
Shortest Path Networks for Graph Property Prediction

Ralph Abboud, Radoslav Dimitrov, İsmail İlkan Ceylan
Department of Computer Science

University of Oxford, UK
firstname.lastname@cs.ox.ac.uk

Abstract
Most graph neural network models rely on a particular message passing paradigm,
where the idea is to iteratively propagate node representations of a graph to each
node in the direct neighborhood. While very prominent, this paradigm leads to
information propagation bottlenecks, as information is repeatedly compressed
at intermediary node representations, which causes loss of information, making
it practically impossible to gather meaningful signals from distant nodes. To
address this, we propose shortest path message passing neural networks, where
the node representations of a graph are propagated to each node in the shortest
path neighborhoods. In this setting, nodes can directly communicate between each
other even if they are not neighbors, breaking the information bottleneck and hence
leading to more adequately learned representations. Our framework generalizes
message passing neural networks, resulting in a class of more expressive models,
including some recent state-of-the-art models. We verify the capacity of a basic
model of this framework on dedicated synthetic experiments, and on real-world
graph classification and regression benchmarks, and obtain state-of-the-art results.

1 Introduction
Graphs provide a powerful abstraction for relational data in a wide range of domains, ranging from
systems in life-sciences (e.g., physical [1, 2], chemical [3, 4], and biological systems [5, 6]) to social
networks [7], which sparked interest in machine learning over graphs. Graph neural networks (GNNs)
[8, 9] have become prominent models for graph machine learning, owing to their adaptability to
different graphs, and their capacity to explicitly encode desirable relational inductive biases [10],
such as permutation invariance (resp., equivariance) relative to graph nodes.

The vast majority of GNNs [11–13] are instances of message passing neural networks (MPNNs) [14],
since they follow a specific message passing paradigm, where each node iteratively updates its state
by aggregating messages from its direct neighborhood. This mode of operation, however, is known
to lead to information propagation bottlenecks when the learning task requires interactions between
distant nodes of a graph [15]. In order to exchange information between nodes which are k hops
away from each other in a graph, at least k message passing iterations (or, equivalently, k network
layers) are needed. For most graphs, however, the number of nodes in each node’s receptive field
can grow exponentially in k. Eventually, the information from this exponentially-growing receptive
field is compressed into fixed-length node state vectors, which leads to a phenomenon referred to as
over-squashing [15], causing a severe loss of information as k increases.

Several message passing techniques have been proposed to allow more global communication between
nodes. Multi-hop models [16, 17], based on powers of the graph adjacency matrix, and transformer-
based models [18–20] employing full pairwise node attention, look beyond direct neighborhoods, but
both suffer from noise and scalability limitations. More recently, several approaches have refined
message passing using shortest paths between pairs of nodes, such that nodes interact differently based
on the minimum distance between them [21–23]. Models in this category, such as Graphormer [23],
have in fact achieved state-of-the-art results. However, the theoretical study of this message passing
paradigm remains incomplete, with its expressiveness and propagation properties left unknown.

R. Abboud, R. Dimitrov, İ. İ. Ceylan, Shortest Path Networks for Graph Property Prediction. Proceedings of the
First Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December 9–12, 2022.

Shortest Path Networks for Graph Property Prediction

COM
(

, AGG1

()
, AGG2

()
, AGG3

())
Figure 1: SP-MPNNs update the state of the white
node, by aggregating from its different shortest
path neighborhoods, which are color-coded.

In this paper, we introduce shortest path mes-
sage passing neural networks (SP-MPNNs) and
study the properties of the models in this frame-
work. The core idea behind this framework is
to update node states by aggregating messages
from shortest path neighborhoods instead of the
direct neighborhood. Specifically, for each node
u in a graph G, we define its i-hop shortest path
neighborhood as the set of nodes in G reach-
able from u through a shortest path of length
i. Then, the state of u is updated by separately
aggregating messages from each i-hop neigh-
borhood for 1 ≤ i ≤ k, for some choice of k.
This corresponds to a single iteration (i.e., layer)
of SP-MPNNs, and we can use multiple layers
as in MPNNs. For example, consider the graph
shown in Figure 1, where 1-hop, 2-hop and 3-
hop shortest path neighborhoods of the white
node are represented by different colors. SP-MPNNs first separately aggregate representations from
each neighborhood, and then combine all hop-level aggregates with the white node embedding to
yield the new node state.

Our framework builds on a line of work on GNNs using multi-hop aggregation [16, 17, 24, 25],
but distinguishes itself with key choices, as discussed in detail in Section 6. Most importantly, the
choice of aggregating over shortest path neighborhoods ensures distinct neighborhoods, and thus
avoids redundancies, i.e., nodes are not repeated over different hops. SP-MPNNs enable a direct
communication between nodes in different hops, which in turn, enables more holistic node state
updates. Our contributions can be summarized as follows:

− We propose SP-MPNNs, which strictly generalize MPNNs, and enable direct message passing
between nodes and their shortest path neighbors. Similarly to MPNNs, our framework can
be instantiated in many different ways, and encapsulates several recent models, including the
state-of-the-art Graphormer [23].

− We show that SP-MPNNs can discern any pair of graphs which can be discerned either by the
1-WL graph isomorphism test, or by the shortest path graph kernel, making SP-MPNNs strictly
more expressive than MPNNs which are upper bounded by the 1-WL test [12, 26].

− We present a logical characterization of SP-MPNNs, based on the characterization given for
MPNNs [27], and show that SP-MPNNs can capture a larger class of functions than MPNNs.

− In our empirical analysis, we focus on a basic, simple model, called shortest path networks.
We show that shortest path networks alleviate over-squashing, and propose carefully designed
synthetic datasets through which we validate this claim empirically.

− We conduct a comprehensive empirical evaluation using real-world graph classification and
regression benchmarks, and show that shortest path networks achieve state-of-the-art performance.

All proofs for formal statements, as well as further experimental details, can be found in the appendix.

2 Message Passing Neural Networks
Graph neural networks (GNNs) [8, 9] have become very prominent in graph machine learning [11–
13], as they encode desirable relational inductive biases [10]. Message-passing neural networks
(MPNNs) [14] are an effective class of GNNs, where each node u is assigned an initial state vector
h
(0)
u , which is iteratively updated based on the state of its neighbors N (u) and its own state, as:

h(t+1)
u = COM

(
h(t)
u ,AGG(h(t)

u , {{h(t)
v | v ∈ N (u)}})

)
,

where {{·}} denotes a multiset, and COM and AGG are differentiable combination, and aggregation
functions, respectively. An MPNN is homogeneous if each of its layers uses the same COM and
AGG functions, and heterogeneous, otherwise.

2

Shortest Path Networks for Graph Property Prediction

The choice for the aggregate and combine functions varies across models, e.g., graph convolu-
tional networks (GCNs) [11], graph isomorphism networks (GINs) [12], and graph attention net-
works (GATs) [13]. Following message passing, the final node embeddings are pooled to form a
graph embedding vector to predict properties of entire graphs. The pooling often takes the form of
simple averaging, summing or element-wise maximum.

G1 G2

Figure 2: The graphs G1 and G2

are indistinguishable by 1-WL.

MPNNs naturally capture the input graph structure and are com-
putationally efficient, but they suffer from several well-known
limitations. MPNNs are limited in expressive power, at most
matching the power of the 1-dimensional Weisfeiler Leman
graph isomorphism test (1-WL) [12, 26]: graphs cannot be dis-
tinguished by MPNNs if 1-WL does not distinguish them, e.g.,
the pair of graphs in Figure 2 are indistinguishable by MPNNs.
Hence, several alternatives, i.e., approaches based on unique
node identifiers [28], random node features [29, 30], or higher-
order GNN models [26, 31–33], have been proposed to improve
on this bound. Two other limitations, known as over-smoothing
[34, 35] and over-squashing [15], are linked to using more mes-
sage passing layers. Briefly, using more message passing layers leads to increasingly similar node
representations, hence to over-smoothing. Concurrently, the receptive field in MPNNs grows ex-
ponentially with the number of message passing iterations, but the information from this receptive
field is compressed into fixed-length node state vectors. This leads to substantial loss of information,
referred to as over-squashing.

3 Shortest Path Message Passing Neural Networks
We consider simple, undirected, connected1 graphs G = (V,E) and write ρ(u, v) to denote the length
of the shortest path between nodes u, v ∈ V . The i-hop shortest path neighborhood of u is defined
as Ni(u) = {v ∈ V | ρ(u, v) = i}, i.e., the set of nodes reachable from u through a shortest path of
length i. In SP-MPNNs, each node u ∈ V is assigned an initial state vector h(0)

u , which is iteratively
updated based on the node states in the shortest path neighborhoods N1(u), . . . ,Nk(u) for some
choice of k ≥ 1, and its own state as:

h(t+1)
u = COM

(
h(t)
u ,AGGu,1, . . . ,AGGu,k

)
,

where COM and AGGu,i = AGGi(h
(t)
u , {{h(t)

v | v ∈ Ni(u)}}) are differentiable combination, and
aggregation functions, respectively. We write SP-MPNN (k = j) to denote an SP-MPNN model
using neighborhoods at distance up to k = j. Importantly, N (u) = N1(u) for simple graphs, and so
SP-MPNN (k = 1) is a standard MPNN.

Similarly to MPNNs, different choices for AGG and COM lead to different SP-MPNN models.
Moreover, graph pooling approaches [36], and related notions directly translate to SP-MPNNs, and
so do, e.g., sub-graph sampling approaches [37, 38] for scaling to large graphs. Similarly to MPNNs,
we can incorporate a global readout component to define SP-MPNNs with global readout:

h(t+1)
u = COM

(
h(t)
u ,AGGu,1, . . . ,AGGu,k,READ(h(t)

u , {{h(t)
v | v ∈ G}})

)
,

where READ is a permutation-invariant readout function.

To make our study concrete, we define a basic, simple, instance of SP-MPNNs, called shortest path
networks (SPNs) as:

h(t+1)
u = MLP

(
(1 + ϵ) h(t)

u +

k∑
i=1

αi

∑
v∈Ni(u)

h(t)
v

)
,

where ϵ ∈ R, and αi ∈ [0, 1] are learnable weights, satisfying α1 + . . . + αk = 12. That is, SPNs
use summation to aggregate within hops, weighted summation for aggregation across all k hops, and
finally, an MLP as a combine function.

1We assume connected graphs for ease of presentation: All of our results can be extended to disconnected
graphs, see the appendix for further details.

2When the weights are unconstrained, the model performs slightly worse and overfits. Hence, this restriction
not only provides a means to interpret neighborhood importance, but also acts as an effective regularizer.

3

Shortest Path Networks for Graph Property Prediction

Intuitively, SPNs can directly aggregate from different neighborhoods, by weighing their contributions.
It is easy to see that SPNs with k = 1 are identical to GIN, but observe that SPNs with arbitrary k are
also identical to GIN as long as the weight of the direct neighborhood is learned to be α1 = 1. We
use SPNs throughout this paper as an intentionally simple baseline, as we seek to purely evaluate
the impact of our extended message passing paradigm with minimal reliance on tangential model
choices, e.g., including attention, residual connections, recurrent units, etc.

