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Abstract

We study regret minimization in online episodic linear Markov Decision Processes,
and propose a policy optimization algorithm that is computationally efficient, and
obtains rate optimal Õ(

√
K) regret where K denotes the number of episodes.

Our work is the first to establish the optimal rate (in terms of K) of convergence
in the stochastic setting with bandit feedback using a policy optimization based
approach, and the first to establish the optimal rate in the adversarial setup with
full information feedback, for which no algorithm with an optimal rate guarantee
was previously known.

1 Introduction

Policy Optimization (PO) algorithms are a class of methods in Reinforcement Learning (RL; Sutton
and Barto, 2018, Mannor et al., 2022) where the agent’s policy is iteratively updated according to the
(possibly preconditioned) gradient of the value function w.r.t. policy parameters. From a theoretical
perspective, framing the optimization process as one that follows Mirror Descent Nemirovskij and
Yudin [1983], Beck and Teboulle [2003] updates leads to strong online guarantees that go beyond
stationary or stochastic rewards, and apply more generally for any (possibly adversarial) reward
sequence Shani et al. [2020], Luo et al. [2021]. Furthermore, PO methods are easy to implement
in practice and (perhaps, one could say, somewhat in line with theory) exhibit favorable robustness
properties when applied to real world problems ranging from robotics Levine and Koltun [2013],
Schulman et al. [2015], Haarnoja et al. [2018], computer games Schulman et al. [2017], and more
recently training of large language models Ouyang et al. [2022].

Notwithstanding their popularity and theoretical appeal, current results Agarwal et al. [2020], Zanette
et al. [2021], Liu et al. [2023b], Zhong and Zhang [2023] in the function approximation setting with
linear MDP Jin et al. [2020] assumptions fall short of establishing the optimal dependence on the
number of episodes K; arguably, the most important problem parameter.

In this work, we establish that an optimistic variant of the classic natural policy gradient 1 (NPG;
Kakade, 2001) obtains the optimal (up to logarithmic factors) Õ(

√
K) regret when combined with

a short reward free warmup period and a suitable bonus update schedule. Our results hold for

1To be precise, our algorithm is the classic NPG with softmax parametrization equipped with an optimistic
linear function approximation routine for action-value estimates.
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adversarial losses when the learner is given full information feedback, and for stochastic losses when
given bandit feedback. Thus our algorithm is also the first (and currently, the only) method to obtain
rate optimal regret (be it by PO or any other approach) for adversarial losses with full feedback in the
linear MDP setup.

1.1 Summary of contributions

We consider online learning in a finite horizon episodic linear MDP, where an agent interacts with
the environment over the course of K episodes. In each episode k ∈ [K], the agent interacts with
the MDPMk = (S,A, H, {Ph} ,

{
ℓkh
}
, s1), that shares all elements with MDPs of other episodes

except for the loss functions. Our central structural assumption is that the dynamics and losses are
linear; that there exist feature embeddings ϕ, ψ1, . . . , ψH such that Ph(s

′|s, a) = ϕ(s, a)⊤ψh(s
′),

and E[ℓkh(s, a)|s, a] = ϕ(s, a)⊤gh,k, for some gh,k ∈ Rd. The objective of the agent is to minimize
her regret, defined by the sum of value functions (namely, the expected cumulative loss) of the agent
minus the sum of values of the best policy in hindsight.

Our main contribution in this paper is a computationally efficient policy optimization algorithm
(see Algorithm 1), that guarantees an Õ(

√
K) regret bound under either of the following two

conditions:

• For any (possibly adversarial) loss sequence {gh,k}, when given full feedback, meaning the agent
observes g1,k, . . . , gH,k after each episode k.

• For stationary losses, namely gh,k = gh∀k, when given noisy bandit feedback, meaning the agent
observes only lkh := ℓkh(s

k
h, a

k
h), and it holds that lkh ∈ [−1, 1] and that the expected value of lkh

conditioned on past interactions is ϕ(skh, a
k
h)

⊤gh.

1.2 Overview of techniques

The difficulty encountered in recent attempts (Liu et al., 2023b, Zhong and Zhang, 2023, and to
an extent also in Sherman et al., 2023) towards establishing the rate optimal

√
K stems from the

need to control the capacity of the policy class explored by the optimization process. Since the
dynamics in linear MDPs cannot be estimated pointwise, the estimation procedure of the action-value
function involves a linear regression sub-routine where the dependent variable is given by the value
function estimate from the previous timestep, which depends on past rollouts in a way that breaks the
martingale structure. Thus, to establish concentration, an additional uniform convergence argument
is required in which the capacity of the policy class plays a central role.

To illustrate, let us consider a simplified, non-optimistic estimation routine with non-zero immediate
losses only at step H , and let

{
(sih, a

i
h, s

i
h+1)

}k−1

i=1
denote a dataset of past agent transitions, and

V̂ k
h+1 the value function estimated in step h+ 1. Then the estimation step on time h is given by:

v̂kh = argmin
v∈Rd

{
k−1∑
i=1

(
ϕ(sih, a

i
h)

⊤v − V̂ k
h+1(s

i
h+1)

)2}
,

Q̂k
h(s, a) = truncate

[
P̂k
hV̂

k
h+1(s, a) := ϕ(s, a)⊤v̂kh

]
,

where truncate[·] denotes some form of clipping used to keep the estimated action-values in rea-
sonable range (e.g., [−H,H]). Notably, V̂ k

h+1 was itself estimated using the same procedure in the
previous backward induction step, combined with an expectation given by the agent’s policy:

V̂ k
h+1(s) =

〈
πk
h+1(·|s), Q̂k

h+1(s, ·)
〉
,

which means the estimated quantity is a random variable that depends on all past trajectories
through the agent’s policy. Hence, to establish a least squares concentration bound, the common
technique (originally proposed in this context in the work of Jin et al., 2020) dictates arguing uniform
convergence over the class of all possible value functions V̂ k

h+1 explored by the learner. Further,
the capacity of the class of learner value functions is inevitably tied to the capacity of the learner’s
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policies, and when employing mirror descent updates, these are parameterized by the sum of past
action-value functions:

πk
h+1(a|s) ∝ exp

(
−η

k−1∑
i=1

Q̂i
h+1(s, a)

)
.

Now, the problem is that the truncation of the Q-functions implies the above expression does not
admit a low dimensional (independent of k) representation, and thus leads to the agent’s policy and
value classes having prohibitively large covering number.

The main component of our approach is to employ a reward free warmup period, that eventually
allows to forgo the truncation of the action value function, thereby reducing the policy class capacity.
Indeed, if the action-value functions were not truncated, the policy parameterization could be made
effectively independent (up to log factors) of k, as the sum of Q-functions will “collapse” into a
single d dimensional parameter of larger norm:

πk
h+1(a|s) ∝ exp

(
ϕ(s, a)⊤θkh+1

)
,

where θkh+1 = −η
∑k−1

i=1 v̂
i
h+1. In order to remove the truncations, we observe they are actively

involved only in those regions of the state space that are poorly explored; indeed, assume the least
squares errors are boudned as:∣∣∣P̂k

hV̂
k
h+1(s, a)− PhV̂

k
h+1(s, a)

∣∣∣ ≤ β ∥ϕ(s, a)∥Λ−1
k,h
,

where Λk,h := I +
∑

i ϕ(s
i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤ for some β that depends (among other quantities) on
maxs′ V̂

k
h+1(s

′), and assume we have already shown that V̂ k
h+1(s

′) ≲ H for all s′. Then as long
as ϕ(s, a) points in a well explored direction in the state-action space — concretely one where
∥ϕ(s, a)∥Λ−1

k,h
≤ 1/(βH) — we will get that:

Q̂k
h(s, a) = PhV̂

k
h+1(s, a)±

1

H

=⇒
∣∣∣Q̂k

h(s, a)
∣∣∣ ≤ ∣∣∣PhV̂

k
h+1(s, a)

∣∣∣+ 1

H
≲ H +

1

H
.

Thus, forgoing truncations and if all directions were well explored, we would get
∥∥V̂ k

h

∥∥
∞ ≤∥∥V̂ k

h+1

∥∥
∞ + 1

H , and continuing inductively we accumulate errors across the horizon in an additive
manner;

∥∥V̂ k
h

∥∥
∞ ≲ H + (H − h)/H . Now, while we cannot ensure sufficient exploration in all

directions, we can in fact ensure it in “most” directions (those which are reachable w.p. ≳ 1/
√
K)

using a properly tuned reward free warmup phase, which is based on the algorithm developed in
Wagenmaker et al. [2022b]. The technical argument roughly follows the above intuition, carefully
controlling the least squares errors through an inductive argument. This way, we establish the
estimated value functions remain in the low capacity function class, for which we have a suitable
uniform concentration bound.

1.3 Additional related work

Linear MDPs with adversarial costs. Most relevant to our paper is the recent work of Zhong and
Zhang [2023], who consider the same adversarial setup as ours and establish a Õ(K3/4) regret bound,
using an optimistic policy optimization framework similar to ours, but with an additional batching
mechanism. Several recent papers consider the more general setting consisting of adversarial costs
and bandit-feedback. Neu and Olkhovskaya [2021] obtain a rate optimal regret bound assuming
known dynamics and a certain exploratory condition. In the general setting without additional
assumptions, Luo et al. [2021] was the first to establish a sublinear regret bound. The followup works
of Dai et al. [2023], Sherman et al. [2023] obtain respectively, Õ(K8/9), Õ(K6/7) regret, and Kong
et al. [2023] obtain Õ(K4/5 + 1/λ⋆min) (here, λ⋆min denotes the minimum eigenvalue of the best
exploratory policy’s 2nd moment matrix) albeit with a computationally inefficient algorithm. Finally,
a very recent preprint [Liu et al., 2023a] establishes the current state-of-the-art results for this setting;
Õ(K3/4) with a computationally efficient algorithm, and Õ(

√
K) with a computationally inefficient

one.
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Policy optimization in tabular and linear MDPs. Most of the currently published works that
consider policy optimization algorithms in the learning setup that necessitates exploration were
mentioned in the introduction. In particular, the work of Liu et al. [2023b] considers the same
stochastic setup as ours and obtains a Õ(1/ϵ3) sample complexity for a different variant of the
optimistic NPG algorithm. Many recent works [e.g., Bhandari and Russo, 2019, Liu et al., 2019,
Agarwal et al., 2021, Lan, 2022, Xiao, 2022, Yuan et al., 2022] study convergence properties of policy
optimization methods from a pure optimization perspective or subject to exploratory assumptions; in
this setup, exploration need not be handled algorithmically, and rates much faster than O(

√
K) regret

are achievable when access to exact value function gradients is granted.

