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ABSTRACT

Effective scaling and a flexible task interface enable large language models to excel
at many tasks. We present PaLI (Pathways Language and Image model), a model
that extends this approach to the joint modeling of language and vision. PaLI
generates text based on visual and textual inputs, and with this interface performs
many vision, language, and multimodal tasks, in many languages. To train PaLI,
we make use of large pre-trained encoder-decoder language models and Vision
Transformers (ViTs). This allows us to capitalize on their existing capabilities
and leverage the substantial cost of training them. We find that joint scaling of
the vision and language components is important. Since existing Transformers for
language are much larger than their vision counterparts, we train a large, 4-billion
parameter ViT (ViT-e) to quantify the benefits from even larger-capacity vision
models. To train PaLI, we create a large multilingual mix of pre-training tasks,
based on a new image-text training set containing 10B images and texts in over
100 languages. PaLI achieves state-of-the-art in multiple vision and language tasks
(such as captioning, visual question-answering, scene-text understanding), while
retaining a simple, modular, and scalable design.

1 INTRODUCTION

Increasing neural network capacity has been a successful trend in the modeling of language and
vision tasks. On the language side, models such as T5 (Raffel et al., 2020), GPT-3 (Brown et al.,
2020), Megatron-Turing (Shoeybi et al., 2019), GLaM (Du et al., 2022), Chinchilla (Hoffmann et al.,
2022), and PaLM (Chowdhery et al., 2022) have shown significant advantages from training large
Transformers on large amounts text data. On the vision side, CNNs (Mahajan et al., 2018; Huang
et al., 2019; Kolesnikov et al., 2020), Vision Transformers (Dosovitskiy et al., 2021), and other
models (Tolstikhin et al., 2021; Riquelme et al., 2021) have seen similar benefits from scale (Zhai
et al., 2022a), albeit to a lesser extent than in language. Language-and-vision modeling has followed
a similar trend, e.g., SimVLM (Wang et al., 2021), Florence (Yuan et al., 2021), CoCa (Yu et al.,
2022), GIT (Wang et al., 2022a), BEiT-3 (Wang et al., 2022c), and Flamingo (Alayrac et al., 2022).

We introduce PaLI, a model that performs image-only, language-only, and image+language tasks
across many languages, using a single “image-and-text to text” interface. A key characteristic of
PaLI is a more balanced parameter share between the language and vision components, with more
capacity to the vision backbone yielding large gains in performance. Another key ingredient to PaLI
is the reuse of large unimodal backbones for language and vision modeling, in order to transfer
existing capabilities and reduce training cost. On the language side, we reuse the 13B-parameter
model mT5-XXL (Xue et al., 2021), which already packages language understanding and generation
capabilities. We show that these capabilities are maintained and extended into a multimodal setting.
On the vision side, in addition to reusing the 2B-parameter ViT-G model (Zhai et al., 2022a), we
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train a 4B-parameter model, which we call ViT-e (“enormous”). ViT-e achieves good performance on
image-only tasks, such as 90.9% ImageNet fine-tuning, and 84.9% on ObjectNet (Barbu et al., 2019).

We find benefits from jointly scaling both the vision and the language components, with vision
providing a better return on investment (accuracy improvement per parameter/FLOP). As a result,
the capacity of our largest PaLI model, PaLI-17B, is distributed relatively equitably between the two
modalities, with the ViT-e component accounting for about 25% of the total parameter count. This
is not always the case for prior work in large-capacity vision and language modeling (Wang et al.,
2022a; Alayrac et al., 2022), due to the prior scale mismatch between vision and language backbones.
We enable knowledge-sharing between multiple image and/or language tasks by casting them into a
generalized VQA-like task. We frame all tasks using an “image+query to answer” modeling interface,
in which both the query and answer are expressed as text tokens. This allows PaLI to capitalize on
transfer learning across tasks, and enhance language-and-image understanding capabilities in a wide
range of vision and language problems: image captioning, visual question-answering, scene-text
understanding, and others (Figure 1).

To train PaLI-17B, we build a new high-volume image-and-language dataset WebLI, which consists
of 10 billion images and tens of billions of image-text pairs. Importantly, the WebLI dataset contains
text in over 100 languages. By training the model to perform multimodal tasks in many languages,
we greatly increase the task diversity, and test the model’s ability to effectively scale both across tasks
and across languages. As a reference for future usage, we provide a data card to report information
about the WebLI and its construction.

PaLI-17B achieves state-of-the-art (SOTA) results on multiple benchmarks, outperforming some
strong models. Specifically, PaLI outperforms recent and concurrent models on the long-standing
COCO Captioning benchmark (Chen et al., 2015), with 149.1 CIDEr score on the Karpathy
split (Karpathy & Fei-Fei, 2015). PaLI also achieves a new SOTA of 84.3% on VQAv2 (Goyal et al.,
2017) while using an open-vocabulary text generative setting that is similar to Flamingo (Alayrac
et al., 2022). This result outperforms even models evaluated in a fixed-vocabulary classification
setting, e.g. CoCa (Yu et al., 2022), SimVLM (Wang et al., 2021), BEiT-3 (Wang et al., 2022c). Last
but not least, our work provides a scaling roadmap for future multimodal models. Our results support
the conclusion that scaling the components of each modality yields better performance compared
to more skewed alternatives. Model scaling is also important for language-image understanding in
multiple languages. In summary, our contributions are the following:

• We design a simple, modularized and scalable sequence-to-sequence learning architecture
that can be efficiently trained by reusing existing Transformer-based unimodal checkpoints.

• We perform joint scaling on both the language and vision components for a wide range
of parameters, and show no saturation of performance on both components for the largest
model size we consider, PaLI-17B. More importantly, we show that multimodal performance
greatly benefits from scaling the vision component beyond the previous-largest ViT, which
provides a scaling roadmap for future vision & language models.

• We empirically validate that a mixture-of-objectives benefits the performance of large vision
& language models.

• We scale up pre-training data to include over 100 languages, and train a large-capacity
multilingual multimodal model. We show that a properly-scaled model can handle well a
large number of languages, while still achieving SOTA performance on English-only tasks.

