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ABSTRACT

App agents, which autonomously operate mobile Apps through GUIs, have gained
significant interest in real-world applications. Yet, they often struggle with long-
horizon planning, failing to find the optimal actions for complex tasks with longer
steps. To address this, world models are used to predict the next GUI observation
based on user actions, enabling more effective agent planning. However, existing
world models primarily focus on generating only textual descriptions, lacking
essential visual details. To fill this gap, we propose ViMo, the first Visual world
Model designed to generate future App observations as images. For the challenge
of generating text in image patches, where even minor pixel errors can distort
readability, we decompose GUI generation into graphic and text content generation.
We propose a novel data representation, the Symbolic Text Representation (STR),
to overlay text content with symbolic placeholders while preserving graphics. With
this design, ViMo employs a STR Predictor to predict future GUIs’ graphics
and a GUI-text Predictor for generating the corresponding text. Moreover, we
deploy ViMo to enhance agent-focused tasks by predicting the outcome of actions.
Experiments show that ViMo establishes visual world models as a compelling alter-
native to language-based approaches, producing visually plausible and functionally
effective GUIs that empower App agents with more informed decisions.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) 1 have unlocked new possibilities for
deploying AI agents across diverse fields (Li et al., 2023; Gou et al., 2023; Rawles et al., 2024b).
A notable application is the smartphone application (App) agents (Rawles et al., 2024a; Wang
et al., 2024a), designed to directly interact with Graphical User Interfaces (GUIs) to perform tasks
autonomously and efficiently in a mobile operating system.

However, existing agents struggle with making decisions for tasks requiring longer steps (Chae et al.,
2024). To address this "long-horizon" limitation, an increasing number of studies have introduced
world models, which predict how GUIs evolve in response to user actions (Gu et al., 2024). Yet, these
models typically rely on language to describe future observations. These language-based descriptions
often fail to capture the intricate visual details, such as the location and colour of GUI elements,
necessary for a precise representation (Chae et al., 2024). A seemingly straightforward solution is
to execute action candidates on App emulators. However, real-world execution is impractical for
scalable planning since actions like payments or repeated purchases are difficult to backtrack. Similar
concerns have motivated the broader world-model community to explore ML-based simulators (Li
et al., 2025; Hafner et al., 2019; Hu et al., 2022). We tackle the problem in the GUI domain by
designing a GUI world model capable of predicting hypothetical observations in the visual modality.

To build a visual GUI world model capable of generating plausible future GUI observations that
are visually consistent with user actions, a straightforward approach involves generating each pixel
of a GUI using image generations (Brooks et al., 2023; Rombach et al., 2022). Although these
methods demonstrate promising results, such as the GUI graphic generation on the location, style,
and colour of GUI elements (Wei et al., 2024), or scene-text generation in a style that aligns the visual

1By LLMs, we refer to the concept of foundation models that accept various modalities (e.g., visual language
models (VLMs), multimodal LLMs (MLLMs)) while producing textual sequences (W. contributors, 2024).
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UI-Diffuser

User Action:
Enter the Email as dbwscratch.test.id5@gmail.com

IP2P* ViMo (Ours)Textdiffuser-2Current GUI

Figure 1: GUIs generated by image-based methods (UI-Diffuser (Wei et al., 2024), TextDiffuser-
2 (Chen et al., 2024c), and IP2P (Brooks et al., 2023) fine-tuned on GUI dataset, denoted as IP2P*).

context (Chen et al., 2024c; Zhang et al., 2024c), they still display distortions in the text rendering,
particularly for small-sized text where each pixel is critical for accurately identifying and representing
the text (see Fig. 1 for an illustration).

To address the challenges of accurately generating high-fidelity text content within a GUI, we propose
ViMo, the first visual GUI world model. ViMo decouples the generation of graphic and text content
into distinct processes, using a novel data representation named Symbolic Text Representation (STR).
In STR, each text content is replaced (overlayed) with a text symbol, a rectangle-shaped placeholder
with a defined border and fill colours, functioning as a special GUI element. Thus, we simplify
the task of text content generation to text symbol generation, which reframes the problem to the
localisation of the text within a GUI. Based on STR, ViMo employs a STR Predictor and a GUI-text
Predictor to generate the graphic and the text content respectively. Specifically, the STR predictor
is implemented as a diffusion model, taking the current STR, extracted from the given GUI, and
a user action as inputs to generate the STR of the next GUI. Meanwhile, the GUI-text predictor,
implemented based on an LLM, leverages the STR generated by the STR predictor to produce the
corresponding text for each text symbol. Finally, the predicted STR and the generated text are
combined to produce the next GUI.

We evaluated ViMo in three distinct scenarios to comprehensively demonstrate its effectiveness.
First, we assessed its world model capability, where the quality of the generated GUIs was measured
using visual similarity, instructional accuracy, and action readiness scores. Each score was examined
through both automatic metrics and user studies. These assessments provided a robust and holistic
evaluation of how visually precise and contextually plausible the generated GUIs were. Second,
we tested ViMo in an agent-focused task to evaluate its benefits for existing App agents and its
superiority over other language-based and image-based world models. In this setup, given a goal
and the current App observation, the agent selected optimal actions to achieve the goal (Wang et al.,
2024a). By accurately predicting the next GUI based on the current observation and an action,
ViMo enabled the agent to better anticipate action outcomes and make more informed decisions.
This experiment demonstrated the model’s effectiveness in enhancing decision-making for App
agents. Finally, we evaluated ViMo’s real-world applicability under online navigation and zero-
shot generalisation settings. These scenarios assessed the model’s ability to perform in real-time
interactions and to generalise to previously unseen Apps, further demonstrating its generalisation
capabilities and practical value in dynamic environments.

Our main contributions are summarised as follows:

• We propose ViMo, the first generative visual GUI world model that predicts App observations
in a visual modality, capable of more realistic and concrete visual GUI predictions compared to
contemporary language-based methods.

• To address the challenge of strict pixel-level accuracy required to avoid distorted or blurred text
generation in a GUI, we propose a Symbolic Text Representation (STR), overlaying text with uniform
text symbols (placeholders) to simplify text content generation to text location generation. Then
ViMo leverages an LLM to generate the corresponding text content for each text symbol.

• Extensive experiments demonstrated the effectiveness of ViMo in both world model evaluation
and agent-focused tasks. Specifically, ViMo achieved an average 29.14% and 182.74% relative
improvement over existing world models in terms of automatic metrics and user studies, respectively.
Moreover, ViMo boosted the step-wise action prediction accuracy of App agents, achieving a 14.07%
relative performance gain. In the online navigation setup, ViMo increased the task completion rate
from 33.19% to 40.95%, yielding a substantial improvement of 7.76%.
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2 RELATED WORKS

2.1 APP AGENT

App agents, powered by LLMs, have advanced task automation on mobile Apps (Wen et al., 2024b;
Chen et al., 2024a; Zhang et al., 2024a;b; Lee et al., 2023). These agents interact with GUIs by
emulating human actions. Approaches in this domain are broadly divided into language-based and
multi-modality-based methods. Language-based methods rely on textual description of the App
observation and the user goal to generate appropriate actions (Wen et al., 2024a; Li et al., 2024),
while multi-modality-based methods enhance this capability by incorporating GUIs for a more
comprehensive understanding of the interface (Christianos et al., 2024; Wang et al., 2024b). However,
these approaches struggle with long-horizon tasks that require multiple interdependent actions and a
deep understanding of dynamic environments (Chae et al., 2024). For this challenge, a straightforward
solution is to use real-world emulators to simulate GUI changes from user actions, enabling App
agents to navigate complex scenarios and improve decision-making accuracy. However, emulators
face significant drawbacks, including the safety risks from real-world interactions, such as repeatedly
sending messages or making purchases. To overcome these, world models have gained attention as a
more efficient alternative, not only in agents (Chae et al., 2024; Gu et al., 2024), but also in broader
domains such as robotics (Li et al., 2025; Zhou et al., 2024) and self-driving (Hu et al., 2022).

