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Abstract

This position paper argues that post-deployment monitoring in clinical Al is under-
developed and proposes statistically valid and label-efficient testing frameworks as
a principled foundation for ensuring reliability and safety in real-world deployment.
A recent review found that only 9% of FDA-registered Al-based healthcare tools
include a post-deployment surveillance plan [[1]. Existing monitoring approaches
are often manual, sporadic, and reactive, making them ill-suited for the dynamic
environments in which clinical models operate. We contend that post-deployment
monitoring should be grounded in label-efficient and statistically valid testing
frameworks, offering a principled alternative to current practices. We use the term
“statistically valid" to refer to methods that provide explicit guarantees on error rates
(e.g., Type I/II error), enable formal inference under pre-defined assumptions, and
support reproducibility—features that align with regulatory requirements. Specifi-
cally, we propose that the detection of changes in the data and model performance
degradation should be framed as distinct statistical hypothesis testing problems.
Grounding monitoring in statistical rigor ensures a reproducible and scientifically
sound basis for maintaining the reliability of clinical Al systems. Importantly, it
also opens new research directions for the technical community—spanning theory,
methods, and tools for statistically principled detection, attribution, and mitigation
of post-deployment model failures in real-world settings.

1 Introduction

Al models play a growing role in healthcare by providing advanced tools for disease diagnosis,
medical imaging analysis, treatment planning, and patient monitoring [2. 3,4} 5] 6]. However, their
promise is contingent on maintaining reliability and accuracy post-deployment—an area where
significant challenges remain. Al-based digital health tools are known to experience performance
degradation over time, which can have profound clinical implications, from missed diagnoses in
radiology [3] to delayed interventions in critical care [S]]. These declines are particularly pronounced
in diverse healthcare settings, where variations in demographics, deployment sites, and equipment
can exacerbate diagnostic disparities [[7, 18, 19, [10]], posing risks to patient safety.

Despite these risks, a recent study revealed that only 9% of FDA-registered Al-based healthcare
tools include a post-deployment surveillance plan [1]. Yet, the FDA’s guidelines for Software as a
Medical Device (SaMD) [11]] emphasize the importance of ongoing model evaluation, including the
use of prospective, statistically valid real-world performance monitoring to ensure continued safety,
effectiveness, and performance. Similarly, the National Institute of Standards and Technology (NIST)
emphasizes post-deployment monitoring as a cornerstone of its AI Risk Management Framework,
essential for managing risk and maintaining trust throughout the Al lifecycle [[12]. In line with these
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expectations, it is critical to understand the mechanisms by which model performance can deteriorate
after deployment in order to address the issue in a systematic and effective way.

Performance degradation in deployed Al models can arise from various sources: shifts in patient
demographics, evolution of clinical practices, changes in medical equipment or protocols, emergence
of new disease patterns, and variations in data acquisition procedures [8, [13, 9} 14, [15,110]. At a
high level, these data-related changes can be grouped into three categories: covariate shift [16} [17],
label shift [18]], and concept drift [[19} 20, 21]. Covariate shift refers to changes in the input features
while the relationship between the input features and the labels remains unchanged. For example,
shifts in patient demographics and alterations in data collection methods. Label shift occurs due
to the changes in the output distribution, while output-conditional feature distributions remain the
same. For example, seasonal fluctuations in flu prevalence. On the other hand, concept drift refers to
changes in the relationship between input features and labels, while the distribution of input features
remains unchanged. This can occur due to shifts in clinical practice, new medical guidelines, changes
in outcome prevalence, or the emergence of new confounding variables. Figure E] (a), (b), and (c)
depict simple examples of covariate shift, label shift, and concept drift, respectively, while Table [2]in
the Appendix [A]summarizes key causes and examples in the clinical AL

The described shifts in the data can make the model’s previously learned associations less accurate or
outright invalid. Although model performance can be evaluated to determine whether these shifts
change performance meaningfully, common evaluation methods after deployment are often based on
average performance metrics performed manually and sporadically by clinicians [13}9]. By the time
clinicians detect a decline in model performance, significant harm may have already occurred, and
trust in the model may have been lost. Moreover, average performance metrics can mask degradation
in specific patient subgroups [22]]. Identifying and monitoring these subgroup-specific performance
changes is crucial for ensuring effective care for all patients. However, effective and persistent
post-deployment monitoring of this form is challenging due to the scarcity of ground truth labels
(23] 241 25].