RL with function approximation The study of MDPs with linear structure in the form we adopt
here was initiated with the works of Yang and Wang [2019, 2020], Jin et al. [2020], and has lead to
an abundance of papers considering algorithmic approaches to various problem setups [e.g., Zanette
et al., 2020, Wei et al., 2021, Wagenmaker et al., 2022b]. The linear mixture MDP Modi et al. [2020],
Ayoub et al. [2020], Zhou et al. [2021a,b] is a different model that in general is incomparable with
the linear MDP Zhou et al. [2021b]. There is also a rich line of works studying statistical properties
of RL with more general function approximation [e.g., Jiang et al., 2017, Jin et al., 2021, Du et al.,
2021], although these usually do not provide computationally efficient algorithms.

2 Preliminaries

Episodic MDPs. A finite horizon episodic MDP is defined by the tupleM = (S,A, H,P, ℓ, s1),
where S denotes the state space, A the action set, H ∈ Z+ the length of the horizon, P = {Ph}h∈[H]

the time dependent transition function, ℓ = {ℓh}h∈[H] a sequence of loss functions, and s1 ∈ S
the initial state that we assume to be fixed w.l.o.g. The transition density given the agent is at state
s ∈ S at time h and takes action a is given by Ph(·|s, a) ∈ ∆(S). After the agent takes an action on
the last time step H , she transitions to a fixed terminal state sH+1 ∈ S and the episode terminates
immediately. We assume the state space S is a (possibly infinite) measurable space, and that the
action set A is finite with A := |A|. A policy is defined by a mapping π : S × [H]→ ∆(A), where
∆(A) denotes the probability simplex over the action set A. We let πh(·|s) ∈ ∆(A) denote the
distribution over actions given by π at s, h. Finally, we use the convention that for any function
V : S → R, we interpret PhV : S × A → R as the result of applying the conditional expectation
operator Ph; PhV (s, a) := Es′∼Ph(·|s,a)V (s′).

Episodic Linear MDPs. Our central structural assumption is that the learner interacts with a linear
MDP Jin et al. [2020], defined next.
Definition 1 (Linear MDP). An MDPM = (S,A, H , P, ℓ, s1) is a linear MDP if the following holds.
There is a feature mapping ϕ : S ×A → Rd that is known to the learner, and H signed vector-valued
measures ψh : S → Rd that are unknown, such that for all h, s, a, s′ ∈ [H − 1]× S ×A× S:

Ph(s
′|s, a) = ϕ(s, a)⊤ψh(s

′). (1)

W.l.o.g., we assume ∥ϕ(s, a)∥ ≤ 1 for all s, a, and that for any measurable function f : S → R with
∥f∥∞ ≤ 1, it holds that

∥∥∫ ψh(s
′)f(s′)ds′

∥∥ ≤ √d for all h ∈ [H]. In addition, for all s, a, h:

ℓh(s, a) = ϕ(s, a)⊤gh, (2)

where {gh} ⊂ Rd. W.l.o.g., we assume
∣∣ϕ(s, a)⊤gh∣∣ ≤ 1 for all s, a, h, and ∥gh∥ ≤

√
d for all h.

Problem setup. We consider linear MDPs in two setups; adversarial and stochastic. In the
adversarial setup defined formally next, we assume the agent interacts with a sequence of K ≥ 1
MDPs over the course of K episodes that share all elements other than the loss functions, which may
change adversarially.
Assumption 1 (Adversarial Linear MDP with full-feedback). The learner interacts with a sequence
of MDPs

{
Mk

}K
k=1

,Mk = (S,A, H,P, ℓk, s1) that share all elements other than the loss functions.
Each MDPMk is a linear MDP as per Definition 1. The feedback provided to the learner on episode
k time step h is the low dimensional cost vector gk,h ∈ Rd, where gk = (gk,1, . . . , gk,H) ∈ RdH is
the d dimensional representation of ℓk =

(
ℓk1 , . . . , ℓ

k
H

)
.
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In the stochastic setup, we assume the agent interacts with a single linear MDP over the course of
K ≥ 1 episodes, and receives only noisy bandit-feedback.

Assumption 2 (Stochastic Linear MDP with bandit-feedback). In each episode, the learner in-
teracts with the same linear MDP M = (S,A, H,P, ℓ, s1). The feedback provided to the
learner on episode k time step h is the random instantaneous loss lkh := ℓkh(s

k
h, a

k
h), where

skh, a
k
h denote the state and action visited by the agent on episode k time step h. It holds that

E
[
lkh | skh, akh,

(
lk

′

h , s
k′

h , a
k′

h

)
k′<k

]
= ℓh(s

k
h, a

k
h), and

∣∣ℓkh(skh, akh)∣∣ ≤ 1 almost surely.

The pseudocode for learner environment interaction, encompassing both assumptions is provided
below in Protocol 1. We make the following final notes with regards to the model we consider: (1)
for any s, a ∈ S ×A, the agent may evaluate ϕ(s, a) in O(1) time; (2) In the adversarial setup, we
assume an oblivious and deterministic adversary. Specifically, that the sequence of loss functions is
chosen in advance, before interaction begins.

Protocol 1 Learner-Environment Interaction
parameters: (S,A, H,P, ϕ, s1;K)

Nature chooses

{
Adv.: {gk}Kk=1 ∈ RdH ;
Stoch.: g ∈ RdH , and sets gk ≡ g ∀k

for k = 1, . . . ,K do
agent decides on a policy πk

environment resets to sk1 = s1
for h = 1, . . . ,H do

agent observes skh ∈ S
agent chooses akh ∼ πk

h(·|skh)
agent incurs loss ϕ(skh, a

k
h)

⊤gk,h

agent observes
{

Full-feedback: gk,h
Bandit-feedback: ℓkh(s

k
h, a

k
h)

environment transitions to skh+1 ∼ Ph(·|s, a)
end for

end for

Learning objective. The expected loss of a policy π when starting from state s ∈ S at time step
h ∈ [H] is given by the value function;

V π
h (s; ℓ) := E

[
H∑
t=h

ℓt(st, at) | sh = s, π, ℓ

]
, (3)

where we use the extra (; ℓ) notation to emphasize the specific loss function considered. The expected
loss conditioned on the agent taking action a ∈ A on time step h at s and then continuing with π is
given by the action-value function;

Qπ
h(s, a; ℓ) := E

[
H∑
t=h

ℓt(st, at) | sh = s, ah = a, π, ℓ

]
. (4)

The value and action-value functions of a policy π in the MDP
(
S,A, H,P, ℓk, s1

)
associated with

episode k ∈ [K] are denoted by, respectively;

V k,π
h (s) := V π

h (s; ℓk); Qk,π
h (s, a) := Qπ

h(s, a; ℓ
k), (5)

where V π
h (s; ℓk) and Qπ

h(s, a; ℓ
k) have been defined in Eqs. (3) and (4). For the sake of conciseness,

we further define

V k,π := V k,π
1 (s1)
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We let π⋆ denote the best policy in hindsight;

π⋆ := argmin
π

{
K∑

k=1

V k,π
1 (s1)

}
,

and seek to minimize the pseudo regret of the agent policy sequence π1, . . . , πK ;

Regret :=
K∑

k=1

V k,πk

− V k,π⋆

. (6)

Occupancy measures. We denote the occupancy measure of a policy π by

µπ
h(s, a) := Pr (sh = s, ah = a | π) , (7)

and additionally denote µk
h := µπk

h , and µ⋆
h := µπ⋆

h .

Additional notation. We let ∥·∥ = ∥·∥2 denote the standard Euclidean norm, and for a positive
definite matrix Λ ∈ Rd×d, we let ∥v∥Λ =

√
v⊤Λv denote the weighted norm induced by Λ. Further,

we let ∥Λ∥ = ∥Λ∥op = maxv,∥v∥=1 v
⊤Λv denote the operator norm of Λ.

3 Algorithm and Main Result

In this section, we present Algorithm 1 and our main theorem providing its regret guarantees. At a
high level, Algorithm 1 follows an optimistic policy optimization paradigm similar to Shani et al.
[2020] in the tabular case and more recently Liu et al. [2023b], Zhong and Zhang [2023] in the linear
MDP case. The important difference is the utilization of a pure exploration warmup period provided
by Algorithm 2 (which we describe in more detail in Section 3.1), and the usage of restricted value
functions. The restricted value functions, in contrast to truncated ones, take zero value outside the
confidence state set.

The core property required from the warmup period is that the data it collects is sufficient to ensure a
small error when using it in the least squares regression step of Algorithm 1. The degree to which the
error should be small is determined by the multiplicative factor in the confidence bound for a single
regression step (determined by the bonus parameter β along with other problem parameters), and
the number of times we perform this step (H; the length of the horizon). The analysis leads to the
following definition for the “known” states set of step h:

Zh :=
{
s ∈ S | ∀a, ∥ϕ(s, a)∥Λ−1

0,h
≤ 1/(2βH)

}
, (8)

where Λ0,h denotes the warmup covariate matrix returned by Algorithm 2 for step h. The set Zh

contains the states for which we collected enough data, so that the least squares regression error when
estimating their value can be well controlled without employing truncation.

On episode k, the standard optimistic estimates value function estimates are denoted Q̃k
h, Ṽ

k
h , while

their restricted counterparts are defined by:

Q̃k;◦
h (s, a) = I {s ∈ Zh} Q̃k

h(s, a),

Ṽ k;◦
h (s) =

〈
Q̃k;◦

h (s, ·), πk
h(·|s)

〉
.

During the backward dynamic programming step, the estimate of the non-restricted action-value
function Q̃k

h−1 then makes use of the least squares solution w.r.t. the restricted Ṽ k;◦
h , which has a

well bounded ∥·∥∞. Further, the warmup ensures the known state set Zh is large enough so that we
do not lose much by this restriction; concretely, that no policy has total occupancy larger than O(ϵcov)
outside the known states set.