2.2 WORLD MODEL

By observing the real world, world models can predict how the environment evolves in response to
an action (LeCun, 2022; Ding et al., 2024). For instance, GameNGen (Valevski et al., 2024) predicts
how a game system will respond to user actions. Notably, the ability to anticipate potential outcomes
of actions has proven to be highly beneficial in informing decision-making processes (Pascanu et al.,
2017; Yang et al., 2024; Schrittwieser et al., 2020; Hafner et al., 2019). Inspired by their success,
world models have emerged to predict the next observation on websites. These models (Chae et al.,
2024; Gu et al., 2024; Liu et al., 2023) typically take a website observation and an action as inputs to
generate a textual description of the next observation. While websites provide multiple sources of
information, including the actual site and their CSS or HTML source files, mobiles present a more
limited context, as only the GUIs are typically accessible. Moreover, such text-only descriptions often
lack the precise visual details required for accurately predicting future observations, highlighting the
need for a visual world model capable of generating high-fidelity future GUI images.

2.3 GUI GENERATION

With the rapid advancements in image generation techniques (Rombach et al., 2022; Kumari et al.,
2023; Cao & Gong, 2024), previous methods have explored generating GUI directly in pixel space.
For instance, layout generation methods generate the location of GUI elements (Lu et al., 2023; Zheng
et al., 2023; Sobolevsky et al., 2023; Zhao et al., 2019), scene-text generation methods generate
text that aligns with the visual context (Chen et al., 2024c; Zhang et al., 2024c; Chen et al., 2024b;
Zeng et al., 2024), UI-diffuser (Wei et al., 2024) fine-tune a stable diffusion model to generate
mobile GUIs conditioned on text prompts. For the next GUI generation conditioned on current GUI
observation and a user action, it seems straightforward to resort to an image-and-text-conditioned
approach (Brooks et al., 2023). However, we find that pixel-based image generation struggles with
rendering text accurately, as even minor pixel prediction errors can lead to distortions, particularly for
small-sized text (see Fig. 1 for examples).

In this work, we advance beyond existing approaches that generate GUI entirely (graphic and text)
at the pixel level. Instead, we render graphics as image pixels and generate text as language tokens,
enabling a more accurate method for GUI generation.

3 METHOD

In this section, we first define our setup in Subsection 3.1. Then, we introduce ViMo in Subection 3.2.
Finally, we demonstrate how ViMo can be applied to enhance existing App agents in real-world
scenarios (Subsection 3.3). All the prompts in this section are listed in the Appendix.

3
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Next GUI (𝑥!"#$ )

Detect 
Text Content

Current GUI (𝑥!) STR%!

User Action (𝑎)
“Click on the OK to save alarm”

Diffusion

STR Predictor

STR%!"#$

Overlay Text  
into STR

Locate
Text Symbols

{“ID”: (x, y, w, h), …}

LLM

{“ID”: “text”, …}
GUI-text Predictor

Overlay with 
Text Symbols

Figure 2: Framework of our ViMo. We first detect text content (actual words) in the current GUI (xk)
and overlay it with text symbols (rectangle-shaped placeholders with a black border and white fill), to
create STRxk

. Then STRxk
and the user action (a) are input to the STR predictor to generate the STR

of the next GUI (STRxa
k+1

). Next, text symbols within STRxa
k+1

are located and assigned unique ID
token. Then the LLM predicts the text content corresponding to each token. Finally, the next GUI
image is constructed by overlaying the predicted text into the STR.

3.1 PROBLEM SETUP

In general, a GUI world model processes a given GUI Image xk at step k, and user action a, to predict
the effect of a on xk and simulate the next GUI. Formally, this can be expressed as:

xa
k+1 = f(xk, a), (1)

where f(·) represents the world model, and xa
k+1 denotes the predicted next (k+1) GUI image after

applying a to xk. In the following, we explain in detail of our world model.

3.2 VIMO: GENERATIVE VISUAL GUI WORLD MODEL

To tackle the limitation of existing methods (Wei et al., 2024; Chen et al., 2024c; Brooks et al.,
2023) in generating visually plausible text for a GUI, as shown in Fig. 1, we propose ViMo, a novel
generative visual GUI world model that decouples the graphic and text content generation. As shown
in Fig. 2, we first detect and remove all the text in the GUI by overlaying it with a text symbol to
create the Symbolic Text Representation (STR). Then a STR predictor is leveraged for determining
the STR representation of the next GUI with a pixel-based diffusion process. Finally, a GUI-text
predictor is proposed to generate the text content for each symbol using an LLM, followed by a
handcrafted design to overplay the text into the STR image to create the next GUI. Their details are
specified in the following.

3.2.1 STR: SYMBOLIC TEXT REPRESENTATION

To develop a GUI prediction model that eliminates the need to generate specific text content, we
propose the Symbolic Text Representation (STR), where all the text content (actual words) within the
GUI image is symbolised (overlayed) with uniform text symbols (placeholders). To be specific, we
create an STR representation from a given GUI image with three steps: 1) using an OCR model (Shi
et al., 2016; Qiao et al., 2020) to detect text within the GUI; 2) masking the detected text by overlaying
it with a box filled with white and bordered in black; 3) we leverage an LLM to filter out static text
displayed on static GUI elements and preserve it in the image, as it does not involve any semantic
evolution or dynamic changes and remains unchanged as part of specific elements such as a keyboard
or a clock face. Additionally, we empirically find that predicting this static text with complex spatial
patterns poses significant challenges for the LLM.

Through the above process, GUI images are transformed into the STR representation, where the text
content is abstracted into a text symbol, relaxing the task of generating semantic text content into
predicting text symbols that indicate the location and size.

3.2.2 STR PREDICTOR

Building on the powerful generative capability of diffusion-based models (Rombach et al., 2022),
we introduce a STR predictor specifically trained to understand a given STR and a user action,

4
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Algorithm 1 Enhancing App Agent with Generative Visual GUI World Model

Input: Current GUI Observation xk, A goal g, A visual world model ViMo, A selection model
S(·).
Output: Action to be applied on xk to achieve g.
Generate action options A with n actions {ai} (Eq. (4)).
for i = 1 to n do

Leverage ViMo to synthesise the next GUI observation conditioned on ai and xk, denoted as
xai

k+1 (Eq. (5)).
end for
Use S(·) to identify the optimal action with predicted observation (Eq. (6)).

enabling it to generate the corresponding next STR effectively. In particular, we fine-tune a pre-
trained stable diffusion model (Rombach et al., 2022) to predict the next STR, conditioned on the
STR of the current GUI and the user action. Given a STR representation (STRxk

) extracted from
GUI (xk), the process starts with the encoding of STRxk

into a latent representation (Kingma &
Welling, 2013): z = E(STRxk

). Gaussian noise is then added to this representation to create zt at
timestep t. A denoising autoencoder is subsequently trained to predict the Gaussian noise in the latent
representation, aiming to reverse the noise addition. The objective is defined as:

L = EE(STRx),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, E(STRxk

), t, a)∥22
]
, (2)

where ϵθ is a U-Net (Ronneberger et al., 2015) architecture conditioned on a timestep t, a text prompt
a (action), the visual input zt and the image condition STRxk

. To support the condition on images,
we follow IP2P (Brooks et al., 2023) to add additional input channels to the first convolutional layer,
concatenating the image condition E(STRxk

) with the noised latent zt. After training, our STR
predictor is capable of synthesising the next STR (STRxa

k+1
) for STRxk

with action instruction a.