While Al in healthcare includes both predictive and generative applications, this paper focuses exclu-
sively on predictive models—such as those used for diagnosis, prognosis, and clinical risk scoring.
We do not address generative models like large language models (LLMs). This focus is deliberate:
even for predictive systems, post-deployment monitoring remains an unsolved challenge. Establishing
rigorous methods in this domain is a necessary first step. This paper argues that post-deployment
monitoring remains underemphasized in the machine learning community—particularly in
high-stakes applications like clinical AI, where errors can have severe consequences. Current
practices are ad hoc, sporadic, and reactive, lacking the systematic rigor needed to ensure safety
and reliability. We contend that integrating statistically valid testing frameworks into post-
deployment workflows offers a principled and label-efficient foundation and should become a
core component of the machine learning lifecycle for clinical applications.

2 Related Work

Data Shift Detection Covariate shift has been extensively studied in the machine learning commu-
nity. Early theoretical work defined covariate shift and developed importance weighting techniques
for adaptation [[16} [17]. Subsequent research provided unified taxonomies of dataset shift types [26]]
and empirical studies evaluating drift detection methods in high-dimensional settings [27]]. With
respect to concept drift, [21]] offers a comprehensive taxonomy of drift types and adaptation strategies
in data-stream learning, focusing primarily on supervised and semi-supervised settings. [28]] focuses
on unsupervised scenarios where labels are scarce and categorizes detectors based on statistical,
clustering, and reconstruction principles. In the context of our work, [29]] introduces a classifier-
independent drift detector based on hierarchical hypothesis testing, one of the few existing approaches
that aligns with the statistically principled framework we advocate. [30] highlights the risks of dataset
shift in deployed clinical ML systems and advocates for clinician-in-the-loop monitoring to detect
and respond to data shifts, emphasizing governance and oversight.

A range of statistical tests can be applied to compare pre- and post-deployment distributions, enabling
formal detection of a shift through two-sample hypothesis testing. Table |l| summarizes common
parametric and nonparametric tests, which can be applied to both data-shift detection [27, 31]] and
model-performance monitoring [32].



Model Performance Monitoring At deployment scale, many concurrent monitors (features, sub-
groups, metrics) benefit from online multiple-testing with anytime-valid FDR control (SAFFRON)
and e-value procedures (e-BH) for adaptive false-alarm control [33}134]]. In healthcare applications,
[35]] demonstrated how shifts in patient demographics and clinical workflows can degrade predictive-
model performance, while [36] proposed practical evaluation strategies under distributional shift,
highlighting challenges particularly relevant to clinical deployments. [37]] used CUSUM control
charts to track input drift in medical Al, and [38] applied statistical process control methods for
radiological data monitoring. [39] focused on detecting calibration drift in predictive models, whereas
[40] introduced adaptive windowing for real-time multimodal performance monitoring.

MLOps Finally, the operationalization of AI model monitoring has been advanced by the field of
MLOps. While our focus is on statistically valid monitoring, there has been considerable development
in system infrastructure. The work in [41] proposed a comprehensive MLHOps framework, detailing
deployment pipelines and monitoring components tailored for healthcare Al. Similarly, [42] identified
architectural considerations and practical challenges for real-world post-deployment monitoring. This
position paper complements these system-level frameworks by arguing for a statistically principled
foundation for model monitoring, one that is label-efficient, interpretable, and aligned with regulatory
expectations. We highlight how framing monitoring tasks as hypothesis testing problems enables
systematic and actionable approaches that can be integrated into existing MLOps pipelines to enable
safe deployment.
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Figure 1: Framing Post-Deployment Monitoring as Hypothesis Testing. Binary classification example.
A hypothesis test for (a) covariate shift—input features distribution changes, but the relationship
between labels and input features remains the same, (b) label shift—output distribution changes, while
output-conditional feature distributions remain the same, (c) concept drift—relationship between
labels and input features changes, but the distribution of the input features remains the same. If a
statistically significant change is observed, a hypothesis test for (d) model performance degradation
is performed. If a model is affected by the change, (e) impacted subgroup identification is performed
and used for target label collection and model recalibration. One of the open problems is addressing
label scarcity for each of the described stages.

3 Framing Post-Deployment Monitoring as Hypothesis Testing

Given the challenges outlined in the introduction—manual monitoring, reliance on coarse average
metrics, label scarcity, and FDA expectations for statistical validity—there is a need for rigorous
and scalable monitoring tools in clinical AI. We propose reframing post-deployment monitoring
as a collection of statistically grounded two-sample hypothesis tests. This framing enables formal
decision-making with controlled error rates, moving beyond heuristic-based methods that lack
statistical guarantees. It also provides a principled foundation for aligning model monitoring with
regulatory standards and clinical safety needs.



