular inequality: W2(qk, p0) ≤W2(qk, pδ) +W2(pδ, p0).

B.4 PROOF OF LEMMA 7 AND COROLLARY 8

Proof of Lemma 7. Let µx,σ2 be the density µ(du) weighted with the gaussian ψσ2(u − x) ∼

e−
∥x−u∥22

2σ2 , that is,

µx,σ2(du) =
e−

∥x−u∥22
2σ2 µ(du)∫

Rd e
− ∥x−ũ∥22

2σ2 µ(dũ)

.

Note that

∇ log(µ∗ψσ2(x)) =
∇
∫
Rd e

− ∥x−u∥22
2σ2 µ(du)∫

Rd e
− ∥x−u∥22

2σ2 µ(du)

=

∫
Rd −x−u

σ2 e−
∥x−u∥22

2σ2 µ(du)∫
Rd e

− ∥x−u∥22
2σ2 µ(du)

= − 1

σ2
Eµx,σ2 [x−u],

∇2 log(µ ∗ ψσ2(x)) =
∇⊗

∫
Rd −x−u

σ2 e−
∥x−u∥22

2σ2 µ(du)∫
Rd e

− ∥x−u∥22
2σ2 µ(du)

−

∫Rd −x−u
σ2 e−

∥x−u∥22
2σ2 µ(du)∫

Rd e
− ∥x−u∥22

2σ2 µ(du)

⊗2

= − 1

σ2
Id +

∫
Rd

(
x−u
σ2

)⊗2
e−

∥x−u∥22
2σ2 µ(du)∫

Rd e
− ∥x−u∥22

2σ2 µ(du)

−

∫Rd −x−u
σ2 e−

∥x−u∥22
2σ2 µ(du)∫

Rd e
− ∥x−u∥22

2σ2 µ(du)

⊗2

=
1

σ4

∫
Rd

(u− Eµx,σ2 [u])⊗ (u− Eµx,σ2 [u])µx,σ2(du)− 1

σ2
Id (36)

where for any vector y ∈ Rd, we denote y⊗2 = y ⊗ y = yyT ∈ Rd×d as a matrix and denote
∇⊗ f(x) as the Jacobbian matrix [∂fi(x)∂xj

]1≤i,j≤d

Note that if µ is bounded on a set of radius R, so as µx,σ2 , then the covariance of µx,σ2 is bounded
by R2 in operator norm.

Now we take µ(u) = edtp0(e
tu), which is bounded on a set of radius e−tR. Take σ2 = 1 − e−2t,

we have µ ∗ ψσ2(x) = pt(x), thus

∥∇2 log pt(x)∥op ≤ e−2tR2

(1− e−2t)2
+

1

1− e−2t
.

16
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Proof of Corollary 8. Note that supp pdata ⊆ B(0, R) implies Ex0∼pdata
[∥x0∥22] ≲ R2. Taking

δ ≍ ε2

R2∨d , according to Lemma 7, we have

∥∇2 log pt(x)∥op ≤ e−2tR2

(1− e−2t)2
+

1

1− e−2t
≲

1

t
∨ R2

t2
≲
R2(R2 ∨ d)2

ε4
,∀t ≥ δ

and thus ∇ log pt(x) satisfies Assumption 2 with Ls ≍ R2(R2∨d)2

ε4 for t ≥ δ. Now according to
Corollary 4, we have that

W2(fθ,T ♯N (0, Id), pdata) ≲ (d
1
2 ∨R)Lfe

−T + T (εcm + Lfεsc +
Lfd

1
2R3(R2 ∨ d)3h

ε6
) + ε,

thus if we take h = O( ε7

d1/2R3(R6∨d3)LfT
), εcm = O( ε

T ), εsc = O( ε
LfT

), T = O(log(
Lf (

√
d∨R)
ε )),

we can guarantee W2(fθ,T ♯N (0, Id), pdata) ≲ ε.

Similarly, according to Corollary 6, we have

W2(qk, pdata) ≲ (log(Lf )+2−kT )(εcm+Lfεsc+
Lfd

1
2R3(R2 ∨ d)3h

ε6
)+2−k(d

1
2 ∨m)Lfe

−T +ε,

thus if we take h = O( ε7

d1/2R3(R6∨d3)Lf log(Lf )
), εcm = O( ε

log(Lf )
), εsc = O( ε

Lf log(Lf )
), k =

O(log(T ∨ (
(d∨m2)LfLs

ε ))), we can guarantee W2(qk, pdata) ≲ ε.