3.2.3 GUI-TEXT PREDICTOR

Given a STR representation generated by our STR predictor, we design a GUI-text predictor to
generate plausible text for the text symbols in the STR based on its graphics. Specifically, we first
locate the text symbols in the STR by colour matching and boundary detection. This outputs the
location of text symbols, along with their unique ID tokens assigned via enumeration, denoted as T .
Then we leverage the image processing and task understanding ability of LLM to predict the text
content based on its context in STR. This process can be formulated as:

textxa
k+1

= LLM(STRxa
k+1

, xk, a, T ), (3)
where STRxa

k+1
denotes the STR representation of xa

k+1. textxa
k+1

contains the predicted text content
for each text symbol, associated with its ID token. This design ensures flexible and accurate
text generation tailored to the predicted GUI STRs as the context. Finally, we overlay each text
content (textxa

k+1
) to STRxa

k+1
to reconstruct the predicted GUI image (xa

k+1). To be specific,
text symbols are replaced with the corresponding text based on coordinates, with dynamic styling
determined by the symbol’s size and surrounding colours. More details are provided in the Appendix.

3.3 VIMO ENHANCED APP AGENT

Motivated by that App agents usually face limitations in long-horizon planning to make optimal
decisions on action selection (Chae et al., 2024), we leverage the proposed ViMo to enhance the
decision-making of App agents.

To be specific, we break down the process into three steps: action option generation, action outcome
synthesis, and action selection. In the first step, the App agent generates n action options, as follows:

A = Agent(xk, g), (4)
where A = {a1, a2, · · · , an} denotes the action option set, xk is the current GUI image at step k, and
g is the given user goal. With these action options, our world model ViMo is leveraged to synthesise
the outcome (next GUI) of these actions as follows:

xai

k+1 = ViMo(xk, a
i), (5)

5
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Table 1: GUI quality evaluation. sgc indicates the GUI consistency, sia instructional accuracy, sar
action readiness score and sh the harmonic average between the 3 metrics. ∆sh is the relative
performance gains of our ViMo over other methods. IP2P* denotes finetuing of IP2P on our dataset.

Method Automatic Metric User Study
sgc sia sar sh ∆sh sgc sia sar sh ∆sh

HTML-vision 0.70 85.77 62.79 0.72 5.39% 0.31 11.32 9.01 0.23 282.61%
IP2P* 0.74 63.57 70.15 0.69 10.20% 0.82 58.92 52.81 0.63 39.68%
UI-diffuser 0.60 39.61 38.75 0.44 71.82% 0.36 14.32 8.56 0.27 225.93%
ViMo (Ours) 0.74 75.39 78.68 0.76 - 0.89 91.12 84.71 0.88 -

where xai

k+1 denotes the synthesised next GUI of applying action ai on xk. Finally, each action ai

and its corresponding predicted outcome xai

k+1 are fed into an LLM-based selection model, which
identifies the optimal action based on the generated GUIs. This process can be formulated as:

ase = S
(
{(ai, xai

k+1)}ni=1

)
, (6)

where ase denotes the selected action, and S(·) is the selection model. This procedure is outlined in
Algorithm 1. By predicting the next GUI, ViMo provides the agent with the potential outcome of an
action, enabling it to make more informed decisions. We build the selection model to identify the
best action in two steps. First, we query an LLM to evaluate all the action candidates, providing a
judgment—either valid or invalid—and a confidence score for each action. Second, we query the
LLM again to select the best action from the two highest-scoring actions. This process is motivated
by our observation that, in over 70% of tasks, the difference between the top two scores is equal to or
less than 0.1, indicating that both are likely optimal. By explicitly prompting the LLM to compare
the top candidates, we go beyond coarse scoring and enable more detailed decision-making.

4 EXPERIMENTS

In this section, we begin by summarising our proposed STR dataset discussed in Subsection 3.2.1.
Next, we tested the core capability of our ViMo, focusing on its GUI generation ability. Building
on this, we demonstrated how the powerful GUI generation capability of ViMo can enhance the
decision-making of App agents. Then, we studied our effectiveness in real-world App navigation
tasks. Finally, we carried out the ablation study to validate the effectiveness of our model design.
Specific setups and experiment details are elaborated in subsequent sections. Unless explicitly stated
otherwise, GPT-4o (Hurst et al., 2024) was employed as the default LLM in the following sections.

4.1 DATASET SUMMARISATION

Our STR dataset was constructed using data from two widely recognised and large-scale sources:
Android Control (Li et al., 2024) and Android in the Wild (AITW) (Rawles et al., 2024b). From
these sources, we respectively sampled 12 and 7 Apps, selecting those with rich data samples
while filtering out noise. Android Control provides two types of user actions: 1) action commands:
predefined actions (e.g., click, scroll) accompanied by specific parameters such as coordinates (x,
y); 2) action instructions: actions described in natural languages, such as "click the plus icon". We
used action instructions as conditions for our world model as this approach was more concrete and
better utilised the pre-trained model in understanding natural language. For AITW, action commands
were converted into action instructions using GPT-4o (Hurst et al., 2024). In total, we collected
19 Apps with 3,550 episodes, 23,620 images and 18,450 actions. To ensure both time-efficient
and cost-efficient experiments, we followed prior App agent (Rawles et al., 2024b) on partial split
evaluation. Specifically, we randomly sampled 57 episodes across 19 distinct Apps. Details including
dataset collection, split summarisation and full-split experiments are provided in the Appendix.

4.2 WORLD MODEL ABILITY

We evaluated the GUI generation capability of ViMo by GUI quality evaluation. We included
IP2P (Brooks et al., 2023) and UI-diffuser (Wei et al., 2024), both originally designed for image

6
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Open app drawer

Set timer for 20 minutes

Set timer for 12 minutes

Set timer for  1 hour

Current GUI IP2P*ViMo (Ours) HTML-vision UI-diffuser

Figure 3: GUI generation comparison in graphic generation (Top) and text generation (Bottom).

editing and GUI generation. We fine-tuned IP2P on our dataset to generate everything of the GUI,
including the text content and the graphic, denoted as IP2P*. We also leveraged an LLM to predict
App observations in an HTML format, which were rendered into images, denoted as HTML-vision.

We leveraged 3 evaluation metrics: The GUI consistency score (sgc) assessed the visual similarity
between the ground truth and the generated next GUI; Instructional accuracy score (sia) determined
whether the generated GUI adheres to the user action; Action readiness score (sar) evaluated whether
the generated GUI retains valid elements essential for subsequent actions required to achieve the user
goal. Both automatic evaluation and user studies were conducted. For the automatic evaluation, we
used DINO (Caron et al., 2021) as the visual encoder to compute sgc, and an LLM to evaluate sia
and sar. For the user study, we invited 70 voluntary participants to complete questionnaires based on
80 GUI samples, generated by all 4 compared methods. For each sample, participants were asked
three questions, one each for evaluating sgc, sia, and sar. The prompts used for the LLM-based
evaluations and full instructions for user study are provided in the Appendix.

As shown in Table 1, ViMo achieved the highest score on the harmonic average of the three automatic
metrics, surpassing other methods with an average relative performance improvement of 29.14%. The
results of the user study were consistent with the automatic evaluations, where ViMo demonstrated
the best performance. Notably, HTML-vision and UI-diffuser performed significantly worse in
human evaluation compared to their scores in the LLM-based assessment. This discrepancy likely
arose because human evaluators perceived the outputs of these methods as visually unrealistic or
functionally incoherent, leading to lower subjective scores in sgc, sia and sh.

Qualitative comparisons are presented in Fig. 3, under two scenarios: GUI graphic changes (Top)
and text generation (Bottom, cropped for space efficiency). Experiments revealed that while the
HTML-vision method exhibited greater flexibility in responding to user actions (as shown in the
bottom examples), it failed to produce concrete details necessary for future actions (top). Conversely,
IP2P* generated plausible GUI graphics but lacked flexibility in text content generation (also reflected
by sgc and sia in Table 1). This trade-off highlighted the superior balance of ViMo.

4.3 WORLD MODEL ENHANCED APP AGENT

This section demonstrates that: 1) ViMo enhanced the performance of App agents in decision-making;
2) ViMo outperformed other world models in enabling App agents to make more accurate decisions.

7
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Table 2: Decision optimisation comparison with App agents.