The SP-MPNN framework offers a unifying perspective for several recent models in graph repre-
sentation learning using shortest path neighborhoods. In particular, SP-MPNN with global readout
encapsulates models such as Graphormer3[23], the winner of the 2021 PCQM4M-LSC competition
in the KDD Cup. Indeed, Graphormer is an instance of SP-MPNNs with global readout over simple,
undirected, connected graphs (without edge types), as shown in the following proposition:
Proposition 1. A Graphormer with a maximum shortest path length of M is an instance of SP-MPNN
(k = M − 1) with global readout.

4 Properties of Shortest Path Massing Passing Neural Networks

In this section, we study the properties of SP-MPNNs, and specifically analyze their information
propagation properties as well as their expressive power.

4.1 Information Propagation: Alleviating Over-squashing

Consider a graph G, its adjacency matrix representation A, and its diagonal degree matrix D,
indicating the number of edges incident to every node in G. We also consider variations of the degree
matrix, e.g., D̃ = D+ I, where I is the identity matrix. In our analysis, we focus on the normalized
adjacency matrix Â = D̃−0.5(A+ I)D̃−0.5 to align with recent work analyzing over-squashing [39].

To study over-squashing, Topping et al. [39] consider the Jacobian of node representations relative to
initial node features, i.e., the ratio ∂h(r)

u /∂h(0)
v , where u, v ∈ V are separated by a distance r ∈ N+.

This Jacobian is highly relevant to over-squashing, as it quantifies the effect of initial node features
for distant nodes (v), on target node (u) representations, when sufficiently many message passing
iterations (r) occur. In particular, a low Jacobian value indicates that h(0)

v minimally affects h(r)
u .

To standardize this Jacobian, Topping et al. [39] assume the normalized adjacency matrix for AGG,
i.e., neighbor messages are weighted by their coefficients in Â and summed. This is a useful
assumption, as Â is normalized, thus preventing artificially high gradients. Furthermore, a smoothness
assumption is made on the gradient of COM, as well as that of individual MPNN messages, i.e.,
the terms summed in aggregation. More specifically, these gradients are bounded by quantities α
and β, respectively. Given these assumptions, it has been shown that |∂h(r)

u /∂h(0)
v | ≤ (αβ)rÂr

uv,

upper-bounding the absolute value of the Jacobian [39]. Observe that the term Âr
uv typically decays

exponentially with r in MPNNs, as node degrees are typically much larger than 1, imposing decay
due to D̃. Moreover, this term is zero before iteration r due to under-reaching.

Analogously, we also consider normalized adjacency matrices within SP-MPNNs. That is, we use the
matrix Âi = D̃−0.5

i (Ai + I)D̃−0.5
i within each AGGi, where Ai is the i-hop 0/1 adjacency matrix,

which verifies (Ai)uv = 1 ⇔ ρ(u, v) = i, and D̃i is the corresponding degree matrix. By design,
SP-MPNNs span k hops per iteration, and thus let information from v reach u in q = ⌈r/k⌉ iterations.
For simplicity, let r be an exact multiple of k. In this scenario, ∂h(q)

u /∂h(0)
v is non-zero and depends

on (Âk)
q
uv (this holds by simply considering k-hop aggregation as a standard MPNN). Therefore,

for larger k, q ≪ r, which reduces the adjacency exponent substantially, thus improving gradient
flow. In fact, when r ≤ k, the Jacobian ∂h(1)

u /∂h(0)
v is only linearly dependent on (Âr)uv. Finally,

the hop-level neighbor separation of neighbors within SP-MPNN further improves the Jacobian, as
node degrees are partitioned across hops. More specifically, the set of all connected nodes to u is
partitioned based on distance, leading to smaller degree matrices at every hop, and thus to less severe
normalization, and better gradient flow, compared to, e.g, using a fully connected layer across G [15].

3We follow the authors’ terminology, and refer to the specific model defined using shortest path biases and
degree positional embeddings as “Graphormer”. This Graphormer model is introduced in detail in the appendix.

4

Shortest Path Networks for Graph Property Prediction

4.2 Expressive Power of Shortest Path Message Passing Networks

Shortest path computations within SP-MPNNs introduce a direct correspondence between the model
and the shortest path (SP) kernel [40], allowing the model to distinguish any pair of graphs SP
distinguishes. At the same time, SP-MPNNs contain MPNNs which can match the expressive power
of 1-WL when supplemented with injective aggregate and combine functions [12]. Building on these
observations, we show that SP-MPNNs can match the expressive power of both kernels:
Theorem 1. Let G1, G2 be two non-isomorphic graphs. There exists a SP-MPNN M : G → R, such
that M(G1) ̸= M(G2) if either 1-WL distinguishes G1 and G2, or SP distinguishes G1 and G2.

Fundamentally, the SP and 1-WL kernels distinguish substantially different sets of graphs, and thus
the theorem implies that SP-MPNNs can represent an interesting and wide variety of graphs. Indeed,
SP exploits distance information between all pairs of graph nodes, and thus it (and SP-MPNN)
can determine, e.g., graph connectedness, by considering whether a shortest path exists between
all pairs of nodes. In contrast, 1-WL is based on iterative local hash operations, and cannot detect
connectedness. To illustrate this, observe that 1-WL fails to distinguish the graphs G1 and G2 shown
in Figure 2, whereas SP can distinguish these graphs. Since SP distinguishes a different set of
graphs than 1-WL, SP-MPNNs strictly improve on the expressive power of MPNNs. For example,
SP-MPNNs (k ≥ 2) can already distinguish the graphs G1 and G2.

I1

I2

Figure 3: A pair of connected graphs
I1, I2 which can be distinguished by
SP, but not by 1-WL.

While checking connectedness is a somewhat obvious aspect
of the power of SP, the difference between the power of the
kernels SP and 1-WL goes beyond this. In fact, SP offers an
expressiveness gain over 1-WL even on connected graphs.
To demonstrate this, consider the simple pair of connected
graphs I1, I2, shown in Figure 3. This pair of graphs is not
distinguishable by 1-WL, but have different shortest path
matrices. Indeed, the Wiener Indices of both graphs, i.e.,
the sum of the shortest path lengths, are distinct: I1 has
a Wiener Index of 50, whereas I2 has a Wiener Index of
56. Moreover, there exist shortest paths of length 4 in I2
(crossing the graph from a corner to the opposite corner),
whereas no such paths exist in I1. Hence, the SP kernel can
distinguish I1 and I2.

SP exploits additional structural information, which allows it to discriminate a distinct set of
graphs than 1-WL. Importantly, however, the SP kernel alone is agnostic to node features, and
thus is unable to distinguish structurally isomorphic graphs with distinct node features. In con-
trast, 1-WL exploits node features, and thus can easily distinguish the aforementioned graphs.

H1 H2

Figure 4: The graphs H1 and H2 are indis-
tinguishable by neither 1-WL nor SP [41].

Therefore, combining the two kernels in SP-MPNN
unlocks the strengths of both kernels, namely the abil-
ity of SP to capture node distances, and the feature
processing of 1-WL along with its ability to capture
local structures. Nonetheless, the power provided by
1-WL and SP also has limitations, as neither kernel
can distinguish the graphs H1 and H2 shown in Fig-
ure 4. It is easy to see that SP-MPNNs cannot discern
H1 and H2 either.

Unsurprisingly, the choice of k affects expressive power. On one hand, k = n− 1 allows SP-MPNNs
to replicate SP, whereas setting k = 1 reduces them to MPNNs. Also note that the expressive power
of SP-MPNNs cannot be completely characterized within the WL hierarchy since, e.g., H1 and H2,
which cannot be distinguished by SP-MPNNs, can be distinguished by folklore 2-WL. In practice,
the optimal k relates to the problem radius of the prediction task [15]: A higher k value (k > 1) is not
helpful for predicting a local graph property, e.g., neighbor counting, whereas tasks with long-range
dependencies necessitate and benefit from a higher k.

4.3 Logical Characterization of Shortest Path Message Passing Networks

Beyond distinguishing graphs, we can study the expressive power of SP-MPNNs in terms of the
class of functions that they can capture, following the logical characterization given by Barceló
et al. [27]. This characterization is given for node classification and establishes a correspondence

5

Shortest Path Networks for Graph Property Prediction

between first-order formulas and MPNN classifiers. Briefly, a first-order formula ϕ(x) with one free
variable x can be viewed as a logical node classifier, by interpreting the free variable x as a node
u from an input graph G, and verifying whether the property ϕ(u) holds in G, i.e., G |= ϕ(u). For
instance, the formula ϕ(x) = ∃yE(x, y) ∧Red(y) holds when x is interpreted as a node u in G, if
and only if u has a red neighbor in G. An MPNN M captures a logical node classifier ϕ(x) if M
admits a parametrization such that for all graphs G and nodes u, M maps (G, u) to true if and only
if G |= ϕ(u). Barceló et al. [27] show in their Theorem 5.1 that any C2 classifier can be captured
by an MPNN with a global readout. C2 is the two-variable fragment of the logic C, which extends
first-order logic with counting quantifiers, e.g., ∃≥m x ϕ(x) for m ∈ N.

It would be interesting to analogously characterize SP-MPNNs with global readout. To this end, let us
extend the relational vocabulary with a distinct set of binary shortest path predicates Ei, 2 ≤ i ≤ k,
such that Ei(u, v) evaluates to true in G if and only if there is a shortest path of length i between u and
v in G. Let us further denote by C2

k the extension of C2 with such shortest path predicates. Observe
that C2 ⊊ C2

k: given the graphs G1, G2 from Figure 2, the C2
2 formula ϕ(x) = ∃≥2y E2(x, y)

evaluates to false on all G1 nodes, and true on all G2 nodes. By contrast, no C2 formula can produce
different outputs over the nodes of G1, G2, due to a correspondence between 1-WL and C2 [42].

Through a simple adaptation of Theorem 5.1 of Barceló et al. [27], we obtain the following theorem:
Theorem 2. Given a k ∈ N, each C2

k classifier can be captured by a SP-MPNN with global readout.

4.4 Time and Space Complexity

In SP-MPNNs, message passing requires the shortest path neighborhoods up to the threshold of
k hops to be computed in advance. In the worst case, this computation reduces to computing the
all-pairs unweighted shortest paths over the input graph, which can be done in O(|V ||E|) time using
breadth-first search (BFS). Importantly, this computation is only required once, and the determined
neighborhoods can subsequently be re-used at no additional cost. Hence, this overhead can be
considered as a pre-computation which does not affect the online running time of the model.

