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ABSTRACT

Flow-based generative models typically define a latent space with dimensionality
identical to the observational space. In many problems, however, the data does not
populate the full ambient data-space that they natively reside in, but rather inhabit
a lower-dimensional manifold. In such scenarios, flow-based models are unable
to represent data structures exactly as their density will always have support off
the data manifold, potentially resulting in degradation of model performance. In
addition, the requirement for equal latent and data space dimensionality can un-
necessarily increase model complexity for contemporary flow models. Towards
addressing these problems, we propose to learn a manifold prior that affords bene-
fits to both the tasks of sample generation and representation quality. An auxiliary
product of our approach is that we are able to identify the intrinsic dimension of
the data distribution.

1 INTRODUCTION

Normalizing flows (Rezende and Mohamed, 2015; Kobyzev et al., 2020) have shown considerable
potential for the tasks of modelling and inferring expressive distributions through the learning of
well-specified probabilistic models. Contemporary flow-based approaches define a latent space with
dimensionality identical to the data space, typically by parameterizing a complex model pX(x|θ)
using an invertible neural network fθ. Samples drawn from an initial, simple distribution pZ(z) (e.g.
Gaussian) can be mapped to a complex distribution as x = fθ(z). The process results in a tractable
density that inhabits the full data space. However, contemporary flow models may make for an
inappropriate choice to represent data that resides in a lower-dimensional manifold and thus does not
populate the full ambient space. In such cases, the estimated model will necessarily have mass lying
off the data manifold, which may result in under-fitting and poor generation qualities. Furthermore,
principal objectives such as Maximum Likelihood Estimation (MLE) and Kullback-Leibler (KL)
divergence minimization are ill-defined, bringing additional challenges for model training.

In this work, we propose a principled strategy to model a data distribution that lies on a continuous
manifold and we additionally identify the intrinsic dimension of the data manifold. Specifically, by
using the connection between MLE and KL divergence minimization in Z space, we can address
the important problem of ill-defined KL divergence under typical flow based assumptions.

Flow models are based on the idea of “change of variable”. Assume a random variable Z with
distribution PZ and probability density pZ(z). We can transform Z to get a random variable X:
X = f(Z), where f : RD → RD is an invertible function with inverse f−1 = g. Suppose X has
distribution PX and density function pX(x), then log pX(x) will have the following form

log pX(x) = log pZ(g(x)) + log

∣∣∣∣det

(
∂g

∂x

)∣∣∣∣ , (1)

where log
∣∣∣det

(
∂g
∂x

)∣∣∣ is the log determinant of the Jacobian matrix. We call f (or g) a volume-
preserving function if the log determinant is equal to 0.

Training of flow models typically makes use of MLE. We denote Xd as the random variable of the
data with distribution Pd and density pd(x). In addition to the well-known connection between MLE
and minimization of the KL divergence KL(pd(x)||pX(x)) in X space (see Appendix A for detail),
MLE is also (approximately) equivalent to minimizing the KL divergence in Z space, this is due to
the KL divergence is invariant under invertible transformation (Yeung, 2008; Papamakarios et al.,
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2019). Specifically, we define ZQ : ZQ = g(Xd) with distribution QZ and density function q(z),
the KL divergence in Z space can be written as

KL(q(z)||p(z)) =

∫
q(z) log q(z)dz −

∫
q(z) log p(z)dz (2)

= −
∫
pd(x)

(
log pZ (g(x)) + log

∣∣∣∣det

(
∂g

∂x

)∣∣∣∣) dx+ const., (3)

The full derivation can be found in Appendix A. Since we can only access samples x1, x2, . . . , xN
from pd(x), we approximate the integral by Monte Carlo sampling

KL(q(z)||p(z)) ≈ − 1

N

N∑
n=1

log pX(xn) + const.. (4)

We thus highlight the connection between MLE and KL divergence minimization, in Z space, for
flow based models. The prior distribution p(z) is usually chosen to be a D-dimensional Gaussian
distribution. However, if the data distribution Pd is singular, for example a measure on a low dimen-
sional manifold, the induced latent distribution QZ is also singular. In this case, the KL divergence
in equation 2 is typically not well-defined under the considered flow based model assumptions. This
issue brings both theoretical and practical challenges that we will discuss in the following section.

2 FLOW MODELS WITH MANIFOLD DATA

We assume a data sample x ∼ Pd to be a D dimensional vector x ∈ RD and define the ambient
dimensionality of Pd, denoted by Amdim(Pd), to be D. However for many datasets of interest, e.g.
natural images, the data distribution Pd is commonly believed to be supported on a lower dimen-
sional manifold (Beymer and Poggio, 1996). We assume the dimensionality of the manifold to beK
where K < D, and define the intrinsic dimension of Pd, denoted by Indim(Pd), to be the dimen-
sion of this manifold. Figure 1a provides an example of this setting where Pd is a 1D distribution in
2D space. Specifically, each data sample x ∼ Pd is a 2D vector x = {x1, x2} where x1 ∼ N (0, 1)
and x2 = sin(2x1). Therefore, this example results in Amdim(Pd) = 2 and Indim(Pd) = 1.

In flow-based models, function f is constructed such that it is both bijective and differentiable.
When the prior PZ is a distribution whose support is RD (e.g. Multivariate Gaussian distribution),
the marginal distribution PX will also have support RD and Amdim(PX) = Indim(PX) = D.
When the support of the data distribution lies on aK-dimensional manifold andK < D, Pd and PX
are constrained to have different support. That is, the intrinsic dimensions of PX and Pd are always
different; Indim(PX) 6= Indim(Pd). In this case it is impossible to learn a model distribution PX
identical to the data distribution Pd. Nevertheless, flow-based models have shown strong empiri-
cal success in real-world problem domains such as the ability to generate high quality and realistic
images (Kingma and Dhariwal, 2018). Towards investigating the cause and explaining this dispar-
ity between theory and practice, we employ a toy example to provide intuition for the effects and
consequences resulting from model and data distributions that possess differing intrinsic dimension.