Agent Type App Agent Leisure Work System Overall

Language-Based

ER (Li et al., 2024) 31.76 46.15 34.13 34.50
AutoDroid (Wen et al., 2024a) 35.81 46.15 31.75 35.46
T3A (Rawles et al., 2024a) 41.22 51.28 42.86 43.13
T3A + ViMo (Ours) 50.00 58.97 45.24 49.20

Multi-Modality-Based

APP-Agent (Zhang et al., 2023) 43.24 51.28 39.68 42.81
Mobile-Agent-v2 (Wang et al., 2024a) 43.92 53.85 39.68 43.45
M3A (Rawles et al., 2024a) 46.62 51.28 43.65 46.01
M3A + ViMo (Ours) 53.38 53.85 45.24 50.16

Table 3: Comapre World Models.

Modality World Model Step Acc.
w/o WM w/o WM 46.01

Language Change-text 47.28
HTML-text 46.65

Vision

HTML-vision 48.89
UI-diffuser 47.60

IP2P* 48.56
ViMo (Ours) 50.16

Table 4: Zero-shot Evaluation.

App Agent LLM Step Acc.
SeeAct GPT-4-Turbo 33.9
M3A GPT-4-Turbo 42.1
ER Gemini 1.5 Pro 24.4
T3A Gemini-2.0-Flash 41.4
T3A+ViMo Gemini-2.0-Flash 46.8
M3A Gemini-2.0-Flash 44.2
M3A+ViMo Gemini-2.0-Flash 47.6

Table 5: Online Evaluation.

App Agent LLM Task Acc.
SeeAct GPT-4-Turbo 15.50
M3A GPT-4-Turbo 25.40
M3A Gemini-1.5-Pro 22.80
T3A GPT-4-Turbo 30.60
T3A Gemini-1.5-Pro 19.40
T3A Gemini-2.0-Flash 33.19
T3A + ViMo Gemini-2.0-Flash 40.95

Comparison with App Agents. In this experiment, we collected 6 LLM-based App agents, which
included three language-based methods: ER, AutoDroid, and T3A, as well as three multi-modality-
based methods: APP-Agent, Mobile-Agent-v2, and M3A. We applied our ViMo into M3A and
T3A following the process in Subsection 3.3. Moreover, we followed the previous works (Rawles
et al., 2024b; Li et al., 2024) to use the step accuracy (the number of correct actions divided by the
number of overall actions) to quantify the model performance. To provide more detailed results, we
categorised the Apps into three groups: "Leisure", "Work" and "System". Table 2 demonstrates that
ViMo was beneficial to the App agent, achieving a relative performance gain of 9.01% for M3A
and 14.07% for T3A. These findings highlighted the effectiveness of our proposed world model in
providing App agents with enhanced decision-making capability. Additional information about the
categorisation and experiments with more App agents are provided in the Appendix.

Comparison with World Models. We evaluated the ability of ViMo to enhance App agent decision-
making by comparing it against existing world models. In addition to vision-based world models
discussed in Subsection 4.2, we also incorporated two language-based world models (Gu et al.,
2024; Chae et al., 2024), utilising Change-text to generate textual descriptions capturing differences
between consecutive observations and HTML-text to predict App observations in an HTML format.
Then, we applied each world model to M3A App agents. Table 3, together with Appendix Table 9,
illustrates that vision-based methods consistently outperform language-based world models, thereby
reinforcing our motivation for developing visual GUI world models. Moreover, our approach achieves
superior performance over existing world models, underscoring its effectiveness and advantage.

4.4 REAL-WORLD APPLICATIONS

Practical Deployment. ViMo was designed to be lightweight and easily deployable. The minimum
requirement for deployment is a GPU with 16 GB of memory. Moreover, ViMo was implemented
as a plug-and-play API that required only a single function call, making integration straightforward.
Inference time on V100 GPU is 8 seconds on a STR image generation and 30 seconds on GUI-text
prediction. We collected and compared the inference time with existing methods in the Appendix.

Generalisation to New Apps. Generalisation is a crucial capability for real-world applications. To
assess the generalisation performance of our method on new Apps that were unseen during training,
we conducted a zero-shot evaluation using data from the Android Control dataset (Li et al., 2024),
explicitly excluding Apps encountered during training. As shown in Table 4, ViMo substantially
outperformed the baseline and achieved 47.6%, underscoring its robustness and adaptability to novel
App environments. Additional visualisations of unseen scenarios are provided in the Appendix.

Online Evaluation. To further demonstrate the effectiveness of ViMo in realistic App navigation
scenarios, we conducted an online evaluation using the AndroidWorld dataset (Rawles et al., 2024a),
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which comprises 116 distinct navigation tasks. Performance was measured using the task success
rate (Task Acc.). As illustrated in Table 5, ViMo achieved a notable improvement of 7.76% over the
baseline method, highlighting its effectiveness and reliability in real-world settings.

4.5 ABLATION STUDY

Table 6: Ablations on preserving static text
and using action instructions.

Static Text Action Instr. App Agent

T3A M3A

N/A N/A 43.13 46.01
✓ – 42.81 45.05
– ✓ 47.28 48.88
✓ ✓ 49.20 50.16

Table 7: Ablation on the number of iterations.

Method Iterations Step Acc. (%)

T3A N/A 39.94

T3A+ViMo
1 46.06
2 46.65
3 45.05

In this section, we ablated on three key components
of ViMo: 1) preserving static text within the image
to simplify the text generation task; 2) using action
instructions instead of action commands as the con-
ditioning input for ViMo; and 3) varying the number
of iterations, where each iteration corresponds to one
roll-out step into the future during GUI prediction.

Firstly, for the challenge of predicting static text from
specific GUI elements, such as keyboard, number
pad or clock face, which typically did not involve
text changes and exhibited complex spatial patterns,
we retained static text within the image (Subsection
3.2.1). This approach eliminated the need for the
LLM to generate such static text while generating in
pixels instead. Secondly, we proposed conditioning
STR prediction on action instruction rather than ac-
tion commands (Subsection 4.1). Ablation results are
presented in Table 6, where "Static Text" indicates
whether static text was retained in the images, and
"Action Instr." denotes whether natural language instructions ("

√
") or abstract action commands ("-")

were used as conditioning input to ViMo. The first row indicates the baseline where ViMo was not ap-
plied. The table shows that both components contributed significantly to performance improvements
across the two App agents, highlighting their critical roles in enabling ViMo to generate high-quality
GUIs. Visual comparison examples are provided in the Appendix for further illustration.

Our ViMo predicted future GUI observations, which could be recursively fed back as input to simulate
further into the future. In this ablation study, we varied the iteration number to evaluate how extended
roll-outs impact prediction accuracy. We took Gemini-2.0-Flash (Hassabis & Kavukcuoglu, 2024) as
the LLM in this study. As shown in Table7, performing two iterations yielded the highest accuracy.
However, this also led to increased computational cost. Therefore, we selected one step as a practical
trade-off between performance and efficiency. We also observed a slight decline in performance
at iteration 3 relative to iterations 1 and 2, indicating that extending the prediction horizon did not
necessarily improve agent behaviour. This was likely due to that longer horizons introduced not only
additional foresight but also a greater accumulation of prediction errors, whose detrimental effect
could outweigh the potential benefits. Further analysis of error accumulation, user examples of ViMo
with App agent, and comparisons with various world models are provided in the Appendix.

5 CONCLUSION

In this work, we introduced ViMo, a novel generative visual GUI world model designed to predict
App observations in a visual modality, providing a more realistic and concrete approach compared
to contemporary language-based models. To address the unique challenges of GUI generation,
ViMo was equipped with the STR representation to simplify text content generation to text location
prediction by overlaying text content with placeholders and delegating content generation to LLM.
This innovation ensured high visual fidelity and avoided artefacts like distorted or blurred text.
Through extensive experiments, we demonstrated that ViMo generated both visually plausible and
functionally effective GUIs. Notably, ViMo boosted step-wise action prediction accuracy by a relative
performance gain of 14.07%, underscoring its potential to enhance decision-making of App agents.
Furthermore, real-world experiments demonstrated the strong generalisation ability of ViMo to unseen
Apps, along with its robust performance in online navigation tasks under real-time environment
interaction. Together with its superiority over language-based world models, these results highlighted
the value of ViMo in advancing GUI world modelling in visual modality.