Given all-pairs unweighted shortest paths, SP-MPNNs perform aggregations over a worst-case
O(|V |2) elements as it considers all pairs of nodes, analogously to MPNNs over a fully connected
graph. In the average case, the running time of SP-MPNNs depends on the size of nodes’ k-hop
neighborhoods, which are typically larger than their direct neighborhoods. However, this increase
in average aggregation size is alleviated in practice as SP-MPNNs can aggregate across all k hop
neighborhoods in parallel. Therefore, SP-MPNN models typically run efficiently and can feasibly
be applied to common graph classification and regression benchmarks, despite considering a richer
neighborhood than standard MPNNs.

As with MPNNs , SP-MPNNs only require O(|V |) node representations to be stored and updated at
every iteration. The space complexity in terms of model parametrization then depends on choices
for AGGi and COM. In the worst case, with k distinct parametrized AGGi functions, e.g., k distinct
neural networks, SP-MPNNs store O(k) parameter sets. By contrast, using a uniform aggregation
across hops yields an analogous space complexity as MPNNs.

5 Empirical Evaluation
In this section, we evaluate (i) SPNs and a small Graphormer model on dedicated synthetic experi-
ments assessing their information flow contrasting with classical MPNNs; (ii) SPNs on real-world
graph classification [43, 44] tasks and (iii) a basic relational variant of SPNs, called R-SPN, on
regression benchmarks [45, 46]. In all experiments, SP-MPNN models achieve state-of-the-art results.
Further details and additional experiments on MoleculeNet [47, 48] can also be found in the appendix.
Moreover, our code can be found at http://www.github.com/radoslav11/SP-MPNN.

5.1 Experiment: Do all red nodes have at most two blue nodes at ≤ h hops distance?

In this experiment, we evaluate the ability of SP-MPNNs to handle long-range dependencies, and
compare against standard MPNNs. Specifically, we consider classification based on counting within
h-hop neighborhoods: given a graph with node colors including, e.g., red and blue, do all red nodes
have at most 2 blue nodes within their h-hop neighborhood?

6

http://www.github.com/radoslav11/SP-MPNN

Shortest Path Networks for Graph Property Prediction

Table 1: Results (Accuracy) for SPNs with k = {1, 5} on the h-Proximity benchmarks.

Model 1-Proximity 3-Proximity 5-Proximity 8-Proximity 10-Proximity

GCN 65.0±3.5 50.0±0.0 50.0±0.0 50.1±0.0 49.9±0.0

GAT 91.7±7.7 50.4±1.0 49.9±0.0 50.0±0.0 50.0±0.0

SPN (k = 1) 99.4±0.6 50.5±0.7 50.2±1.0 50.0±0.9 49.8±0.8

SPN (k = 5, L = 2) 96.4±0.8 94.7±1.6 95.8±0.9 96.2±0.6 96.2±0.6

SPN (k = 5, L = 5) 96.9±0.6 95.5±1.6 96.8±0.7 96.8±0.6 96.8±0.6

Graphormer 94.1±2.3 94.7±2.7 95.1±1.8 97.3±1.4 96.8±2.1

This question presents multiple challenges for MPNNs. First, MPNNs must learn to identify the
two relevant colors in the input graph. Second, they must count color statistics in their long-range
neighborhoods. The latter is especially difficult, as MPNNs must keep track of all their long-range
neighbors despite the redundancies stemming from message passing. This setup hence examines
whether SP-MPNNs enable better information flow than MPNNs, and alleviate over-squashing.

(a) (b)

Figure 5: Graph (a) has one red node with
three blue neighbors (classified as false).
Graph (b) has one red node with only two
blue neighbors (classified as true).

Data generation. We propose the h-Proximity datasets
to evaluate long-range information flow in GNNs. In
h-Proximity, we use a graph structure based on node
levels, where (i) consecutive level nodes are pairwise
fully connected, (ii) nodes within a level are pairwise
disconnected. As a result, these graphs are fully speci-
fied by their level count l and the level width w, i.e., the
number of nodes per level. We show a graph pair with
l = 3, w = 3 in Figure 5.

Using this structure, we generate pairs of graphs, clas-
sified as true and false respectively, differing only by
one edge. More specifically, we generate h-Proximity
datasets consisting each of 4500 pairs of graphs, for
h = {1, 3, 5, 8, 10}. Within these datasets, we design
every graph pair to be at the decision boundary for our
classification task: the positive graph always has all its red nodes connected exactly to 2 blue nodes
in its h-hop neighborhood, whereas the negative graph violates the rule by introducing one additional
edge to the positive graph. We describe our data generation procedure in detail in Appendix D.

Experimental setup. We use two representative SP-MPNN models: SPN and a small Graphormer
model. Following Errica et al. [43], we use SPN with batch normalization [49] and a ReLU non-
linearity following every message passing iteration. We evaluate SPN (k = {1, 5}) and Graphormer
(max distance 5) and compare with GCN [11] and GAT [13] on h-Proximity (h = {1, 3, 5, 8, 10})
using the risk assessment protocol by Errica et al. [43]: we fix 10 random splits per dataset, run
training 3 times per split, and report the average of the best results across the 10 splits. For GCN,
GAT and SPN (k = 1), we experiment with T = {1, 3, 5, 8, 10} message passing layers such that
T ≥ h (so as to eliminate any potential under-reaching), whereas we use T = {2, . . . , 5} for SPN
(k = 5) and T = {1, . . . , 5} for Graphormer. Across all our models, we adopt the same pooling
mechanism from Errica et al. [43], based on layer output addition: for T message passing iterations,
the pooled representation is given by

∑T
i=1

∑
u∈V Wih

(i−1)
u , where Wi are learnable layer-specific

linear maps. Furthermore, we represent node colors with learnable embeddings. Finally, we use
analogous hyperparameter tuning grids across all models for fairness, and set an identical embedding
dimensionality of 64. Further details on hyper-parameter setup can be found in Appendix E.

Results. Experimental results are shown in Table 1. MPNNs all exceed 50% on 1-Proximity, but
fail on higher h values, whereas SPN (k = 5) is strong across all h-Prox datasets, with an average
accuracy of 96.1% with two layers, and 96.6% with 5 layers. Hence, SPN successfully detects
higher-hop neighbors, remains strong even when h > k, and improves with more layers. Graphormer
also improves as h increases, but is more unstable, as evidenced by its higher standard deviations.
Both these findings show that SP-MPNN models relatively struggle to identify the local pattern in
1-Prox given their generality, but ultimately are very successful on higher h-Prox datasets. Conversely,
standard MPNNs only perform well on 1-Proximity, where blue nodes are directly accessible, and

7

Shortest Path Networks for Graph Property Prediction

Table 2: Results (Accuracy) for SPN (k = {1, 5, 10}) and competing models on chemical graph
classification benchmarks. Other model results reported from Errica et al. [43].

Dataset D&D NCI1 PROTEINS ENZYMES

Baseline 78.4±4.5 69.8±2.2 75.8±3.7 65.2±6.4

DGCNN [54] 76.6±4.3 76.4±1.7 72.9±3.5 38.9±5.7

DiffPool [55] 75.0±3.5 76.9±1.9 73.7±3.5 59.5±5.6

ECC [56] 72.6±4.1 76.2±1.4 72.3±3.4 29.5±8.2

GIN [12] 75.3±2.9 80.0±1.4 73.3±4.0 59.6±4.5

GraphSAGE [7] 72.9±2.0 76.0±1.8 73.0±4.5 58.2±6.0

SPN (k = 1) 72.7±2.6 80.0±1.5 71.0±3.7 67.5±5.5

SPN (k = 5) 77.4±3.8 78.6±1.7 74.2±2.7 69.4±6.2

SPN (k = 10) 77.8±4.0 78.2±1.2 74.5±3.2 67.9±6.7

struggle beyond this. Hence, message passing does not reliably relay long-range information due to
over-squashing and the high connectivity of h-Proximity graphs.

Interestingly, SPN (k = 1), or equivalently GIN, solves 1-Prox almost perfectly, whereas GAT
performs slightly worse (92%), and GCN struggles (65%). This substantial variability stems from
model aggregation choices: GIN uses sum aggregation and an MLP, and this offers maximal injective
power. However, GAT is less injective, and effectively acts as a maximum function, which drops
node cardinality information. Finally, GCN normalizes all messages based on node degrees, and thus
effectively averages incoming signal and discards cardinality information.

Crucially, the basic SPN model successfully solves h-Prox, and is also more stable and efficient
than Graphormer, since it only considers shortest path neighborhoods up to k, whereas Graphormer
considers all-pair message passing and uses attention. Hence, SPN runs faster and is less suspectible
to noise, while also being a representative SP-MPNN model, not relying on sophisticated components.
For feasibility, we will solely focus on SPNs throughout the remainder of this experimental study.

5.2 Graph Classification

In this experiment, we evaluate SPNs on chemical graph classification benchmarks D&D [50],
PROTEINS [51], NCI1 [52], and ENZYMES [53].

Experimental setup. We evaluate SPN (k = {1, 5, 10}) on all four chemical datasets. We also
follow the risk assessment protocol [43], and use its provided data splits. When training SPN models,
we follow the same hyperparameter tuning grid as GIN [43], but additionally include a learning rate
of 10−4, as original learning rate choices were artificially limiting GIN on ENZYMES.

Results. The SPN results on the chemical datasets are shown in Table 2. Here, using k = 5 and
k = 10 yields significant improvements on D&D and PROTEINS. Furthermore, SPN (k = {5, 10})
performs strongly on ENZYMES, surpassing all reported results, and is competitive on NCI1. These
results are very encouraging, and reflect the robustness of the model. Indeed, NCI1 and ENZYMES
have limited reliance on higher-hop information, whereas D&D and PROTEINS rely heavily on this
information, as evidenced by earlier WL and SP results [57, 58]. This aligns well with our findings,
and shows that SPNs effectively use shortest paths and perform strongly where the SP kernel is strong.
Conversely, on NCI1 and ENZYMES, where 1-WL is strong, these models also maintain strong
performance. Hence, SPNs robustly combine the strengths of both SP and 1-WL, even when higher
hop information is noisy, e.g., for larger values of k.

5.3 Graph Regression

Model setup. We define a multi-relational version of SPNs, namely R-SPN as follows:

h(t+1)
u = (1 + ϵ)MLPs(h

(t)
u) + α1

R∑
j=1

∑
rj(u,v)

MLPj(h
(t)
v) +

k∑
i=2

αi

∑
v∈Ni(x)

MLPh(h
(t)
v),

where R is a set of relations r1, ..., rR, with corresponding relational edges ri(x, y). Essentially,
R-SPN introduces multi-layer perceptrons MLP1, ...,MLPR to transform the input with respect to

8

Shortest Path Networks for Graph Property Prediction

Table 3: Results (MAE) for R-SPN (k = {1, 5, 10}, T = 8) and competing models on QM9. Other
model results, along with their fully adjacent (FA) extensions are as previously reported [15]. Average
relative improvement by R-SPN versus the best GNN and FA result are shown in the last two rows.