2 RELATED WORK

Pre-trained models have proven effective in both vision (Dosovitskiy et al., 2021; Zhai et al., 2022a)
and language (Raffel et al., 2020; Brown et al., 2020) tasks. Image-text pre-training has also become
the default approach to tackle V&L tasks (Tan & Bansal, 2019; Chen et al., 2020; Zhang et al., 2021;
Cho et al., 2021; Hu et al., 2022). While benefiting from the text representation and generation
capabilities of the Transformer architecture, some of these vision-language models rely on external
systems (such as Fast(er) R-CNN (Ren et al., 2015)) to provide detected object names and the
related precomputed dense features. Such reliance limited the capability to scale up the model and
performance. With the introduction of Vision Transformers (Dosovitskiy et al., 2021), vision and
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language modalities can be jointly modeled by transformers in a more scalable fashion (Yuan et al.,
2021; Yu et al., 2022; Wang et al., 2022a; Alayrac et al., 2022).

One approach for image-text pre-training is contrastive learning (Radford et al., 2021; Jia et al.,
2021). Zhai et al. (2022b) show that with a pre-trained and locked vision model, one needs to
train only a paired text encoder model to get good language embeddings. Yuan et al. (2021) extend
contrastively pre-trained models to more downstream tasks with task-speci�c adaptations. Beside
image and language, MERLOT (Zellers et al., 2021) has found success in video understanding and
reasoning through video-language pretraining. Another approach is to train vision-language models
to generate text autoregressively (Donahue et al., 2015; Vinyals et al., 2015). This approach has
the advantage of a uni�ed formulation of vision-language tasks as a text generation problem (Cho
et al., 2021; Wang et al., 2022b; Piergiovanni et al., 2022b). In Cho et al. (2021), the vision-language
model is trained to recover masked text. SimVLM (Wang et al., 2021) propose an image-language
pre-training approach leveraging a pre�x language modeling objective. The uni�ed framework OFA
(Wang et al., 2022b) extends the generation capability to include text to image generation. Concurrent
with our work, Uni�ed-IO (Lu et al., 2022) further scaled up the number of objectives and tasks
and demonstrated decent performance across the board through only multi-task pre-training without
task-speci�c �ne-tuning.

Recent works explore joint vision and language modeling with increased model capacity. CoCa (Yu
et al., 2022) pre-trains a 2.1B image-text encoder-decoder model jointly with contrastive loss and
generative loss. GIT (Wang et al., 2022a) trains a model consisting of a single image encoder and
a text decoder with a captioning (generative) loss, where the image encoder is pre-trained with
contrastive loss. In their latest version, GIT2, the model size is scaled up to 5.1B, with the majority of
parameters on the vision side (4.8B). BEiT-3 (Wang et al., 2022c) presents an architecture with vision,
language, and vision-language experts, operating with a shared multi-head self-attention followed by
a switch for “expert” modules, resulting in a 1.9B model trained from scratch on a variety of public
image, text and image-text datasets. Flamingo (Alayrac et al., 2022) is built upon a 70B language
model (Hoffmann et al., 2022) as a decoder-only model whose majority of parameters are frozen in
order to preserve language-generation capabilities, along with a 435M vision encoder.

Vision-language pre-training also bene�ts from automatically mined and �ltered large-scale datasets
such as Conceptual Captions (CC3M) and CC12M (Sharma et al., 2018; Changpinyo et al., 2021),
with 3 and 12 million image-text pairs, respectively. With more relaxed �ltering, LEMON (Hu et al.,
2022) collected a larger dataset with 200M examples, which is further expanded to 800M examples
in GIT (Wang et al., 2022a). For better scaling the model, larger, noisier datasets such as the ALIGN
dataset (1.8B) (Jia et al., 2021) have been constructed, which has bene�ted SimVLM (Wang et al.,
2021) and CoCa (Yu et al., 2022). While these image-text datasets have fueled the foundational V&L
models with state-of-the-art performance, they are English-only, and there has been limited attempts
to create datasets not English-centric and unlock the multilingual capability of these models.

3 THE PALI M ODEL

3.1 ARCHITECTURE

With PaLI, we aim to perform both unimodal (language, vision) and multimodal (language and
vision) tasks. Typically, many of these tasks are best handled by different models. For instance, image
classi�cation, and many formulations of VQA, require predicting elements from a �xed set, while
language-only tasks and image captioning require open-vocabulary text generation. Similar to the
recent work OFA (Wang et al., 2022b) and a concurrent work (Lu et al., 2022), we resolve this by
using a suf�ciently general interface for all tasks considered: the model accepts as input an image
and text string, and generates text as output. The same interface is used both during pre-training
and �ne-tuning. Since all tasks are performed with the same model, i.e. we have no tasks-speci�c
parameters or “heads”, we use text-based prompts to indicate to the model which task to perform.

Figure 1 shows a high-level schematic of the model architecture. At its core, PaLI has a text encoder-
decoder Transformer (Vaswani et al., 2017). To include vision as input, the text encoder is fed with a
sequence of visual “tokens”: output patch features of a Vision Transformer which takes as input an
image. No pooling is applied to the output of the Vision Transformer before passing the visual tokens
to the encoder-decoder model via cross-attention. We reuse previously trained unimodal checkpoints.
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Figure 1: The PaLI main architecture
is simple and scalable. It uses an
encoder-decoder Transformer model,
with a large-capacity ViT component
for image processing.

For the text encoder-decoder, we reuse pre-trained mT5 (Xue et al., 2021) models, while for the
image encoder, we reuse large vanilla ViT models (Dosovitskiy et al., 2021; Zhai et al., 2022a).

The visual component We introduce and train the largest vanilla ViT architecture to date, named
ViT-e. ViT-e has the same architecture and uses the same training recipe as the 1.8B parameter ViT-G
model (Zhai et al., 2022a), while scaling to 4B parameters. The only other difference is that we apply
learning rate cool-down twice, once with and once without inception crop augmentation, and average
(“soup”) the weights of the two models as in Wortsman et al. (2022). While the scaling laws have
been studied in both the vision domain and the language domain, scaling behaviour is less explored
in combined vision and language models. Scaling up vision backbones leads to saturating gains on
classi�cation tasks such as ImageNet (Zhai et al., 2022a). We further con�rm this, observing that
ViT-e is only marginally better than ViT-G on ImageNet (Table 16). However, we observe substantial
performance improvements from ViT-e on vision-language tasks in PaLI (Section 4). For example,
ViT-e yields almost three additional CIDEr points over ViT-G on the COCO captioning task. This
hints towards future headroom for vision-language tasks with even larger ViT backbones.

The language component We adopt the mT5 (Xue et al., 2021) backbone as our language com-
ponent. We experiment using the pre-trained mT5-Large (1B parameters) and mT5-XXL (13B
parameters), from which we initialize the language encoder-decoder of PaLI. We train on a mix of
many tasks, including pure language understanding tasks (Section A.2). This helps avoid catastrophic
forgetting of the mT5's language understanding and generation abilities. As a result, PaLI-17B
continues to achieve similar levels of language-understanding accuracy on both the English bench-
marks (Wang et al., 2019a) and across languages measured by the XTREME benchmark (Hu et al.,
2020) (Section 4).

