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Abstract

We discover distribution bias in the evaluation of neural algorithmic reasoning
(NAR) that misrepresents out-of-distribution (OOD) generalisation of neural
networks. With a Triplet-GMPNN baseline, we find that the GNN outperforms
NAR in 46% of algorithmic reasoning tasks in the CLRS benchmark and is within
1 standard deviation for 67%. We show that this result is biased by test sets with
specific problem instance sizes rather than a distribution of problem sizes. To
address this, we introduce the Generalisation Out-of-Distribution (GOOD) score,
a simple way to measure NAR generalisation using the area under a test score vs
problem distribution curve. Through analysis with GOOD score and empirical
curves, we identify that NAR generalisation is better than reported but is still
often outperformed by simple GNN baselines asymptotically, highlighting new
opportunities to improve NAR.
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Figure 1: Average performance at different test set sizes aggregated over algorithms. GOOD com-
putes an approximation of the area under the curve. Vertical lines show sampling points ny, ..., ng
(see Eq. 2). The distribution parameter |V | denotes measurement over the number of nodes.
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1 Introduction

Neural Algorithmic Reasoning (NAR) [1] teaches neural networks how to solve classical algorithms
to instill neural networks with algorithmic capabilities such as step-by-step reasoning and the ability
to generalise out-of-distribution. In this paradigm, algorithm inputs are represented as graphs® and
the algorithm is executed recurrently with a graph neural network (GNN) that evolves the node
embeddings over these recurrent steps to reach a solution. During training, algorithmic control flow
supervision improves the alignment of the neural network with the steps of the algorithm. In turn, by
training to follow the steps of the algorithm, the network generalises to out-of-distribution problem
instances during training, e.g., to larger input graph sizes or to graphs constructed from different
generation methods.

In this paper, we critically analyse the primary benchmark in NAR, CLRS-30 [1], and find that its
standard NAR baselines often do not outperform simple non-recurrent GNNs on its out-of-distribution
test set. By analysing the generalisation patterns of NAR and simple GNNs on our own test set of
larger graphs, we find that conclusions about generalisation made from these test sets are biased
by the specific test instance sizes. For example, a method may generalise better across a smaller,
or larger, set of graph sizes than those in the test set. However, its overall generalisation pattern is
represented by its performance across a range of graph sizes. Thus, this generalisation is not reflected
in the test set scores as they do not account for how these methods generalise across the graph size
distribution, but rather for a specific set of test graph sizes. Our analysis highlights the need for
a better empirical measure of OOD generalisation that reflects the generalisation patterns of NAR
methods on different test graph sizes.

To account for generalisation across a distribution of test graphs, we introduce GOOD, a measure
of OOD generalisation based on the area under a score vs test graph distribution curve. Our results
with GOOD show surprising generalisation patterns. Although models trained with NAR appear
superior at small graph sizes, they often do not generalise to large graphs asymptotically as well
as a simple GNN. By finding that NAR often does not outperform, or even performs worse than
simple GNNs asymptotically, this work highlights a critical roadblock in achieving out-of-distribution
generalisation in NAR. In identifying this issue and introducing GOOD, we hope to introduce further
rigour in the empirical evaluation of NAR generalisation.

2 Related Work

Several works evaluate NAR without hints, while others extend generalisation to practical domains
and different graph distributions. Rodionov and Prokhorenkova [2] provide an approach similar
to NAR, recurrently applying the GNN a variable number of times depending on the problem
size, forgoing only hint supervision. Bevilacqua et al. [3] and Mahdavi et al. [4] similarly provide
ablations with recurrent steps but without hint supervision and see evidence of training without
hints being beneficial for test generalisation. Jiir} et al. [5] find that enforcing specific hints and
other forms of intermediate supervision can hurt generalisation in recursive algorithms. Unlike
this prior work, our approach studies the regime where we also remove the recurrent application
of GNNs characteristic of NAR to compare NAR generalisation against simple GNNs. Moreover,
other analyses of NAR generalisation extend to practical domains, e.g. brain vessel classification
[6] and pointcloud registration [7], or test on larger graphs than in the training set [8] and different
graph generation distributions [4, 9]. While these measure specific aspects of OOD performance, no
work provides a unified generalisation metric. Critically, beyond past work, we also show the bias of
standard small sets of specific test graph sizes and instead provide an analysis of generalisation over
large distributions of test graphs, in turn setting a new standard for evaluation. Lastly, our work is not
to be confused with the GOOD benchmark [10] which provides graph datasets, rather than a metric,
for measuring different covariate and concept shifts between train and test sets.