B.5 PROOF OF COROLLARY 9

Before we prove the corollary 9, we first prove the following lemma, which shows that TV error can
be bounded after a small time OU regularization.

Lemma 12. For any two distribution p and q, running the OU process 16 for p, q individually with
time τ > 0, the following TV distance bound holds,

TV(pP τ
OU, qP

τ
OU) ≲

1√
τ
W1(p, q) ≤

1√
τ
W2(p, q)

Proof. Denote ψσ2(y) as the density function to the normal distribution N (0, σ2Id). We write the
TV(pP τ

OU, qP
τ
OU) into integral form as:

TV(pP τ
OU, qP

τ
OU) =

1

2

∫
Rd

|(pP τ
OU)(x)− (qP τ

OU)(x)|dx

=
1

2

∫
Rd

∣∣∣∣∫
Rd

p(y)ψ1−e−2τ (x− e−τy)dy −
∫
Rd

q(z)ψ1−e−2τ (x− e−τz)dz

∣∣∣∣dx.
(37)

Taking a coupling γ ∈ Γ(p, q), ∫
Rd

γ(y, z)dz = p(y),∫
Rd

γ(y, z)dy = q(z), (38)

17
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we have

TV(pP τ
OU, qP

τ
OU) =

1

2

∫
Rd

∣∣∣∣∫
Rd×d

γ(y, z)[ψ1−e−2τ (x− e−τy)− ψ1−e−2τ (x− e−τz)]dydz

∣∣∣∣dx.
≤ 1

2

∫
Rd

∫
Rd×d

γ(y, z)
∣∣ψ1−e−2τ (x− e−τy)− ψ1−e−2τ (x− e−τz)

∣∣dydzdx
=

∫
Rd×d

γ(y, z)

(
1

2

∫
Rd

∣∣ψ1−e−2τ (x− e−τy)− ψ1−e−2τ (x− e−τz)
∣∣ dx)dydz

=

∫
Rd×d

γ(y, z)TV
(
ψ1−e−2τ (· − e−τy), ψ1−e−2τ (· − e−τz)

)
dydz

≤
∫
Rd×d

γ(y, z)

√
1

2
KL
(
ψ1−e−2τ (· − e−τy)

∥∥∥ψ1−e−2τ (· − e−τz)
)
dydz

=

∫
Rd×d

γ(y, z)
1

2

√
e−2τ

1− e−2τ
∥y − z∥22dydz

=
1

2
√
e2τ − 1

∫
Rd×d

γ(y, z)∥y − z∥2dydz, (39)

where for the second inequality we use the fact that TV(u, v) ≤
√

1
2KL(u∥v), and the next equality

we use the formula of KL divergence between two Gaussian distribution. Noting 1
2
√
e2τ−1

≤ 1
2
√
2τ

,
and taking γ over all coupling Γ(p, q), we have

TV(pP τ
OU, qP

τ
OU) ≲

1√
τ
W1(p, q) ≤

1√
τ
W2(p, q)

Proof of Corollary 9. According to the triangular inequality, Lemma 12 and equation 12,

TV(q1P
δ
OU, pdata) ≤ TV(q1P

δ
OU, pδP

δ
OU) + TV(pδP

δ
OU, pdata)

≲
1√
δ
W2(q1, pδ) + TV(p2δ, pdata)

≲
1√
δ

(
(d

1
2 ∨m)Lfe

−T + T (εcm + Lfεsc + LfL
3
2
s d

1
2h)
)
+ TV(p2δ, pdata).

(40)

Note that if we take δ ≍ ε2

L2
s(d∨m2) , then by Lemma 6.4, Lee et al. (2022b), TV(p2δ, pdata) ≤ ε, this

concludes that

TV(q1P
δ
OU, pdata) ≲

Ls(d
1
2 ∨m)

ε
[(logLf +

T

2k
)(εcm + Lfεsc + LfL

3
2
s d

1
2h) +

(d
1
2 ∨m)Lf

2keT
] + ε.

Similarly for qk, if we take δ ≍ ε2

L2
s(d∨m2)

TV(qkP
δ
OU, pdata) (41)

≤TV(qkP
δ
OU, pδP

δ
OU) + TV(pδP

δ
OU, pdata)

≲
Ls(d

1
2 ∨m)

ε
[(logLf +

T

2k
)(εcm + Lfεsc + LfL

3
2
s d

1
2h) +

(d
1
2 ∨m)Lf

2keT
] + ε. (42)

B.6 PROOF OF COROLLARY 10

We first introduce the following lemma which originally comes from Theorem 5 in Chen et al.
(2023a).