The overall model Three model sizes are considered (Table 7): 1) PaLI-3B, where the language
component is initialized from mT5-Large (Xue et al., 2021) (1B parameters), and the vision compo-
nent is ViT-G (Zhai et al., 2022a) (1.8B parameters). 2) PaLI-15B, where the language component is
initialized from mT5-XXL (Xue et al., 2021) (13B parameters), and the vision component is ViT-G
(1.8B parameters). 3) PaLI-17B, where the language model is initialized from mT5-XXL, and the
vision component is the newly-trained ViT-e model (4B parameters).

3.2 DATA

WebLI Dataset Scaling studies for deep learning show that larger models require larger datasets
to train effectively (Hoffmann et al., 2022; Kaplan et al., 2020; Zhai et al., 2022a). To unlock the
potential of multilingual image-language pre-training, we introduce WebLI, a multilingual image-
language dataset built from images and texts available on the public web. WebLI scales up the image
language data collection from English-only datasets to 109 languages, which enables us to pre-train
PaLI multilingually, and perform downstream tasks across many languages. The data collection
process is similar to those reported in (Jia et al., 2021; Zhai et al., 2022b). Due to the abundance
of multilingual content on the internet, the collection process for the WebLI dataset can be scaled
to cover 10 billion images and 12 billion alt-texts. In addition to annotation with web text, we
use publicly available automatic service to extract OCR annotations on all images, resulting in 29
billion image-OCR pairs. To balance quality and retain scale, we �lter the dataset to the highest
quality subset retaining only the top 10% scoring of the original WebLI image-text pairs (about 1B
examples), which we use to train PaLI. Examples and statistics for the WebLI corpus and a complete
datasheet (Pushkarna et al., 2022) are shown in Appendix B (Figure 4) and G.
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Training mixture To accommodate diverse tasks in the image-language space, we train PaLI using
a mixture of eight pre-training tasks. This mixture is designed to span a range of general capabilities
useful for downstream tasks.Span corruption on text-only datauses the same technique described
by Xue et al. (2021) on text-only examples.Split-captioning on WebLI alt-text data is inspired by
the pre-training objective of Wang et al. (2021), and works by splitting each alt-text string randomly
into two parts,hcap1i andhcap2i , used for input and target, respectively.Captioning on CC3M-35L
with the alt-text string in languagehlangi as the target, based on the Conceptual Captions (Sharma
et al., 2018) training data and machine translated alt-texts.OCR on WebLI OCR-text data uses
the concatenation of the annotated OCR texts in languagehlangi (Kil et al., 2022) produced by
publicly available automatic service for the input image.English and Cross-Lingual VQA is
VQ2A-CC3M (Changpinyo et al., 2022a), translated in the same way as CC3M-35L. Note that we
use English answers in all instances here, as the English-native answers for VQA are often short
and too prone to errors to perform out-of-context automatic translation.English and Cross-Lingual
visual question generation (VQG)is also based on native and translatedVQ2A-CC3M-35L VQA
triplets. Similarly, we use only English answers here.English-only Object-Aware (OA) VQA is
based on VQA triplets derived from automatically-produced, non-exhaustive object labels, inspired
by Piergiovanni et al. (2022a). The QA pairs include listing all the objects in the image and whether
a subset of objects are in the image. To create these examples, we require object-level annotations,
for which we use Open Images (Kuznetsova et al., 2020).Object detectionis a generative object-
detection task inspired by Chen et al. (2021; 2022).

We specify each task using a training data source and a template-based prompt, and train the model
using a language-model–style teacher forcing (Goodfellow et al., 2016) with a standard softmax
cross-entropy loss. The coef�cients for the training mixture are empirically determined, with 1.6B
total examples in the mixture (Appendix A.2). The whole mixture is slightly smaller and designed to
be cleaner than the datasets used in SimVLM (1.8B), CoCa (1.8B), and Flamingo (2.3B). However,
unlike the aforementioned datasets, examples in our 1.6B dataset follow a long-tailed distribution
over the 100+ languages covered. To prevent leakage between the pre-training examples and the
downstream benchmarks. WebLI has undergone near de-duplication (Jia et al., 2021) of the images
against the train, validation, and test splits of 68 common vision/vision-language datasets. For other
datasets in the mixture, we performed the same de-duplication against all the downstream tasks.

3.3 MODEL TRAINING

All PaLI variants are trained for one epoch over the entire pre-training dataset (1.6B) with 224� 224
image resolution. Only the parameters of the language component are updated, the vision component
is frozen, which is bene�cial (Sec. 4.6). For the largest model, PaLI-17B, we perform an additional
high-res (588� 588) phase similar to previous works (Radford et al., 2021; Yuan et al., 2021; Yu et al.,
2022). This phase is only for 10k steps, covering 10M examples in total, with all the parameters of
PaLI updated. More details for training PaLI and the ViT-e backbone are in Appendix A.1.

4 EXPERIMENTS

We �ne-tune and evaluate PaLI-3B and PaLI-15B checkpoints at 490� 490 resolutions. For PaLI-17B,
unless otherwise stated, the checkpoint produced by the two-phase pre-training is �ne-tuned and
evaluated at 588� 588 resolution. For all the benchmarks, cross-entropy loss is used for �ne-tuning.

4.1 IMAGE CAPTIONING

We �ne-tune onCOCO Captions(Chen et al., 2015) on the widely adopted Karpathy split (Karpathy
& Fei-Fei, 2015). PaLI outperforms the latest SOTA trained with cross-entropy loss (Wang et al.,
2022c), and establishes a new high of CIDEr score (Vedantam et al., 2015) at 149.1 (Table 1) for
models without CIDEr-optimization.NoCaps(Agrawal et al., 2019) is an evaluation benchmark
for image captioning that has similar style to COCO, but targets many more visual concepts than
those included in the COCO. We follow previous works by evaluating NoCaps using a model �ne-
tuned on COCO. PaLI-17B achieves a 124.4 CIDEr score on test, comparable to the recent result
of 124.8 from GIT2 (Wang et al., 2022a). GIT2 achieves 124.2, 125.5, 122.3 on in-domain, near-
domain, and out-of-domain splits of the NoCaps test set, respectively. PaLI-17B achieves 121.1,
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124.4 and 126.7, respectively. This suggests that for PaLI-17B, the domain transfer from COCO to
NoCaps is slightly sub-optimal compared with models pre-trained with English only. Nevertheless,
PaLI-17B outperforms all prior models on recognizing and describing long-tail objects outside of
COCO's domain.TextCaps(Sidorov et al., 2020) focuses on captioning for images containing text.
VizWiz-Cap (Gurari et al., 2020) contains images taken by people who are blind, which also involves
scene-text understanding. We �ne-tune on TextCaps and VizWiz-Cap using OCR strings generated
by publicly available automatic service, similar to the protocol used in (Yang et al., 2021). Further
details, including results evaluating PaLI-17B without OCR as input, are provided in Appendix C.5.