To this end, we organize post-deployment monitoring into two core stages: (I) Data Shift Detection
and (II) Model Performance Monitoring. Within the data shift stage, we introduce hypothesis
tests for covariate shift (Section [4.1)) and concept drift (Section .2)). In the model performance
stage, we develop tests for detecting degradation in overall model accuracy (Section [5.1)) as well
as distributional shifts in prediction correctness - e.g. do errors concentrate in specific subgroups?
(Section [5.2)). Each monitoring task is cast as a two-sample hypothesis test comparing pre- and
post-deployment distributions, providing statistically grounded monitoring, as depicted in Figure[I]
The post-deployment monitoring is modality-agnostic, as long as the data can be represented as input
features and clinical/demographic variables.

While conceptually straightforward, this formulation exposes several unresolved challenges. Most
notably, evaluating performance degradation requires access to post-deployment ground truth labels,
which are often delayed, costly, or entirely unavailable. In high-dimensional settings, required
sample sizes rise and test power can drop; thus, label-efficient tactics (e.g., sequential looks and
active labeling) and explicit reporting of decision margins/thresholds are essential. This motivates
research into label-efficient monitoring strategies, including active learning, surrogate labeling,
weak supervision, and model-based uncertainty estimation. Moreover, once degradation is detected,
identifying the most affected subgroups remains an open problem critical to ensuring fairness and
guiding retraining. Throughout the manuscript, we provide formal problem statements and examples
of existing approaches and present these challenges as open problems (OP) for the community.

Let Dy, and D;, denote i.i.d. samples|[collected at pre-deployment and post-deployment time points
to and t1, drawn from distributions p;, and p;, , respectively. Let f : R? — R be a model mapping
clinical inputs to predictions, and let M; = g(f, p;) denote its performance under distribution p;. We
frame monitoring tasks as two classes of two-sample tests:

(I) Data Shift Detection A key objective in post-deployment monitoring is to determine whether
the distribution of patient characteristics has changed significantly between ¢y and t;. We use this
test type to detect distributional shifts, as detailed in Sections and To this end, we define the
null and alternative hypotheses, Hy and H1, as follows:

Hy : pt, = pt,
Hy : py, # Dty

(IT) Model Performance Monitoring Another important objective is to detect the performance
degradation of the Al model after deployment. Given a user-specified performance evaluation function
g (e.g., classification accuracy), we compare the model’s performance over the data distributions at £,
and t;. We use this test to detect performance degradation as detailed in Section[5] Given 7 > 0, a
user-defined threshold for acceptable performance degradationﬂ the corresponding hypotheses are:

HOZMtO_MtléT
H1:Mt0_Mt1>7-

ey
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In both cases, we compute a test statistic T'(Dy, , D¢, ) and compare it to a critical value ¢ to determine
whether the observed difference is statistically significant:

Reject Hy :  if T(Dy,,Dy,) > ¢
Accept Hy :  otherwise.

3

Table[T] summarizes candidate two-sample test statistics—parametric and non-parametric—and the
associated assumptions and power trade-offs. Appendix [D]outlines our test-selection rationale, and
Appendices[F]and [G] describe the parametric and non-parametric tests, respectively.

4 Data Shift Detection

One of the initial challenges in post-deployment monitoring is to detect data-only distributional
changes between the pre- and post-deployment time points, denoted ¢y and ¢;. We distinguish

'i.i.d. assumption is local within each period (samples at to or 1) but not across time.
2The threshold is set based on application-specific considerations that reflect what constitutes a clinically-
meaningful drop in performance.



Tests When to Use / Notes Data Distribution Assumptions
[0z test ‘When population standard deviation is known normality, known variance
'j:: = [] Two-Sample t-Test When variances are unknown but assumed equal normality, equal variances
% [0 Welch’s t-Test ‘When variances are unknown and potentially unequal normality, unequal variances
E . [ F-Test Compare two variances; affected by skewness normality
[ Bartlett’s Test Extends F-Test to multiple groups; more stable than F-test | normality
o = [] Mann-Whitney U Test When distribution shape is unknown or non-normal
g > | [ Levene’s Test When normality is uncertain
§ 2 [] Kolmogorov-Smirnov (KS) Test General-purpose test; best for moderate sample sizes
5; % [] Anderson-Darling Test When identifying shifts in rare events is critical; better than KS test for tail differences
§ % [] Friedman-Rafsky Test Uses graph-based approach using minimum spanning tree
_ [] Maximum Mean Discrepancy (MMD) | Effective for detecting shifts in high-dimensional data, needs an appropriate kernel choice