The other important ingredient of Algorithm 1 is the epoch schedule in the updates of bonus functions
b̂kh, determined by the determinant of the covariate matrices Λk,h. This ensures we update the bonus
functions at most O(logK) times, which, when combined with the truncation-less least squares
routine, allows keeping the number of variables in the policy parameterization O(d2 logK). We
conclude this section with our main theorem, providing the regret guarantees of Algorithm 1.
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Theorem 1. Let δ > 0, assume K ≥ H5d4 log8(dHK/δ), H ≥ 3, logA ≤ K, and consider setting
β = 2cβd

3/2H log(dHK/δ) where cβ is specified by Lemma 3, ϵcov = H3/2d2 log4(dHK/δ)/
√
K

and η =
√
logA/(H

√
K). Suppose we run Algorithm 1 with these parameters for either the

adversarial case with full-feedback (Assumption 1), or the stochastic case with bandit-feedback
(Assumption 2). Then we obtain the following bound w.p. 1− 4δ:

K∑
k=1

V k,πk

− V k,π⋆

= O

(
d2H7/2 log4

dHK

δ

√
K logA

)
,

where big-O hides only constant factors independent of problem parameters.

Algorithm 1 Optimistic PO for Linear MDPs
input: (η, δ, β, ϵcov) .{(
D0

h,Λ0,h

)}
h∈[H]

← Algorithm 2 (δ, β, ϵcov)
Let K0 − 1 be the number of rounds Algorithm 2 played
Init ∀s : π1

h(·|s) = Unif(A), ∀h ∈ [H] : Λ̂K0,h = 0.
for k = K0, . . . ,K do

Rollout πk to generate
{
(skh, a

k
h, ℓ

k
h)
}H
h=1

.
Ṽ k
H+1(·) ≡ 0.

for h = H, . . . , 1 do
Dk

h ← D0
h ∪

{
(sih, a

i
h, s

i
h+1)

}k−1

i=K0

Λk,h ← I +
∑

i∈Dk
h
ϕ(sih, a

i
h)ϕ(s

i
h, a

i
h)

⊤

if detΛk,h ≥ 2 det Λ̂k,h then
Λ̂k,h ← Λk,h

b̂kh(s, a) = β
√
ϕ(s, a)⊤Λ̂−1

k,hϕ(s, a)

end if
v̂kh ← Λ−1

k,h

∑
i∈Dk

h
ϕ(sih, a

i
h)Ṽ

k;◦
h+1(s

i
h+1)

P̂k
hṼ

k;◦
h+1(s, a) = ϕ(s, a)⊤v̂kh

ĝk,h ←

{
Adv.: gk,h
Stoch.: Λ−1

k,h

∑
i∈Dk

h
ϕ(sih, a

i
h)ℓ

i
h(s

i
h, a

i
h)

ℓ̂kh(s, a) = ϕ(s, a)⊤ĝk,h
Set 

Q̃k
h(s, a) = ℓ̂kh(s, a) + P̂k

hṼ
k;◦
h+1(s, a)− b̂kh(s, a)

Q̃k;◦
h (s, a) = I {s ∈ Zh} Q̃k

h(s, a)

Ṽ k
h (s) =

〈
Q̃k

h(s, ·), πk
h(·|s)

〉
Ṽ k;◦
h (s) =

〈
Q̃k;◦

h (s, ·), πk
h(·|s)

〉
end for
# Policy improvement:

πk+1
h (a|s) ∝ πk

h(a|s)e−ηQ̃k
h(s,a)

end for

3.1 Reward-free warmup

In this section we present Algorithm 2, which we employ for a pure exploration warmup period. The
algorithm invokes the CovTraj algorithm Wagenmaker et al. [2022b] for each step of the horizon,
and thus follows the same high level design of reward free exploration outlined in Algorithm 1 of
Wagenmaker et al. [2022b].

The basic guarantee provided by the warmup period is given by the next lemma.
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Lemma 1. Assume we execute Algorithm 2 with the setting of β = Õ(d3/2H) and ϵcov ≥ 1/K.

Then it will terminate after O
(

d4H5

ϵcov
log7 dHK

δ

)
episodes, and with probability ≥ 1 − δ, outputs

Λ0,1, . . . ,Λ0,H such that:

∀h,∀π, Pr
sh∼µπ

h

(sh /∈ Zh) ≤ ϵcov.

The proof of Lemma 1 is provided in Appendix B, and mostly follows from the basic guarantees of
the CovTraj algorithm.

Algorithm 2 Reward Free Warmup
input: δ, β, ϵcov
Set m = ⌈log 1

ϵcov
⌉

Set ∀i ∈ [m], γi = 1/(2βH)
ZH+1 := {sH+1}
for h = H, . . . , 1 do{(

Xh,i, D̃h,i, Λ̃h,i

)}m

i=1
← CovTraj(h, δ/H,m, {γi})

D0
h ←

⋃
i D̃h,i

Λ0,h ← I +
∑

t∈D0
h
ϕ(sth, a

t
h)ϕ(s

t
h, a

t
h)

⊤

end for
return

{(
D0

h,Λ0,h

)}
h∈[H]

4 Analysis overview

In this section, we outline the technical arguments leading up to the proof of Theorem 1. At the core
of most of the analyses of linear MDP algorithms that involve a value estimation step, is a uniform
convergence argument that ensures the regression errors concentrate uniformly over the class of value
functions explored by the algorithm. The need for uniform convergence stems from the fact that we
estimate the value function using past rollouts and a previously estimated value function, which in
itself depends on past rollouts through the current agent policy. The lemma below is used to establish
this part of the argument, and is stated in a generic manner — this is essentially the same argument
used in Jin et al. [2020].
Lemma 2. Let V ⊆ S → R be a class of functions where ∀f ∈ V, ∥f∥∞ ≤ C, fix h ∈ [H], and con-
sider a transitions dataset Dh =

{
(sih, a

i
h, s

i
h+1)

}
i∈[k]

collected by agent rollouts in the environment.

Let P̂hf(s, a) = ϕ(s, a)⊤v̂fh be the approximation of Phf(s, a) = Es′∼Ph(·|s,a)f(s
′) given by the

least squares estimate v̂fh = Λ−1
h

∑k
i=1 ϕ(s

i
h, a

i
h)f(s

i
h+1), Λh := I +

∑k
i=1 ϕ(s

i
h, a

i
h)ϕ(s

i
h, a

i
h)

⊤.
Then, w.p. 1− δ over the generation of Dh, we have ∀s, a ∈ S ×A,∀f ∈ V;∣∣∣(Ph − P̂h

)
f(s, a)

∣∣∣ ≤ (4C√2d log k + log
N1/k(V)

δ

)
∥ϕ(s, a)∥Λ−1

h
,

where Nν(V) denotes the ∥·∥∞ covering number of V .

Compared to other works, our analysis differs most significantly in how the above lemma is applied
in order to control the estimation errors of the algorithm; the important parameter being the bound C
on the magnitude of the target function. Usually, the regression step for Ṽ k

h uses a truncated version
of Ṽ k

h+1 from the previous horizon step, which simplifies the analysis and unfortunately leads to a
too large value function class. The core of our argument lies in the next lemma; specifically, in the
proof of Evbu.
Lemma 3 (The good event). There exists a universal constant cβ , such that for any δ > 0, executing
Algorithm 1 with β ≥ cβd3/2H log(dHK/δ), we have that the following hold w.p. > 1− 4δ.

∀π,∀h:

Pr
sh∼µπ

h

(sh /∈ Zh) ≤ ϵcov, (Erfw)
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∀k ≥ K0, h, s, a: ∣∣∣Q̃k;◦
h (s, a)

∣∣∣ ≤ 2H, (Eqbd)

|(Ph − P̂k
h)Ṽ

k;◦
h+1(s, a)| ≤

β

2
∥ϕ(s, a)∥Λ−1

k,h
, (Evbu)

|ℓ̂kh(s, a)− ℓkh(s, a)| ≤
β

2
∥ϕ(s, a)∥Λ−1

k,h
, (Esle)

and ∀h ∈ [H]:

K∑
k=K0

Esh,ah∼µk
h

[∥∥ϕ(sh, ah)∥∥Λ−1
k,h

]
≤ 2

K∑
k=K0

∥∥ϕ(skh, akh)∥∥Λ−1
k,h

+ 4 log
4KH

δ
. (Ebon)

The proof of Lemma 3 is provided fully in Appendix A.3; below we provide an overview. The success
of Erfw is given by Lemma 1, while the proofs for Esle and Ebon follow from standard arguments; we
provide their proofs in Lemmas 6 and 8, respectively.
Proof sketch (Erfw ∪ Esle =⇒ Eqbd ∪ Evbu). Establishing the bound in Evbu involves showing (i)
Eqbd holds for Q̃k;◦

h+1, and (ii) that the policy πk
h+1 belongs to a “small” policy class. Given (i) and

(ii), it immediately follows that Ṽ k;◦
h+1 belongs to a small and bounded value function class, which

leads to Evbu through an application of Lemma 2.

We proceed by an inductive argument as follows. Let k, h, and assume we have already proved (i),
(ii) and Evbu for (k′, h′), k′ < k and (k, h′), h′ > h. Our Q estimate on step h decomposes as:∣∣∣Q̃k;◦

h (s, a)
∣∣∣ = ∣∣∣ℓ̂kh(s, a) + P̂k

hṼ
k;◦
h+1(s, a)− b̂

k
h(s, a)

∣∣∣ .
Now we may apply Esle for the loss term, and the inductive hypothesis combined with Erfw for the
regression term; which gives us that it is close to the true and well bounded value — this gives (i).
For (ii), we employ the inductive hypothesis for k′ < k to show that the policy πk

h has compact
parametric form. As mentioned above, (i) + (ii) now lead to Evbu, which completes the inductive step
and thus the proof. □

Proceeding, we consider the regret decomposition given by our next lemma, and continue with a
proof sketch of Theorem 1 immediately after. Formal proofs are deferred to the relevant subsections
in Appendix A.
Lemma 4 (Regret decomposition). Upon execution of Algorithm 1, conditioned on the good event
Lemma 3, it holds that:

K∑
k=K0

V k,πk

− V k,π⋆

≤ 4ϵcovH
2K

+

H∑
h=1

K∑
k=K0

Esh,ah∼µk
h

[
−∆k

h(sh, ah) + b̂kh(sh, ah) | sh ∈ Zh

]
︸ ︷︷ ︸

Bias

+

H∑
h=1

K∑
k=K0

Esh∼µ⋆
h

[〈
Q̃k

h(sh, ·), πk
h(·|sh)− π⋆

h(·|sh)
〉
| sh ∈ Zh

]
︸ ︷︷ ︸

OMD

+

H∑
h=1

K∑
k=K0

Esh,ah∼µ⋆
h

[
∆k

h(sh, ah)− b̂kh(sh, ah) | sh ∈ Zh

]
︸ ︷︷ ︸

Optimism

,

where

∆k
h(sh, ah) := ℓ̂kh(sh, ah)− ℓkh(sh, ah) +

(
P̂k
h − Ph

)
Ṽ k;◦
h+1(sh, ah).