Table 1: CIDEr results for image captioning over the English benchmarks COCO Captions (Karpathy
split), NoCaps, TextCaps, and VizWiz-Cap.

COCO NoCaps TextCaps VizWiz-Cap

Model Karpathy-test val test val test test-dev test-std

LEMON (0.7B) 139.1 117.3 114.3 - - - -
SimVLM 143.3 112.2 110.3 - - - -
CoCa (2.1B) 143.6 122.4 120.6 - - - -
GIT (0.7B) 144.8 125.5 123.4 143.7 138.2 113.1 114.4
GIT2 (5.1B) 145.0 126.9 124.8 148.6 145.0 119.4 120.8
OFA (0.9B) 145.3 - - - - - -
Flamingo (80B) 138.1 - - - - - -
BEiT-3 (1.9B) 147.6 - - - - - -

PaLI-3B 145.4 121.1 - 143.6 - 117.2 -
PaLI-15B 146.2 121.2 - 150.1 - 121.7 -
PaLI-17B 149.1 127.0 124.4 160.0 160.4 123.0 124.7

Multilingual captioning on Crossmodal-3600 Following Thapliyal et al. (2022), we �ne-tune
PaLI models on COCO-35L, which is COCO captions translated into 35 languages similar to CC3M-
35L, before evaluating on Crossmodal-3600. We used the checkpoints pre-trained at 224� 224
resolution and �ne-tuned on COCO-35L at the same resolution. We normalize the unicode, tokenize,
and remove all punctuation before calculating CIDEr scores. For languages without word boundaries
such as Chinese, Japanese, Korean and Thai, a neural model is used for segmenting the text. To
illustrate the range of improvements over a variety of language families with different scripts and
different resources, we use seven languages in Table 2 to show their exact CIDEr scores, in addition
to the 35-language average score. PaLI outperforms previous SOTA by large margins. Note that due
to different linguistic structures, the variance of CIDEr scores across different languages does not
indicate lower quality of prediction on certain languages. In Appendix C.2, we back-translate the
non-English predictions to English, and demonstrated that the capability of PaLI on both English and
other languages is rather consistent.

Table 2: CIDEr scores on image captioning for the Crossmodal-3600 benchmark for seven diverse
languages (English, French, Hindi, Hebrew, Romanian, Thai, and Chinese), as well as the average of
the 35 languages covered by the benchmark.

Model en fr hi iw ro th zh 35-lang avg.

Thapliyal et al. (2022) (0.8B) 57.6 40.9 20.6 16.1 13.9 35.5 19.8 28.9

PaLI-3B 92.8 68.6 30.3 39.2 30.3 65.9 32.2 47.0
PaLI-17B 98.1 75.5 31.3 46.8 35.8 72.1 36.5 53.6

4.2 VISUAL QUESTION ANSWERING

All the VQA �ne-tuning experiments in this paper are performed in the open-vocabulary setting using
the 250k mT5 (Xue et al., 2021) vocabulary (Table 3). Most prior works, e.g. SimVLM (Wang et al.,
2021), CoCa (Yu et al., 2022) and BEiT-3 (Wang et al., 2022c), use the VQA-as-classi�cation setting,
where the best answer among a prede�ned set (usually of size 3k) needs to be selected. Note that the
VQA-as-open-generation setting is challenging because: (1) The generated text is directly compared
to the desired answer and only an exact match is counted as accurate. (2) The PaLI vocabulary covers
100+ languages and is signi�cantly larger than both those used in the classi�cation setting, and those
used by previous single-language open-generation models (Alayrac et al., 2022; Wang et al., 2022a).
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Table 3: VQA Accuracy results on VQAv2, OKVQA, TextVQA, VizWiz-QA, and ANLS result on
ST-VQA. PaLI models are evaluated in the open-vocabulary generation setting, and still outperform
previous models that use closed-vocabulary classi�cation (SimVLM, CoCa, BEiT-3, OFA). The result
on OKVQA by Flamingo (with “*”) is obtained in a 32-shot learning setup. Mia (Qiao et al., 2021)
(with “y”) is the winning model of TextVQA Challenge 2021, based on �ne-tuning T5-XL (Raffel
et al., 2020). Numbers shown in gray are from models using closed-vocabulary classi�cation.

VQAv2 OKVQA TextVQA VizWiz-QA ST-VQA

Method test-dev test-std val val test test-dev test val test

SimVLM 80.03 80.34 - - - - - - -
CoCa (2.1B) 82.3 82.3 - - - - - - -
GIT (0.7B) 78.56 78.81 - 59.93 59.75 68.0 67.5 69.1 69.6
GIT2 (5.1B) 81.74 81.92 - 68.38 67.27 70.97 70.1 75.1 75.8
OFA (0.9B) 82.0 82.0 - - - - - - -
Flamingo (80B) 82.0 82.1 57.8� 57.1 54.1 65.7 65.4 - -
BEiT-3 (1.9B) 84.2 84.0 - - - - - - -
KAT - - 54.4 - - - - - -
Mia - - - - 73.67y - - - -

PaLI-3B 81.4 - 52.4 60.12 - 67.5 - 67.5 69.7
PaLI-15B 82.9 - 56.5 65.49 - 71.1 - 73.2 76.5
PaLI-17B 84.3 84.3 64.5 71.81 73.06 74.4 73.3 77.1 79.9

OnVQAv2, PaLI achieves 84.3 accuracy on VQAv2, and outperforms previous SOTA as follows: (1)
By +2.2 accuracy points on the open-vocabulary generation setting, compared to Flamingo (Alayrac
et al., 2022). (2) By +0.3 accuracy points when compared against the best result on the closed-
vocabulary classi�cation setting, BEiT-3 (Wang et al., 2022c).OKVQA requires external knowledge
to answer its questions, that is, knowledge not directly present in the image input, and instead needs
to be indirectly inferred by the model. PaLI-17B achieves 64.5 accuracy, pushing SOTA for the
pretrain-�netune setup higher by 10.1 accuracy points, compared to KAT (Gui et al., 2021) at 54.4
accuracy. The best result for the 32-shot learning setup is from Flamingo (Alayrac et al., 2022) at
57.8 accuracy. The results from Flamingo and PaLI-17B suggest that leveraging external knowledge
does not necessarily require speci�c training, and instead can be achieved with generic large-capacity
models trained on large amounts of data.TextVQA (Singh et al., 2019),VizWiz-QA (Gurari et al.,
2018) andST-VQA (Biten et al., 2019) require the ability to perform question answering in the
presence of text in the input image. We �ne-tune using OCR strings generated by publicly available
automatic service, similar to the protocol in TAP (Yang et al., 2021) and Mia (Qiao et al., 2021).
Evaluation on TextVQA and VizWiz-QA without OCR as input is provided in Appendix C.5.