Table 1: Summary of two sample test statistics for detecting differences between p;, and py, , including
assumptions and use cases. All methods assume i.i.d. data. Note: “M" denotes mean, “V" denotes
variance

between three types of data shift: covariate shift, where the distribution of inputs changes while
the input-output relationship remains fixed, label shift, where the marginal distribution of outputs
changes while the distribution of inputs given outputs remains fixed; and concept drift, where the
conditional relationship between inputs and outputs changes, while the input distribution remains
fixed [26]. Figure[T](a), (b), and (c) illustrate a simple example of covariate shift, label shift, and
concept drift. In the following subsections, we define covariate shift and concept drift and develop
hypothesis tests to detect them. We defer label shift to Appendix |B} since its testing procedure is
analogous to the covariate shift test.

Let (S, C) denote a pair of random variables in the sample space S x C, representing input and
clinical feature variables, respectively. We separate S from C to reflect their distinct roles in
the monitoring pipeline. The model operates solely on S, which we assume encodes all relevant
information for prediction, while C is treated as a latent variable that can be used in the identification
of impacted subgroups. We use Y € {0, 1} to denote the corresponding label random variable for
(S, C), resulting in the tuple (S, C,Y"), which includes both feature and label variables. Assuming
that {(S,C,Y),};_, are i.i.d., we express the marginal distribution of (S,C,Y) as p (s, c,y) =
p(y|s,c)p(s,c), where s, c and y denote the realizations of the random variables.

4.1 Covariate Shift

Following the definition in [26], covariate shift corresponds to the case where py, (s, ¢) # pi, (s, ),
while V (s,c) € S X C, p,(y | s,¢) = pi,(y | s,c). To formalize covariate shift detection as
a statistical hypothesis test, let D3¢ = {(S, C),}:"3 and D;¢ = {(S, C),};} denote two sets of
i.i.d. data collected at tg and t;. We denote py, (s, c) and p;, (s, c) as the joint distributions of the
input and clinical features at the pre- and post-deployment stages. The goal is to monitor whether a
statistically significant change has occurred in this joint distribution of covariates (S, C), which can
be posed as the following two-sample hypothesis testing problem:

HO : pt0<S,C> =Pt (S7C)7 (4)

Hi: pi(s,c) # pi, (s, c).
We note that, for Hy and H;, and output label y, this test assumes that the conditional distribution
of y remains unchanged—that is, ps, (y|s, c) = ps, (y|s, c) holds ¥(s, c) € § x C. Under the null
hypothesis Hy, the joint distribution of features and clinical variables remains unchanged between
to and tq; that is, py, (s,€) = p¢, (s,¢),V(s,c) € S x C. The alternative hypothesis H; posits that
Dt (8,€) # pt, (s,¢),3(s,c) € S x C, indicating a potential shift in the underlying distribution of
patient covariates.

The samples D5 and Dy’ are compared using two-sample hypothesis tests to decide between Hy
and H;. The choice of test depends on the monitoring objectives and assumptions about the data. A
variety of parametric and non-parametric methods can be applied, which are reviewed in Appendix [D]



OP: Choosing an Appropriate Test for High-Dimensional Data Several challenges remain in
the practical application of covariate shift testing. First, evaluating and selecting an appropriate test
for a given problem is nontrivial, particularly in high-dimensional settings where testing power can
be low. The choice of a test can drastically impact sensitivity and interoperability. Second, covariate
shift tests rely on the assumption that the conditional distribution p(y | s, ¢) remains unchanged.
This assumption is typically unverifiable in practice without explicit testing and may be violated,
undermining the validity of the test. Robust approaches that can either test for this invariance or
remain effective under its relaxation are an important direction for future work.