Consider the toy dataset introduced previously; a 1D distribution lying in a 2D space (Figure 1a).
The prior density p(z) is a standard 2D Gaussian p(z) = N (0, IZ) and the function f is a non-
volume preserving flow with two coupling layers (see Appendix C.1). In Figure 1b we plot samples
from the flow model; the sample x is generated by first sampling a 2D datapoint z ∼ N (0, IZ) and
then letting x = f(z). Figure 1c shows samples from the prior distributions PZ and QZ . QZ is
defined as the transformation of Pd using the bijective function g, such that QZ is constrained to
support a 1D manifold in 2D space, and Indim(QZ) = Indim(Pd) = 1. Training of QZ to match
PZ (which has intrinsic dimension 2), can be seen in Figure 1c to result in curling up of the manifold
in the latent space, contorting it towards satisfying a distribution that has intrinsic dimension 2. This
ill-behaved phenomenon causes several potential problems for contemporary flow models:

1. Poor sample quality. Figure 1b shows examples where incorrect assumptions in turn result
in the model generating bad samples.

2. Low quality data representations. The discussed characteristic that results in “curling up”
of the latent space may cause degradations of the representation quality.
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3. Inefficient use of network capacity. Neural network capacity is spent on contorting the
distribution QZ to satisfy imposed dimensionality constraints.

A natural solution to the problem of intrinsic dimension mismatch is to select a prior distribu-
tion PZ with the same dimensionality as the intrinsic dimension of the data distribution such that:
Indim(PZ) = Indim(Pd). However, since we do not know Indim(Pd) explicitly, one option
involves to instead learn it from the data distribution. In the following section, we will introduce a
parameterization approach that enables us to learn Indim(Pd).

(a) Data distribution Pd (b) Samples in X space (c) Samples in Z space

Figure 1: Samples and latent visualization from a flow based model with a fixed Gaussian prior
when the intrinsic dimension is strictly lower than the true dimensionality of the data space.

3 LEARNING A MANIFOLD PRIOR

Figure 2: The data (black dots) lies on a 2D man-
ifold in 3D space. To have a model PX with
Indim(PX) = 2, we learn a prior PZ that is a
2D Gaussian in 3D space and an invertible func-
tion f which maps from PZ to PX .

Consider a data vector x ∈ RD, then a flow
based model prior PZ is usually given by a D-
dimensional Gaussian distribution or alterna-
tive simple distribution that is also absolutely
continuous (a.c.) in RD. Therefore, the intrin-
sic dimension Indim(PZ) = D. To allow a
prior to have intrinsic dimension strictly less
than D, we let PZ have the ‘generalized den-
sity’1 p(z) with the form

p(z) = N (0, AAT ), (5)

where z ∈ RD and A is a D×D lower triangular matrix with D(D+1)
2 parameters, such that AAT

is constrained to be a positive semi-definite matrix. When AAT has full rank D, then PZ is a (non-
degenerate) multivariate Gaussian on RD. When Rank(AAT ) = K and K < D, then PZ will
degenerate to a Gaussian supported on a K-dimensional manifold, such that the intrinsic dimension
Indim(PZ) = K. Figure 2 illustrates a sketch of this scenario. In practice, we initialize A to be an
identity matrix, so AAT will also be an identity matrix and PZ is initialized as a standard Gaussian.

When Rank(AAT ) < D, the degenerate covariance AAT is no longer invertible and we are unable
to evaluate the density value of p(z) for a given random vector z. Furthermore, when the data
distribution Pd is supported on a K-dimensional manifold, QZ will also be supported on a K-
dimensional manifold and no longer has a valid density function. Using equation 2 to train the flow
model then becomes impossible as the KL divergence between PZ and QZ is not well defined2.
Recent work by Zhang et al. (2020) proposed a new family of divergence to address this problem.
In the following section we briefly review the key concepts pertaining to this family of divergences.

1We use the generalized density to include the case that AAT is not full rank.
2The KL divergence KL(Q||P) is well defined when Q and P have valid densities and their densities have

the same support (Ali and Silvey, 1966).
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4 FIX THE ILL-DEFINED KL DIVERGENCE

random Let ZQ and ZP be two random variables with distribution QZ and PZ . The KL divergence
between QZ and PZ is not defined if QZ or PZ does not have valid density function. Let K be
an a.c. random variable that is independent of ZQ and ZP and has density pK , We define ZP̃ =

ZP +K;ZQ̃ = ZQ +K with distributions P̃Z and Q̃Z respectively. Then P̃Z and Q̃Z are a.c. with
density functions

q(z̃) =

∫
z

pK(z̃− z)dQZ p(z̃) =

∫
z

pK(z̃− z)dPZ . (6)

We can thus define the spread KL divergence between QZ and PZ as the KL divergence between
Q̃Z and P̃Z as:

K̃L(QZ ||PZ) ≡ KL(Q̃Z ||P̃Z) ≡ KL (q(z̃)||p(z̃)) . (7)

In this work we letK be a Gaussian with diagonal covariance σ2
ZI to satisfy the sufficient conditions

such that K̃L is a valid divergence (see Zhang et al. (2020) for details) and has the properties:

K̃L(QZ ||PZ) ≥ 0, K̃L(QZ ||PZ) = 0⇔ QZ = PZ . (8)

Since QZ and PZ are transformed from Pd and PX using an invertible function g, we have

QZ = PZ ⇔ Pd = PX . (9)

Therefore, the spread KL divergence can be used to train flow based models with a manifold prior
in order to fit a dataset that lies on a lower-dimensional manifold.