Cross-lingual and Multilingual VQA on xGQA and MaXM Both xGQA (Pfeiffer et al., 2022)
and MaXM (Changpinyo et al., 2022b) are test-only VQA benchmarks that require multilingual
understanding of visual questions. The setting in xGQA is cross-lingual (English-answers only),
whereas for MaXM it is multilingual (answer in the same language as the question). We evaluate PaLI-
17B pre-trained at 224 image resolution and �ne-tuned on the native and translated VQAv2 (Goyal
et al., 2017) (the Karpathy train split) in the 13 languages covered by xGQA and MaXM (VQAv2-13L)
at 378 resolution. Table 4 shows signi�cant gains on both benchmarks across all languages.

Table 4: Cross-lingual VQA results on xGQA (Pfeiffer et al., 2022) (left) and multilingual VQA
results on MaXM (Changpinyo et al., 2022b) (right). All models are �ne-tuned on translated VQAv2
in 13 languages. Exact-match accuracy is reported. Referenced MPT results are from (Changpinyo
et al., 2022b)

xGQA MaXM

Model en bn de id ko pt ru zh en fr hi iw ro th zh

MPT 41.5 38.6 40.5 39.5 38.7 39.8 39.5 39.5 36.6 36.2 55.1 40.6 42.3 50.0 30.3
PaLI-17B 54.2 50.0 52.2 50.6 50.4 51.3 50.3 50.6 56.4 46.4 67.3 60.0 57.4 65.6 46.9

4.3 LANGUAGE-UNDERSTANDING CAPABILITIES

Since PaLI is pre-trained with a diverse mixture of multimodal tasks with image and text data, it
raises the question on whether it would “forget” its language modeling capability, and therefore
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Figure 2: PaLI scaling for a number of tasks. We report CIDEr scores for captioning tasks, and
accuracy scores for VQA tasks. Both scaling the language side (from 1B to 13B parameters) and the
vision side of the model (from 2B to 4B parameters) yield improvements across all tasks. The results
represented by solid bars are from the standard 224� 224 resolution pre-training. The empty orange
bars correspond to PaLI-17B checkpoints with the high resolution pre-training phase.

exhibit inferior performance on language-understanding tasks compared to its unimodal starting
checkpoint (mT5-XXL in the case of PaLI-17B). Therefore, we compare mT5-XXL and PaLI-
17B on a range of language understanding benchmarks, including the English-only SuperGLUE
benchmark (Wang et al., 2019a), as well as three multilingual benchmarks from the XTREME (Hu
et al., 2020): XNLI (Conneau et al., 2018), which is a textual entailment task covering 14 languages,
XQuAD (Artetxe et al., 2020) and TyDiQA-GoldP (Clark et al., 2020), which are both question-
answering tasks covering 10 and 11 languages, respectively. For the three XTREME benchmarks, we
evaluate in the zero-shot (ZS) transfer setting, whereas for SuperGLUE the models are �ne-tuned (FT).
Table 11 in Appendix C.1 summarizes the results. Despite the pre-training mixture heavily favoring
the V&L tasks, PaLI-17B is able to maintain a high-level of language-understanding capabilities for
English, and it is on-par with the state-of-the-art mT5-XXL checkpoint on the XTREME benchmarks.

4.4 ZERO-SHOT IMAGE CLASSIFICATION

We evaluate the PaLI checkpoints (without high-res phase) at 224� 224 resolution on ImageNet and
ImageNet OOD evaluation sets: ImageNet (Deng et al., 2009),ImageNet-R(Hendrycks et al., 2021a),
ImageNet-A(Hendrycks et al., 2021b),ImageNet-Sketch(Wang et al., 2019b),ImageNet-v2(Recht
et al., 2019) and ObjectNet (Barbu et al., 2019). We use the same interface as for all other tasks.
Instead of training a classi�er on top of PaLI, we condition on the image and use PaLI's decoder to
score strings corresponding to each class directly. (See Appendix C.8 for details) The top-1 accuracies
are presented in Table 5, where it clearly shows that PaLI-17B is signi�cantly better than smaller
variants. We are not aware of any previous work for large scale zero-shot evaluation on ImageNet
with a generative model. However, PaLI with a zero-shot setting outperforms the 1-shot learning
result from Flamingo (Alayrac et al., 2022).

Table 5: Top 1 accuracy results of 0-shot image classi�cation on ImageNet,ImageNet-R, ImageNet-A,
ImageNet-Sketch, Imagenet-v2, and ObjectNet. Top-5 results are in the Appendix (Table 21).

Model (ImageNet data) INet INet-R INet-A INet-Sketch INet-v2 ObjNet

Flamingo-80B (1-shot) 71.9 - - - - -
Flamingo-80B (5-shot) 77.3 - - - - -

PaLI-3B (0-shot) 70.06 80.15 37.92 61.11 62.55 38.87
PaLI-15B (0-shot) 70.27 81.21 41.16 61.03 62.81 39.51
PaLI-17B (0-shot) 72.11 81.97 44.70 63.83 64.46 42.62