9



Proof sketch of Theorem 1 . Given our choice of parameters, by Lemma 1, we have that the number
of warmup episodes satisfies

K0 = O

(
d4H5

ϵcov
log7

dHK

δ

)
.

For the remainder of the proof, we assume the good event defined in Lemma 3 holds, which indeed
occurs w.p. 1− 4δ by that lemma. Proceeding, owed to Evbu, it is not hard to establish that

Bias ≤ 3β

H∑
h=1

K∑
k=K0

Eµk
h

[∥∥ϕ(skh, akh)∥∥Λ−1
k,h

]
≤ 6β

H∑
h=1

K∑
k=K0

∥∥ϕ(skh, akh)∥∥Λ−1
k,h

+ 12βH log
4KH

δ
,

where the second inequality follows from Ebon. Using the elliptical potential lemma (Lemma 20), we
can then obtain

Bias ≤ 12βH

(√
Kd logK + log

4KH

δ

)
.

By standard arguments, the OMD term is bounded as

OMD ≤ H logA

η
+ 4ηH3K,

and the optimism term is non positive, again owed to Evbu. To conclude the proof, we combine the
bound on the number of warmup episodes K0 with Lemma 4, and the bounds argued above on all
three terms, to obtain:

K∑
k=1

V πk

− V ⋆ ≲
d4H5

ϵcov
log7

dHK

δ
+ ϵcovH

2K +
H logA

η

+ ηH3K + βH

(√
Kd logK + log

KH

δ

)
,

where ≲ hides only constant factors. Setting ϵcov, β, and η as specified in the theorem statement
yields:

K∑
k=1

V πk

− V ⋆ ≲ d2H7/2 log4
dHK

δ

√
K logA,

which completes the proof. □
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A Deferred Proofs

In this section, we provide details of the analysis that weren’t fully included in the main text. The
central component is the proof of Lemma 3, which is given in Appendix A.3. In Appendix A.2 we
define the value and policy classes which will be shown in Appendix A.3 to contain (w.h.p.) the
values and policies explored by the algorithm. Appendix A.4 includes the technical details for the
covering number bounds of the value classes defined in Appendix A.2.

Additional notation. We will make use of the following filtration;

Fk
h := σ

(
(s1h′ , a1h′ , l1h′)Hh′=1, . . . , (s

k−1
h′ , ak−1

h′ , lk−1
h′ )Hh′=1, (s

k
h′ , akh′ , lkh′)hh′=1

)
, Fk := Fk

H , (9)

where (sih, a
i
h, l

i
h) are the (state, action, loss) random variables generated during policy rollouts. In

addition, for any function class E ⊆ X → R, where X is an arbitrary set, we let Nν(E) denote the
∥·∥∞ covering number of E; that is, the cardinality of the smallest set Ẽ ⊂ E such that for all f ∈ E,
there exists f̃ ∈ Ẽ such that maxx∈X

∣∣f(x)− f̃(x)∣∣ ≤ ν.

A.1 Proof of Lemma 2

Proof of Lemma 2. Denote

vh :=

∫
ψh(s

′)f(s′)ds′; v̂h := Λ−1
h

k∑
i=1

ϕ(sih, a
i
h)f(s

i
h+1).

Then, we have

v̂h − vh = Λ−1
h

(
k∑

i=1

ϕ(sih, a
i
h)f(s

i
h+1)−

(
I +

k∑
i=1

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤

)
vh

)

= Λ−1
h

k∑
i=1

ϕ(sih, a
i
h)
(
f(sih+1)− ϕ(sih, aih)⊤vh

)
− Λ−1

h vh

= Λ−1
h

k∑
i=1

ϕ(sih, a
i
h)
(
f(sih+1)− Es′

[
f(s′) | sih, aih

])
− Λ−1

h vh (10)

Now, note that ∥∥Λ−1
h vh

∥∥2
Λh

= ∥vh∥2Λ−1
h
≤ ∥vh∥2 ≤ dC2.

In addition, for the first term in Eq. (10), we consider the filtration defined in Eq. (9), and note that
ϕ(sih, a

i
h) is F i

h-measurable while sih+1 is F i
h+1-measurable. Hence we may apply Lemma 23 to

obtain that for any ϵ, p > 0, with probability ≥ 1− p we have∥∥∥∥∥Λ−1
h

k∑
i=1

ϕ(sih, a
i
h)
(
f(sih+1)− Es′

[
f(s′) | sih, aih

])∥∥∥∥∥
2

Λh

≤ 4C2

(
d

2
log (k + 1) + log

Nϵ(V)
p

)
+ 8k2ϵ2

≤ 4C2

(
d log (k) + log

N1/k(V)
p

)
+ 8 (setting ϵ = 1/k)

Combining Eq. (10) with the inequalities from the last two displays gives;

∥v̂h − vh∥2Λh
≤ 16C2

(
2d log (k) + log

N1/k(V)
p

)

=⇒ ∥v̂h − vh∥Λh
≤ 4C

√
2d log (k) + log

N1/k(V)
p

.

Finally, ∣∣(Ph − Ph

)
V (s, a)

∣∣ = ∣∣ϕ(s, a)⊤ (v̂h − vh)
∣∣ ≤ ∥ϕ(s, a)∥Λ−1

h
∥v̂h − vh∥Λh

,

which completes the proof after plugging in the bound from the previous display. □
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A.2 Value and policy classes

Given an input parameter β given to Algorithm 1, we consider the softmax policy class as defined
below:

Y(Dw, λ−, λ+, Jmax) := {y(·;w,W1:J) | ∥w∥ ≤ Dw, λ−I ⪯Wj ⪯ λ+I, J ≤ Jmax} ,

where y(x;w,W1:J) := x⊤w +

J∑
j=1

∥x∥Wj
;

Π :=
{
π(·|·; y) | y ∈ Y(3dHK2,K−2, β2K2, 2d logK)

}
,

where π(a|s; y) := ey(ϕ(s,a))∑
b e

y(ϕ(s,b))
. (11)

We further consider the following class of empirical restricted (Q-)functions:

Q̃◦(s, a;w,W,Z) := I {s ∈ Z}
(
ϕ(s, a)⊤w −

√
ϕ(s, a)⊤Wϕ(s, a)

)
,

Q̃◦(Z, C) :=
{
Q̃◦(·, ·;w,W,Z) | ∥w∥2 ≤ 2dHK, ∥W∥2 ≤ β

2,
∥∥∥Q̃◦(·, ·;w,W,Z)

∥∥∥
∞
≤ C

}
,

(12)

and their corresponding value functions:

Ṽ (s;πh, Q̃
◦) :=

〈
πh(·|s), Q̃◦(s, ·)

〉
.

Now define the following empirical restricted value function class:

Ṽ◦(Z, C) =
{
Ṽ (·;πh, Q̃◦) : S → R | Q̃◦ ∈ Q◦(Z, C), πh ∈ Π

}
. (13)

The following lemma (of which the proof is deferred to Appendix A.4) provides the bound on the
covering number of the function class defined in Eq. (13) above.
Lemma 5. There exists a universal constant cN , such that for any ν > 0, Z ⊆ S,

logNν(Ṽ◦(Z, C)) ≤ cNd3 log (βCK/ν) .

A.3 Proof of Lemma 3

In this section we provide the full technical details for the analysis of the good event Lemma 3. The
core part of the argument establishes the confidence bounds for the regression step in spite of the
absence of the truncation. To begin, we first define an additional success event; the concentration of
least squares errors uniformly over the class of empirical value functions (recall the function class Ṽ◦

is defined in Eq. (13)).

∀k ≥ K0, h;∀Vh+1 ∈ Ṽ◦(Zh+1, 2H);∀s, a :
∣∣∣(Ph − P̂k

h

)
Vh+1(s, a)

∣∣∣ ≤ (β/2) ∥ϕ(s, a)∥Λ−1
k,h
,

(Euls)
The core argument pertaining to the regression errors proceeds as follows.

1. Lemma 1, establishes the success probability of Erfw. For the most part this follows from
the guarantees of the CovTraj algorithm developed in the prior work of Wagenmaker et al.
[2022b].

2. Lemma 7 establishes the success probability of Euls; ensuring concentration of the regression
errors w.r.t. the value function classes Ṽ◦(Zh+1, 2H).

3. Given that Erfw and Euls both hold, Lemma 11 provides, using a careful inductive argu-
ment, that the value functions estimated in Algorithm 1 are contained in the function class
Ṽ◦(Zh+1, 2H). Thus, Eqbd and Evbu hold.

Lemma 6 (success of Ebon). For any δ > 0, we have that with probability ≥ 1− δ, for all h:
K∑

k=1

Eµk
h

[∥∥ϕ(sh, ah)∥∥Λ−1
k,h

]
≤ 2

K∑
k=1

∥∥ϕ(skh, akh)∥∥Λ−1
k,h

+ 4 log
4KH

δ
.
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Proof. Denote Xk =
∥∥ϕ(skh, akh)∥∥Λ−1

k,h

, and recall the definition of Fk in Eq. (9). Then Xk is Fk

measurable, and

Eµk
h

[∥∥ϕ(sh, ah)∥∥Λ−1
k,h

]
= E

[
Xk | Fk−1

]
.

In addition, by the definition of Λk,h = I +
∑

i∈Dk
h
ϕ(sih, a

i
h)ϕ(s

i
h, a

i
h)

⊤ in Algorithm 1, and by the
assumption that ∥ϕ(s, a)∥ ≤ 1 (Definition 1), we have that 0 ≤ Xk ≤ 1. Thus by Lemma 19 and the
union bound, we have that w.p. 1− δ, for all h ∈ [H]:

K∑
k=1

E
[
Xk | Fk−1

]
≤ 2

K∑
k=1

Xk + log
2KH

(δ/KH)
≤ 2

K∑
k=1

∥∥ϕ(skh, akh)∥∥Λ−1
k,h

+ 4 log
2KH

δ
,

which completes the proof. □

Lemma 7 (success of Euls). There exists a constant cβ > 0, such that when running Algorithm 1
with β ≥ 2cβdH log(dHK/δ), we have that the event Euls holds with probability ≥ 1− δ.

Proof. Let h, k ∈ [H]× {K0, . . . ,K}, and note that since we define the regression solution using

Dk
h = D0

h ∪
{
(sih, a

i
h, s

i
h+1)

}k−1

i=K0
,

this dataset is independent of the known states set Zh+1 which is defined using D0
h+1. Indeed, this

is because
{
D0

h

}
h∈[H]

were generated by independent runs of CovTraj in Algorithm 2. Hence, the

value class Ṽ◦(Zh+1, 2H) is independent of Dk
h, and we may apply Lemma 2 to obtain that w.p.