5 IDENTIFIABILITY OF INTRINSIC DIMENSION

A byproduct of our model is that the intrinsic dimension of the data manifold can be identified.
Section 4 shows that when K̃L(QZ ||PZ) = 0 ⇔ PX = Pd, the supports of PX and Pd will also
have the same intrinsic dimension: Indim(PX) = Indim(Pd). The flow function g, and its inverse
g = f−1, are bijective and continuous so f is a diffeomorphism (Kobyzev et al., 2020). Due to the
invariance of dimension property of diffeomorphisms (Lee, 2013, Theorem 2.17), the manifold that
supports PZ will have the same dimension as the manifold that supports PX . Therefore, we have

Indim(PZ) = Indim(PX) = Indim(Pd). (10)

Since the intrinsic dimension of PZ is equal to the rank of the matrix AAT , we can calculate
Rank(AAT ) by counting the number of non-zero eigenvalues of the matrix AAT . This allows
for identification of the intrinsic dimension of the data distribution as

Indim(Pd) = Rank(AAT ). (11)

We have shown that we can identify the intrinsic dimension of Pd using the spread KL divergence.
In the next section, we will discuss how to estimate the spread KL divergence in practice.

6 ESTIMATION OF THE SPREAD KL DIVERGENCE

Our goal is to minimize the spread KL divergence between QZ and PZ . Using our definition of
spread divergence (equation 7), this is equivalent to minimizing

KL (q(z̃)||p(z̃)) =

∫
q(z̃) log q(z̃)dz̃︸ ︷︷ ︸

Term 1

−
∫
q(z̃) log p(z̃)dz̃︸ ︷︷ ︸

Term 2

. (12)

where q(z̃) and p(z̃) are defined in equation 6. We separate the objective into two terms and now
discuss the estimation for each of them.

Term 1: We use H(·) to denote the differential entropy. Term 1 is the negative entropy −H(ZQ̃).
For a volume preserving g and Xd is a.c., the entropy H(ZQ) = H(Xd) and is independent of the
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model parameters and can be ignored during training. However, the entropy H(ZQ̃) = H(ZQ +K)
will still depend on g, see Appendix B.1 for an example. We claim that when the variance of K is
small, the dependency between the H(ZQ̃) and volume preserving function g is weak, thus we can
approximate equation 12 by leaving out term 1 and will not affect the training.

To build intuitions, we first assume Xd is a.c., so ZQ = g(Xd) is also a.c.. Using standard entropic
properties (Kontoyiannis and Madiman, 2014), we can pose the following relationship

H(ZQ) ≤ H(ZQ +K) = H(ZQ) + I(ZQ +K,K), (13)

where I(·, ·) denotes the mutual information. Since ZQ is independent of function g and if σ2
Z → 0,

then I(ZQ +K,K)→ 0 (see Appendix B.2 for a proof), the contribution of the I(ZQ +K,K) term,
with respect to training g, becomes negligible in the case of small σ2

Z .

Unfortunately, equation 13 is no longer valid when Pd lies on a manifold since ZQ will be a singular
random variable and the differential entropy H(ZQ) is not defined. In Appendix B.3, we show
that leaving out the entropy H(ZQ̃) corresponds to minimizing an upper bound of the spread KL
divergence. To further find out the contribution of the negative entropy term, we compare between
leaving out −H(ZQ̃) and approximating −H(ZQ̃) during training. In Appendix B.4, we discuss the
approximation technique and give the empirical evidence which shows that the ignoring −H(ZQ̃)
will not affect the training of our model. Therefore, we make use of volume preserving g and small
variance σ2

Z = 1× 10−4 in our experiments.

In contrast to other volume preserving flows, that utilize a fixed prior PZ , our method affords addi-
tional flexibility by way of allowing for changes to the ‘volume’ of the prior towards matching the
distribution of the target data. In this way, our decision to employ volume-preserving flow func-
tions does not limit the expressive power or abilities of the model, in principle. Popular non-volume
preserving flow structures, e.g. affine coupling flow, may also easily be normalized to become vol-
ume preserving, thus further extending the applicability of our approach (see Appendix C.1 for an
example).

Term 2: The noisy prior p(z̃) is defined to be a degenerate Gaussian N (0, AAT ), convolved with a
Gaussian noise N (0, σ2

ZI), and has a closed form density

p(z̃) = N (0, AAT + σ2
ZI). (14)

Therefore, the log density log p(z̃) is well defined, we can approximate term 2 by Monte Carlo∫
q(z̃) log p(z̃)dz̃ ≈ 1

N

N∑
n=1

log p(z̃n), (15)

where q(z̃) =
∫
p(z̃|z)dQZ . To sample from q(z̃), we first get a data sample x ∼ Pd, use function

g to get z = g(x) (so z is a sample of QZ) and finally sample z̃ ∼ p(z̃|z).

7 EXPERIMENTS

To demonstrate the effectiveness of our approach, Sections 7.1–7.4 report experiments on four
datasets; toy 2D and 3D data, the fading square dataset and a synthesized adaptation of MNIST.
We use the Adam optimizer (Kingma and Ba, 2014) in all our experiments. Our flow networks are
consisted of incompressible affine coupling layer introduced by Sorrenson et al. (2020); Dinh et al.
(2016). We compare a volume preserving flow with a learnable prior (our method) to a non-volume
preserving flow with fixed prior, so both models have the ability to adapt their ‘volume’ to fit the
target distribution and retains fair comparisons. See Appendix C.1 for a detailed discussion of the
incompressible affine coupling layer and the network structures we use for all the experiments.

7.1 2D TOY DATA

We firstly verify our method using the toy dataset described in Section 2 and Figure 1a. The flow
function has two coupling layers. We train our model using learning rate 3×10−4 and batch size 100
for 10k iterations. Figure 3 shows the samples from the model, the learned prior and the eigenvalues
of AAT . We observe the sample quality is better than that in Figure 1b and the prior has learned
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a degenerate Gaussian with Indim(PZ) = 1, which matches Indim(Pd). In Appendix C.2, we
show that our model can not only learn the manifold support of target distribution but also capture
the ‘density’ allocation on the manifold.

(a) X space samples (b) Z space samples (c) Eigenvalues of AAT

Figure 3: (a) shows the samples from the data distribution Pd and our model PX . (b) shows the
sample from the learned prior PZ and the distribution QZ . (c) shows the eigenvalues of AAT .

7.2 S-CURVE DATASET

We fit our model to the S-curve dataset shown in Figure 4a. The data distribution lies on a 2D
manifold in a 3D space, therefore Indim(Pd) = 2. Specific network structure and training details
can be found in Appendix C.1. After training, our model learns a nonlinear function g to transform
Pd to QZ , where the latter lies on a 2D linear subspace in 3D space (see Figure 4b). Following this,
a linear dimensionality reduction can be conducted to generate 2D data representations, we now
briefly outline a general procedure for this.