4.5 MODEL SCALING

Due to the modular architecture, the image and language components of PaLI can be scaled indepen-
dently. We demonstrate that jointly scaling the capacity of both components leads to performance
improvements. Figure 2 quanti�es this improvement across seven V&L benchmarks where we
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have also evaluated the PaLI-17B checkpoint without the high resolution pre-training phase for fair
comparison. These improvements are noticeable both when scaling the language-model capacity
(from L to XXL), and the vision-model capacity (from ViT-G to ViT-e). Figure 2 also shows that
scaling the visual component is important: when scaling from a ViT-G to a ViT-e model, although
the overall model size is increased by only about 13% (+2B parameters), the average performance
improvement over all seven benchmarks (additional +3.2) is larger than the one obtained with much
larger increases in the capacity of the language model (+3.1) which takes more parameters (+12B).
The high-resolution pre-training phase at 588� 588 resolution brings an additional +2.0 points, which
also indicates the potential of scaling up the vision component of the model. This observation also
resonates with the signi�cant improvement from PaLI-15B to 17B on generative ImageNet zero-shot
classi�cation (Table 5). Table 12 shows the results of a 5B version of PaLI with mT5-L and ViT-e on
two benchmarks, which also resonates with the �nding of the bene�t of joint scaling. For context, in
prior work, V&L scaling is usually conducted at lower model capacity: for instance, CoCa (Yu et al.,
2022) scales up to 2.1B parameters, or scaling is done primarily via the language-modeling backbone,
e.g. Flamingo (Alayrac et al., 2022) scales the text backbone to 80B but the image backbone remains
at 435M. Finally, on the Crossmodal-3600 benchmark, we show that scale has a large impact on
multilingual performance as well (Figure 5 in the Appendix).

4.6 ABLATION STUDIES

We examine the composition of the task mixture and demonstrate the effectiveness of our multiple-
objective mixture design. To this end, we pre-train a PaLI-3B model with 200M data coverage for
each setting, before �ne-tuning on a combination of English and multilingual V&L tasks (Table 6).
Aside from the four tasks from our main evaluation for PaLI, we also add a VQAv2-based VQG
benchmark (Akula et al., 2021). The relative weight of each components remains the same as the full
mixture (Table 9). As a �rst observation, the split-cap objective on WebLI appears to be the most
critical, across all benchmarks. Second, the object-related components also boost performance on
all benchmarks. Third, the captioning objective on CC3M-35L helps on COCO; on XM-3600, its
positive contribution for non-EN languages and the slight degradation for English is a re�ection of
CC3M-35L having a much higher non-EN example ratio (34/35) compared to WebLI alt-text (60%
English, Figure 4). Fourth, adding VQA helps TextVQA; in addition, the VQG objective improves the
model's VQG capability without impacting the performance on other benchmarks. Last but not least,
the OCR objective positively impacts OCR-related tasks such as TextVQA, at a slight negative impact
on captioning performance. We also note that VQAv2, due to its large training set size, is much
less sensitive to the change in pre-training mixture. In addition, we perform ablations to quantify
the positive impact of initializing from uni-modal checkpoints, as opposed to from-scratch training
(Table 13); the minor accuracy improvement from freezing the ViT backbone during pre-training
(Table 14); the effect of pretraining with non-English WebLI examples on multi-(cross-)lingual
performance (Table 15).

Table 6: Mixture of objectives (PaLI-3B). TextVQA is �ne-tuned with 490� 490 resolution, while all
other benchmarks are �ne-tuned with 224� 224. Results for VQAv2 are on the Karpathy validation
set. XM-3600 denotes Crossmodal-3600, and “6L” is the average of the six non-English languages in
Table 2. The order in which the components are ablated follows the presented order in Sec. 3.2, and
"object-related" refers to the object-aware QA and generative object detection components together.
TextVQA is �ne-tuned without detected OCR string to better showcase the model's OCR capability

Component COCO TextVQA VQAv2 XM-3600 (EN / 6L) VQG (ZS / FT)

Full mixture 141.4 41.6 76.0 93.8 / 42.5 96.7 / 194.0

w/osplit-cap 140.4(-1.0) 38.8(-2.8) 75.5(-0.5) 87.5(-6.3) / 41.5(-1.0) 86.3(-10.4) / 190.5(-3.5)
w/ocaptioning 140.5(-0.9) 41.2(-0.4) 75.9(-0.1) 94.9(+1.1) / 39.9(-2.6) 101.3(+4.6) / 193.3(-0.7)

w/oOCR 142.3(+0.9) 39.9(-1.7) 75.9(-0.1) 95.4(+1.6) / 43.6(+1.1) 92.5(-4.2) / 193.7(-0.3)
w/oVQA 140.9(-0.5) 40.0(-1.6) 75.9(-0.1) 93.9(+0.1) / 42.7(+0.2) 94.1(-2.6) / 193.2(-0.8)
w/oVQG 141.4(+0.0) 41.3(-0.3) 75.8(-0.2) 95.1(+1.3) / 42.0(-0.5) 17.9(-78.8) / 188.2(-5.8)

w/oobject-related 140.9(-0.5) 40.2(-1.4) 75.4(-0.6) 90.9(-2.9) / 41.8(-0.7) 81.7(-15.0) / 189.1(-4.9)
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ETHICS STATEMENT AND BROADER IMPACTS

Large models may have broader societal impact. While such models have demonstrated strong
performance on public benchmarks, they might contain unknown biases or stereotypes, or propagate
inaccurate or otherwise distorted information. While we have made efforts to measure some of these
issues, such models need to be re-assessed carefully before being used for speci�c purposes. The
dataset used for pre-training is automatically harvested, and �ltering of the data is automatic. That
process may leave undesirable images or text annotations, descriptions or concepts to be incorporated
into the model. We have also attempted to train the model to operate in more than 100 languages,
which we believe is an important step forward for image-language models. However, languages
have various levels of data presence and coverage, so the language-generated text varies in quality
depending on the language, and might contain inaccurate or undesirable outputs.

REPRODUCIBILITY STATEMENTS

Our model is based on open sourced components - ViT and mT5 (Dosovitskiy et al., 2021; Xue et al.,
2021). Model architecture details for each component is in Section 3.1. The con�guration of ViT-e
when scaling is provided in Table 7 and Section A.1. We have provided training and �ne-tuning
details in Section 3.3 and in Section A in the Appendix. Data and model cards are also provided in
the Appendix.
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A PALI MODEL ADDITIONAL INFORMATION

A.1 PALI MODEL DETAILS

Figure 3 visualizes some examples of PaLI on several tasks, such as image captioning, visual question
answering, OCR-oriented captioning and question answering. Examples in multiple languages are
shown as well.

Below, we show more speci�cs about the PaLI model and its components.

Model variants Table 7 lists the main PaLI models used where the largest is PaLI-17B of 17B
parameters.

Model Components Image Encoder Multimodal Encoder-Decoder Total

PaLI-3B ViT-G, mT5-L 1.8B 1.2B 3.0B
PaLI-15B ViT-G, mT5-XXL 1.8B 13B 14.8B
PaLI-17B ViT-e, mT5-XXL 3.9B 13B 16.9B

Table 7: The size in terms of number of parameters for the trained PaLI model versions.