Property R-GIN R-GAT GGNN R-SPN

base +FA base +FA base +FA k = 1 k = 5 k = 10

mu 2.64±0.11 2.54±0.09 2.68±0.11 2.73±0.07 3.85±0.16 3.53±0.13 3.59±0.01 2.25±0.17 2.32±0.20

alpha 4.67±0.52 2.28±0.04 4.65±0.44 2.32±0.16 5.22±0.86 2.72±0.12 6.74±0.15 1.86±0.06 1.82±0.02

HOMO 1.42±0.01 1.26±0.02 1.48±0.03 1.43±0.02 1.67±0.07 1.45±0.04 2.00±0.01 1.27±0.03 1.32±0.07

LUMO 1.50±0.09 1.34±0.04 1.53±0.07 1.41±0.03 1.74±0.06 1.63±0.06 2.11±0.02 1.23±0.03 1.26±0.06

gap 2.27±0.09 1.96±0.04 2.31±0.06 2.08±0.05 2.60±0.06 2.30±0.05 2.95±0.02 1.89±0.06 1.94±0.08

R2 15.63±1.40 12.61±0.37 52.39±42.515.76±1.17 35.94±35.714.33±0.47 22.41±0.64 10.80±0.60 10.82±1.30

ZPVE 12.93±1.81 5.03±0.36 14.87±2.88 5.98±0.43 17.84±3.61 5.24±0.30 29.16±1.14 3.34±0.16 2.73±0.05

U0 5.88±1.01 2.21±0.12 7.61±0.46 2.19±0.25 8.65±2.46 3.35±1.68 13.39±0.37 1.15±0.05 0.96±0.02

U 18.71±23.36 2.32±0.18 6.86±0.53 2.11±0.10 9.24±2.26 2.49±0.34 13.61±0.73 1.32±0.04 0.96±0.04

H 5.62±0.81 2.26±0.19 7.64±0.92 2.27±0.29 9.35±0.96 2.31±0.15 13.65±0.63 1.20±0.05 1.02±0.06

G 5.38±0.75 2.04±0.24 6.54±0.36 2.07±0.07 7.14±1.15 2.17±0.29 12.22±0.71 1.06±0.07 0.94±0.03

Cv 3.53±0.37 1.86±0.03 4.11±0.27 2.03±0.14 8.86±9.07 2.25±0.20 5.45±0.24 1.42±0.05 1.31±0.03

Omega 1.05±0.11 0.80±0.04 1.48±0.87 0.73±0.04 1.57±0.53 0.87±0.09 2.90±0.06 0.55±0.01 0.55±0.02

vs best GNNs: +86.3% −50.2% −51.1%
vs best FA models: +270% −24.4% −28.1%

each relation, as well as a self-loop relation rs, encoded by MLPs, to process the updating node. For
higher hop neighbors, R-SPN introduces a relation type rh, encoded by MLPh. R-SPN emulates the
R-GIN model [45] at the first hop level, and treats higher hops as an additional edge type.

Experimental setup. We evaluate R-SPN (k = {1, 5, 10}) on the 13 properties of the QM9 dataset
[46] following the splits and protocol (5 reruns per split) of GNN-FiLM [45]. We train using mean
squared error (MSE) and report mean absolute error (MAE) on the test set. We compare R-SPN
against GNN-FiLM models, as well as their fully adjacent (FA) layer variants [15]. For fairness,
we only report results with T = 8 layers, a learning rate of 0.001, a batch size of 128 and 128-
dimensional embeddings. However, we conduct a depth analysis including results with T = {4, 6} to
study the robustness of R-SPN in the appendix. Finally, due to the reported and observed instability
of the original R-GIN setup (layer norm, residual connections)[45], we use the simpler pooling and
update setup from SPNs with our R-SPNs.

Results. The results of R-SPN on all 13 properties of QM9 are shown in Table 3. In these results,
R-SPN (k = 1) performs worse than the reported R-GIN, and this is expected given its relative
simplicity, e.g., no residual connections, no layer norm. However, R-SPNs with k = {5, 10} perform
very strongly, comfortably surpassing the best MPNNs and their FA counterparts. In fact, R-SPN
(k = 10) reduces the average MAE across all properties by over 28%. Interestingly, improvement
varies across QM9 properties. On the first five properties, R-SPN (k = 10) yields an average relative
error reduction of 8.5%, whereas this reduction exceeds 50% for U0, U, H, and G. This indicates that
properties variably rely on higher-hop information, with the latter properties benefiting far more from
higher k. All in all, these results highlight that R-SPNs not only effectively alleviate over-squashing,
but also provide a strong inductive bias to improve model performance.

2 4 6 8 10
0

20

40

(a) QM9 Diameter distribution

Pe
rc

en
ta

ge
(%

)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

(b) U0 average weights (αi)

W
ei

gh
t

Layer 1
Layer 8

Figure 6: Histograms for R-SPN model analysis.

Analyzing the model. To better under-
stand model behavior, we inspect the av-
erage learned hop weights (across 5 train-
ing runs) within the first and last layers of
R-SPN (k = 10), T = 8 on the U0 prop-
erty. We show the diameter distribution of
QM9 graphs in Figure 6(a), and the learned
weights in Figure 6(b).

Despite their small size (∼18 nodes on av-
erage), most QM9 graphs have a diameter
of 6 or larger, which confirms the need for
long-range information flow. This is further
evidenced by the weights α1, . . . , α10, which are non-uniform and significant for higher hops, es-

9

Shortest Path Networks for Graph Property Prediction

pecially within the first layer. Hence, R-SPN learns non-trivial hop aggregations. Interestingly, the
weights at layers 1 and 8 are very different, which indicates that R-SPN learns sophisticated node rep-
resentations, based on distinct layer-wise weighted hop aggregations. Therefore, the learned weights
on U0 highlight non-trivial processing of hop neighborhoods within QM9, diverging significantly
from FA layers and better exploiting higher hop information.

6 Related Work
The over-squashing phenomenon was first identified by Alon and Yahav [15]: applying message
passing on direct node neighborhoods potentially leads to an exponentially growing amount of
information being “squashed” into constant-sized embedding vectors, as the number of iterations
increases. One approach to alleviate over-squashing is to “rewire” graphs, so as to connect relevant
nodes (in a new graph) and shorten propagation distances to minimize bottlenecks. For instance,
adding a fully adjacent final layer [45] naïvely connecting all node pairs yields substantial error
reductions on QM9 [15]. DIGL [59] performs rewiring based on random walks, so as to establish
connections between nodes which have small diffusion distance [60]. More recently, the Stochastic
Discrete Ricci Flow [39] algorithm considers Ricci curvature over the input graph, where negative
curvature indicates an information bottleneck, and introduces edges at negatively curved locations.

Instead of rewiring the input graphs, our study suggests better information flow for models which
exploit multi-hop information through a dedicated, more general, message passing framework.
We therefore build on a rich line of work that exploits higher-hop information within MPNNs
[16, 17, 24, 25, 61–63]. Closely related to SP-MPNNs, the models N-GCN [16] and MixHop [17]
use normalized powers of the graph adjacency matrix to access nodes up to k hops away. Differently,
however, these hops are not partitioned based on shortest paths as in SP-MPNNs, but rather are
computed using powers of the adjacency matrix. Hence, this approach does not shrink the exponential
receptive field of MPNNs, and in fact amplifies the signals coming from highly connected and nearer
nodes, due to potentially redundant messages. To make this concrete, consider the graph from
Figure 1: using k = 3 with adjacency matrix powers implies that each orange node has one third of
the weight of a green node when aggregating at the white node. Intuitively, this is because the same
nodes are repeatedly seen at different hops, which is not the case with shortest-path neighborhoods.

Our work closely resembles approaches which aggregate nodes based on shortest path distances.
For instance, k-hop GNNs [25] compute the k-hop shortest path sub-graph around each node, and
propagate and combine messages inward from hop k nodes to the updating node. However, this
message passing still suffers from over-squashing, as, e.g., the signal from orange nodes in Figure 1
is squashed across k iterations, mixing with other messages, before reaching the white node. In
contrast, SP-MPNNs enable distant neighbors to communicate directly with the updating node, which
alleviates over-squashing significantly. Graphormer [23] builds on transformer approaches over
graphs [18–20] and augments their all-pairs attention mechanism with shortest path distance-based
bias. Graphormer is an instance of SP-MPNNs, and effectively exploits graph structure, but its
attention still imposes a quadratic overhead, limiting its feasibility in practice. Similarly to MPNNs,
our framework acts as a unifying framework for models based on shortest path message passing, and
allows to precisely characterize their expressiveness and propagation properties (e.g., the theorems in
Section 3 immediately apply to Graphormers).

Other approaches are proposed in the literature to exploit distant nodes in the graph, such as path-
based convolution models [64, 65] and random walk approaches. Among the latter, DeepWalk
[62] uses sampled random walks to learn node representations that maximize walk co-occurrence
probabilities across node pairs. Similarly, random walk GNNs [61] compare input graphs with
learnable “hidden” graphs using random walk-based similarity [63]. Finally, NGNNs [24], use a
nested message passing structure, where representations are first learned by message passing within a
k-hop rooted sub-graph, and then used for standard graph-level message passing.

7 Summary and Outlook
We presented the SP-MPNN framework, which enables direct message passing between nodes and
their distant hop neighborhoods based on shortest paths, and showed that it improves on MPNN
representation power and alleviates over-squashing. We then empirically validated this framework on
the synthetic Proximity datasets and on real-world graph classification and regression benchmarks.

10

Shortest Path Networks for Graph Property Prediction

Acknowledgments
The authors would like to acknowledge the use of the University of Oxford Advanced Research
Computing (ARC) facility in carrying out this work. (http://dx.doi.org/10.5281/zenodo.22558)

References
[1] Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle

physics. Machine Learning: Science and Technology, 2(2):021001, 2021. 1

[2] Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray
Kavukcuoglu. Interaction networks for learning about objects, relations and physics. In
Proceedings of the Twenty-Ninth Annual Conference on Advances in Neural Information Pro-
cessing Systems, NIPS, pages 4502–4510, 2016. 1

[3] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs
for learning molecular fingerprints. In Proceedings of the Twenty-Eighth Annual Conference on
Advances in Neural Information Processing Systems, NIPS, pages 2224–2232, 2015. 1

[4] Steven M. Kearnes, Kevin McCloskey, Marc Berndl, Vijay S. Pande, and Patrick Riley. Molecu-
lar graph convolutions: moving beyond fingerprints. Journal of Computer Aided Molecular
Design, 30(8):595–608, 2016. 1

[5] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018. 1

[6] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface prediction using
graph convolutional networks. In Proceedings of the Thirtieth Annual Conference on Advances
in Neural Information Processing Systems, NIPS, pages 6530–6539, 2017. 1

[7] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the Thirtieth Annual Conference on Advances in Neural Information
Processing Systems, NIPS, pages 1024–1034, 2017. 1, 8

[8] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.
1, 2

[9] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph
domains. In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks,
IJCNN, volume 2, pages 729–734, 2005. 1, 2

[10] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flo-
res Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl,
Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-
canu. Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261,
2018. 1, 2

[11] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In Proceedings of the Fifth International Conference on Learning Representations,
ICLR, 2017. 1, 2, 3, 7

[12] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the Seventh Annual Conference on Learning Representations,
ICLR, 2019. 2, 3, 5, 8, 17

[13] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Proceedings of the Sixth International Conference on
Learning Representations, ICLR, 2018. 1, 2, 3, 7

[14] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the Thirty-Fourth International
Conference on Machine Learning, ICML, pages 1263–1272, 2017. 1, 2

11

Shortest Path Networks for Graph Property Prediction

[15] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In Proceedings of the Ninth International Conference on Learning Representations,
ICLR, 2021. 1, 3, 4, 5, 9, 10, 20

[16] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-GCN: multi-scale
graph convolution for semi-supervised node classification. In Proceedings of the Thirty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI, pages 841–851, 2019. 1, 2, 10

[17] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In Proceedings of the Thirty-Sixth Interna-
tional Conference on Machine Learning, ICML, volume 97 of Proceedings of Machine Learning
Research, pages 21–29, 2019. 1, 2, 10

[18] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J. Kim. Graph
transformer networks. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Proceedings of the Thirty-Second
Annual Conference on Advances in Neural Information Processing Systems, NeurIPS, pages
11960–11970, 2019. 1, 10

[19] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors,
Proceedings of the Thirty-Fourth Annual Conference on Advances in Neural Information
Processing Systems, NeurIPS, pages 21618–21629, 2021.