For QZ with Amdim(QZ) = D and Indim(QZ) = K, we first find the eigenvectors e1, . . . , eD of
AAT , sorted by their eigenvalues. When Rank(AAT ) = K ≤ D, there exist K eigenvectors with
positive eigenvalues. We select the first K eigenvectors and form the matrix E = [e1, . . . , eK ] with
dimension D×K. We then transform each data sample x ∈ RD into Z space: z = g(x), such that
z ∈ RD. Afterwards, a linear projection is carried out zproj = zE to obtain the lower dimensional
representation zproj ∈ RK . This procedure can be seen as a nonlinear dimensionality reduction,
where the nonlinear component is solved using the learned function g.

We plot the resulting representations in Figure 4b. The colormap indicates correspondence between
the data in 3D space and the representation in 2D space. We observe that our method can success-
fully (1) identify that the intrinsic dimension of the data is two and (2) project the data into a 2D
space that faithfully preserves the structure of the original data distribution. We also compare the
sample generation quality with a flow that has a fixed Gaussian prior, see Appendix C.3 for details.

(a) x ∼ Pd (b) z ∼ QZ (c) Eigenvalues (d) zproj = zE

Figure 4: (a) S-curve data samples x ∼ Pd. (b) The latent representation z = g(x), points
can be observed to lie on a linear subspace. (c) Eigenvalues of the matrix AAT , we deduce that
Indim(Pd) = 2. (d) Our representation after the dimensionality reduction zproj = zE.
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7.3 FADING SQUARE DATASET

The fading square dataset (Rubenstein et al., 2018) was proposed in order to diagnose model behav-
ior when data distribution and model possess differing intrinsic dimension and therefore constitutes
a further relevant test bed for our current work. The dataset consists of 32×32 pixel images with
6×6 grey squares on a black background. The grey scale values are sampled from a uniform distri-
bution with range [0, 1], so Indim(Pd) = 1. Figure 5a shows the data samples. We fit our model to
the dataset, the network structure and the training details can be found in Appendix C.

Figure 5b shows samples from our trained model. Figure 5d shows the first 20 eigenvalues of the
AAT (ranked from high to low), we can see only one eigenvalue is larger than zero and the others
have converged to zero. This illustrates that we have successfully identified the intrinsic dimension
of Pd. We further carry out the dimensionality reduction process that was introduced in Section 7.2;
the latent representation z is projected onto a 1D line and we visualize the correspondence between
the projected representation and the data in Figure 5e. Pixel grey-scale values can be observed to
decay as the 1D representation is traversed from left to right, indicating that our representations are
consistent with the properties of the original data distribution. In contrast, we find that the traditional
flow model, with a fixed 1024D Gaussian p(z), fails to learn such a data distribution, see Figure 5c.

(a) x ∼ Pd (b) Our model (c) Traditional flow (d) Eigenvalues of AAT

(e) zproj = zE

Figure 5: (a) and (b) show the samples from the data distribution and our model, respectively. (c)
shows a traditional flow based model with a fixed Gaussian prior fails to generate any valid samples.
(d) shows the first 20 eigenvalues of the matrix AAT . (e) visualization of the representation after
applying dimensionality reduction. See text for further discussion.

7.4 MNIST DATA

We further investigate training of our model using images of digits. However, for datasets like
MNIST (LeCun, 1998), the true intrinsic dimension is unknown. In order to verify the correctness
of our model’s ability to identify the intrinsic data dimension, we construct synthetic datasets by first
fitting an implicit model pθ(x) =

∫
δ(x− g(z)p(z))dz to the MNIST dataset, and then use samples

from the trained model x ∼ pθ(x) as training data. The intrinsic dimension of the training dataset
is the same as the dimension of the latent variable z in the implicit model Indim(Pd) = dim(z).
We construct two datasets with dim(z) = 5 and dim(z) = 10 such that Indim(Pd) = 5 and
Indim(Pd) = 10, respectively. Further details on the implicit model, flow network structure,
training method and samples from the learned models are found in Appendix C.

In contrast to the fading square dataset, we find that in order to successfully train the model (i.e. such
that valid image samples are generated), it is necessary to add small Gaussian noise to the training
data. This trick is commonly used in the training of flow based models for image data (Sorrenson
et al., 2020). We note that adding Gaussian noise breaks the assumption that the data lies on a man-
ifold and, alternatively, the intrinsic dimension of the training data distribution will be equal to its
ambient dimension. Towards alleviating this undesired effect, we firstly add Gaussian noise with
standard deviation σx = 0.05 and anneal σx after 2000k iterations with a factor of 0.9 every 10k
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iterations. However, to help retain successful model training, we disallow the annealing procedure
to reach a state where zero noise is added due to the outlined model behavior observed when con-
sidering this image dataset. Experimentally, we cap a lower-bound Gaussian noise level of 0.01 and
leave further investigation of this phenomenon to future work.

In Figure 6a and 6b, we plot the first 20 eigenvalues of the AAT (ranked from high to low) after
training on two synthetic MNIST datasets with intrinsic dimension 5 and 10. It can be observed
that 5 and 10 eigenvalues are significantly larger than the remaining values, respectively. It can thus
be concluded that the intrinsic dimension of the two datasets are 5 and 10. Remaining non-zero
eigenvalues can be attributed to the small Gaussian noise added to the training data.

For the original MNIST dataset, it was shown that digits have different intrinsic dimension (Costa
and Hero, 2006). This suggests the distribution of MNIST may lie on several, disconnected mani-
folds with differing intrinsic dimension. Although our model assumes that Pd lies on one continuous
manifold, it is interesting to investigate the case when this model assumption is not fulfilled. We thus
fit our model to the original MNIST data and plot the eigenvalues in Figure 6c. In contrast to Fig-
ures 6a and 6b, the gap between eigenvalues can be seen to be less pronounced, with no obvious
step change. However the values suggest that the intrinsic dimension of MNIST is between 11 and
14. This result is consistent with previous estimations stating that the intrinsic dimension of MNIST
is between 12 and 14 (Facco et al., 2017; Hein and Audibert, 2005; Costa and Hero, 2006). Recent
work Cornish et al. (2019) discusses fitting flow models to a Pd that lies on disconnected compo-
nents, by introducing a mixing prior. Such techniques may be easily combined with our method
towards constructing more powerful flow models; a promising direction for future work.