3 Method

GNN Baseline. 'We modify CLRS to include a GNN baseline that uses the same processor network
as an NAR baseline, but with no recurrence and no intermediate supervision of algorithmic control
flow (i.e., hints). By ablating these two features, training with CLRS is equivalent to training a GNN

’In the CLRS benchmark, these are fully connected graphs.
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on the inputs and outputs of the algorithm, removing all of the additional algorithmic features of
NAR. Note that NAR involves applying the same processor a variable number of times depending on
the problem size. Therefore, even without hints, it is not equivalent to common GNN architectures
which involve applying a fixed number of layers with distinct weights.

Generalisation Out-of-Distribution (GOOD). We also introduce a new metric for measuring
empirical OOD generalisation. To represent the generalisation pattern of a method over a distribution,
e.g. graph sizes, we need to evaluate the expectation

1 Mmax
Ep ety 8 ()] = ————— / as(0)dy ()

Mmax — Mmin Mmin

where ag (1)) is a function describing the accuracy of a method with a GNN parameterised by a set of
weights 6 on an evaluation set of graphs of instance size n. As it is often only practically feasible
to sample a finite number of distribution parameters ). We define an empirical metric based on an
approximation of this integral with the trapezoid rule

K
GOOD%I,...,nK (0) = ! Z ae(nFl);— ao(n:) - (ni —ni—1), (2)

K=

where Mpyin = N1 < ng < -+ < Ng = Mnax denote the distribution parameters we evaluate on. For
notational simplicity, we writt GOOD,, .. P focusing on the approximated

interval (e.g. the range of graph sizes) and leave the intermediate distribution parameters as an
implementation detail.

GOOD Score in Python code

import numpy as np
def good_score(test_scores, distribution_params) :
return np.trapz(test_scores, distribution_params)

We treat the integration interval as continuous in our formulation. If v takes discrete values (e.g.
specific graph sizes ny, ..., ng), a strict expectation over the discrete uniform distribution would
divide by nx — nq + 1 rather than nx — n,. However, since all GOOD scores are multiplied by the
same constant factor (ng — ny)/(ng —ny + 1) & 1, they remain directly comparable. We adopt
the continuous interpretation for cleaner notation.

Our metric addresses settings where performance varies non-uniformly along a generalisation axis,
and the sampled graph distribution can overlap with the training set (e.g. graph sizes 1-16 are
included in the GOOD calculation throughout the paper). For instance, when evaluating robustness to
graph size, performance typically decays rapidly, making a logarithmic sampling more informative
than uniform intervals. However, if our goal is to estimate performance over the entire range of
the generalisation axis—such as all Erd6s-Rényi graphs with edge probabilities p € [0, 1], or all
graphs up to some maximum size—we need E.;[ag ()] where 1) is uniformly distributed. Directly
sampling 1) uniformly would forgo the ability to strategically place evaluation points where they are
most informative. Our metric resolves this by computing a weighted expectation: we evaluate at
deliberately chosen (potentially non-uniform) points along ), then re-weight to recover the uniform
expectation. In practice, the sampling method should remain the same across evaluations so that
approximation errors are consistent and values are comparable.

4 Experiments

We focus on the CLRS-30 benchmark, evaluating the GNN baseline (Section 3) alongside standard
NAR methods to test whether a simple GNN trained only on final outputs can achieve competitive
performance. We experiment with two GNN processors: (a) MPNN [11], a standard message-passing
neural network , and (b) Triplet-GMPNN [12], a higher-order GNN specifically introduced for NAR
with triplet-based edge processors.