[20] Zhanghao Wu, Paras Jain, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, and Ion
Stoica. Representing long-range context for graph neural networks with global attention. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan, editors, Proceedings of the Thirty-Fourth Annual Conference on Advances in
Neural Information Processing Systems, NeurIPS, pages 13266–13279, 2021. 1, 10

[21] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Pro-
ceedings of the Thirty-Third Annual Conference on Advances in Neural Information Processing
Systems, NeurIPS, 2020. 1

[22] Yiding Yang, Xinchao Wang, Mingli Song, Junsong Yuan, and Dacheng Tao. SPAGAN:
shortest path graph attention network. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI, pages 4099–4105. ijcai.org,
2019.

[23] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform badly for graph representation? In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan, editors, Proceedings of the Thirty-Fourth Annual Conference on Advances in
Neural Information Processing Systems, NeurIPS, pages 28877–28888, 2021. 1, 2, 4, 10

[24] Muhan Zhang and Pan Li. Nested graph neural networks. In Proceedings of the Thirty-Fifth
Annual Conference on Advanced in Neural Information Processing Systems, NeurIPS, pages
15734–15747, 2021. 2, 10

[25] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. k-hop graph neural networks.
Neural Networks, 130:195–205, 2020. 2, 10

[26] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural
networks. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, AAAI,
pages 4602–4609, 2019. 2, 3

[27] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter, and Juan Pablo
Silva. The logical expressiveness of graph neural networks. In Proceedings of the Eighth
International Conference on Learning Representations, ICLR, 2020. 2, 5, 6, 18, 19

[28] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In Proceedings of
the Eighth International Conference on Learning Representations, ICLR, 2020. 3

12

Shortest Path Networks for Graph Property Prediction

[29] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining, SDM,
pages 333–341, 2021. 3

[30] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising
power of graph neural networks with random node initialization. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelligence, IJCAI, pages 2112–2118, 2021. 3

[31] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In Proceedings of the Thirty-Second Annual Conference on Advances in Neural
Information Processing Systems, NeurIPS, pages 2153–2164, 2019. 3

[32] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In Proceedings of the Thirty-Sixth International Conference on Machine Learning,
ICML, pages 4363–4371, 2019.

[33] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
In Proceedings of the Thirty-Second Annual Conference on Advances in Neural Information
Processing Systems, NeurIPS, pages 7090–7099, 2019. 3

[34] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, AAAI, pages 3538–3545, 2018. 3

[35] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power
for node classification. In Proceedings of the Eighth International Conference on Learning
Representations, ICLR, 2020. 3

[36] Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, and Bruno Ribeiro. Rela-
tional pooling for graph representations. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the Thirty-Sixth International Conference on Machine Learning, ICML,
volume 97 of Proceedings of Machine Learning Research, pages 4663–4673, 2019. 3

[37] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In Proceedings of the Eighth
International Conference on Learning Representations, ICLR, 2020. 3

[38] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal
Kannan, Viktor K. Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph
neural networks. In Proceedings of the Thirty-Fifth Annual Conference on Advanced in Neural
Information Processing Systems, NeurIPS, pages 19665–19679, 2021. 3

[39] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In Proceedings of the Tenth International Conference on Learning Representations, ICLR, 2022.
4, 10, 20

[40] Karsten M. Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Proceedings
of the 5th IEEE International Conference on Data Mining, ICDM, pages 74–81, 2005. 5

[41] Nils M. Kriege, Christopher Morris, Anja Rey, and Christian Sohler. A property testing
framework for the theoretical expressivity of graph kernels. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI, pages 2348–2354,
2018. 5

[42] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identifications. Combinatorica, 12(4):389–410, 1992. 6

[43] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph
neural networks for graph classification. In Proceedings of the Eighth Annual Conference on
Learning Representations, ICLR, 2020. 6, 7, 8, 23

[44] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. CoRR,
abs/2007.08663, 2020. 6

[45] Marc Brockschmidt. GNN-FiLM: Graph neural networks with feature-wise linear modulation.
In Proceedings of the Thirty-Seventh International Conference on Machine Learning, ICML,
volume 119 of Proceedings of Machine Learning Research, pages 1144–1152, 2020. 6, 9, 10

13

Shortest Path Networks for Graph Property Prediction

[46] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7,
2014. 6, 9

[47] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513–530, 2018. 6, 23

[48] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Proceedings of the Thirty-Third Annual Conference on Advances in Neural Information
Processing Systems, NeurIPS, pages 22118–22133, 2020. 6, 23, 24

[49] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the Thirty-Second International Conference
on Machine Learning, ICML, volume 37 of JMLR Workshop and Conference Proceedings,
pages 448–456, 2015. 7, 23

[50] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of Molecular Biology, 330(4):771–783, 2003. 8

[51] Karsten M. Borgwardt, Cheng Soon Ong, Stefan Schönauer, S. V. N. Vishwanathan, Alexander J.
Smola, and Hans-Peter Kriegel. Protein function prediction via graph kernels. In Proceedings
Thirteenth International Conference on Intelligent Systems for Molecular Biology, ISMB, pages
47–56, 2005. 8

[52] Nikil Wale, Ian A. Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14(3):347–375,
2008. 8

[53] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments.
Nucleic Acids Research, 32(Database-Issue):431–433, 2004. 8

[54] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics,
38(5):146:1–146:12, 2019. 8

[55] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Proceedings
of the Thirty-First Annual Conference on Advances in Neural Information Processsing Systems,
NeurIPS, pages 4805–4815, 2018. 8

[56] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolu-
tional neural networks on graphs. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pages 29–38, 2017. 8

[57] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on graph kernels.
Applied Network Science, 5(1):6, 2020. 8

[58] Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. In Proceedings of the Thirty-Fourth Annual Conference
on Advances in Neural Information Processing Systems, NeurIPS, pages 21824–21840, 2020. 8

[59] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In Proceedings of the Thirty-Second Annual Conference on Advances in Neural
Information Processing Systems, NeurIPS, pages 13333–13345, 2019. 10

[60] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic
analysis, 21(1):5–30, 2006. 10

[61] Giannis Nikolentzos and Michalis Vazirgiannis. Random walk graph neural networks. In Pro-
ceedings of the Thirty-Third Annual Conference on Advances in Neural Information Processing
Systems, NeurIPS, pages 16211–16222, 2020. 10

[62] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social repre-
sentations. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD, pages 701–710, 2014. 10

[63] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M. Borgwardt. Graph
kernels. Journal of Machine Learning Research, JMLR, 11:1201–1242, 2010. 10

14

Shortest Path Networks for Graph Property Prediction

[64] Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based
convolution and pooling for graph neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Proceedings of the Thirty-
Third Annual Conference on Advances in Neural Information Processing Systems, NeurIPS,
2020. 10

[65] Moshe Eliasof, Eldad Haber, and Eran Treister. pathgcn: Learning general graph spatial
operators from paths. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato, editors, Proceedings of the Thirty-Ninth International Conference
on Machine Learning, ICML, volume 162 of Proceedings of Machine Learning Research, pages
5878–5891. PMLR, 2022. 10

15

Shortest Path Networks for Graph Property Prediction

A Proof of Proposition 1
We first recall the proposition:
Proposition 1. A Graphormer with a maximum shortest path length of M is an instance of SP-MPNN
(k = M − 1) with global readout.

We now briefly describe the Graphormer model over simple, undirected, connected graphs without
edge types. Given an input graph G, Graphormers perform the following steps:

1. Apply a centrality encoding to initial node embeddings h(0)
u . Formally, for a node u ∈ G with

degree deg(u), i.e., number of direct neighbor nodes, between 0 and a pre-set maximum degree
N , the centrality encoding computes a refined representation h′(0)

u as:

h′(0)
u = h′(0)

u + Z[deg(u)],

where Z ∈ RN+1×d is a look-up embedding table, d denotes the embedding dimensionality,
and Z[i] denotes the ith row of Z.

2. Iteratively update node embedding using a spatial encoding based on shortest path distances.
Formally, for a pair of nodes u, v ∈ G (which could be identical), an attention score function is
computed using a module AttScore(h(t)

u ,h
(t)
v), e.g., self-attention. Then, a bias term, based on

the shortest path length between u and v, ρ(u, v) is obtained through a scalar look-up vector
b ∈ RM+1. Then, the attention score for a given pair of nodes is given by

AttScore’(h(t)
u ,h(t)

v) = AttScore(h(t)
u ,h(t)

v) + b[ρ(u, v)].

Note that in Graphormer, nodes with a distance greater than M to u are clamped to the same
scalar, i.e., for ρ(u, v) ≥ M , b[ρ(u, v)] = b[M]. Node updates are then computed by normaliz-
ing all AttScore’ for a given node u using the softmax function, and computing the following
update:

h(t+1)
u =

∑
v∈G

Softmaxv
(
AttScore’(h(t)

u ,h(t)
v)

)
Transform(h(t)

v),

where Transform denotes a transformation function that applies to node embeddings prior to
weighted averaging, namely multiplication by a linear matrix.

Proof. We now reconstruct the above Graphormer using a heterogeneous SP-MPNN(k = M − 1)
with global readout as follows.

Centrality encoding. We can capture the centrality encoding through a simple first SP-MPNN layer,
where aggregation functions AGGu,2, . . . ,AGGu,k all return 0, and where AGGu,1 = Z[|N1(u)],
i.e., we perform an analogous look-up table process to compute node degrees through the AGG1

component. As a result, h(1)
u in our SP-MPNN is equivalent to h′(0)

u in Graphormer.