≥ 1− δ′,

∀Vh+1 ∈ Ṽ◦(Zh+1, 2H),∀s ∈ S, a ∈ A :
∣∣∣(Ph − P̂k

h

)
Vh+1(s, a)

∣∣∣ ≤ β̂ ∥ϕ(s, a)∥Λ−1
k,h
,

where

β̂ =

8H

√
2d log k + log

N1/k(Ṽ◦(Zh+1, 2H))

δ′

 .

By Lemma 5, we have

logN1/K(Ṽ◦(Zh+1, 2H)) ≤ cd3 log (βHK) ,

for some universal constant c, which implies that

β̂ ≤ c′d3/2H log(βHK/δ′),

for a suitable constant c′ > 0. Setting δ′ = δ/KH , we now have by the union bound that,

∀k, h;∀Vh+1 ∈ Ṽ◦(Zh+1, 2H); ∀s, a :∣∣∣(Ph − P̂k
h

)
Vh+1(s, a)

∣∣∣ ≤ 2c′d3/2H log(βHK/δ) ∥ϕ(s, a)∥Λ−1
k,h
.

Finally, by Lemma 18, for a suitable cβ > 0 we have

β/2 ≥ cβd3/2H log(dHK/δ) ≥ 2c′d3/2H log(βHK/δ),

which completes the proof.

□

Lemma 8 (success of Esle). Consider running Algorithm 1 in the stochastic case with bandit feedback,
with β ≥ 2cβdH log(dHK/δ) as specified by Lemma 7. Then, we have that the event Esle holds
w.p. 1− δ.

Proof. For a given k, h, we have

∀s, a :
∣∣∣ℓ̂kh(s, a)− ℓkh(s, a)∣∣∣ = ∣∣ϕ(s, a)⊤ (ĝk,h − gk,h)

∣∣ ≤ ∥ϕ(s, a)∥Λ−1
k,h
∥ĝk,h − gk,h∥Λk,h

. (14)
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Following the same algebraic argument as that given in Lemma 2, we have

∥ĝk,h − gk,h∥Λk,h
=

∥∥∥∥∥Λ−1
k,h

k−1∑
i=1

ϕ(sih, a
i
h)
(
ℓih(s

i
h, a

i
h)− ℓh(sih, aih)

)
− Λ−1

k,hgk,h

∥∥∥∥∥
Λk,h

≤

∥∥∥∥∥
k−1∑
i=1

ϕ(sih, a
i
h)
(
ℓih(s

i
h, a

i
h)− ℓh(sih, aih)

)∥∥∥∥∥
Λ−1

k,h

+ ∥gk,h∥Λ−1
k,h
.

By Lemma 22 (the application of which is legitimate due to Assumption 2) and the union bound, for
any δ > 0 the first term above is bounded by

√
4d log(HK/δ) for all k, h, while the second term is

bounded a.s. by
√
d owed to the assumption in Definition 1 and that Λ−1

k,h ⪯ I . Concluding, we have
w.p. ≥ 1− δ, for all k, h:

∥ĝk,h − gk,h∥Λk,h
≤
√

4d log(HK/δ) +
√
d ≤ β/2.

The proof is complete after plugging the above inequality into Eq. (14). □

Lemma 9. Let Dh =
{
(sih, a

i
h)
}
i∈[k]

, and Λh := I +
∑

i∈Dh
ϕ(sih, a

i
h)ϕ(s

i
h, a

i
h)

⊤. Then,∥∥∥∥∥Λ−1
h

∑
i∈Dh

ϕ(sih, a
i
h)

∥∥∥∥∥
2

≤
√
dk.

Proof. Follows from the exact same argument as in Jin et al. [2020], Lemma B.2. □

Lemma 10. Let K0 ≤ τ < K, h ∈ [H], and assume Ṽ k;◦
h+1 ∈ Ṽ◦(Zh, 2H) for all k ∈

{K0, . . . , τ − 1}. Then πτ+1
h ∈ Π, where Π is defined in Eq. (11), and πτ+1

h is a mirror descent step
from πτ

h as defined in Algorithm 1.

Proof. By the definition of the OMD update step in Algorithm 1, we have for any a, s;

πτ+1
h (a|s) = e−η

∑τ
k=K0

Q̃k
h(s,a)∑

a′ e
−η

∑τ
k=K0

Q̃k
h(s,a

′)
.

In addition, by the definition of the estimated Q-functions Q̃k
h in Algorithm 1, we have;

−η
τ∑

k=K0

Q̃k
h(s, a) = −η

τ∑
k=K0

(
ℓ̂kh(s, a) + P̂k

hṼ
k;◦
h+1(s, a)

)
− b̂kh(s, a)

= −η
τ∑

k=K0

ϕ(s, a)⊤
(
ĝk,h + v̂kh

)
+ η

τ∑
k=K0

b̂kh(s, a)

= −η
τ∑

k=K0

ϕ(s, a)⊤
(
ĝk,h + v̂kh

)
+ ηβ

τ∑
k=K0

∥ϕ(s, a)∥Λ̂−1
k,h

= ϕ(s, a)⊤

(
−η

τ∑
k=K0

ĝk,h + v̂kh

)
+ ηβ

J∑
j=1

(kj+1 − kj) ∥ϕ(s, a)∥Λ−1
kj,h

,

where kj are the episodes on which we update the bonus matrices Λ̂k,h in Algorithm 1. Now, since
for all K0 ≤ k ≤ K we have

∥Λk,h∥ =

∥∥∥∥∥∥I +
∑
i∈Dk

h

ϕ(sih, a
i
h)ϕ(s

i
h, a

i
h)

⊤

∥∥∥∥∥∥ ≤ ∥I∥+
∑
i∈Dk

h

∥∥ϕ(sih, aih)ϕ(sih, aih)⊤∥∥ ≤ 1 +K,

and I ⪯ Λk,h, it follows that

2J detΛK0,h ≤ detΛK,h ≤ ∥Λk,h∥d ≤ (K + 1)d,
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and 1 ≤ detΛK0,h. Thus it is implied that J ≤ d log(K + 1) ≤ 2d logK. In addition, ηβ(kj+1 −
kj) ∥ϕ(s, a)∥Λ̂−1

kj,h
= ∥ϕ(s, a)∥Wj

when we define

Wj = η2β2(kj+1 − kj)2Λ−1
kj ,h

, and thus
1

K2
I ⪯Wj ⪯ β2K2Λ−1

kj ,h
⪯ β2K2I.

Furthermore, in the adversarial case ∥ĝk,h∥ = ∥gk,h∥ ≤
√
d by assumption (see Definition 1), and in

the stochastic case,

∥ĝk,h∥ =

∥∥∥∥∥∥Λ−1
k,h

∑
i∈Dk

h

ϕ(sih, a
i
h)ℓ

i
h(s

i
h, a

i
h)

∥∥∥∥∥∥ ≤ √dK,
where the inequality follows from Lemma 9 and our assumption that

∣∣ℓkh(sih, aih)∣∣ ≤ 1. In addition,
in both the stochastic and adversarial cases, we have∥∥v̂kh∥∥ =

∥∥∥∥∥∥Λ−1
k,h

∑
i∈Dk

h

ϕ(sih, a
i
h)Ṽ

k;◦
h+1(s

i
h+1)

∥∥∥∥∥∥ ≤ 2H
√
dK,

which follows again by Lemma 9, and our assumption that Ṽ k;◦
h+1 ∈ Ṽ◦(Zh, 2H) =⇒

∥∥∥Ṽ k;◦
h+1

∥∥∥
∞
≤

2H for all k ≤ τ . Thus,
∥∥ĝk,h + v̂kh

∥∥ ≤ 3H
√
dK for all k ≤ τ . Concluding, we have shown that

πτ+1
h (a|s) ∝ exp

ϕ(s, a)⊤wτ
h +

J∑
j=1

∥ϕ(s, a)∥Wj

 ,

where ∥wτ
h∥ ≤ 3dHK2 and K−2I ⪯Wj ⪯ β2K2I , therefore πτ+1

h ∈ Π, as required. □

Lemma 11 (success of Eqbd ∪ Evbu). Assume that the event Erfw ∪ Euls ∪ Esle holds. Then, we
have that,

∀k ≥ K0, h ∈ [H] : Q̃k;◦
h ∈ Q̃◦(Zh, Ch), Ṽ

k;◦
h ∈ Ṽ◦(Zh, Ch),

where Ch := (H − h+ 1) (1 + 2/H). Furthermore, we have that the event Evbu holds, that is,

∀k ≥ K0, h ∈ [H]; ∀s, a :
∣∣∣(Ph − P̂k

h

)
Ṽ k;◦
h+1(s, a)

∣∣∣ ≤ (β/2) ∥ϕ(s, a)∥Λ−1
k,h
. (15)

Proof. We begin first by establishing simple bounds on the instantaneous loss estimates. For any
k ≥ K0, we have in the adversarial case ℓ̂kh(s, a) = ℓkh(s, a) for all s, a, h, k, so

∣∣ℓ̂kh(s, a)∣∣ ≤ 1 by
the assumption in Definition 1. In the stochastic case on the other hand, for any s, a ∈ Zh ×A, owed
to our assumption that Esle holds;∣∣∣ℓ̂kh(s, a)∣∣∣ ≤ ∣∣ℓkh(s, a)∣∣+ ∣∣∣ℓ̂kh(s, a)− ℓkh(s, a)∣∣∣ ≤ 1 + β ∥ϕ(s, a)∥Λ−1

k,h
.

Furthermore, we have,
∀h ∈ [H], s, a ∈ Zh ×A : ∥ϕ(s, a)∥Λ−1

k,h
≤ ∥ϕ(s, a)∥Λ̂−1

k,h
≤ ∥ϕ(s, a)∥Λ−1

0,h
≤ 1/(2βH), (16)

where the last inequality follows from the definition ofZh, thus we obtain β ∥ϕ(s, a)∥Λ−1
k,h
≤ 1/(2H).

To conclude, in both the stochastic and adversarial cases we have:

∀k ≥ K0, h ∈ [H], s ∈ Zh, a ∈ A;
∣∣∣ℓ̂kh(s, a)∣∣∣ ≤ 1 + 1/(2H). (17)

The rest of the proof proceeds by an inductive argument as follows. Fix K0 ≤ k ≤ K, and assume
we have already proved the claim for all k′, h ∈ {K0, . . . , k − 1} × [H]. We will now establish the
claim for episode k by induction on h = H, . . . , 1.