Following the standard CLRS-30 protocol [1], models are trained on synthetic graphs within the
benchmark’s input size (from 4 up to 16 nodes). To evaluate the generalisation capabilities, we
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Figure 2: Generalisation patterns of selected graph algorithms across test graph sizes. In DFS and
Topological Sort, the simple GNN baseline consistently outperforms NAR across larger graph sizes.
Mean and standard deviation over 5 seeds.

perform evaluations on both in-distribution (ID) and out-of-distribution (OOD) settings. ID eval-
uation measures performance on test graphs of the same size as the training distribution, while
OOD experiments evaluate models on graphs of varying sizes larger than those seen in the train
set. We report averages over multiple random seeds and apply early stopping based on validation
accuracy. We use the original CLRS-30 preprocessing, augmentation, evaluation protocol, and official
hyperparameters [1].

4.1 Results

We first analyse results across a set of 24 algorithms (Figure 3). On the CLRS test set with Triplet-
GMPNN, a simple GNN outperforms NAR in 11/24 (45.8%) of the tasks we tried and is within 1
standard deviation for 16/24 (66.7%). With MPNN, similar results hold, with 11/24 wins (45.8%),
and 14/24 on-par 14/24 (58.3%) for the simple GNN. This surprising result indicates a serious failure
of NAR to generalise. In Figure 2, we observe that while NAR tends to be more robust to graph sizes
that are slightly out of distribution, a GNN baseline will eventually perform on par for sufficiently
large graphs, e.g. on Topological Sort and DFS. From this point, we observe a phase change where the
GNN baseline retains relatively stable performance whereas NAR continues worsening dramatically.
Counter-intuitively, NAR exhibits more overfitting than a simpler GNN baseline despite having been
developed explicitly with OOD generalisation in mind. In Table 1, we show the GOOD scores reflect
this asymptotic difference in generalisation.

5 Discussion

What explains NAR failure cases? The performance gap varies significantly depending on the
type of algorithm. Thus, one explanation could be algorithm-dependent issues with generalisation.
For example, Binary Search can theoretically be solved in a single decision step as finding a value is
equivalent to matching a node embedding. In contrast, Bellman-Ford, Floyd-Warshall, and Dijkstra
require several iterations to update distances across the graph. Here, NAR performs better than the
GNN because recurrence helps handle long chains of updates. Further work is required to understand
why NAR may generalise worse than a GNN beyond certain graph sizes and on certain algorithms.
Recent work [3-5] has found that enforcing specific hints and other forms of intermediate supervision
can hurt generalisation.

Conclusion. We identify that test evaluations in NAR focus on specific graph instance sizes and fail
to account for generalisation across a range of graph sizes to reflect true algorithmic generalisation.
By plotting test score vs graph size curves, we show that measuring test generalisation on a single set
of graph sizes leads to a misrepresentation of the generalisation of NAR methods. Thus, we introduce
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Algorithm Processor Method GOODl[Xgu]
MPNN Baseline 0.4989
Bellman Ford MPNN NAR 0.9274
Triplet-GMPNN  Baseline 0.5107
Triplet-GMPNN  NAR 0.9286
MPNN Baseline 0.9923
BES MPNN NAR 0.9903
Triplet-GMPNN  Baseline 0.9926
Triplet-GMPNN NAR 0.9924
MPNN Baseline 0.1756
DFS MPNN NAR 0.1181
Triplet-GMPNN  Baseline 0.2078
Triplet-GMPNN  NAR 0.2146
MPNN Baseline 0.7670
MPNN NAR 0.7846
DAG Shortest Paths 1. 10 GMPNN  Baseline ~ 0.7796
Triplet-GMPNN  NAR 0.8803
MPNN Baseline 0.5408
Topological Sort MPNN NAR 0.3411
polog Triplet-GMPNN  Baseline 0.5878
Triplet-GMPNN  NAR 0.4956

Table 1: GOOD performance over the set of selected graph algorithms in Figure 2. The distribution
parameter |V'| represents the number of nodes in the graph.

the Generalisation Out-of-Distribution (GOOD) score, a new metric based on the area under a test
score vs test graph distribution curve that accounts for the generalisation of NAR methods across a
distribution of graphs. With GOOD, and a new perspective on test generalisation we identify failures
of NAR on large test graph sizes where it surprisingly fails to beat simple GNN baselines.
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Figure 3: Average score of most algorithms on the CLRS-30 OOD test set. Mean and standard
deviation over 5 seeds. Surprisingly, the Simple GNN (no hints, no recurrence) matches or exceeds
specialized NAR architectures on about half the tasks for both GNN architectures tested. See Figure
4 for a zoomed-in version of quickselect.
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Figure 4: Average score of quickselect on the CLRS-30 OOD test set. Zoomed in from Figure 3.