Spatial encoding. To reconstruct the spatial encoding layer, we use an SP-MPNN layer with global
readout with the following functions:

1. Readout:

READ(h(t)
u , {{h(t)

v | v ∈ G}}) = r0 || r1,

where || denotes the concatenation operation, r0 =
∑

v∈G eAttScore’(h(t)
u ,h(t)

v +b[M]) is
simply the scalar (i.e., R1) normalization constant for the softmax function and
r1 =

∑
v∈G

(
eAttScore’(h(t)

u ,h(t)
v bM)Transform(h(t)

v)
)

is the un-normalized uniform attention ag-
gregation under consistent M -hop bias (r1 ∈ Rd).

2. Aggregation functions: For i ∈ {1, . . . ,M − 1}
AGGu,i = ai,0 || ai,1,

where ai,0 =
∑

v∈Ni(u)
eb[i] − eb[M] and ai,1 =

∑
v∈Ni(u)

(
(eb[i] − eb[M])Transform(h

(t)
v)

)
.

These terms will be used by the combine function to adapt the uniform attention computed by
readout to consider distance-specific biases.

16

Shortest Path Networks for Graph Property Prediction

3. Combine functions: First, the combine function computes analogous terms as the read-
out and aggregation functions on h

(t)
u . That is, it computes c0 = eb[0] − eb[M] and

c1 = (eb[0] − eb[M])Transform(h
(t)
u). Finally, the overall update is computed as follows:

h(t+1)
u =

r1 + a1,1 + . . .+ aM−1,1 + c1
r0 + a1,0 + . . .+ aM−1,0 + c0

.

Hence, a Graphormer model using shortest path distances up to M over simple, undirected, connected
graphs can be emulated by an SP-MPNN(k = M − 1) with global readout, as required.

B Proof of Theorem 1
We first recall the theorem statement:
Theorem 1. Let G1, G2 be two non-isomorphic graphs. There exists a SP-MPNN M : G → R, such
that M(G1) ̸= M(G2) if either 1-WL distinguishes G1 and G2, or SP distinguishes G1 and G2.

Proof. Let n ∈ N+ be the maximum number of nodes between G1 and G2. We define a heteroge-
neous SP-MPNN model M using L = n+ 1 layers with distance parameter set to k = n− 1. The
first layer of M is defined as:

h(1)
u = COM(0)(h(0)

u ,AGG(0)
u,1, . . . ,AGG(0)

u,n−1)

where h
(0)
u ,h

(1)
u ∈ Rd, COM(0) : Rd+n−1 → Rd is an injective combination function (e.g., an

MLP), and AGG(0)
u,i = |Ni(u)| are the aggregation functions.

All the remaining n layers of M are defined as:

h(t+1)
u = COM(t)(h(t)

u ,AGG(t)
u,1, . . . ,AGG(t)

u,n−1),

where 1 ≤ t < n, COM(t) : Rd+n−1 → Rd and AGG(t)
u,1 are injective functions, and for each i > 1,

AGG(t)
u,i = 0, i.e., the higher-hop aggregates are ignored in these layers. It is easy to see that these

layers are equivalent to MPNN layers with injective functions defined as:

h(t+1)
u = COM(t)(h(t)

u ,AGG(t)
u,1).

Intuitively, this construction encodes (1) the power of the SP kernel in the first layer of the network,
and (2) the power of 1-WL using all the remaining layers in the network, which are equivalent to
MPNN layers. We make a case analysis:

1. SP distinguishes G1 and G2. The SP kernel computes all pairwise shortest paths between
all connected pairs of nodes in the graph and compares node-level shortest path statistics, i.e.,
the histograms of shortest path lengths across G1, G2 node pairs to check for isomorphism. If
SP distinguishes G1 and G2 then there exists at least one pair of nodes with distinct shortest
path histograms. Observe that the first layer of M yields at least one pair of distinct node
representations across non-isomorphic graphs G1 and G2 in this case, since the diameter of
each graph is at most n− 1 (which matches the choice of k), and COM is an injective function,
acting directly on the shortest path histogram. All the remaining layers can only further refine
these graphs (as these layers also define injective mappings). Finally, using an injective pooling
function after L iterations, we obtain M(G1) ̸= M(G2).

2. 1-WL distinguishes G1 and G2. Observe that M is identical to an MPNN, excluding the very
first layer, which can yield further refined node features. Hence, it suffices to show that this
model is as expressive as 1-WL. This can be done by using an analogous construction to GIN
(based on injective AGG and COM) [12] for layers 2 to n + 1. In doing so, we effectively
apply a standard 1-WL expressive MPNN on the more refined features provided by the first
SP-MPNN layer. Notice that such a construction requires at most n layers (and thus the overall
SP-MPNN model would have at most n+ 1 layers), as n 1-WL iterations are sufficient to refine
the node representations over graphs with at most n nodes. Hence, by using a 1-WL expressive
construction for SP-MPNN layers 2 to n + 1, and following this with an injective pooling
function, we ensure that M(G1) ̸= M(G2) provided that 1-WL distinguishes G1 and G2.

17

Shortest Path Networks for Graph Property Prediction

Our SP-MPNN construction captures the SP kernel within its first layer by computing shortest path
histograms, and ensures that node representations across G1 and G2 following this layer are more
refined and distinct if SP distinguishes both graphs. Then, layers 2 to n+1 explicitly emulate a 1-WL
MPNN, using injective AGG and COM functions, and apply to the more refined representations
from the first layer. Therefore, these layers can distinguish the pair of graphs G1 and G2 if 1-WL
distinguishes them. Finally, we apply an injective pooling function to maintain distinguishability.
Hence, our SP-MPNN construction can distinguish G1 and G2 if either SP or 1-WL distinguishes
both graphs, as required.

Remark. Note that this result easily extends to disconnected graphs. Indeed, in this scenario, one
can introduce an additional aggregation over disconnected nodes. More specifically, we define an
additional aggregation operation AGG∞ that applies over the multiset stemming from the discon-
nected neighborhood N∞(u), consisting of all nodes v ∈ G not reachable from u. Using N∞(u),
the resulting SP-MPNN update in the first layer can then be written as:

h(1)
u = COM(0)(h(0)

u ,AGG(0)
u,1, . . . ,AGG(0)

u,n−1,AGG(0)
u,∞).

Observe that this construction is sufficient to emulate the SP kernel over disconnected graphs, as it
also captures the complete histogram in this setting, including disconnected nodes. Hence, this layer
is sufficient to capture the power of SP as in the original proof. Following this, the remainder of the
proof is the same: AGGu,∞ is also set to 0 within layers 2 to n+ 1.

C Proof of Theorem 2
We recall the theorem statement:
Theorem 2. Given a k ∈ N, each C2

k classifier can be captured by a SP-MPNN with global readout.

To prove this result, we first extend the model from Barcelo et al. yielding the logical characterization
to account for the additional shortest path predicates in C2

k.

To begin with, we first present the MPNN with global readout, known as ACR-GNN, used in the
original theorem [27]. ACR-GNN is a homogeneous model, i.e., all layers are identically and
uniformly parametrized. In ACR-GNN, node updates within the homogeneous layer are computed as
follows:

h(t+1)
u = f

(
h(t)
u C+ (

∑
v∈N1(u)

h(t)
v)A+ (

∑
v∈V

h(t)
v)R+ b

)
, (1)

where f is the truncated ReLU non-linearity f(x) = max(0,min(x, 1)), C,A,R ∈ Rl×l are lin-
ear maps, h(t)

u ∈ Rl denotes node representations and b ∈ Rl is a bias vector. In this equation,
C transforms the current node representation, A acts on the representations of noeds in the di-
rect neighborhood, and R transforms the global readout, computed as a sum of all current node
representations.

At a high level, the logical characterization of MPNNs with global readout to C2 is a constructive
proof, which sets values for C,A,R and b so as to exactly learn the target C2 Boolean node classifier
ϕ(x). This construction is adaptive, as the size of the MPNN depends exactly on the complexity
of the formula ϕ(x). More specifically, the embedding dimensionality l of the ACR-GNN exactly
corresponds to the number of sub-formulas in ϕ(x), and the depth of the model depends on the
quantifier depth q of ϕ(x), which is the maximum nesting level of existential counting quantifiers.
For example, the formula ϕ(x) := ∃≥2y

(
E(x, y) ∧ ∃≥3z

(
E(y, z)

))
has a quantifier depth of 2.

Given a classifier ϕ(x), sub-formulas are traversed recursively, based on the different logical operands
(∧,∨,∃, etc), and each assigned a dedicated embedding dimension. In parallel, entries of the learnable
matrices C,A,R, as well as the bias vector b, are assigned values based on the operands used to
traverse sub-formulas, so as to align with the semantics of the corresponding operands. To illustrate,
consider the formula ϕ(x) = Red(x) ∧ Blue(x). This formula has 3 sub-formulas, namely (i) the
Red atom, (ii) the Blue atom, and (iii) their conjunction respectively. We therefore use 3-dimensional

18

Shortest Path Networks for Graph Property Prediction

embeddings, and denote the corresponding dimension values for each sub-formula as hu[1], hu[2],
and hu[3] respectively. To represent the conjunction between Red and Blue (sub-formulas 1 and 2),
the construction sets C13 = C23 = 1 and b3 = −1. This way, an ACR-GNN update only yields 1 at
hu[3] if hu[1] and hu[2] are both set to 1, in line with conjunction semantics.

Theorem 5.1 for ACR-GNNs is based on an analogous construction, but using modal logic operations,
more specifically modal parameters, which are shown to be equivalent in expressive power to the
logic C2. Modal parameters are based on the following grammar:

S := id|e|S ∪ S|S ∩ S|¬S.

For completeness, we now provide the same definitions as the original proof [27]. Given an undirected
colored graph G(V,E), the interpretation of S on a node v ∈ G is a set ϵS(v), defined inductively:

• if S = id, then ϵS(v) = {v}
• if S = e, then ϵS(v) = {u|(u, v) ∈ E}
• if S = S1 ∪ S2, then ϵS(v) = ϵS1(v) ∪ ϵS2(v)

• if S = S1 ∩ S2, then ϵS(v) = ϵS1
(v) ∩ ϵS2

(v)

• if S = ¬S′, then ϵS(v) = V ϵS′(v)

The proof then uses a lemma showing that every modal logic formula can be equivalently written
using only 8 different model parameters, namely: 1) id, 2) e, 3) ¬e ∩ ¬id, 4) id ∪ e, 5) ¬id, 6) ¬e,
7) e ∪ ¬e, 8) e ∩ ¬e. From here, it defines precise constructions with respect to A, C, R and b to
capture each modal parameter with respect to a counting quantifier, e.g., ⟨e⟩≥N .