9
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In this Appendix, we first provide detailed explanations, including prompts related to our methods,
descriptions of our STR dataset, and evaluation details. Then, we present additional experimental
results. Finally, we present additional visualisations of our proposed ViMo for GUI generation.

A EXPERIMENTAL DETAILS

A.1 GUI-TEXT PREDICTOR

This subsection elaborates on the design and functionality of the GUI-text predictor, summarising its
key components and providing a detailed explanation of its underlying processes.

Given a STR prediction, the GUI-text predictor starts by locating the text symbols. To be specific, we
first detect black borders by identifying black pixels in the BGR colour space, generating a binary
mask that indicates whether a pixel is black or not. A pixel is classified as black if its BGR values
fall within the range [0,0,0] to [50,50,50]. Next, we identify rectangular regions within this mask
by computing the ratio of the actual contour area to its corresponding bounding rectangle area. If
this ratio exceeds 0.8, the region is considered a valid rectangle, allowing us to extract rectangles
with black borders. For these detected regions, we further analyse their internal colour distribution
to determine whether they contain the desired white colour. Specifically, we define white pixels
as those with BGR values within the range [200,200,200] to [255,255,255]. If more than 50% of
the pixels within a region fall within this range, the region is classified as a text symbol. Thus, the
locations of text symbols are extracted, and we assign a unique identifier (ID) to each symbol through
enumeration.

Building on this, we take as inputs the current GUI image xk, an action a to be applied to this image,
the predicted STR ( STRxa

k+1
), the location and unique ID token of the text symbols in the STR T .

Then we leverage an LLM to predict the text content for each text symbol. The process begins with
preprocessing the STR by overlaying the ID token for each text symbol to the corresponding position
in the STR image, resulting in a modified representation denoted as STRID

k+1. Next, we prompt an
LLM to identify which text symbols will remain unchanged after the action a (see the prompt in
Subsection G.1). These symbols are determined to not be affected by the action and have content
identical to the previous GUI xk. Based on the resulting ID list, we retrieve the corresponding pixels
from the previous GUI xk based on their location and update the STR representation. The updated
image is still referred to as STRID

k+1 for simplicity.

Subsequently, the LLM is prompted to determine the semantic role of each text symbol by analysing
its context (see the prompt in Subsection G.2). This semantic information, combined with STRID

k+1,
is then used to predict the exact text content of each symbol (see the prompt in Subsection G.3).

Finally, to overlay a symbol with its actual text content, we perform the following steps: 1) For a
given text symbol’s location and corresponding text, the average background colour is computed
by the average colour of the area on the edge of text symbol’s coordinates; 2) The text colour is set
to either white or black to ensure optimal contrast with the background colour, for better visibility;
3) The font size is calculated as the maximum size that allows the text to fit entirely within the
boundaries of the text symbol, ensuring optimal use of space and readability.

A.2 ACTION SELECTION

In practice, our selection model, described in Section 3.3, identifies the best action in two steps.
First, we query an LLM to evaluate all the action options, providing a judgment—either valid or
invalid—and a confidence score for each action (see the prompt in Subsection G.4). These judgments
are transformed into scores: if an action is judged valid, its score equals the confidence; if judged
invalid, its score is the confidence multiplied by −1. This scoring reflects that higher confidence
in a valid action yields a higher score, while higher confidence in an invalid action results in a
lower (negative) score. Second, we query the LLM again to select the best action from the two
highest-scoring actions (see the prompt in Subsection G.5). This step is motivated by our observation
that, in over 70% of tasks, the difference between the top two scores is equal to or less than 0.1,
indicating that both are likely optimal. By allowing the LLM to choose between them, we refine the
selection beyond simply picking the action with the highest score.
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Table 8: Summarisation of our STR dataset.

Split App Episode Image Instrucion
Train 19 2853 19010 14852
Val 19 349 2290 1774
Test 19 348 2320 1824
All 19 3550 23620 18450

Table 9: Decision optimisation comparisons on APP agent performance. Apps are categorised into
"Leisure", "Work", and "System".

App Agent World Model Modality World Model Leisure Work System Overall

T3A

w/o world model w/o world model 41.22 51.28 42.86 43.13

Langugae Change-text 49.32 51.28 42.06 46.65
HTML-text 47.30 48.72 43.65 46.01

Vision

HTML-vision 50.68 53.85 43.65 48.24
UI-diffuser 48.65 53.85 43.65 47.28
IP2P 48.65 53.85 45.24 47.92
ViMo (Ours) 50.00 58.97 45.24 49.20

APP-Agnet

w/o world model w/o world model 43.24 51.28 39.68 42.81

Langugae Change-text 45.96 56.41 45.24 46.96
HTML-text 44.59 56.41 45.24 46.33

Vision

HTML-vision 47.97 56.41 46.03 48.24
UI-diffuser 47.30 56.41 44.44 47.28
IP2P 47.30 58.97 45.24 47.92
ViMo (Ours) 50.68 58.97 43.65 48.89

Mobile-Agent-v2

w/o world model w/o world model 43.92 53.85 39.68 43.45

Langugae Change-text 47.30 66.67 41.27 47.28
HTML-text 47.30 66.67 38.89 46.33

Vision

HTML-vision 50.00 66.67 41.27 48.56
UI-diffuser 49.32 61.54 41.27 47.60
IP2P 46.62 66.67 45.24 48.56
ViMo (Ours) 50.00 66.67 44.44 49.84

M3A

w/o world model w/o world model 46.62 51.28 43.65 46.01

Langugae Change-text 51.35 51.28 41.27 47.28
HTML-text 50.68 51.28 40.48 46.65

Vision

HTML-vision 52.03 48.72 45.24 48.89
UI-diffuser 50.00 48.72 44.44 47.60
IP2P 52.03 48.72 44.44 48.56
ViMo (Ours) 53.38 53.85 45.24 50.16

A.3 DATA COLLECTION

To ensure the quality and diversity of data samples for each App, while minimising noise, we
collected App information from both Android Control (Li et al., 2024) and Android in the Wild
dataset (AITW) (Rawles et al., 2024b) datasets. To be specific, out of 15,274 episodes in the Android
Control, only 5,697 episodes include the "open_app" action. From these episodes, we extracted their
"app_name", identifying 758 unique applications. However, only 13 of these Apps had more than 50
samples. To enrich the dataset, we manually collected additional samples for these 13 Apps from
the rest of the dataset. For AITW, we extracted App names by using the package name listed under
the "current activity" field. After filtering out the noisy, 11 valid Apps remained. By combining the
overlapping applications from both datasets, we obtained a total of 19 unique Apps. We split our
dataset into "Train", "Validation" and "Test" splits, and we summarise our dataset under each split in
Table 8.

Furthermore, we converted action commands into action instructions for AITW with specific prompts
in Subsection G.6. We use Paddleocr (Shi et al., 2016) for STR generation.

A.4 EVALUATION

World Model Ability. For the results under automatic metrics presented in Table 1, we prompt LLM
for the instructional accuracy score sia and action readiness score sar, as shown in Subsection G.7
and Subsection G.8 respectively. A generation is considered successful if "success" appears under
"Status" for sia and "yes" under "ready for action" for sar. For the user study, we collected 80
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Table 10: Trajectory synthesis evaluation. "T+L" denotes the accuracy of the whole trajectory with
length L.

World Model T+1 T+2 T+3 T+4
w/o world model 22.81 14.04 7.02 0
Change-text 52.63 26.32 10.53 5.26
HTML-text 38.60 14.04 12.28 7.02
HTML-vision 43.86 19.30 10.53 10.53
UI-diffuser 52.63 29.82 12.28 5.26
IP2P* 56.14 21.05 10.53 7.02
ViMo (Ours) 57.89 36.84 14.03 12.28

Table 11: Evaluation on randomness by running the experiment 3 times (r1-r3) on our sampled test
split. "All" denotes the evaluation of the full test split. sgc,sia and sar are the metrics same with
Table 1. sh denotes their harmonic score. STD denote the standard deviation from r1 to r3.