A Appendix
A.1 Additional results

See Figures 3 and 5.

A.2 Implementation details

NAR formulates the execution of classical algorithms as a sequence of graph transformations, where
inputs, outputs, and algorithmic intermediate states (i.e., hints) are represented as a graph structure
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Figure S: Average performance of all algorithms in Figure 2. Standard deviation over different
algorithms.

G = (V, E) and used to guide the learning process. The standard CLRS-30 framework [13], which
evaluates NAR across 30 fundamental algorithms, is built on two critical components: (1) temporal
recurrence to simulate step-by-step execution, and (2) intermediate supervision through algorithmic
hints to guide learning. Formally, at each time step ¢, he model processes encoded inputs through a
recurrent GNN processor:

hi = fu(x});  hi; = fe(el;);  hy=fy(g") 3
pi7pf] = w(hfvpt_lvhijahz) (4)

where f,, fe, and f, are linear encoding layers. 9 is the GNN processor [5]. pfl represents the
recurrent state from the previous time step. The model is trained to minimize both hint prediction and

final output losses:
T

Letrs = Lowpu (0, 0) + A Z Lhind(H', 1) 5

t=1

GNN Baseline: Non-Recurrent, Hint-Free Baseline: We modify the CLRS formulation to
critically evaluate its core components (recurrence and hint supervision). This allows us to assess
whether simpler approaches can achieve comparable performance on algorithmic reasoning tasks.
Here, along with removing the hint loss, we replace the multi-step recurrent GNN by a single-step
processor, and the model directly predicts the final output. The equations 4 and 5 are modified to:

pi. pij = ¢(hy,hY; h)) (6)
Cbaseline - L:output(@a O) (7)
Here, in Eq. 6, the recurrent state pﬁ_l is removed, and the model is not supervised on hint loss, as
shown in Eq. 7. This baseline relies solely on graph structure and final output supervision, learning a

direct input-output mapping rather than simulating intermediate algorithmic steps, and allows us to
assess the specific contributions of recurrence and hints to algorithmic reasoning.

A.3 Additional Details

We follow the original CLRS-30 experimental protocol with standard hyperparameters to ensure a
fair comparison. Tables 2 and 3 summarize the key settings used across all experiments, for both our
NAR model and the GNN baselines. Note that CLRS runs all GNNs on fully connected graphs, with
edge features indicating whether an edge is present in the ground-truth graph.
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Parameter Value Description
Embedding Size (h) 128 Node/edge embedding dimension
Batch Size 32 Samples per batch
Optimizer Adam B1 =0.9, By =0.999, e = 1078
Learning Rate 0.001 Adam optimizer learning rate
Gradient Clipping 1.0 Norm clipping constant
Training Steps 10,000 Number of training epochs
Random Seeds 5 Independent runs

Graph Sizes (Train, Multi-size) {4, 7, 11, 13, 16} Cyclic sequence of training sizes
Graph Sizes (Test) 64 Evaluation size (CLRS Benchmark)

Table 2: Training hyperparameters (from Ibarz et al. [12]).

Parameter Value Description

Hidden Size 128 Dimension of latent node/edge states
Message Passing Steps 1 Number of propagation rounds
Attention Heads 1 For GAT-based processors

Dropout 0.0 Dropout probability

Layer Normalization True Applied in processor layers

LSTM After Processor False If LSTM is used after message passing
Triplet Features 8 Number of triplet features (for Triplet-GMPNN)
Processor Type MPNN / Triplet-GMPNN GNN baseline architectures

Encoder Initialization Xavier on scalars Weight initialization scheme

Table 3: Architecture hyperparameters of NAR and GNN baselines (from Ibarz et al. [12]).
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