ViT-e Backbone We show ViT-e's con�guration in Table 8 alongside ViT-g and ViT-G for reference.
Width, depth and MLP dimensions are all further scaled up in ViT-e, resulting in a model with 4B
parameters. The model training setup is copied from the ViT-G model (Zhai et al., 2022a), on the
JFT-3B dataset (Zhai et al., 2022a), with16; 384batch size, 224� 224 resolution. We train the model
for 1M steps using 0.0008 initial learning rate, with an inverse square-root learning rate decay, and
a linear cool-down to zero for the �nal 100k steps. The only additional technique added is model
souping (Wortsman et al., 2022): we run the 900K to 1M cool-down twice, once with inception
cropping and once with resizing only. Thus, the �nal ViT-e model consists of the average weights of
these two cool-downs. ViT-e is pretrained using thebig_vision codebase (Beyer et al., 2022).

Name Width Depth MLP Heads Params (M) GFLOPs

2242 3842

g/14 1408 40 6144 16 1011 533.1 1596.4
G/14 1664 48 8192 16 1843 965.3 2859.9
e/14 1792 56 15360 16 3926 1980 5777

Table 8: ViT-e architecture details.

The overall model The overall PaLI models are implemented inJAX/Flax (Bradbury et al., 2018)
using the open-sourceT5X(Roberts et al., 2022) andFlaxformer (Heek et al., 2020) frameworks.
For the learning rate, we use a 1k-step linear warmup, followed by inverse square-root decay. For
PaLI-3B, we use a peak learning rate of 1e-2. For larger models, PaLI-15B and PaLI-17B, we use a
peak learning rate of 5e-3. We use the Adafactor (Shazeer & Stern, 2018) optimizer with� 1 = 0 and
second-moment exponential decay set to 0.8.

The largest model, PaLI-17B, is pretrained using 1,024 GCP-TPUv4 chips for 7 days. It uses a
four-way model partitioning (Roberts et al., 2022) and a batch size of 4,096. This is slightly less
TPU resources than used to train other large vision and language models on TPUs. SimVLM used
2,048 GCP-TPUv3 for 5 days (Wang et al., 2021), while CoCa used 2,048 GCP-TPUv4 chips for 5
days (Yu et al., 2022). Flamingo used 1,536 GCP-TPUv4 chips for 15 days (Alayrac et al., 2022).

During training, the model passes over 1.6B images, one epoch over the entire pretraining dataset.
The image resolution for this pass is 224� 224. During training, only the parameters of the language
component are updated and the vision component is frozen, which provides a boost in performance
(Sec. 4.6).

Continuation of pretraining at higher image resolution For the largest model, PaLI-17B, we
perform a further high-resolution (588� 588) pre-�netuning for the multilingual tasks. When scaling
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Figure 3: PaLI addresses a variety of vision and language tasks across many languages, for example,
image captioning, visual question answering, scene-text understanding, etc. Images from the publicly-
available TextVQA (Singh et al., 2019) and TextCaps (Sidorov et al., 2020) datasets are shown,
together with PaLI inputs and outputs.

up image resolution, the patch size is kept the same, and the number of patches are increased with
higher resolution. We perform a 2D bilinear upsampling of the positional embedding to match the
increased number of patches. This second stage of training is only for 10k steps at batch size 1024
(10M examples in total) and is performed on a subset of the full training mix. We simplify the
mixture of data in this stage to focus on VQA, captioning and OCR capabilities, by including only
the OCR, CC3M-35L andVQ2A in the training mixture and making them equally weighted. In this
high-resolution �netuning phase, all of the parameters of PaLI are updated. This high resolution
phase was performed using 512 GCP-TPUv4 chips for an additional 3 days.

A.2 THE PRETRAINING TASK M IXTURE

Below are detailed descriptions of each component of our task mixture.
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• Span corruption on text-only datauses the same technique described by Xue et al. (2021),
corrupting 15% of the tokens from a given text-only example and using “sentinels” of the
form hextra_id_ki for each corrupted span; the text-only examples are using a sample of
100M of text-only examples.

• Split-captioning (SplitCap) on WebLI alt-text data is inspired by the pretraining objec-
tive of Wang et al. (2021), and works by splitting each alt-text string randomly into two parts,
hcap1i andhcap2i . It uses the prompt "Generate the alt_text inhlangi at hposi : hcap1i
hextra_id_0i " (wherehlangi is the language code of the alt-text string, andhposi is the
number of words inhcap1i ), with hcap2i as the target.

• Captioning (Cap) on CC3M-35L on native and translated alt-text datausing the prompt
"Generate the alt_text inhlangi at 0: hextra_id_0i ", with the alt-text string in language
hlangi as the target. CC3M-35L is Conceptual Captions (Sharma et al., 2018) training data,
translated into an additional 34 languages (the same as the non-English ones covered by
Crossmodal-3600 (Thapliyal et al., 2022), except for Cusco-Quechua), for a total of 100M
examples.

• OCR on WebLI OCR-text data using the prompt "Generate the ocr_text inhlangi :
hextra_id_0i ", with hOCR_text i as the target, wherehOCR_text i is the concatenation
of the annotated OCR texts in languagehlangi (Kil et al., 2022) produced by the publicly
available automatic service for the input image.

• English and Cross-Lingual VQA on native and translatedVQ2A-CC3M-35L-100M
VQA triplets using, for a givenhimage; [question]; [answer]i VQA triple, the prompt:
"Answer in EN: [question]hextra_id_0i ", with [answer] for the target.VQ2A-CC3M-35L-
100M is a 100M random subset ofVQ2A-CC3M (Changpinyo et al., 2022a), translated into
the same additional 34 languages as mentioned above. Note that we use English answers in
all instances here, as the English-native answers for VQA are often short and too prone to
errors to perform out-of-context automatic translation.

• English and Cross-Lingual visual question generation (VQG) on native and translated
VQ2A-CC3M-35L-100M VQA triplets using, for a givenhimage; [question]; [answer]i
VQA triple, the prompt: "Generate a question inhlangi for [answer]: hextra_id_0i ", with
[question] in languagehlangi as the target. Similarly, we use only English answers here.