World Model sgc sia sar sh
r1 0.7421 75.08 78.29 0.7582
r2 0.7323 75.63 77.64 0.7546
r3 0.7423 75.39 78.68 0.7605

STD 0.0057 0.23 0.42 0.0025
ALL 0.7389 75.37 78.20 0.7578

generated samples—20 from each of the four world models. We then asked 70 participants to
answer three questions on each sample designed to reflect the sia, sgc and sar scores, as detailed in
Subsection G.9. For the sgc, participants are asked to rate on a scale from 1 to 5. These scores were
then normalised to the [0,1] range in Table 1.

World Model Enhanced App Agent. In Table 2, we categorised APPs based on their primary
functions into three groups: Leisures, Work, and System. The Leisure category includes APPs
commonly used for relaxation and entertainment, such as Decathlon, eBay, Flipkart, Amazon, Adidas,
Kitchen Stories, Booking.com, YouTube, and Vimeo. The Work category comprises APPs typically
associated with professional or productivity-related activities, including Gmail, Drive, and Chrome.
Lastly, the System category encompasses APPs pre-installed in the Android operating system, such
as com.android.contacts, com.google.android.dialer, com.google.android.googlequicksearchbox,
com.android.settings, com.google.android.APPs.maps, and com.android.vending.

Ablation on Iteration Numbers. ViMo predicts future GUI observations, which can be recursively
fed back as input to simulate further into the future. Taking the generative GUI as the current GUI,
an agent was prompted to generate the action instructions based on the user goal (see the prompt in
Subsection G.10). Then the action instruction and the GUI were fed into ViMo to generate the next
GUI. In this study, we defined the iteration number as the number of times ViMo was called. We
only use the final output as the signals during the candidate action selection phase, guiding the final
selection among potential actions.

B ADDITIONAL EXPERIMENTAL RESULTS

Comparison with World Models. Table 3 compares our ViMo with existing world models under
M3A App agent. To further highlight our superiority, Table 9 presents additional results of ViMo
applied to T3A, APP-Agent, and Mobile-Agent-V2. The experimental results indicate that vision-
based methods consistently outperform their language-based counterparts, thereby substantiating
our motivation for developing visual GUI world models. Moreover, our approach achieves superior
performance over existing world models, underscoring its effectiveness and advantage.

Generation Error Analysis. As discussed in Subsec. 4.5, our method ViMo can iteratively generate
future GUIs. However, as the number of iterations increases, the accumulated error also grows. In
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(a) (a) Click  at:[0.16,0.88] (b) Click contact iconCurrent STR(b)

Figure 4: Qualitative ablation studies. Left: Static text generation. (a) Generating static text via
an LLM; (b) Preserving the original text in the image by rendering it as image pixels. Right: STR
generation under two input formats—(a) action command and (b) action instruction.

Click the plus icon to
add a file 

Swipe up to view the  
curry recipe and some shoes

Figure 5: GUI generation conditioned on a novel combination of current GUI observation and user
action.

addition to the evidence presented in Table 7, we conduct further experiments to analyse this iteration
error and compare our approach with existing world models.

To this end, we design a trajectory synthesis evaluation to assess how well the GUIs generated
by ViMo align with those observations in real-world environments over longer iterations. In this
setup, the generated GUI is leveraged as the input to an App agent to generate the subsequent action,
with higher-quality trajectories indicating a GUI more aligned with the real-world environment.
Specifically, the GUIs generated by ViMo serve as the observation input for the App agent, which
generates actions aimed at achieving the user’s goal. These output actions are then evaluated to reflect
whether the GUI representations offer concrete and reliable information for action prediction. This
process is repeated for L steps, and we calculate the success rate of the entire L-step trajectory.

We employ an LLM as a judge to assess the alignment between the agent’s simulated actions and the
ground truth actions within a given trajectory. Specifically, an agent was prompted to generate the
action instructions based on the given GUI and the user goal (see the prompt in Subsection G.10) and
the LLM evaluated whether the simulated action lead to the same outcome as the ground truth action
(see the prompt in Subsection G.11), a "yes" of the "Status" is calculated as a match.

As shown in Table 10, we compared ViMo against both visual- and language-based world models
and demonstrated that while performance decreases across all world models with more iterations,
our model significantly outperformed the other methods by providing more accurate and reliable
information. This was reflected in higher trajectory prediction accuracy, underscoring the ability of
our model to generate GUIs that aligned with the real-world environment.
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Table 12: Inference time and step accuracy comparison across models.

Model Inference Time Step Accuracy (%)
Baseline (T3A) ∼4 minutes 43.13
Change-text ∼5 seconds 46.64
IP2P* ∼1.5 minutes 47.92
ViMo (Ours) ∼2 minutes 49.20

Figure 6: False examples where the text symbols are incorrectly represented, making them unrecog-
nizable to indicate the location of text.

Randomness Study and Evaluation on Full Test Split. ViMo involves random factors, particularly
from the use of LLMs. The LLM is prompted to generate plausible textual content, and in some
cases, multiple reasonable options can be produced. For example, in Fig. 3, it shows "5:49 "on the
top left corner for "set timer for 20 minutes" command and shows "Timer" for "set timer for 12
minutes", both are plausible and valid in the given context. However, the key functional element,
the timer itself, is consistent with the user instructions in both cases. To evaluate their influence, we
conducted the experiment three times, as summarised in Table 11 (r1-r3). The results demonstrate
that the randomness does not significantly impact the performance or consistency of our method.
Additionally, we focused on a randomly selected subset of examples for evaluation, with results
from the full test set also included to illustrate that the observed differences are minor, as shown in
Table 11 (compare ALL to r1-r3). We consider the subset results to provide an accurate and reliable
approximation for our analysis.

Qualitative Ablation Analysis. In addition to the quantitative ablation results presented in Table 6,
we also provide qualitative comparisons. Fig. 4 (left) illustrates the challenges faced by the LLM in
predicting static text under complex spatial layouts. Fig. 4 (right) displays the STR generation of
the same user intent but with different action types. It demonstrated that models learned with action
commands failed to predict STR that aligns with the user’s intent, whereas action instructions offered
a more concrete description, enabling the model to better capture the intent.

Qualitative Generalisation Study. We studied the generalisation of ViMo in Fig. 5 by providing
user actions that were not typically encountered within the App’s standard context. For example,
in the Clock App, a user action to "add a file" generated a Drive-style file selection window while
retaining the Clock interface. Similarly, in the Kitchen Store App, ViMo can generate content
corresponding to the action. These results emphasised ViMo’s generalisation ability facing novel
combinations of App observations and user actions.
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Input Image

GT

{“action_type”: “scroll”, "direction": "down"}

{“action_type”: “scroll”, "direction": "down"}

"After using the Kitchen Stories app for a while 
and trying many different dishes, I want to set 

notifications for new recipes because I've been 
missing the most current updates."

{“action_type”: “click”, "index": 18}{"action_type": "navigate_back"}

{"action_type": "navigate_back"}

User Goal

(a) Task Inputs

(b) Ground Truth

(c) The potential actions and the correlated predicted GUI of the M3A with ViMo. The selected action is highlighted
in red.

(d) The of the M3A without ViMo.

18

(d) Output of M3A without ViMo

Figure 7: Example of how ViMo helps the App agent to select the correct action.

C PRACTICAL DEPLOYMENT

In this section, we report the computational efficiency of our method to demonstrate its practicality in
real-world applications. The minimum hardware requirement is a GPU with 16 GB of memory. On a
V100 GPU, STR image generation takes approximately 8 seconds, and GUI-text prediction takes
around 30 seconds. In our setup, the total inference time per request is about 2 minutes, including
model loading and communication overhead. Each request involves predicting future GUIs for three
different user actions. Table 12 compares the inference time and step accuracy of ViMo with other
world models. With an additional 2 minutes of inference time, ViMo achieves a notable accuracy
improvement of 6.07%.