Base case h = H: Here, we have∣∣∣Q̃k
H(s, a)

∣∣∣ = ∣∣∣ℓ̂kH(s, a)− b̂kh(s, a)
∣∣∣ ≤ 1 + 1/(2H) + β ∥ϕ(s, a)∥Λ̂−1

k,h
≤ 1 + 1/H,

where the first inequality follows from Eq. (17), and the last inequality from Eq. (16). Thus, we
obtain Q̃k;◦

H ∈ Q̃◦(ZH , 1 + 1/H) ⊂ Q̃◦(ZH , CH). Further, since Ṽ k′;◦
H+1 ≡ 0 for any k′ ∈ [K], we

may apply Lemma 10 which ensures πk
H ∈ Π. Thus, it also follows that Ṽ k;◦

H (s) ∈ Ṽ ◦(ZH , CH).
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Inductive step: Let h < H and assume Ṽ k;◦
h+1 ∈ Ṽ◦(Zh+1, Ch+1). For s ∈ Zh, a ∈ A, we have;∣∣∣Q̃k;◦

h (s, a)
∣∣∣ = ∣∣∣ℓ̂kh(s, a) + P̂k

hṼ
k;◦
h+1(s, a)− b̂

k
h(s, a)

∣∣∣
=
∣∣∣ℓ̂kh(s, a) + PhṼ

k;◦
h+1(s, a) + (P̂k

h − Ph)Ṽ
k;◦
h+1(s, a)− b̂

k
h(s, a)

∣∣∣
≤ 1 + 1/H + Ch+1 + β ∥ϕ(s, a)∥Λ−1

k,h
+ β ∥ϕ(s, a)∥Λ̂−1

k,h
,

where the last inequality follows from Eq. (17), the inductive hypothesis, and by the assumption that
Euls holds. Applying Eq. (16) again, this implies that the empirical Q is well bounded on the known
states; ∣∣∣Q̃k;◦

h (s, a)
∣∣∣ ≤ 1 + 1/H + Ch+1 + 1/H = Ch.

In addition, for any s, a ∈ S ×A;

Q̃k
h(s, a) = ϕ(s, a)⊤ĝk,h + P̂k

hṼ
k;◦
h+1(s, a)− b̂

k
h(s, a) = ϕ(s, a)⊤

(
ĝk,h + v̂kh

)
− β ∥ϕ(s, a)∥Λ̂−1

k,h
,

Further, as argued in the proof of Lemma 10, by Lemma 9 and our assumption that
∥∥∥Ṽ k;◦

h+1

∥∥∥
∞
≤ 2H ,

we have that ∥∥v̂kh∥∥ ≤ 2H
√
dK, and ∥ĝk,h∥ ≤

√
dK.

In addition, β ∥ϕ(s, a)∥Λ̂−1
k,h

= ∥ϕ(s, a)∥W for

W = β2Λ̂−1
k,h, and thus ∥W∥ = β2

∥∥∥Λ̂−1
k,h

∥∥∥ ≤ β2.

Therefore, we establish that Q̃k;◦
h ∈ Q̃◦(Zh, Ch). Now, by our (first) inductive assumption that

Ṽ k′;◦
h+1 ∈ Ṽ◦(Zh+1, Ch+1) for all k′ < k, we may apply Lemma 10 to obtain that πk

h ∈ Π. This im-
mediately implies that Ṽ k;◦

h ∈ Ṽ(Zh, Ch), and completes the inductive argument. Finally, combined
with our assumption that Euls holds, this implies Evbu holds, which completes the proof. □

We conclude this section with the proof of the good event Lemma 3, which now follows easily by
combining the above lemmas.

Proof of Lemma 3. By Lemmas 1, 6 and 7, and the union bound, we have that Erfw∪Euls∪Esle∪Ebon
holds w.p.≥ 1−4δ. By Lemma 11, this now implies that Eqbd∪Evbu holds as well, which completes
the proof. □

A.4 Covering of empirical value functions

Lemma 12 (Policy class is Lipschitz). For any πh, π̃h ∈ Π, πh(·|·) = π(·|·; yh), π̃h(·|·) = π̃(·|·; ỹh),
parameterized by yh(·) = yh(·;w,W1:J), ỹh(·) = yh(·; w̃, W̃1:J) , we have for any s ∈ S:

∥πh(·|s)− π̃h(·|s)∥1 ≤ 6K

√√√√∥w − w̃∥2 + J∑
j=1

∥∥∥Wj − W̃j

∥∥∥2.
Proof. We have, for any x ∈ Rd,

∇wy(x;w,W1:J) = x

∇Wj
y(x;w,W1:J) = ∇Wj

(√
x⊤Wjx

)
=

1

2
√
x⊤Wjx

xx⊤.

Thus, considering y(x;w,W1:J) ∈ Y implies K−2I ⪯Wj ;∥∥∇Wj
y(x;w,W1:J)

∥∥
F
=

1

2
√
x⊤Wjx

∥∥xx⊤∥∥
F
=

1

2
√
x⊤Wjx

∥x∥2 ≤ 1

2
√
λmin(Wj) ∥x∥

∥x∥2 ≤ K ∥x∥ ,
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which implies that when ∥x∥ ≤ 1,

∥∇θy(x; θ)∥ =

√√√√∥∇wy(x; θ)∥2 +
J∑

j=1

∥∥∇Wjy(x; θ)
∥∥2
F
≤

√√√√∥x∥2 +K

J∑
j=1

∥x∥2 ≤ 3 ∥x∥K ≤ 3K.

Hence, the parameterization θ 7→ y(·; θ) is (3K)-Lipschitz, and the result follows from Lemma 13.
□

The next lemma follows from similar arguments to those given in Wagenmaker and Jamieson [2022,
Lemma A.12].
Lemma 13. Let fθ : Rd → R be any function parameterized by θ ∈ Rp, and assume the map-
ping θ 7→ fθ(ϕ(s, a)) ∈ R is L-Lipschitz for any s, a. Consider softmax policies πθ

h(·|·) =

πh(·|·; fθ), πθ̃
h(·|·) = πh(·|·; fθ̃) : S → ∆A as defined in Eq. (11). Then, for any θ, θ̃ ∈ Rp, it

holds that for any s ∈ S: ∥∥∥πθ
h(·|s)− πθ̃

h(·|s)
∥∥∥
1
≤ 2L

∥∥θ − θ̃∥∥
2
.

Proof. Let vs(θ) := fθ(ϕ(s, ·)) ∈ RA, and let

Jvs(θ) :=

∇θfθ(ϕ(s, a1))
⊤

...
∇θfθ(ϕ(s, aA))

⊤

 ∈ RA×p

denote the Jacobian of vs at θ ∈ Rp. Then, we have by the chain rule:
∇θπ

θ
h(a|s) = Jvs(θ)⊤∇u (σ(u)a) ,

where u := vs(θ) and σ(u)i = eui/(
∑

j e
uj ) denotes the softmax function. Combining with the

softmax gradient∇u (σ(u)a) = σ(u)a (ea − σ(u)), we get∥∥∇θπ
θ
h(a|s)

∥∥ = (σ(u)a)
∥∥Jvs(θ)⊤ (ea − σ(u))

∥∥ ≤ 2σ(u)a max
a
∥∇θfθ(ϕ(s, a))∥ ≤ 2Lπθ

h(a|s),

where the last inequality uses our Lipschitz assumption and that σ(u)a = πθ
h(a|s). Now, by the

mean-value theorem, we get that for some θ′ ∈ [θ, θ̃],∣∣∣πθ
h(a|s)− πθ̃

h(a|s)
∣∣∣ = ∣∣∣∇πθ′

h (a|s)
(
θ − θ̃

)∣∣∣ ≤ 2Lπθ′

h (a|s)
∥∥θ − θ̃∥∥

2
,

which implies ∥∥∥πθ
h(·|s)− πθ̃

h(·|s)
∥∥∥
1
≤ 2L

∥∥θ − θ̃∥∥
2
,

and completes the proof. □
Proof of Lemma 5. Let πh, π′

h ∈ Π be parameterized by πh(·|·) = π(·|·; yh), π′
h(·|·) = π(·|·; y′h),

where yh(·) = y(·;w,W1:J), y′h(·) = y(·;w′,W ′
1:J), and consider q, q′ ∈ Q̃◦(Z, C). For any s ∈ Z ,

we have;∣∣∣Ṽ (s;πh, q)− Ṽ (s;π′
h, q

′)
∣∣∣ ≤ ∣∣∣Ṽ (s;πh, q)− Ṽ (s;πh, q

′)
∣∣∣+ ∣∣∣Ṽ (s;πh, q

′)− Ṽ (s;π′
h, q

′)
∣∣∣ .

For the first term,∣∣∣Ṽ (s;πh, q)− Ṽ (s;πh, q
′)
∣∣∣ ≤ max

a

{∣∣ϕ(s, a)⊤ (w − w′)
∣∣+√|ϕ(s, a)⊤ (W −W ′)ϕ(s, a)|

}
≤ ∥w − w′∥+

√∥∥W −W ′
∥∥. (18)

For the second term,∣∣∣Ṽ (s;πh, q
′)− Ṽ (s;π′

h, q
′)
∣∣∣ = |⟨πh(·|s)− π′

h(·|s), q′(s, ·)⟩|

≤ C ∥πh(·|s)− π̃h(·|s)∥1

≤ 6CK

√√√√∥w − w′∥2 +
J∑

j=1

∥∥Wj −W ′
j

∥∥2
≤ 6CK

∥w − w′∥+
J∑

j=1

∥∥Wj −W ′
j

∥∥ ,
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where the last inequality follows from Lemma 12. As per Eq. (11), we have thatw,w′ ∈ Bd(3dHK2),
J ≤ 2d logK, and Wj ,W

′
j ∈ Bd

2

(
√
dβ2K2) for all j ≤ J , where this last claim follows since the

Frobenius norm of any matrix is larger than its spectral norm by a factor of at most
√
d. Thus, for

simplicity, we consider covering the larger set given by E := Bp(4dHβ2K2) and p = 4d3 logK. By
Lemma 17, given any ν, we have a (ν1 = ν/(12CK))-covering with cardinality≤ (1+(4dHβ2K2)∗
12CK/ν)p = (1 + 48dCHβ2K3/ν)p.