(a) Indim(Pd) = 5 (b) Indim(Pd) = 10 (c) MNIST

Figure 6: This figure shows the eigenvalues of the AAT after fitting the (a) synthetic MNIST with
intrinsic dimension 5; (b) synthetic MNIST with intrinsic dimension 10; (c) original MNIST dataset.

8 RELATED WORK

Classic latent variable generative models assume that data distributions lie around a low-dimensional
manifold, for example the Variational Auto-Encoder (Kingma and Welling, 2013) or, recently intro-
duced, Noisy Injective Flows (Cunningham et al., 2020). Such methods typically assume that obser-
vational noise is not degenerated (e.g. a fixed Gaussian distribution), therefore the model distribution
is absolutely continuous and maximum likelihood learning is thus well defined. However, common
distributions such as natural images usually don’t have Gaussian observational noise (Zhao et al.,
2017). Therefore, in this work, we focus on modeling distributions that lie on a low-dimensional
manifold.

The study of manifold learning for nonlinear dimensionality reduction Cayton (2005) and intrinsic
dimension estimation Camastra and Staiano (2016) is a rich field with an extensive set of tools.
However, most methods commonly do not model data density on the manifold and are thus not used
for the same purpose as the models introduced here. There are however a number of recent works
that introduced normalizing flows on manifolds that we now highlight and relate to our approach.

Several works define flows on manifolds with prescribed charts. Gemici et al. (2016) generalized
flows from Euclidean spaces to Riemannian manifolds by proposing to map points from the manifold
M to RK , apply a normalizing flow in this space and then map back toM. The technique has been
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further extended to Tori and Spheres (Rezende et al., 2020). These methods require knowledge of
the intrinsic dimension K and a parameterization of the coordinate chart of the data manifold.

Without providing a chart mapping a priori, M-flow (Brehmer and Cranmer, 2020) recently pro-
posed an algorithm that learns the chart mapping and distribution density simultaneously. However,
their method still requires that the dimensionality of the manifold is known. They propose that the
dimensionality can be learned either by a brute-force solution or through a trainable variance in the
density function. The brute-force solution is clearly infeasible for data embedded in extremely high
dimensional space, as is often encountered in deep learning tasks. Use of a trainable variance is
natural and similar to our approach. However, as discussed at the beginning of this paper, without
carefully handling the KL or MLE term in the objective, a vanishing variance parameter will result
in wild behavior of the optimization process since these terms are not well defined.

While the GIN model considered in Sorrenson et al. (2020) could recover the low dimensional
generating latent variables following their identifiability theorem, the assumptions therein require
knowledge of an auxiliary variable, e.g. the label, which is not required in our model. Behind this
superficial difference is the essential discrepancy between the concept of informative dimensions
and intrinsic dimensions. The GIN model discovers the latent variables that are informative in a
given context, defined by the auxiliary variable u instead of the true intrinsic dimensions. In their
synthetic example, the ten dimensional data is a nonlinear transformation of ten dimensional latent
variables where two out of ten are correlated with the labels of the data and the other eight are
not. In this example, there are two informative dimensions, but there are ten intrinsic dimensions.
Nevertheless, our method for intrinsic dimension discovery can be used together with informative
dimension discovery methods to discover finer structures of data.

9 CONCLUSION

We presented a principled strategy to learn the data distribution that lies on a manifold and identify
its intrinsic dimension. We fix the ill-defined KL divergence and show, across multiple datasets, the
resulting benefits for flow based models under both sample generation and representation quality.
There remain a number of open questions and interesting directions for future work. Namely; further
exploration of the effects of the entropy term in the case of non-volume preserving networks and,
additionally, investigation of the phenomenon concerning the apparent necessity of noise addition
in cases pertaining to complex real-world distributions e.g. image data.
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A MAXIMUM LIKELIHOOD ESTIMATION AND KL DIVERGENCE

Given data x1, x2, . . . , xN sampled independently from the true data distribution Pd, with density
function pd(x), we want to fit the model density p(x)3 to the data. A popular choice to achieve this
involves minimization of the KL divergence where:

KL(pd(x)||p(x)) =

∫
pd(x) log pd(x)dx−

∫
pd(x) log p(x)dx (16)

= −
∫
pd(x)

(
log pZ (g(x)) + log

∣∣∣∣det

(
∂g

∂x

)∣∣∣∣) dx+ const.. (17)

Since we can only access samples from pd(x), we approximate the integral by Monte Carlo sampling

KL(pd(x)||p(x)) ≈ − 1

N

N∑
n=1

log p(xn) + const.. (18)

Therefore, minimizing the KL divergence between the data distribution and the model is (approxi-
mately) equivalent to Maximum Likelihood Estimation (MLE).

When p(x) is a flow-based model with invertible flow function f : Z → X, g = f−1, minimizing
the KL divergence in X space is equivalent to minimizing the KL divergence in the Z space. We let
Xd be the random variable of data distribution and define ZQ : ZQ = g(Xd) with density q(z), so
q(z) can be represented as

q(z) =

∫
δ(z − g(x))pd(x)dx. (19)

Let p(z) be the density of the prior distribution PZ , the KL divergence in Z space can be written as

KL(q(z)||p(z)) =

∫
q(z) log q(z)dz︸ ︷︷ ︸

Term 1

−
∫
q(z) log p(z)dz︸ ︷︷ ︸

Term 2

. (20)

Term 1: using the properties of transformation of random variable (Papoulis and Pillai, 2002, pp.
660), the negative entropy can be written as∫

q(z) log q(z)dz =

∫
pd(x) log pd(x)dx︸ ︷︷ ︸

const.