Input
Click the "Add label”

text field
Click the checkbox 

for Monday
Press home button
to go to home page

Figure 8: Visualisation of ViMo in generating GUIs given a single current GUI paired with different
actions.
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Click on the search bar at the top 
of the screen

Add label as GymOpen clock app Open  kitchen stories app

Click on the Black PERFLY
Men Badminton Shoes

Click on the + button at the 
bottom right of the screen

Click on the menu icon at 
top left of the screenOpen gmail app Click on the search icon

Figure 9: Visualisation of ViMo in generating the next GUI. For each example, the action is displayed
at the top, with the current GUI shown on the left and the generated GUI on the right.

D LIMITATION

Fig. 6 illustrates failure cases where text symbols are not represented as our rectangle-shaped
placeholders with a black border and white fill, making them unrecognisable as text symbols.
Improving the representation of text symbols remains a potential direction for future work.

E ADDITIONAL VISUALISATION

Fig. 7 demonstrates how ViMo helps the M3A App agent make better action decisions. Fig. 8 show-
cases results generated from a single current GUI paired with different actions, further highlighting
the versatility of our approach. Diverse visualisations are presented in Fig. 9 and Fig. 10. These
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click the + icon Type in hgftest Tap on pizza restaurant 

Tap the Chrome app icon Tap the three-dot menu icontap on the 'weather' search 
suggestion

Tap the toggle to turn on 
Airplane mode Tap on net work and internet Click the Voicemail tab

Figure 10: Visualisation of ViMo in generating the next GUI. For each example, the action is
displayed at the top, with the current GUI shown on the left and the generated GUI on the right.

examples illustrate how our method effectively generates the next GUI based on the given action
and current GUI observation, showcasing its ability to produce visually coherent and contextually
accurate GUI simulations.

F STATEMENT ON LLM USAGE

We disclose that large language model (LLM) tools were used solely for language refinement of the
manuscript, including improving grammar and polishing phrasing. LLMs were not used to generate
scientific content, research ideas, experiment designs, data, analyses, or code. All suggestions and
modifications from these tools were made under the direct supervision and final approval of the
authors, and all authors are fully aware of and consent to this usage.
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G PROMPTS

G.1 PROMPT TO DECIDE THE TEXT SYMBOLS TO REMAIN UNCHANGED AFTER THE ACTION

You are a professional UI/UX analyst and your goal is to compare the two UI screenshots
and return their overlapping layout.
### Inputs:
1. **Current Screenshot**: The current mobile UI as an image.
2. **Next UI Layout Screenshot**:
- An image of the next mobile UI layout with all text replaced by white boxes.
- Each box has a unique red ID label.
3. Use action: a user action described by language
Next UI Layout Screenshot is a result of a user action on the current screenshot, but
the text elements are masked.
Please help me identify those layouts that are located in the same position, so I can
predict their text directly from the current screenshot.
Usually, the system bar information should be included. Exclude elements from the
result if:
The content (text) changes as a result of the user action, even if the element exists
in both screenshots.
Please be very very cautious about putting an ID on the list, which means you are very
very confident with this task. if you are unsure about some elements, please ignore
them and do not put them on the list.
### Output the list of existing elements : Return the results in the following JSON
format: [’id1’,’id2’,...]
### Notes:
- Ensure the detected elements appear in both UI screenshots, which means their
surrounding context is the same.
- Ensure identify those elements that their text will change by the user action and
exclude them from your response.
- Ensure identify those elements that share a similar context layout, but their absolute
are not the same, and them from your response.
- Ensure only reply in pure JSON format, with no placeholders or comments.

G.2 PROMPT TO DETERMINE THE SEMANTIC ROLE OF EACH TEXT SYMBOL

You are a professional UI/UX analyst assigned to structure and analyse the semantics of
mobile UI screenshots.
Your goal is to segment the UI and annotate box elements in a way that enhances
understanding of their roles and relationships within the interface. Inputs:
- Current Screenshot: A visual representation of the mobile UI.
- Next UI layout screenshot: A visual representation of the next UI layout with all the
text masked with a white box. Each box has an ID number on it in red colour. - User
Action: An action put on the current UI will result in the next UI.
- Box locations: a list of box locations to better help you to locate the boxes in the
format of ’id’: id, ’Location’:[x1,y1, width, height]. ID indicates their ID number
in the UI screenshot.
- UI_size: the width/height of the input images. They are the same size. The image
you received might be resized. Please scale it back for the locations.
Task:
Structure the boxes in the Next UI layout screenshot with semantics based on the visual
input by following these steps:
1, Divide the UI into Semantic Windows Group the UI into functional sections with a
specific name (e.g., "Header Windows," "Time Selector Panel").
2. Structure Text Elements in Each Semantic Window.
- Assign box elements to windows based on logical, visual relationships or semantic
roles.
- For every element, structure output as :

**id: corresponding box retrieved from the box list and the Next UI layout screenshot.

**Role: A brief explanation of the role of this box. You should consider their [x1,y1]
to indicate their location, [w,h] to indicate their size to decide the role. It is
important to consider the context for the role prediction. The role should be in
detail to distinguish it from other items in the same category.
Output Format: { "Window Name": "Category Name": [ "id":id, "Role": "Role" ,
"id":id, "Role": "Role" , ... ], "Category Name": [ "id":id, "Role": "Role" , ...
] , ... }
Key Guidelines:
- Ensure to retrieve id from the given screenshot and box list.
- Avoid duplicating or omitting IDs.
- Every box element in the box location list must be included in the structured output.
- Ensure there is no additional formatting, code blocks or placeholders in your
response; return only a clean JSON without any comments.
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G.3 PROMPT TO PREDICT THE EXACT TEXT CONTENT FOR EACH SYMBOL

Task: Plan the content for the next UI screen based on the provided inputs and
instructions.
Inputs:
Current Screenshot: A visual representation of the mobile UI.
Next UI layout screenshot: A visual representation of the next UI layout with all
light yellow boxes indicating a text place. Each box has an ID number on it.
User Instruction: A specific action or command that transitions the current UI to the
next UI state.
Semantics for the masks in Next UI screenshot: A structured map.
Goal:
Predict the content (text) for each masked area in the next UI layout screenshot based
on the following steps:
Map Affected Elements to the Next UI.
Align the affected elements with the yellow box coordinates on the next UI.
Predict the text for each yellow box based on the user instruction and the context of
the current UI.
If you can not find any information about the text, predict a plausible text based on
its context.
Ensure to use the semantics to help you understand the layout and predict the text. If
you think the semantics is wrong, please modify it in your
Output:
Return the predictions in JSON format with the structure: {"Window Name ": "Category
Name ": [ "id ": id, "text ": “text”, "role ": "role" , "id ": "id", "text":
"text", "role": "role " ], , ... }
Ensure to predict text based on the context.
Do not include any special characters.
Ensure there is no additional formatting, code blocks or placeholders in your response;
return only a clean JSON without any comments.