Similarly, we ν/4 construct a cover corresponding to each of the terms in Eq. (18) with sets of
cardinality (1 + 64β2/ν2)d

2

and (1 + 16dHK2/ν)d. This gives,

logNν(Ṽ◦(Z, C)) ≤ p log
(
1 + 48dCHβ2K3/ν

)
+ 2d2 log (1 + 64β/ν) + d log(1 + 16dHK2/ν)

≤ cNd3 log (βCK/ν) ,
for an appropriate constant cN , which completes the proof. □

A.5 Proof of Lemma 4

Proof of Lemma 4. For any k, we have by Lemma 16;

V k,πk

1 − V k,π⋆

1 = V k,πk

1 − Ṽ k;◦
1 + Ṽ k;◦

1 − V k,π⋆

1

=

H∑
h=1

Eµk
h

[
ℓkh(sh, ah) + PhṼ

k;◦
h+1(sh, ah)− Q̃

k;◦
h (sh, ah)

]
+

H∑
h=1

Eµ⋆
h

[〈
Q̃k;◦

h (sh, ·), πk
h(·|sh)− π⋆

h(·|sh)
〉]

+

H∑
h=1

Eµ⋆
h

[
Q̃k;◦

h (sh, ah)− ℓkh(sh, ah)− PhṼ
k;◦
h+1(sh, ah)

]
.

Now, note that for any s ∈ Zh, a ∈ A;

Q̃k;◦
h (s, a) = ϕ(s, a)⊤ĝk,h + P̂k

hṼ
k;◦
h (s, a)− b̂kh(s, a),

thus

ℓkh(s, a) + PhṼ
k;◦
h+1(s, a)− Q̃

k;◦
h (s, a) = ϕ(s, a)⊤ (gk,h − ĝk,h) +

(
Ph − P̂k

h

)
Ṽ k;◦
h+1(s, a) + b̂kh(s, a).

In addition, by the good event, specifically Eqbd, and the assumption that the instantaneous loss is
∈ [−1, 1], we have for any s /∈ Zh, a ∈ A:∣∣∣ℓkh(s, a) + PhṼ

k;◦
h+1(s, a)− Q̃

k;◦
h (s, a)

∣∣∣ = ∣∣∣ℓkh(s, a) + PhṼ
k;◦
h+1(s, a)

∣∣∣ ≤ 1 +H + 2 ≤ 2H.

Thus by the law of total expectation,

Eµk
h

[
ℓkh(sh, ah) + PhṼ

k;◦
h+1(sh, ah)− Q̃

k;◦
h (sh, ah)

]
≤ Eµk

h

[
ℓkh(sh, ah)− ℓ̂kh(sh, ah) +

(
Ph − P̂k

h

)
Ṽ k;◦
h+1(sh, ah) + b̂kh(s, a) | sh ∈ Zh

]
+ 2ϵcovH,

where the inequality follows since the good event Erfw implies µk
h(S \ Zh) ≤ ϵcov, and for similar

reasons;

Eµ⋆
h

[
Q̃k;◦

h (sh, ah)− ℓkh(sh, ah)− PhṼ
k;◦
h+1(sh, ah)

]
≤ Eµ⋆

h

[
ℓ̂kh(sh, ah)− ℓkh(sh, ah) +

(
P̂k
h − Ph

)
Ṽ k;◦
h+1(sh, ah)− b̂

k
h(s, a) | sh ∈ Zh

]
+ 2ϵcovH.

Finally, again by the law of total expectation and definition of the restricted Q-function;

Esh∼µ⋆
h

[〈
Q̃k;◦

h (sh, ·), πk
h(·|sh)− π⋆

h(·|sh)
〉]
≤ Esh∼µ⋆

h

[〈
Q̃k

h(sh, ·), πk
h(·|sh)− π⋆

h(·|sh)
〉
| sh ∈ Zh

]
.

Combining the last three displays with the first equation and summing over k = K0, . . . ,K and
h ∈ [H] completes the proof. □
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Lemma 14. Upon execution of Algorithm 1, for all k, h it holds that

∀u ∈ Rd; ∥u∥Λ−1
k,h
≤ ∥u∥Λ̂−1

k,h
≤
√
2 ∥u∥Λ−1

k,h
.

Proof. By definition, we have at all times Λ̂k,h ⪯ Λk,h and detΛk,h ≤ 2 det Λ̂k,h. Therefore,

Λ−1
k,h ⪯ Λ̂−1

k,h and
det Λ̂−1

k,h

det Λ−1
k,h

≤ 2. Now, by Lemma 21, we have

Λ−1
k,h ⪯ Λ̂−1

k,h ⪯ 2Λ−1
k,h,

which completes the proof. □

A.6 Proof of Theorem 1

Proof of Theorem 1. Given our choice of parameters, by Lemma 1, we have that the number of
warmup episodes satisfies

K0 = O

(
d4H5

ϵcov
log7

dHK

δ

)
. (19)

For the remainder of the proof, we assume the good event defined in Lemma 3 holds, which indeed
occurs w.p. 1− 4δ by that lemma. Proceeding, we will bound the regret for the remaining rounds
using the decomposition given by Lemma 4.

Bias term. By Eq. (Evbu), we have for all s, a:(
Ph − P̂k

h

)
Ṽ k;◦
h+1(s, a) +

1

2
b̂kh(s, a) ≤

β

2
∥ϕ(s, a)∥Λ−1

k,h
+

1

2
b̂kh(s, a).

In addition, in the stochastic case, owed to Eq. (Esle), for all s, a:

ℓh(s, a)− ℓ̂kh(s, a) = ϕ(sh, ah)
⊤ (gk,h − ĝk,h) +

1

2
b̂kh(s, a)

≤ β

2
∥ϕ(s, a)∥Λ−1

k,h
+

1

2
b̂kh(s, a).

In the adversarial case, the above bound holds trivially since ℓh(s, a) = ℓ̂kh(s, a). By a sim-
ple algebraic argument given in Lemma 14, we additionally have b̂kh(s, a) = β ∥ϕ(s, a)∥Λ̂−1

k,h
≤

2β ∥ϕ(s, a)∥Λ−1
k,h
, thus the sum of the last two displays is bounded by 3β ∥ϕ(s, a)∥Λ−1

k,h
, therefore

Bias ≤ 3β

H∑
h=1

K∑
k=K0

Eµk
h

[∥∥ϕ(skh, akh)∥∥Λ−1
k,h

]

≤ 6β

H∑
h=1

K∑
k=K0

∥∥ϕ(skh, akh)∥∥Λ−1
k,h

+ 12βH log
4KH

δ
,

where the second inequality follows from Eq. (Ebon). Further, by Lemma 20, for any h ∈ [H],

K∑
k=K0

∥∥ϕ(skh, akh)∥∥Λ−1
k,h

≤

√√√√K

K∑
k=K0

∥∥ϕ(skh, akh)∥∥2Λ−1
k,h

≤ 2
√
Kd logK,

hence,

Bias ≤ 12βH

(√
Kd logK + log

4KH

δ

)
.
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OMD Term. By Eq. (Eqbd) we have that for all k ≥ K0, h, s ∈ Zh, a ∈ A;
∣∣Q̃k

h(s, a)
∣∣ =∣∣Q̃k;◦

h (s, a)
∣∣ ≤ 2H . Thus, applying the OMD regret bound Lemma 24 for any s ∈ Zh, h ∈ [H] we

have;

K∑
k=K0

〈
Q̃k

h(s, ·), πk
h(·|s)− π⋆

h(·|s)
〉

≤ logA

η
+ η

K∑
k=K0

∑
a∈A

πk
h(a|s)Q̃k

h(s, a)
2

≤ logA

η
+ 4ηH2K.

Therefore, we may bound the OMD term as follows:

H∑
h=1

K∑
k=K0

Esh∼µ⋆
h

[〈
Q̃k

h(sh, ·), πk
h(·|sh)− π⋆

h(·|sh)
〉
| Kh

]

=

H∑
h=1

Esh∼µ⋆
h

[
K∑

k=K0

〈
Q̃k

h(sh, ·), πk
h(·|sh)− π⋆

h(·|sh)
〉
| Kh

]

≤
H∑

h=1

Esh∼µ⋆
h

[
logA

η
+ 4ηH2K | Kh

]
=
H logA

η
+ 4ηH3K.

Optimism term. By Eq. (Evbu), for s, a ∈ Zh ×A:

(
P̂k
h − Ph

)
Ṽ k;◦
h+1(s, a)−

1

2
b̂kh(s, a) ≤

β

2
∥ϕ(s, a)∥Λ−1

k,h
− β

2
∥ϕ(s, a)∥Λ̂−1

k,h
≤ 0,

since Λ̂−1
k,h ⪰ Λ−1

k,h by construction. Similarly, owed to Eq. (Esle):

ϕ(s, a)⊤ (ĝk,h − gk,h)−
1

2
b̂kh(s, a) ≤

β

2
∥ϕ(s, a)∥Λ−1

k,h
− β

2
∥ϕ(s, a)∥Λ̂−1

k,h
≤ 0.

Thus, we immediately obtain the optimism term is non positive.

Concluding the proof. Combining the bound on the number of warmup episodes Eq. (19), with
Lemma 4 and the bounds on all three terms, we have:

K∑
k=1

V πk

− V ⋆ ≲
d4H5

ϵcov
log7

dHK

δ
+ ϵcovH

2K +
H logA

η

+ ηH3K + βH

(√
Kd logK + log

KH

δ

)
,

where ≲ hides only constant factors. Finally, setting ϵcov = H3/2d2 log4(dHK/δ)√
K

, β =

2cβd
3/2H log(dHK/δ) and η =

√
logA

H
√
K

, we obtain:

K∑
k=1

V πk

− V ⋆ ≲ d2H7/2 log4
dHK

δ

√
K logA,

which completes the proof. □
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B Proof of Lemma 1

In this section, we provide the technical details of the reward free algorithm guarantees. As mentioned,
the algorithm is based on the work of Wagenmaker et al. [2022b] — the basic guarantee we build
upon is formally stated below and follows immediately from Theorem 2 and Corollary 2 in their
work. The bound on the number of episodes T follows from plugging the guarantees of FORCE
[Wagenmaker et al., 2022a, Algorithm 1] into the precise setting of Ki given in the beginning of
Appendix B of Wagenmaker et al. [2022b].
Theorem 2 (Wagenmaker et al., 2022b). The COVERTRAJ algorithm [Wagenmaker et al., 2022b,
Algorithm 4] when instantiated with FORCE [Wagenmaker et al., 2022a, Algorithm 1] enjoys the
following guarantee. Given a sequence of tolerance parameters γ1, . . . , γm > 0 and h ∈ [H], the
algorithm interacts with the environment for T steps, where

T ≤ C
m∑
i=1

2i max

{
d

γ2i
log

2i

γ2i
, d4H3m3 log7/2

1

δ

}
, C > 0 a constant,

and outputs
{(
Xh,i, D̃h,i, Λ̃h,i

)}m
i=1

such that
⋃
· m+1
i=1 Xh,i = Bd

0 (1) partitions the euclidean unit
ball, Λ̃h,i = I +

∑
τ∈D̃h,i

ϕ(sτh, a
τ
h)ϕ(s

τ
h, a

τ
h)

⊤, and with probability 1− δ, it holds that:

∀i ∈ [m], ϕ⊤Λ̃−1
h,iϕ ≤ γ

2
i , ∀ϕ ∈ Xh,i;

and ∀i ∈ [m+ 1], sup
π

{∫
S×A

I {ϕ(s, a) ∈ Xh,i}µπ
h(s, a)

}
≤ 2−i+1.