−
∫
pd(x) log

∣∣∣∣det

(
∂g

∂x

)∣∣∣∣ dx. (21)

Term2: the cross entropy can be written as∫
q(z) log p(z)dz =

∫ ∫
δ(z − g(x))pd(x) log p(z)dzdx (22)

=

∫
pd(x) log p(g(x))dx. (23)

Therefore, the KL divergence in Z space is equivalent to the KL divergence in X space

KL(q(z)||p(z)) = KL(pd(x)||p(x)). (24)

We thus build the connection between MLE and minimizing the KL divergence in Z space.

B ENTROPY

B.1 AN EXAMPLE

Assume a 2D Gaussian random variable X with covariance
[
1 0
0 1

]
, g is a volume preserving flow

with parameter θ. Let Z1 = gθ1(Z) be a Gaussian with covariance
[
2 0
0 1

2

]
and Z2 = gθ2(X) be

3For simplicity, we use notation p(x) to represent the model pX(x) unless otherwise specified.
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a Gaussian with covariance
[
3 0
0 1

3

]
. Therefore the entropy H(Z1) = H(Z2) = H(X) and doesn’t

not depend on θ. Let K be an Gaussian with zero mean and covariance
[
1 0
0 1

]
, so Z1 + K is a

Gaussian with covariance
[
3 0
0 3

2

]
and Z2 + K is a Gaussian with covariance

[
4 0
0 4

3

]
. Therefore

H(Z1 +K) 6= H(Z2 +K) and H(gθ(X) +K) depends on θ. A similar example can be constructed
when X is not absolutely continuous.

B.2 Z IS AN ABSOLUTELY CONTINUOUS RANDOM VARIABLE

For two mutually independent absolutely continuous random variable Z and K, the mutual infor-
mation between Z +K and K is

I(Z +K,K) = H(Z +K)−H(Z +K|K) (25)
= H(Z +K)−H(Z|K) (26)
= H(Z +K)−H(Z). (27)

The last equality holds because Z andK are independent. Since mutual information I(Z+K,K) ≥
0, we have

H(Z) ≤ H(Z +K) = H(Z) + I(Z +K,K). (28)

AssumeK has a Gaussian distribution with 0 mean and variance σ2
Z

4. When σ2
Z = 0,K degenerates

to a delta function, so Z +K = Z and
I(Z +K,K) = H(Z +K)−H(Z) = 0, (29)

this is because the mutual information between an a.c. random variable and a singular random
variable is still well defined, see (Yeung, 2008, Theorem 10.33). Assume K1, K2 are Gaussian
random variables with 0 mean and variances σ2

1 and σ2
2 respectively. Without loss of generality, we

assume σ2
1 > σ2

2 and σ2
1 = σ2

2 + σ2
δ , and let Kδ be the random variable of a Gaussian that has 0

mean and variance σ2
δ such that K1 = K2 +Kδ . By the data-processing inequality, we have

I(Z +K2,K2) ≤ I(Z +K2 +Kδ,K2 +Kδ) = I(Z +K1,K1). (30)
Therefore, I(Z+K,K) is a monotonically decreasing function when σ2

Z decreases and when σ2
Z →

0, I(Z +K,K)→ 0.

B.3 UPPER BOUND OF THE SPREAD KL DIVERGENCE

In this section, we show that leaving out the entropy term H(ZQ̃) in equation 12 is equivalent to
minimizing an upper bound of the spread KL divergence.

For singular random variable ZQ = g(Xd) and absolutely continuous random variable K that are
independent, we have

H(ZQ +K)−H(K) = H(ZQ +K)−H(ZQ +K|ZQ) (31)
= I(ZQ +K,ZQ) ≥ 0. (32)

The second equation is from the definition of Mutual Information (MI); the MI between an a.c.
random variable and a singular random variable is well defined and always positive, see (Yeung,
2008, Theorem 10.33) for a proof.

Therefore, we can construct an upper bound of the spread KL objective in equation 12

KL(q̃||p̃) =

∫
q(z̃) log q(z̃)dz̃︸ ︷︷ ︸
−H(ZQ+K)

−
∫
q(z̃) log p(z̃)dz̃ (33)

≤ −H(K)︸ ︷︷ ︸
const.

−
∫
q(z̃) log p(z̃)dz̃. (34)

Therefore, ignoring the negative entropy term during training is equivalent to minimizing an upper
bound of the spread KL objective.

4The extension to higher dimensions is straightforward.
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B.4 EMPIRICAL EVIDENCE FOR IGNORING THE NEGATIVE ENTROPY

In this section, we first introduce the approximation technique to compute the negative entropy
term, and then discuss the contribution of this term for the training. The negative entropy of random
variable ZQ̃ is

−H(ZQ̃) =

∫
q(z̃) log q(z̃)dz̃, (35)

where

q(z̃) =

∫
z

pK(z̃− z)dQZ , (36)

and pK is the density of a Gaussian with diagonal covariance σ2
ZI . We first approximate q̃(z̃) by a

mixture of Gaussians

q(z̃) ≈ 1

N

N∑
n=1

N (z̃; zn, σ2
ZI) ≡ q̂N (z̃) (37)

where zn is the nth sample from distribution Qz by first sampling xn ∼ Pd and letting zn = g(xn).
We denote the random variable of this Gaussian mixture as ẐNQ̃ and approximate

−H(ZQ̃) ≈ −H(ẐNQ̃ ). (38)

However, the entropy of a Gaussian mixture distribution does not have a closed form, so we further
conduct a first order Taylor expansion approximation (Huber et al., 2008)

−H(ẐNQ̃ ) ≈ 1

N

N∑
n=1

log q̂N (z̃ = zn), (39)

this approximation is accurate for small σ2
Z . Finally we have our approximation

−H(ZQ̃) ≈ 1

N

N∑
n=1

log q̂N (z̃ = zn). (40)

To evaluate the contribution of the negative entropy, we train our flow model on both low dimen-
sional data (Toy datasets: 2D) and high dimensional data (Fading square dataset: 1024D) by op-
timization that uses two objectives: (1) ignoring the negative entropy term in equation 7 and (2)
approximating the negative entropy term in equation 7 using the approximation discussed above.
During training, we keep tracking of the value of the entropy H(ZQ̃) (using the approximation
value) in both objectives. We let N equal the batch size when approximating the entropy. Addi-
tional training details remain consistent with those described in Appendix C.