For our purposes, we adapt this result to additionally account for the shortest path edge predicates
offered by SP-MPNNs. Hence, we first propose an adapted update equation, and modify the original
proof of Theorem 5.1 to incorporate the distinct edge types. For the update equation, we define
learnable matrices Ai, i ∈ {1, . . . , k} that act on neighbors within the i-hop neighborhood of the
updating node, and accordingly instantiate the update equation of our SP-MPNN model as:

h(t+1)
u = f

(
h(t)
u C+

∑
i

(
(

∑
v∈Ni(u)

h(t)
v)Ai

)
+ (

∑
v∈V

h(t)
v)R+ b

)
, (2)

Notice that this equation is analogous to Equation (1), with the only difference being that the single
neighborhood, and the corresponding matrix A are replaced by k neighborhoods. Using this update
equation, we now lift the result of Theorem 5.1 in Barceló et al. [27] to include the additional edge
predicates. To this end, we use an adapted grammar S, which includes k edge predicates e1, e2, . . . , ek
(where e1 is the standard edge predicate) in lieu of just e. Accordingly, the interpretation of these
symbols is as follows:

• if S = ei, then ϵS(v) := {u|(u, v) ∈ Ei}.

By replacing e with k different (mutually exclusive) edge symbols e1, . . . , ek, we obtain a modal
logic defined over multiple disjoint edge types. As such, the 8 cases for the original proof must be
adapted to account for the different ei, leading to sub-cases with every ei for all cases including e in
the original proof. In particular, we now provide the construction, adapted from the original proof and
corresponding to the original 8 cases, that is sufficient to represent any formula with the additional
edge predicates in our setting.

In what follows, we let φk denote sub-formula k (which is represented using the kth embedding
dimension, analogously to the original proof. Moreover, for ease of notation, we represent entry kl in
matrix Ai as Ai,kl. The construction of our SP-MPNN model is as follows:

• Case a. if φl = ⟨id⟩≥Nφk, then Ckl = 1 if N = 1 and 0 otherwise.
• Case b. For i ∈ {1, . . . , k}, if φl = ⟨ei⟩≥Nφk, then Ai,kl = 1 and bl = −N + 1.

• Case c. For i ∈ {1, . . . , k}, if φl = ⟨¬ei ∪ ¬id⟩≥Nφk, then Rkl = 1 and Ckl = Ai,kl = −1
and bl = −N + 1.

• Case d. For i ∈ {1, . . . , k}, if φl = ⟨id ∨ ei⟩≥Nφk, then Ckl = 1 and Ai,kl = 1 and
bl = −N + 1.

19

Shortest Path Networks for Graph Property Prediction

• Case e. if φl = ⟨¬id⟩ ̸=Nϕk, then Rkl = 1 and Ckl = −1 and bl = −N + 1.

• Case f. For i ∈ {1, . . . , k}, if φl = ⟨¬e⟩≥Nφk, then Rkl = 1 and Ai,kl = −1 and bl =
−N + 1.

• Case g. For i ∈ {1, . . . , k}, if φl = ⟨e ∪ ¬e⟩≥Nφk, then Rkl = 1 and bl = −N + 1.

• Case h. For i ∈ {1, . . . , k}, if φl = ⟨e ∪ ¬e⟩≥Nφk, then Rkl = 1 and bl = −N + 1.

Finally, as in the original proof, all other unset values from the above cases for Ai, C, R and b are
set to 0.

Remark. Note that the global readout in Equation (2) can be emulated internally within the SP-MPNN
model by using an additional aggregation operation for disconnected components, i.e., distance +∞,
nodes, i.e., N∞. More concretely, we can consider an additional aggregation operation AGGu,∞,
and then exactly capture eq. (2) using the following AGG definitions:

AGGu,j =
(∑
v∈Nj(u)

hv

)
(Aj +R) for 1 ≤ j ≤ |V | − 1,

AGGu,∞ =
(∑
v∈N∞(u)

hv

)
R, and

h(t+1)
u = f

(
h(t)
u (C+R) +

n−1∑
i=1

AGGu,i + AGGu,∞ + b
)
.

D The h-Proximity Dataset

D.1 Motivation

The evaluation of over-squashing has been studied in various earlier works [15, 39], with datasets
such as Tree-NeighborsMatch [15] proposed to quantitatively measure this phenomenon.

Limitations of Tree-NeighborsMatch. The proposed setup in Tree-NeighborsMatch indeed evalu-
ates information flow in the graph, but has certain undesirable properties that motivated our develop-
ment of the h-Proximity datasets. First, Tree-NeighborsMatch uses a local classification property
(number of blue neighbors) on the tree root node, and relies on information propagation only to
acquire the label of a leaf node with the same number of blue nodes. Second, and most importantly,
the tree structure in Tree-NeighborsMatch introduces a second implicit exponential bottleneck aside
from information flow which could negatively bias our findings: As depth grows, the number of
leaf nodes in the tree also grows exponentially, leading to not only the exponential decay due to
over-squashing and propagating through the tree, but also an exponential bottleneck of rival candidate
classes sending information. Hence, the model must not only receive the correct information, but
also manipulate exponentially many messages from distinct nodes.

Objectives of h-Proximity. In light of these limitations, we developed the h-Proximity task, which
has the following key desiderata:

1. A global classification property, relying on all nodes in the graph as opposed to a local property
that must be transmitted to the root.

2. A linear dependence on the maximum hop length, as opposed to an exponential one. This allows
us to build deeper graphs (e.g., 10-Prox) with linearly many nodes but exponentially growing
receptive fields (stemming from the computational graph) and experiment with more realistic
neighborhood configurations than trees.

Crucially, as the number of nodes is linear in the hop length, h-Proximity eliminates the collateral
bottleneck stemming from prohibitive numbers of leaf nodes. Therefore, h-Proximity offers a more
reliable evaluation tool for over-squashing, as any performance degradation on these datasets can
more directly be attributed to the information propagation bottleneck, as opposed to the exponential
amount of information being sent from exponentially many tree leaves.

20

Shortest Path Networks for Graph Property Prediction

(a) (b)

Figure 7: (a) A positive graph for h = 1 (l = 4, w = 3) and (b) a corresponding negative graph with
an addition edge (shown in green). The red node in graph (a) has exactly two blue neighbors, but the
green edge in graph (b) directly connects it to a third blue node, violating the classification objective.

D.2 Generation Procedure

We generate all h-Proximity datasets in three parts. First, we generate the graph structure discussed in
the main body of the paper. Then, we find a coloring of the nodes in this graph. Finally, we produce
negative examples by corrupting positive graphs with an additional edge.

Graph structure. For every dataset, we generate 4500 graphs by sampling l (the number of levels in
our structure) uniformly from the discrete set {15, ..., 25} and w (the level width) from {3, ..., 10}.

Node coloring. We partition the 4500 graphs evenly into 3 sets of 1500 graphs, where each partition
includes 1, 2, and 3 red nodes respectively, so as to produce examples with multiple red nodes, where
all these must satisfy the classification criterion.

Given a graph and its red node allocation, we repeat the following coloring procedure until a valid
coloring is found (or, alternatively, until 200 tries, at which point the graph is regenerated).

1. We select 1, 2, or 3 red nodes (depending on the partition) uniformly at random from the nodes
of the input graph.

2. Given the red nodes, we identify graph nodes within the h−hop neighborhoods of at least one
red node. We then filter out nodes which, if blue, lead to violation of the condition, i.e. a red
node would have 3 or more blue neighbors in its h-hop neighborhood. Then, we randomly select
one of the remaining nodes and color it blue. We repeat this procedure until each red node has
exactly 2 blue neighbors in its h-hop neighborhood.

3. We randomly sample some “distant” nodes (outside the h-hop neighborhoods of all red nodes)
to color blue. The number of selected nodes is uniformly sampled from the set {0, 1, 2, 3}. If
there are insufficiently many “distant” nodes, this step is skipped.

4. We introduce 8 auxiliary colors (for a total of 10 colors) and allocate all other nodes one of these
8 colors uniformly at random.

At the end of this procedure, we obtain a graph that satisfies the classification objective, where all red
nodes have exactly 2 blue nodes in their h-hop neighborhoods.

Negative graph generation. To produce negative examples from the earlier generated positive graphs,
we introduce a single additional edge to make an additional “distant” blue node enter the h-hop
neighborhood of any red node, thus violating the classification objective. Therefore, the negative
graphs we produce are largely identical to the positive graphs, differing only by one additional edge.
Edge addition is done as follows:

1. For every graph, identify “distant” blue nodes to one or more red nodes, and identify node pairs
without an edge where an edge addition would bring a blue node within h hops of a red node.
Note that the node pairs need not themselves be red or blue, and could in fact be intermediary
nodes offering a “shortcut”.

2. Randomly sample a satisfactory edge among the aforementioned candidate edges and introduce
it to the graph.

We opt for edge addition for multiple reasons. First, edge addition is fundamentally a structural
modification of the graph, which affects pairwise distances in the graph. Thus, edge addition allows
us to examine how the same features can propagate across the graph and offers better insights as
to how these features are processed. Second, edge addition does not affect node features, and thus

21

Shortest Path Networks for Graph Property Prediction

Table 4: Diameter statistics for D&D, ENZYMES, NCI1 and PROTEINS.

Dataset Mean Diameter Median Diameter

D&D 19.90 19
ENZYMES 10.90 11
NCI1 13.33 12
PROTEINS 11.57 10

Table 5: Dataset statistics for D&D, ENZYMES, NCI1, PROTEINS, and QM9.

Dataset #Graphs Mean #Nodes Mean #Edges #Node Types #Edge Types

D&D 1178 284.3 815.7 89 1
ENZYMES 600 32.6 64.1 3 1
NCI1 4110 29.9 32.3 37 1
PROTEINS 1113 39.1 72.8 3 1
QM9 130472 18.0 18.7 5 4

eliminates the possibility of feature-based approximation to the task. Specifically, both positive and
negative graphs have identical node features, and thus any strong model must distinguish the two
from the graph structure, rather than from feature statistics.

To illustrate the negative graph generation procedure, we consider a simple example for h = 1, on
a graph structure with l = 4 and w = 3, shown in Figure 7. In this example, we see that graph (a),
the positive graph, satisfies the classification objective, as its red node is only connected to two blue
nodes. Therefore, to produce a negative example, as is the case in graph (b), we add a new edge
(shown in green) connecting the red node to the blue node in the rightmost level of the graph. This
makes that the red node is now connected to 3 blue nodes, and thus changes the graph classification
to false.

E Further Experimental Details
In this section, we provide further experimental details complementing the experimental section in
the main paper.

E.1 Hardware Configuration

We ran all our experiments on multiple identically configured server nodes, each with a V100 GPU, a
12-core Haswell CPU and 64 GB of RAM.

E.2 Dataset Statistics

The statistics of the real-world datasets used in the experimental section of this paper, namely number
of graphs, node and edge types, as well as average number of edges and nodes per graph, can be
found in Table 5. We also report the mean and median graph diameter for the chemical datasets in
Table 4. For the graph classification benchmarks, the number of target classes is 2 for D&D, NCI1
and PROTEINS, and 6 for ENZYMES.