G.4 PROMPT TO EVALUATE ACTIONS WITH A CONFIDENCE SCORE

You are an agent who can operate an Android phone on behalf of a user. When given
a user request, you will try to complete it step by step. At each step, a list of
descriptions for most UI elements on the current screen will be given to you (each
element can be specified by an index), together with a history of what you have done
in previous steps. Based on these pieces of information and the goal, you must choose
to perform one of the actions in the following list (action description followed by the
JSON format) by outputting the action in the correct JSON format: action options from
the dataset
The overall user goal/request is: {goal}
Here is a history of what you have done so far:{history} This is the action you picked
in the latest step: {action}, whose semantic description is: {sum}
Your goal is to judge **whether the action you picked in the latest step is on the
right track to the successful execution of the overall user goal/request**.
You will be given the screenshots before and after you perform the action
- The first screenshot corresponds to the UI state before you performed the action.
- The second screenshot corresponds to the UI state after you performed the action.
Also here is the list of detailed information for some UI elements in the before
screenshot: {before_elements}
Note that, the "after" screenshot is generated by the agent’s world model. As such,
it may not faithfully represent the real UI. For instance: Some UI elements in
the simulated "after" screenshot may not exist in a real UI. Your evaluation should
consider the reliability of the UI predictions. If the "after" screenshot contains
unreasonable elements, this likely indicates a failure.
Now provide your judgment on the selected action in JSON format. Your response must
include:
Reason: A detailed explanation of why the action is valid or invalid.
Judgment: Your judgment must be either "valid" or "invalid".
Confidence: A confidence score between 0.0 and 1.0, reflects how likely your judgment
is correct.
You must follow this structure exactly:
{Reason: ..., Judgement: "valid" or "invalid", Confidence: ...}
Your Answer:
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G.5 PROMPT TO SELECT THE OPTIMAL ACTIONS AMONG TWO HIGHEST-SCORING ACTIONS

You are an agent who can operate an Android phone on behalf of a user. When given
a user request, you will try to complete it step by step. At each step, a list of
descriptions for most UI elements on the current screen will be given to you (each
element can be specified by an index), together with a history of what you have done
in previous steps. Based on these pieces of information and the goal, you must choose
to perform one of the actions in the following list (action description followed by the
JSON format) by outputting the action in the correct JSON format action options from
the dataset
The overall user goal/request is: {goal}
Here is a history of what you have done so far:{history}
Here is a list of descriptions for some UI elements on the current
screen:{before_elements}
Here are two candidate actions:
Action 1: {action_0}, described semantically as {sum_0}. The rationale for this
action is: {act_re_0}
Action 2: {action_1}, described semantically as {sum_1}. The rationale for this
action is: {act_re_1}
Hints for making your decision: {GUIDANCE}
- Both "more options" buttons and scrolling actions may reveal new content. Evaluate
which is more suitable for the goal.
- Consider the history of previous actions. If prior steps involved repeated "scroll
down" actions, it is more likely that "scroll down" is the correct next step.
- If the user goal involves viewing reviews or similar tasks and the current screen
already displays such content, "scroll down" may reveal more information.
Your task is to choose the best action from the two provided.
Now, provide your judgment in JSON format with the following structure:
Reason: A detailed explanation of your choice, considering the hints above.
Choice: Action 1 or Action 2.
Your output must exactly match this format:
{Reason: ..., Choice: Action 1 or Action 2}

G.6 PROMPT TO CONVERT ACTION COMMANDS INTO ACTION INSTRUCTIONS

You are a professional UI/UX analyst specializing in identifying the semantics of dual
point actions between mobile UI screenshots.
Inputs:
Current Screenshot: A visual representation of the mobile UI.
Next Screenshot: A visual representation of the NEXT mobile UI.
Goal: A user intent on this Mobile interface.
touch_xy: the x,y coordinates for the touch point, as a percentage of the image
dimensions.
lift_xy: the x,y coordinates for the lift point, as a percentage of the image
dimensions.
Your task is to analyse these elements describe the precise user action in plain
language and return your answer in plain string (e.g., "click the + icon", "scroll
up").
If the two screenshots are identical, please return an empty string as "".
If the Next Screenshot does not seem to be one step away from the Current Screenshot,
return an empty string as "". One step means only one interaction with the cell phone.
Ensure there is no additional formatting, code blocks or placeholders in your response;
return only a clean string without any comments

G.7 PROMPT FOR INSTRUCTIONAL ACCURACY SCORE (sia)

You are an expert in evaluating the performance of a mobile emulator. The mobile
emulator is designed to navigate the UI change based on human instruction.
Inputs:
Current UI Screenshot: The present state of the cellphone’s user interface.
Next UI Screenshot: The mobile emulator generated UI indicating the next state of the
cellphone’s user interface based on human instruction.
Human instruction: The action applied on the current UI screenshot.
Your goal is to determine whether the mobile emulator successfully predicts the next UI
image with current information and layout based on the current UI and the user action.

*IMPORTANT*
Format your response into a JSON map as shown below:
{
"Thoughts": <your thoughts and reasoning process>,
"Status": "success" or "failure",
}
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G.8 PROMPT FOR ACTION READINESS ACCURACY SCORE (sar)

You are an expert in evaluating the performance of a mobile emulator. The mobile
emulator is designed to navigate the UI change based on human instruction.
Inputs:
UI Screenshot: The mobile emulator generated UI indicating the state of the
cellphone’s user interface.
User intent: The user goal to achieve.
Next action: the action will be applied to this UI.
Your goal is to determine whether the next action is validated on the UI Screenshot.
Please also indicate if it is still in the right App according to the goal.

*IMPORTANT* Format your response into a JSON map as shown below:
{
"Thoughts": <your thoughts and reasoning process>,
"In the right App": "yes" or "no"
"ready for action": "yes" or "yes",
}

Figure 11: Screenshot of user study example.

G.9 INSTRUCTIONS FOR USER STUDY

The following prompt provides the instructions for the user study. An example screenshot is shown
in Fig. 11.

Question 1: You are presented with a mobile screen (Current GUI).
Your task is to evaluate whether the generated GUI correctly reflects the result of the
user action applied on the current GUI. Answer "Yes" or "No" to each sample.
Question 2:
You are presented with Ground Truth Next GUI, the correct screens that should appear
after the user performs the given action.
In this task, you will evaluate the visual similarity between the Ground Truth Next GUI
and AI-generated GUI, scoring from 1-5.
Question 3:
In this task, you will validate whether a specific user action is valid on the
generated GUI.
An action is considered valid if the required GUI element is visually presented on the
screen. Answer "Yes" or "No" to each sample.
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G.10 PROMPT TO GENERATE THE ACTION INSTRUCTION BASED ON THE GIVEN GUI AND THE
USER GOAL

You are an autonomous intelligent agent tasked with navigating a cell phone to
accomplish specific tasks. You will be provided with the following information:
1. Initial UI screenshot: A visual representation of the initial state of the cell
phone’s interface.
2. User Objective: This is the task you are trying to complete.
3. Previous Action: An action sequence performed on the initial UI.
4, Current UI states: A visual representation of the current state of the cell phone’s
interface, generated by a simulated environment.
The initial image is the screenshot before actually performing all the previous
actions.
The current cell phone UI is generated by applying previous actions on the initial
screenshot.
Your Task: Please predict a single next step action to complete the given task based
on current vision states.
To be successful, it is very important to follow the following rules:
1. You should only issue one action that is valid based on the current UI states.
2. You should only issue one action at a time. Avoid issuing multiple actions like
"do A and do B".
3. Generate the action in plain text. For example, Scroll down to set the minute as
15.
4. Issue "Stop." if you think the action is already completed. Ensure you only return
the action, not other formats, comments or placeholders

G.11 PROMPT TO EVALUATES WHETHER THE SIMULATED ACTION LEADS TO THE SAME
OUTCOME AS THE GROUND TRUTH ACTION

You are an expert in evaluating the performance of a cell phone navigation agent. The
agent is designed to help a human user navigate a cellphone to complete a task.
Inputs:
Current UI Screenshot: The present state of the cellphone’s user interface.
User Intent: The goal the human user aims to achieve.
Action History: The sequence of actions taken so far for you to track the progress.
Agent Simulated Action: The action suggested by the agent to achieve the user’s
intent.
Ground Truth Action: The correct action is needed to achieve the user’s intent.
Your goal is to determine whether the agent’s simulated action leads to the same
outcome as the ground truth action.
Additionally, if the simulated action does not exactly match the ground truth action
but is still progressing toward the correct outcome to achieve user intent, indicating
that the action is "on the right track."

*IMPORTANT*
Format your response into a JSON map as shown below:
{
"Thoughts": <your thoughts and reasoning process>,
"Status": "success" or "failure",
"On the right track to success": "yes" or "no"
}
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