To evaluate the contribution of the negative entropy, we train our flow model on both low dimen-
sional data (Toy datasets: 2D) and high dimensional data (Fading square dataset: 1024D) by op-
timization that uses two objectives: (1) ignoring the negative entropy term in equation 7 and (2)
approximating the negative entropy term in equation 7 using the approximation discussed above.
During training, we keep tracking of the value of the entropy H(ZQ̃) (using the approximation
value) in both objectives. We let N equal the batch size when approximating the entropy. Addi-
tional training details remain consistent with those described in Appendix C.

In Figure 7, we plot the (approximated) entropy value H(ZQ̃) during training for both experiments.
We find the difference between having the (approximated) negative entropy term and ignoring the
negative entropy to be negligible. We leave theoretical investigation on the effects of leaving out the
entropy term during training to future work.
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(a) Toy dataset (b) Fading square dataset

Figure 7: Figure (a) and (b) show the (approximated) entropy value using two different training
objectives, for two different experiments.

C EXPERIMENTS

C.1 NETWORK ARCHITECTURE

The flow network we use consists of incompressible affine coupling layers (Sorrenson et al., 2020;
Dinh et al., 2016). Each coupling layer splits a D-dimensional input x into two parts x1:d and
xd+1:D. The output of the coupling layer is

y1:d = x1:d (41)
yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d), (42)

where s : Rd → RD−d and t : Rd → RD−d are scale and translation functions parameterized by
neural networks, � is the element-wise product. The log-determinant of the Jacobian of a coupling
layer is the sum of the scaling function

∑
j s(x1:d)j . To make the coupling transform volume

preserving, we normalize the output of the scale function, so the i-th dimension of the output is

s̃(x1:d)i = s(x1:d)i −
1

D − d
∑
j

s(x1:d)j , (43)

and the log-determinant of the Jacobian is
∑
i s̃(x1:d)i = 0. We compare a volume preserving

flow with a learnable prior (normalized s(·)) to a non-volume preserving flow with fixed prior (un-
normalized s(·)). In this way both models have the ability to adapt their ‘volume’ to fit the target
distribution, retaining comparison fairness.

In our affine coupling layer, the scale function s and the translation function t have two types of
structure: fully connected net and convolution net. Each fully connected network is a 4-layer neural
network with hidden-size 24 and Leaky ReLU with slope 0.2. Each convolution net is a 3-layer
convolutional neural network with hidden channel size 16, kernel size 3×3 and padding size 1. The
activation is Leaky ReLU with slope 0.2. The downsampling decreases the image width and height
by a factor of 2 and increases the number of channels by 4 in a checkerboard-like fashion (Sorrenson
et al., 2020; Jacobsen et al., 2018). When multiple convolutional nets are connected together, we
randomly permute the channels of the output of each network except the final one. In Table 1, 2, 3,
4, we show the network structures for our four main paper experiments.

Type of block Number Input shape Affine coupling layer widths
Fully connected 2 2 1→ 24→ 24→ 24→ 1

Table 1: The network structure for toy datasets.
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Type of block Number Input shape Affine coupling layer widths

§ Fully connected 6 3
even: 2→ 24→ 24→ 24→ 1
odd: 1→ 24→ 24→ 24→ 2

Table 2: The network structure for S-Curve dataset. If we denote the input vector of each coupling
is x, the function s and t takes x[0] in the first coupling layer and x[1] in the second coupling layer.

Type of block Number Input shape Affine coupling layer widths
Downsampling 1 (1, 32, 32)
Convolution 2 (4, 16, 16) 2→ 16→ 16→ 4
Downsampling 1 (4, 16, 16)
Convolution 2 (16, 8, 8) 8→ 16→ 16→ 16
Flattening 1 (16, 8, 8)
Fully connected 2 1024 512→ 24→ 24→ 24→ 512

Table 3: The network structure for our fading square dataset experiments. If we denote the input
vector of each coupling to be x, the functions s and t take values x[1:2] in the even coupling layer
and x[3] in the odd coupling layer.

Type of block Number Input shape Affine coupling layer widths
Downsampling 1 (1, 28, 28)
Convolution 4 (4, 14, 14) 2→ 16→ 16→ 4
Downsampling 1 (4, 14, 14)
Convolution 4 (16, 7, 7) 8→ 16→ 16→ 16
Flattening 1 (16, 7, 7)
Fully connected 2 784 392→ 24→ 24→ 24→ 392

Table 4: Network structure for synthetic MNIST dataset experiment.

C.2 TOY DATASET

We also construct a second dataset and train a flow model using the same training procedure dis-
cussed in Section 7.1. Figure 8a shows the samples from the data distribution Pd, each data point
is a 2D vector x = [x1, x2] where x1 ∼ N (0, 1) and x2 = x1, so Indim(Pd) = 1. Figure 8f
shows that the prior PZ has learned the true intrinsic dimension Indim(PZ) = Indim(Pd) = 1.
We compare to samples drawn from a flow model that uses a fixed 2D Gaussian prior, with results
shown in Figure 8. We can observe, for this simple dataset, flow with a fix Gaussian prior can gen-
erate reasonable samples, but the ‘curling up’ behavior, discussed in the main paper, remains highly
evident in the Z space, see Figure 8c.