18
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Lemma 13 (Underdamped corrector, Theorem 5 in Chen et al. (2023a)). Denote the Markov kernel
P̂ULMC to be defined by the equation 17. Suppose γ ≍ Ls, ∇U is Ls-Lipschitz, p ∝ exp(−U), and
Ex∼q∥s(x) − (−∇U(x))∥22 ≤ ε2sc. Denote p := p ⊗ N (0, Id), and q := q ⊗ N (0, Id). For any
Tcorr := Nτ ≲ 1/

√
Ls,

TV(qP̂N
ULMC,p) ≲

W2(q, p)

L
1/4
s T

3/2
corr

+
εscT

1/2
corr

L
1/4
s

+ L3/4
s T 1/2

corr d
1/2τ.

In particular, for Tcorr ≍ 1/
√
Ls,

TV(qP̂N
ULMC,p) ≲

√
LsW2(q, p) + εsc/

√
Ls +

√
Lsdτ.

Under the Lemma 13, we can immediately get the following result,

Proof of Corollary 10. Given any distribution q on Rd, we write qP̂ULMC to denote the projection
onto the z−coordinates of qP̂ULMC. Now according to 13, we have

TV(q1P̂
N
ULMC, pdata) ≤ TV(q1P̂

N
ULMC, pδ) + TV(pδ, pdata)

≲
√
LsW2(q1, pδ) + εsc/

√
Ls +

√
Lsdτ + TV(pδ, pdata). (43)

According to equation 12, we have

TV(q1P̂
N
ULMC, pdata)

≲ (d
1
2 ∨m)LfL

1
2
s e

−T + TL
1
2
s (εcm + Lfεsc + LfL

3
2
s d

1
2h) + L

− 1
2

s εsc + L
1
2
s d

1
2 τ + ε. (44)

Similarly, we have

TV(qkP̂
N
ULMC, pdata)

≲ (log(Lf ) +
T

2k
)L

1
2
s (εcm + Lfεsc + LfL

3
2
s d

1
2h) +

(d
1
2 ∨m)L

1
2
s Lf

2keT
+ L

− 1
2

s εsc + L
1
2
s d

1
2 τ + ε.

(45)

C ADDITIONAL PROOFS

Lemma 14. Assuming 3 and 4, then ŝθ(x) := fθ(x,t2)−eh1x
eh1−1

is a score model approximating
∇ log pt2(x) with L2 error εcm + εsc.

Proof. Letting h1 = t2 − t1 = t2 − δ, the consistency loss assumption 4 ensures

Ext2
∼pt2

[
∥fθ(xt2 , t2)− fθ(x̂

ϕ
t1 , t1)∥

2
2

]
≤ ε2cmh

2
1,

where we have fθ(x̂
ϕ
t1 , t1) = x̂ϕ

t1 = eh1xt2 + (eh1 − 1)sϕ(xt2 , t2), thus

Ext2∼pt2

[∥∥∥∥fθ(xt2 , t2)− eh1xt2

eh1 − 1
− sϕ(xt2 , t2)

∥∥∥∥2
2

]
≤ ε2cm

h21
(eh1 − 1)2

≤ ε2cm,

Ext2
∼pt2

[∥∥∥∥fθ(xt2 , t2)− eh1xt2

eh1 − 1
−∇ log pt2(x)

∥∥∥∥2
2

]

≤Ext2∼pt2

[(∥∥∥∥fθ(xt2 , t2)− eh1xt2

eh1 − 1
− sϕ(xt2 , t2)

∥∥∥∥
2

+

∥∥∥∥sϕ(xt2 , t2)−∇ log pt2(x)

∥∥∥∥
2

)2
]

≤(εcm + εsc)
2.

19



Under review as a conference paper at ICLR 2024

Lemma 15. Under the OU scheduler 5, let ∆t := max1≤n≤N−1(tn+1 − tn). Assume fθ− is
twice continuously differentiable with bounded second derivatives, and E[∥∇ log ptn(xtn)∥22] <
∞. Assume the CD objective 8 is defined with the exponential integrator 9 and exact score model
sϕ(x, t) = ∇ log pt(x), then we can define the CT objective as

LN
CT(θ,θ

−) := E[∥fθ(e
−tn+1x0+

√
1− e−2tn+1z, tn+1)−fθ−(e−tnx0+

1− e−(tn+tn+1)

√
1− e−2tn+1

z, tn)∥22],

(46)
where x0 ∼ pdata, z ∼ N (0, Id). Then we have

∂

∂θ
LN

CT(θ,θ
−) =

∂

∂θ
LN

CD(θ,θ
−) +O((∆t)2)