E.3 Synthetic Experiment

Experimental protocol. In Section 5.1, we train all models across 10 fixed splits for each h-Proximity
dataset. On each split, we perform training three times and average the final result. Training on each
split runs for 200 epochs, and test performance is computed at the epoch yielding the best validation
loss.

Hyperparameter setup. In these experiments, we fix embedding dimensionality across all models
to d = 64 for fairness. We also use mean pooling to compute graph-level outputs for all models

22

Shortest Path Networks for Graph Property Prediction

to keep the task challenging and enforce the learning of the long-distance target function across
all nodes. Moreover, we use a node dropout with probability 0.5 during training4, and experiment
with learning rates of 10−3 and 10−4. Furthermore, we use a batch size of 32 and adopt the same
node-level pooling structure as the GIN model in the risk assessment study by Errica et al. [43]
across all models. Moreover, for SPN, we additionally emulate the MLP architecture from Errica
et al.: We use two-layer multi-layer perceptrons with a hidden dimension of 64 (same as the output
dimensionality), such that each layer is followed by batch normalization [49] and the ReLU activation
function.

Result validation. To validate the poor performance of MPNNs on h-Proximity datasets with h ≥ 3
and discount the possibility of insufficient training, we independently trained a GAT model for 1000
epochs on one split of the 3-Proximity dataset. For this experiment, we used 3 message passing
layers. We observed that it continued to struggle around 50%, similarly to what we report in the main
paper. Furthermore, we trained a 300-dimensional GAT model with T = 3 layers on 3-Proximity
for 200 epochs, and observed the same behavior. Therefore, these results confirm that the limited
performance of GAT, and standard MPNNs in general, is indeed due to their structural limitations, as
opposed to less accommodating hyperparameter choices.

Discussion on MixHop. We also sought to include MixHop as a baseline. However, this was not
practically feasible, as MixHop uses normalized adjacency matrix powers, which yield dense matrices
with floating-point weights for higher hops. These dense matrices make computing neighborhood
aggregations computationally demanding and intractable when considering larger distances. Con-
cretely, running an epoch of MixHop (considering hops up to 5) on all Prox datasets requires roughly
8 minutes on our hardware setup, compared to roughly 50 seconds with SPN.

In light of this issue, we exclude MixHop. Moreover, we do not compare against the default 2-hop
setting of MixHop, as the resulting comparison with SPN (k = 10) is unfair. Nonetheless, to share
some working insights, the partial experiments we could run with higher-hop MixHop showed that
the model exceeds 50% training accuracy on 3, 5,8 and 10-Prox, reaching roughly about 57-58% and
still improving after 200 epochs, but converged very slowly and noisily and did not exceed 51-52%
test accuracy even after 200 epochs. Therefore, MixHop could potentially yield better than random
performance given more training, but requires substantially more epochs and computational resources
given its inherent redundancies.

E.3.1 Additional Experiments on MoleculeNet datasets

We additionally evaluate SP-MPNN on the MoleculeNet [47] datasets. These datasets include edge
features, and thus we first propose an SP-MPNN model to use this extra information.

Model setup. In all MoleculeNet datasets, edges are annotated with feature vectors which are
typically used during message passing. Therefore, we instantiate an SP-MPNN model to use edge
features analogously to the GIN implementation in the OGBG benchmarks [48]. Concretely, at the
first hop level, we have tuples (hv, ev) for all node neighbors, denoting the neighboring node features
and the connecting edge features, respectively. Hence, we define first-hop aggregation AGGu,1 as:

AGGu,1 =
∑

v∈N (u)

ReLU(hv + ev).

Higher-hop aggregation and the overall update equation are then defined analogously to SPNs. We
refer to this model as E-SPN.

Experimental setup. In this experiment, we use the OGB protocol on E-SPN (k = {1, 3, 5}), and
compare against reported GIN and GCN results. We use 300-dimensional embeddings, follow the
provided split for training, validation and testing and report average performance across 10 reruns.
Furthermore, we conduct hyper-parameter tuning using largely the same grid as OGB, but additionally
consider the lower learning rate of 10−4 to more comprehensively study model performance, similarly
to Section 5.2. Finally, we use the full feature setup (without virtual node) from OGB and follow their
feature encoding practices: We map node features to learnable embeddings at the start of message
passing, and map edge features to distinct learnable embeddings at every layer.

Results. The results of E-SPN on MoleculeNet benchmarks are shown in Table 6. At higher values
of k, E-SPN models yield substantial improvements on ToxCast, SIDER, ClinTox and BACE, and

4For Graphormer, we use the same default dropout mechanisms as the official repository.

23

Shortest Path Networks for Graph Property Prediction

Table 6: Results (ROC-AUC) for E-SPN and competing models on MoleculeNet graph classification
benchmarks. GIN and GCN results (with features, no virtual node) are as reported in OGB [48].

Dataset BBBP Tox21 ToxCast SIDER ClinTox HIV BACE

GIN 68.2±1.5 74.9±0.5 63.4±0.7 57.6±1.4 88.1±2.5 75.6±1.4 73.0±4.0

GCN 68.9±1.5 75.3±0.7 63.5±0.4 59.6±1.8 91.3±1.7 76.1±1.0 79.2±1.4

E-SPN (k = 1) 69.1±1.4 75.3±0.7 63.9±0.6 58.2±1.5 89.1±2.8 77.1±1.2 78.3±3.0

E-SPN (k = 3) 66.8±1.5 75.7±1.2 64.4±0.6 59.1±1.4 91.8±2.0 75.2±0.8 78.9±2.8

E-SPN (k = 5) 67.5±1.9 75.4±0.8 65.0±0.7 60.7±0.8 88.9±1.8 76.5±1.8 80.9±1.2

outperform the two baseline models. Higher-hop neighborhoods are clearly beneficial on ToxCast,
BACE, and SIDER, where performance improves monotonically relative to k. Moreover, E-SPN
models maintain strong performance on BBBP, and even yield small improvements on HIV and
Tox21. These results further highlight the utility of higher-hop information, and suggest that E-SPN
(as well as SPN) are promising candidates for graph classification over complex graph structures.

E.4 Complete R-SPN Results on QM9

In this section, we present the complete results for R-SPN (k = {1, 5, 10}, T = {4, 6, 8}) on all
13 properties of the QM9 dataset. More specifically, these results are provided in Table 7, each
corresponding to a QM9 property, with the best result shown in bold.

From this table, we can see that the introduction of higher-hop neighbors is key to improving the
performance of R-SPN, yielding the state-of-the-art results obtained in the main paper without any
additional tuning. Moreover, we notice an interesting behavior pertaining to the number of layers.
Indeed, R-SPN (k = 5) and R-SPN (k = 10) are more robust with respect to the number of layers,
as their performance with T = 4 does not drop nearly as substantially as R-SPN (k = 1) relative to
T = 8. Specifically, the average error decreases by 21.6% from T = 4 to T = 8 for R-SPN (k = 1),
but only by 7.5%, and 8.5% for k = 5 and k = 10 respectively. This suggests that using higher
values of k not only provides access to higher hops, but also allows this information to reach target
nodes earlier on in the computation, enabling better performance with a lower number of layers.

24

Shortest Path Networks for Graph Property Prediction

Table 7: Complete results (MAE) for R-SPN with respect to the number of layers (T) and maximum
hop size (k) on all properties of the QM9 dataset.

R-SPN

Property Layers k = 1 k = 5 k = 10

mu
4 4.01±0.04 2.74±0.15 2.68±0.27

6 3.66±0.04 2.41±0.12 2.45±0.22

8 3.59±0.01 2.25±0.17 2.32±0.20

alpha
4 9.37±0.16 1.91±0.04 1.84±0.03

6 7.07±0.14 1.89±0.03 1.82±0.06

8 6.74±0.15 1.86±0.06 1.82±0.02

HOMO
4 2.18±0.01 1.43±0.02 1.46±0.08

6 2.05±0.02 1.30±0.05 1.31±0.07

8 2.00±0.01 1.27±0.03 1.32±0.07

LUMO
4 2.29±0.02 1.33±0.03 1.32±0.03

6 2.13±0.01 1.24±0.04 1.26±0.04

8 2.11±0.02 1.23±0.03 1.26±0.06

gap
4 3.29±0.01 2.05±0.05 2.06±0.05

6 3.02±0.04 1.89±0.04 1.91±0.08

8 2.95±0.02 1.89±0.06 1.94±0.08

R2
4 29.28±0.46 12.36±0.60 13.00±0.60

6 23.26±0.59 11.44±0.57 11.19±0.68

8 22.41±0.64 10.80±0.60 10.82±1.30

ZPVE
4 42.92±1.62 3.25±0.09 2.94±0.07

6 30.31±1.24 3.28±0.08 2.67±0.09

8 29.16±1.14 3.34±0.16 2.73±0.05

U0
4 19.28±0.77 1.21±0.05 1.07±0.03

6 14.01±0.51 1.21±0.05 1.02±0.05

8 13.39±0.37 1.15±0.05 0.96±0.02

U
4 19.58±0.67 1.20±0.04 1.08±0.05

6 13.50±0.51 1.18±0.04 0.94±0.03

8 13.61±0.73 1.21±0.04 0.96±0.04

H
4 19.32±0.42 1.24±0.05 1.07±0.04

6 13.44±0.46 1.20±0.07 0.96±0.04

8 13.65±0.63 1.20±0.05 1.02±0.06

G
4 17.65±0.16 1.19±0.05 0.99±0.03

6 12.85±0.43 1.12±0.04 0.94±0.05

8 12.22±0.71 1.06±0.07 0.94±0.03

Cv
4 7.53±0.30 1.52±0.04 1.43±0.03

6 5.50±0.18 1.40±0.02 1.41±0.07

8 5.45±0.24 1.42±0.05 1.31±0.03

Omega
4 3.29±0.03 0.65±0.01 0.63±0.02

6 3.04±0.04 0.56±0.01 0.56±0.01

8 2.90±0.06 0.55±0.01 0.55±0.02

25

	1 Introduction
	2 Message Passing Neural Networks
	3 Shortest Path Message Passing Neural Networks
	4 Properties of Shortest Path Massing Passing Neural Networks
	4.1 Information Propagation: Alleviating Over-squashing
	4.2 Expressive Power of Shortest Path Message Passing Networks
	4.3 Logical Characterization of Shortest Path Message Passing Networks
	4.4 Time and Space Complexity

	5 Empirical Evaluation
	5.1 Experiment: Do all red nodes have at most two blue nodes at h hops distance?
	5.2 Graph Classification
	5.3 Graph Regression

	6 Related Work
	7 Summary and Outlook
	A Proof of lem:graphormer
	B Proof of thm:1WLSP
	C Proof of thm:c2k
	D The h-Proximity Dataset
	D.1 Motivation
	D.2 Generation Procedure

	E Further Experimental Details
	E.1 Hardware Configuration
	E.2 Dataset Statistics
	E.3 Synthetic Experiment
	E.3.1 Additional Experiments on MoleculeNet datasets

	E.4 Complete R-SPN Results on QM9