• English-only Object-Aware (OA) VQA is based on VQA triplets derived from
automatically-produced, non-exhaustive object labels, inspired by Piergiovanni et al. (2022a).
We automatically generate 4 different prompt types, based on the available object labels,
as follows. (1) Prompt: "Answer in EN: List the objects present:hextra_id_0i ", with the
target:hobject1i , . . . ,hobjectN i . (2) Prompt: "Answer in EN: Ishobjectk i in the image?
hextra_id_0i ", with the target “Yes” or “No”. (3) Prompt: "Answer in EN: Ishobject1i ,
. . . , hobjectN i in the image?hextra_id_0i ", with the target “Yes” or “No”. (4) Prompt:
"Answer in EN: Which ofhobject1i , . . . ,hobjectN i are in the image?hextra_id_0i ", with
the target made of the list of object labels present. To create these examples, we require
object-level annotations, for which we use Open Images (Kuznetsova et al., 2020), from
which we create 50M examples.

• Object detectionis a generative object-detection task inspired by Chen et al. (2021; 2022).
The target sequence describes bounding-box coordinates and object labels, e.g. "10 20 90
100 cat 20 30 100 100 dog". The coordinates are in theymin xmin ymax xmax order, and range
between 0 and 999. Unlike Chen et al. (2021), the prompt used contains a set of positive
and negative class labels, i.e. object classes that are present and not present in the image
(e.g. "detect cat and dog and leopard"). The prompt is pre�xed with the word "detect". For
the datasets that do not have negative class labels explicitly de�ned, we randomly sample
non-positive class labels. Since WebLI does not contain bounding box annotations, we
train on a mixture of public datasets, totalling 16M images: Open Images (Kuznetsova
et al., 2020), Visual Genome (Krishna et al., 2017), and Object365 (Shao et al., 2019). The
datasets are de-duplicated against evaluation tasks. These examples are included to increase
object awareness capabilities of the model.

Dataset mixing ratio for pretraining Table 9 provides the data mixing ratio for pretraining all PaLI
variants.
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Text-only WebLI alt-text OCR CC3M-35L VQA VQG OA Detection Total

Amount (M) 100 1000 100 100 100 100 50 16 1566

Table 9: Mixing ratio of each task for pretraining

A.3 FINE-TUNING DETAILS

Hyperparameters for �netuning the V&L tasks We performed limited hyperparameter search for
�netuning. The train steps is mostly selected based on dataset size. The batch size is selected among
{128, 256, 512}, and the initial learning rate among {1e-5, 3e-5, 1e-4}. The optimizer setting for
�netuning is the same as the setting for pretraining. Note that we did not perform the hyperparameter
sweep over all possible combinations. Table 10 summarizes the hyperparameters corresponding to
the main results.

Hyper-parameter COCO & NoCaps TextCaps VizWiz-Cap VQAv2 TextVQA VizWiz-QA OKVQA ST-VQA

Dropout 0.1
LR decay schedule linear decay to zero
Train 20k 10k 5k 20k 5k 5k 5k 5k
Batch size 256
Initial (peak) LR 3e-5 1e-4 1e-4 1e-4 1e-4 1e-4 3e-5 1e-4

Table 10: Hyper-parameters used in �ne-tuning experiments.

Setup for zero-shot image classi�cationFor each image, each class is scored using the prompt
"Generate alt_text in EN at 2: Photo ofhextra_id_0i ", scoring against all 1,000 classes with a target
"hen_class_namei ", where "hen_class_namei " stands for a classi�cation label in English, such as
"gold�sh", "great white shark", etc.

B WEBLI DATASET DETAILS

The WebLI dataset covers about 10 billion images and 12 billion alt-texts in 109 languages. We further
apply a publicly available automatic service to extract OCR annotations on all images, producing
additional 29 billion image-OCR pairs. Examples and statistics for the WebLI corpus are shown in
Figure 4.

Due to the scale of WebLI, to mitigate train-to-test leakage, we perform near de-duplication of the
images against the train, validation, and test splits of 68 common vision/vision-language datasets.
Eliminating these images from the WebLI dataset does not result in any signi�cant shrinkage (0.36%),
and avoids any potential “leakage” of examples from the pretraining setup to the downstream
evaluation tasks.

To improve the data quality in terms of image-text alignment, we score image and alt-text pairs based
on their cross-modal similarity. This score is measured with cosine similarity between embedding
representations from each modality, computed as follows. The image embeddings are trained with a
graph-based, semi-supervised representation learning approach, as described in Juan et al. (2019).
Then, the text embeddings are learned using the frozen image embeddings, based on a contrastive
approach using a Transformer encoder for the text, which forces both modality representations to the
same embedding space.

We tune a threshold on the image and alt-text pairs' score, and retain only the top 10% best scoring
of the original WebLI image-text pairs (about 1B examples), which we use to train PaLI.

1The second image is by jopradier (original), used under the CC BY-NC-SA 2.0 license. Remaining images
are also used with permissions.
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Figure 4: The WebLI dataset. Top: Sampled images1 associated with multilingual alt-text (available)
and OCR (computed using publicly available API ). Bottom left/middle: Statistics of recognized
languages from alt-text/OCR. Bottom right: Image-text pair counts, compared against other large-
scale vision-language datasets.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 LANGUAGE-ONLY EVALUATION

In Table 11, we evaluate te performance of PaLI on a range of language understanding benchmarks,
in order to verify that the language-only capabilities of the model have been preserved. More
speci�cally we compare mT5-XXL and PaLI-17B, evaluating on the English-only SuperGLUE
benchmark (Wang et al., 2019a), and on three multilingual benchmarks from the XTREME (Hu
et al., 2020): XNLI (Conneau et al., 2018), which is a textual entailment task covering 14 languages,
XQuAD (Artetxe et al., 2020) and TyDiQA-GoldP (Clark et al., 2020), which are both question-
answering tasks covering 10 and 11 languages, respectively.

Model SuperGLUE XNLI XQuAD TyDiQA-GoldP
Method FT ZS ZS ZS

Metric Avg. Score Accuracy F1/EM F1/EM

mT5-XXL (Xue et al., 2021) 89.2 85.0 82.5 / 66.8 80.8 / 65.9
mT5-XXL (our setting) 89.3 84.5 82.6 / 66.6 81.6 / 66.3
PaLI-17B 88.2 84.9 81.8 / 66.0 81.2 / 66.5

Table 11: Results on SuperGLUE and three XTREME tasks. The �rst row is the result reported by
mT5 (Xue et al., 2021) and ByT5 (Xue et al., 2022) paper. The second row is our repetition using the
publicly available mT5-XXL checkpoint, which is also the starting point for PaLI-17B. The third row
results are using the trained PaLI-17B model.

C.2 ADDITIONAL SCALING RESULTS

Figure 5 shows that the model scaling impacts signi�cantly the performance for multiple languages.
We can see that PaLI-17B improves substantially over PaLI-3B across languages. We also include
a plot where for a subset of 600 examples, we back-translate the predictions from six languages,
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