We also plot the ‘density allocation’ on the manifold for the two toy datasets. For example, for the
data generation process x = [x1, x2] where x1 ∼ p = N (0, 1) and x2 = x1, we use the density
value p(x = x1) to indicate the ‘density allocation’ on the 1D manifold. To plot the ‘density allo-
cation’ of our learned model, we first sample xs uniformly from the support of the data distribution,
the subscript ‘s’ here means that they only contain the information of the support. Specifically, since
xs = [xs1, x

s
2], we sample xs1 ∼ p = U(−3σ, 3σ) (σ is the standard deviation of N (0, 1), U is the

uniform distribution) and let xs2 = xs1 or xs2 = sin(xs1), depending on which dataset is used. We use
the projection procedure that was described in Section 7.2 to obtain the projected samples zprojs , so
zprojs ∈ RIndim(Pd). We also project the learned prior PZ to RIndim(Pd) by constructing PprojZ as
a Gaussian with zero mean and a diagonal covariance contains the non-zeros eigenvalues of AAT .
Therefore PprojZ is a.s. in RIndim(Pd) and we denote its density function as pproj(z). We then use
the density value pproj(z = zprojs ) to indicate the ‘density allocation’ at the location of xs on the
manifold support. In Figure 9, we compare our model with the ground truth and find that we can
successfully capture the ‘density allocation’ on the manifold.
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(a) Data distribution (b) Fix Gaussian prior: X space (c) Fix Gaussian prior: Z space

(d) Our method: X space (e) Our method: Z space (f) Eigenvalues of AAT

Figure 8: (a) shows the samples from the data distribution. (b) and (d) show samples from a flow
with a fixed Gaussian prior and our method, respectively. (c) and (d) show the latent space in both
models. In (f), we plot the eigenvalues of the matrix AAT .

C.3 S-CURVE DATASET

To fit our model to the data, we use the Adam optimizer with learning rate 5× 10−4 and batch size
500 and train the model for 200k iterations. We anneal the learning rate with a factor of 0.9 every
10k iterations.

We compare our method with a traditional normalizing flow with a fixed 3D Gaussian prior. Both
models have the same network architecture and training procedure. Figure 10a and 10b show the
samples form our model and the traditional flow with a fixed 3D Gaussian prior. We can observe
more samples lying outwith the true data distribution in Figure 10b than in Figure 10a. We can
conclude that our model has better sample quality considering this S-Curve dataset. We also compare
the latent representation for both models, see Figure 10c and 10d. We can see the representation
distribution QZ captures the structure of the data distribution well whereas the distribution QZ in
Figure 10d is unable to do so.

C.4 FADING SQUARE DATASET

To fit the data, we train our model for 20k iterations with batch-size 100 using the Adam optimizer.
The learning rate is initialized to 5×10−4 and decays with a factor of 0.9 at every 1k iterations. We
additionally use an L2 weight decay with factor 0.1.

C.5 MNIST DATASET

C.5.1 IMPLICIT DATA GENERATION MODEL

To fit an implicit model to the MNIST dataset, we first train a Variational Auto-Encoder
(VAE) (Kingma and Welling (2013)) with Gaussian prior p(z)=N (0, I). The encoder is q(z|x) =
N (µθ(x),Σθ(x)) where Σ is a diagonal matrix. Both µθ and Σθ are parameterized by a 3-layer
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(a) Ground truth (b) Our method

(c) Ground truth (d) Our method

Figure 9: (a) and (c) shows the ground truth ‘density allocation’ on the manifold for two toy datasets,
(b) and (d) shows the ‘density allocation’ learned by our models.

feed-forward neural network with a ReLU activation and the size of the two hidden outputs are 400
and 200. We use a Gaussian decoder p(x|z) = N (gθ(z), σ2

xI) with fixed variance σx = 0.3. The
gθ is parameterized by a 3-layer feed-forward neural network with hidden layer sizes 200 and 400.
The activation of the hidden output uses a ReLU and we utilize a Sigmoid function in the final layer
output to constrain the output between 0 and 1. The training objective is to maximize the lower
bound of the log likelihood

log p(x) ≥
∫
q(z|x) log p(x|z)dz −KL(q(z|x)||p(z)),

see Kingma and Welling (2013) for further details. We use an Adam optimizer with learning rate
1 × 10−4 and batch size 100 to train the model for 100 epochs. After training, we sample from
the model by first taking a sample z ∼ p(z) and letting x = gθ(z). This is equivalent to taking
a sample from an implicit model pθ(x) =

∫
δ(x − gθ(z))d(z)dz, see Tolstikhin et al. (2017) for

further discussion regarding this implicit model construction. In Figure 11, we plot samples from
the trained implicit model with dim(z) = 5, dim(z) = 10 and the original MNIST data.

C.5.2 FLOW MODEL TRAINING

We train our flow models to fit the synthetic MNIST dataset with intrinsic dimensions 5 and 10
and the original MNIST dataset. In all models, we use the Adam optimizer with learning rate
5 × 10−4 and batch size 100. We train the model for 3000k iterations and, following the initial
1000k iterations, the learning rate decays every 10k iterations by a factor 0.9. In Figure 12, we
plot the samples from our models trained on three different training datasets. In Figure 13, we also
plot the samples from traditional flow models that trained on these three datasets using the same
experiment settings , we found the samples from our models are sharper than that from traditional
flow models.
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(a) Our model (b) Fix Gaussian prior

(c) Our model (d) Fix Gaussian prior

Figure 10: Figure (a) and (b) plot the data distribution PZ of the S-Curve dataset and the samples
from our model and a traditional flow with a fixed Gaussian prior. Figure (c) shows the representa-
tion distribution QZ and the learned prior PZ of our model. In Figure (d), we plot the representation
distribution QZ using the flow with a fixed Gaussian prior.

(a) dim(z) = 5 (b) dim(z) = 10 (c) MNIST Dataset

Figure 11: Training data for the flow model. Figure (a) and (b) are synthetic MNIST samples from
two implicit models with latent dimension 5 and 10. Figure (c) are samples from the original MNIST
dataset.
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(a) dim(z) = 5 (b) dim(z) = 10 (c) MNIST

Figure 12: Samples from our methods. Figure (a) and (b) are samples flow models trained on
synthetic MNIST data with intrinsic dimension 5 and 10. Figure (c) are samples from a flow model
that trained on original MNIST data.

(a) dim(z) = 5 (b) dim(z) = 10 (c) MNIST

Figure 13: Samples from traditional non-volume preserving flow models with fixed Gaussian prior.
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