Proof. We first prove that, if x0 ∼ pdata, z ∼ N (0, Id),xt = e−tx0 +
√
1− e−2tz, then we have

∇ log pt(x) = −E[ z√
1−e−2t

|xt]. This comes from the fact that

∇ log pt(xt) =

∫
Rd pdata(x0)∇xt

p(xt|x0)dx0∫
Rd pdata(x0)p(xt|x0)dx0

=

∫
Rd pdata(x0)p(xt|x0)∇xt

log p(xt|x0)dx0

pt(xt)

=

∫
Rd

pdata(x0)p(xt|x0)

pt(xt)
∇xt

log p(xt|x0)dx0

=

∫
Rd

p(x0|xt)∇xt
log p(xt|x0)dx0

= E[∇xt log p(xt|x0)|xt],

and p(xt|x0) ∼ e
− ∥xt−e−tx0∥2

2(1−e−2t) , which means

∇xt
log p(xt|x0) = −xt − e−tx0

1− e−2t
= − z√

1− e−2t
.

Now we may rewrite ∂
∂θL

N
CD(θ,θ

−) as

∂

∂θ
LN

CD(θ,θ
−) =

∂

∂θ
E[∥fθ(xtn+1 , tn+1)− fθ−

(
e(tn+1−tn)xtn+1 + (e(tn+1−tn) − 1)∇ log ptn+1(xtn+1), tn

)
∥22]

=
∂

∂θ
E
[
∥fθ(xtn+1

, tn+1)∥22 − 2
〈
fθ(xtn+1

, tn+1),fθ−

(
e(tn+1−tn)xtn+1

+ (e(tn+1−tn) − 1)∇ log ptn+1
(xtn+1

), tn

)〉]
,

and similarly,

∂

∂θ
LN

CT(θ,θ
−) =

∂

∂θ
E

[∥∥∥∥fθ(xtn+1
, tn+1)− fθ−

(
e−tnx0 +

1− e−(tn+tn+1)

√
1− e−2tn+1

z, tn

)∥∥∥∥2
2

]

=
∂

∂θ
E
[
∥fθ(xtn+1

, tn+1)∥22 − 2

〈
fθ(xtn+1

, tn+1),fθ−

(
e−tnx0 +

1− e−(tn+tn+1)

√
1− e−2tn+1

z, tn

)〉]
,

thus

∂

∂θ
LN

CD(θ,θ
−)− ∂

∂θ
LN

CT(θ,θ
−)

=2E
[〈

∂

∂θ
fθ(xtn+1 , tn+1),

fθ−

(
e−tnx0 +

1− e−(tn+tn+1)

√
1− e−2tn+1

z, tn

)
− fθ−

(
e(tn+1−tn)xtn+1 + (e(tn+1−tn) − 1)∇ log ptn+1(xtn+1), tn

)〉]
.
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Notice that

fθ−

(
e−tnx0 +

1− e−(tn+tn+1)

√
1− e−2tn+1

z, tn

)
− fθ−

(
e(tn+1−tn)xtn+1 + (e(tn+1−tn) − 1)∇ log ptn+1(xtn+1), tn

)
=∇xfθ−(e(tn+1−tn)xtn+1

+ (e(tn+1−tn) − 1)∇ log ptn+1
(xtn+1

), tn)·(
1− e−(tn+tn+1)

√
1− e−2tn+1

z − e(tn+1−tn)
√

1− e−2tnz + (e(tn+1−tn) − 1)∇ log ptn+1(xtn+1)

)
+O((tn+1 − tn)

2)

=∇xfθ−(e(tn+1−tn)xtn+1
+ (etn+1−tn − 1)∇ log ptn+1

(xtn+1
), tn)·

(e(tn+1−tn) − 1)

(
z√

1− e−2tn+1
− E

[
z√

1− e−2tn+1

∣∣∣∣xtn+1

])
+O((tn+1 − tn)

2),

we have (writing the terms related of xtn+1 , tn+1 with C(xtn+1 , tn+1) for simplicity)

∂

∂θ
LN

CD(θ,θ
−)− ∂

∂θ
LN

CT(θ,θ
−)

=E[C(xtn+1 , tn+1)(z − E[z|xtn+1 ])] +O((tn+1 − tn)
2)

=E[C(xtn+1
, tn+1)z]− E[E[C(xtn+1

, tn+1)z|xtn+1
]] +O((tn+1 − tn)

2)

=O((tn+1 − tn)
2)

which finishes the proof.
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