Lemma 15. Assume h ∈ [H], ϵ, δ > 0, γm ≥ · · · ≥ γ1 > 0, and let {Λh,i}i∈[m] be the covariate
matrices returned from CovTraj(h, δ,m = log(1/ϵ), {γi}). Then under the assumption that the event
from Theorem 2 holds, we have for any policy π and i ∈ [m]:

Pr
sh∼µπ

h

(
∃a s.t. ∥ϕ(sh, a)∥Λ−1

h,i
> γm

)
≤ ϵ.

Proof. By Theorem 2, we have that the total probability density induced by any policy π ∈ [H]×S →
∆(A) on the last partition set Xh,m+1 is at most 2−m = ϵ. In addition, since on each of the remaining
partition sets {Xh,i}i∈[m] we have the guarantee that ϕ ∈ Xh,i =⇒ ∥ϕ∥Λ−1

h,i
≤ γi ≤ γm, it follows

that,

∀π; Pr
sh,ah∼µπ

h

(
∥ϕ(sh, ah)∥Λ−1

h,i
> γm

)
= Pr

sh,ah∼µπ
h

(ϕ(sh, ah) ∈ Xh,m+1) ≤ ϵ. (2)

Assume by contradiction that π is a policy for which the statement of the theorem does not hold.
Then

Pr
sh∼µπ

h

(
∃a, ∥ϕ(sh, a)∥Λ−1

h,i
> γm

)
> ϵ.

But, if this happens, we can consider a transformed policy π̃; that rolls into timestep h with π, then
takes (with probability 1) the action a that maximizes ∥ϕ(sh, a)∥Λ−1

h,i
. Formally, π̃h′ = πh′ for all

h′ ̸= h, and π̃h(a|s) = I
{
a ∈ argmaxa′ ∥ϕ(s, a′)∥Λ−1

h,i

}
. This implies,

Pr
sh,ah∼µπ̃

h

(
∥ϕ(sh, ah)∥Λ−1

h
> γm

)
> ϵ,

thus reaching a contradiction which completes the proof. □

Proof of Lemma 1. For the episode count, in order to apply Theorem 2, first note that given β =
O(d3/2H log(dHK/δ)), ϵcov ≥ 1/K, we have:

∀i : d
γ2i

log
2i

γ2i
= O(dβ2H2 log(2iβH)) = O(dβ2H2 log2(βHK)) = O(d4H4 log4(dHK/δ)).

In addition,

d4H3m3 log7/2
1

δ
= O

(
d4H3 log3K log7/2

1

δ

)
= O

(
d4H3 log7

K

δ

)
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Hence, we have that for every h, with Th denoting the number of episodes run by CovTraj, by
Theorem 2;

Th = O

(
d4H4 log7(dHK/δ)

m∑
i=1

2i

)
= O

(
2m+1d4H4 log7(dHK/δ)

)
= O

(
d4H4

ϵcov
log7(dHK/δ)

)
.

Given that Algorithm 2 executes CovTraj H times, the claim follows. For the claim on the un-
reachability of S \ Zh, fix h ∈ [H], and observe that by Lemma 15, w.p. 1− δ/H , for any π;

Pr
sh∼µπ

h

(sh /∈ Zh) = Pr
sh∼µπ

h

(
∃a s.t. ∥ϕ(sh, a)∥Λ−1

0,h
> γm

)
≤ ϵcov,

where in the inequality we use that Λ̃h,i ⪯ Λ0,h. The proof is complete by a union bound over h. □

C Auxiliary Lemmas

Lemma 16 (Extended value difference; Shani et al., 2020, Lemma 1; Cai et al., 2020). Let M =
(H,S,A,P, ℓ) be any MDP and π, π′ ∈ S → ∆A be any two policies. Then, for any sequence of

functions Q̂π
h : S × A → R, V π

h : S → R, where V̂ π
h (s) :=

〈
π(·|s), Q̂h(s, ·)

〉
, h = 1, . . . ,H , we

have

V̂ π
1 − V π′

1 =

H∑
h=1

Esh,ah∼dπ′
h

[〈
Q̂π

h(sh, ·), πh(·|sh)− π′
h(·|sh)

〉]
+

H∑
h=1

Esh,ah∼dπ′
h

[
Q̂π

h(sh, ah)− ℓh(sh, ah)− PV̂ π
h+1(sh, ah)

]
.

Lemma 17 (Covering number of Euclidean Ball). For any ϵ > 0, the ϵ-covering of the Euclidean
ball in Rd with radius R > 0 is upper bounded by (1 + 2R/ϵ)d.
Lemma 18. Let R, z ≥ 1, and x ≥ 2z log(Rz). Then z log(Rx) ≤ x.
Proof. If x = 2z log(Rz);

z log(Rx) = z logR+ z log(2z log(Rz))

= z logR+ z log(2z) + z log log(Rz)

≤ z logR+ z log z + z log(Rz)

= 2z logR+ 2z log z

= x.

For larger values, the result follows by noting x− z
√
log(Rx) is monotonically increasing in x for

all x ≥ z. □

Lemma 19 (Lemma D.4 in Rosenberg et al., 2020). Let (Fk)
∞
k=1 be a filtration, and let (Xk)

∞
k=1

be a sequence of random variables that are Fk-measurable, and supported on [0, B]. Then with
probability ≥ 1− δ, we have that for any K ≥ 1;

K∑
k=1

E [Xk | Fk−1] ≤ 2

K∑
k=1

Xk + 4B log
2K

δ
.

Lemma 20 (Elliptical potential lemma, Lattimore and Szepesvári, 2020, Lemma 19.4). Let (ϕi)Kk=1 ⊂
Rd with ∥ϕk∥ ≤ 1, and set Λk := λI +

∑k−1
i=1 ϕiϕ

⊤
i where λ ≥ 1. Then,

K∑
k=1

∥ϕi∥2Λ−1
k
≤ 2d log

(
1 +

K

dλ

)
Proof. Note that λ ≥ 1 implies ∥ϕi∥2Λ−1

k
≤ λmax(Λ

−1
k ) ∥ϕi∥2 ≤ λ−1 ≤ 1. Thus

K∑
k=1

∥ϕi∥2Λ−1
k

=

K∑
k=1

min
{
1, ∥ϕi∥2Λ−1

k

}
.

The rest of the proof is identical to Lattimore and Szepesvári [2020], with L = 1 and V0 = λI . □
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Lemma 21 (Cohen et al., 2019, Lemma 27). For any two matrices A,B ∈ Rd×d which satisfy
0 ⪯ A ⪯ B, we have B ⪯ detB

detAA.

The following lemma is a direct consequence of the concentration of Self-Normalized Processes due
to Abbasi-Yadkori et al. [2011].
Lemma 22. Let k ∈ N and let ℓ : Rd → R denote a linear function ℓ(ϕ) = ϕ⊤g⋆, g⋆ ∈ Rd. Assume
{Fi}ki=1 is a filtration, and that ϕi ∈ Fi−1 is an Rd valued stochastic process with ∥ϕi∥ ≤ 1. Further,
assume ℓi = ℓ(ϕi) + ξi where ξi is a random variable such that E[ξi | Fi−1] = 0, and

∣∣ℓi∣∣ ≤ D
almost surely. Then for any δ > 0, w.p. 1− δ, we have∥∥∥∥∥

k∑
τ=1

ϕτ

(
ℓτ − ℓ(ϕτ )

)∥∥∥∥∥
2

Λ−1
k

≤ 2D2d log

(
k + λ

λ

)
,

where Λk = λI +
∑k

i=1 ϕiϕ
⊤
i

The next lemma establishes the uniform concentration of least squares solutions over a class of
functions, and follows from a standard covering argument combined with the concentration of
Self-Normalized Processes Abbasi-Yadkori et al. [2011].
Lemma 23 (OLS uniform concentration; Jin et al., 2020, Lemma D.4). Let {Fτ}∞τ=1 be a filtration.
Let {xτ} be a stochastic process on state space S that is Fτ -measurable, and {ϕτ} be an Rd-
valued stochastic process that is Fτ−1-measurable and satisfies ∥ϕτ∥ ≤ 1. Further, let Λn =
λI +

∑n
τ=1 ϕτϕ

⊤
τ . Then for any δ > 0, with probability at least 1− δ, for all n ≥ 1 and any V ∈ V

so that ∥V ∥∞ ≤ D, we have;∥∥∥∥∥
n∑

τ=1

ϕτ

(
V (xτ )− E [V (xτ )|Fτ−1]

)∥∥∥∥∥
2

Λ−1
n

≤ 4D2

(
d

2
log

(
n+ λ

λ

)
+ log

Nϵ(V)
δ

)
+

8n2ϵ2

λ
,

where Nϵ(V) is the ∥·∥∞ ϵ-covering number of V .

The next lemma is standard, for proof see e.g., Hazan et al. [2016], Lattimore and Szepesvári [2020].
Lemma 24 (Entropy regularized OMD). Let y1, . . . , yT ∈ RA be any sequence of vectors, and
η > 0 such that ηyt(a) ≥ −1 for all t ∈ [T ], a ∈ [A]. Then if {xt} ⊂ ∆A is given by x1(a) = 1/n∀a,
and for t ≥ 1:

xt+1(a) =
xt(a)e

−ηyt(a)∑
a′∈[A] xt(a

′)e−ηyt(a′)
,

then,

max
x∈∆A

{
T∑

t=1

⟨yt, xt − x⟩

}
≤ logA

η
+ η

K∑
k=1

A∑
a=1

xt(a)yt(a)
2.
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