4.2 Concept Drift

Following the definition in [26]], concept drift corresponds to: ps, (v | s,¢) # pt, (v | 8,¢),3(s,¢) €
S x C while py, (s,c) = py,(s,c),V(s,c) € S x C. We define ;¥ = {(S,C,Y),};; and
DY = {(S,C,Y),}:; to represent the collection of covariates and true labels at ¢, and ¢;.
Furthermore, let py, (s, ¢, y) and py, (s, c,y) denote the joint distributions of (S, C,Y) at ¢y and
t1, for which the pre- and post-deployment datasets D; ¥ and D;"" are sampled. We formulate the
two-sample hypothesis testing problem to detect the concept drift as:

HO : pto(sacay) =Pt (S7C,y)

Hl : ptg(s7cay) #ptl (S7C,y). (5)
We note that this test assumes that the joint distributions of the features and clinical/demographic
variables at the pre- and post-deployment stages remain unchanged, that is p;,(s,c) = py, (s, c)
holds ¥(s, c) € S x C. Under Hy, the joint distribution of features, clinical/demographic, and label
variables remains consistent over time, indicating that the model’s performance has not degraded.
Under H,, the joint distribution of inputs and labels has changed, which may affect the model’s
performance if it is sensitive to such distribution shifts. Similar to the covariate shift discussed in
Section[4.1] the task of monitoring concept drift is framed as detecting distributional shifts. This
involves comparing the datasets D;;¥ and D; using a two-sample test to determine whether to
reject Hy. We refer readers to the two-sample tests described in Appendix [D|for further details.

OP: Drift Mechanism Attribution While concept drift is formally defined as changes in p(y | s, ¢),
standard two-sample tests cannot directly test conditional distributions. We employ sequential testing
[43]: first test for label shift (Appendix; if absent, test the joint distribution p(s, ¢, y) for concept
drift. When both shifts co-occur, distinguishing the mechanism requires additional methods. Class-
conditional testing, separately test whether p(s,c | y) has changed for each outcome class, as
label shift preserves these distributions while concept drift does not, though this requires sufficient
labeled samples per class. Black Box Shift Estimation (BBSE) [43] can estimate the magnitude of
label shift from unlabeled data, providing qualitative insight into the relative contribution of each
mechanism. Alternative approaches like stratified binning or kernel methods [44] are possible but
remain impractical due to the curse of dimensionality.

OP: Addressing Label Scarcity Evaluating the hypothesis test requires post-deployment ground
truth labels; however, these are costly and time-consuming to obtain. To mitigate this, we need new
approaches for surrogate models to approximate the true label y in both pre- and post-deployment
settings, building on the foundation of surrogate endpoints established in clinical trials [45]. In
healthcare machine learning, surrogate labels are often derived from data correlated with clinical
outcomes, such as billing codes [46]], 1ab results [47]], or earlier outcomes like 30-day readmission
used in place of 90-day outcomes [48]. Alternatively, surrogate labels can be generated from
combinations of weak sources—heuristics, knowledge bases, or auxiliary models [49}50]. While
practical in label-scarce settings, these proxies may introduce noise or degrade over time, limiting their
reliability [51}[52,[53]. This can be formulated as a regression problem y = .J (s, ¢, §) + €;, where §
is model’s prediction, y is a label, ¢; is the residual noise, and J represents the function approximated
by the surrogate model. J can be estimated by the Prediction Aided by Surrogate Training (PAST)
algorithm [54]. Beyond surrogate modeling, this setting motivates new directions in label-efficient
hypothesis testing—an area that remains underexplored. For example, Li et al. [S5,[23}156] propose a
query strategies for active labeling of samples in two-sample tests. They show this preserves validity
and enhances test power under label constraints.



5 Model Performance Monitoring

In this section, we present two complementary approaches to monitoring model performance, each
framed as a two-sample hypothesis test. Subsection introduces a test for monitoring changes in
the model’s performance score, while Subsection [5.2] describes a test for monitoring shifts in the
distribution of prediction correctness.

5.1 Monitoring Performance Score

Direct assessment of the performance for an Al model Y = £(S), (S, C) ~ p (s, c), is essential for
detecting degradation. To do that, one needs to collect the true label Y at the pre- and post-deployment
stages, to and t1, and evaluate the performance score using them along with the prediction variable
Y. Specifically, we write M = g (f,p(s,c,y)) to denote an evaluation function that outputs the
performance score, or metric M, with respect to the model f and the data distribution p (s, ¢, y).

There are many choices for the evaluation function g. Appendix [C| describes performance met-
rics that are commonly used. For instance, let M;, (or M,,) denote the performance score
of a model at ¢; (or tg). If we select classification accuracy for M;, = g (f,ps ), we then
have My, = [ [ [1p)=ypt, (s,¢,y)dsdedy. Typically, one does not have access to py,

or p;, to evaluate M;, or My, ; instead, one resorts to computing the empirical metric, e.g.,
Y 1 ni

Mty = by S epemizs Lrtsy=ue where DI = {(5,€.9) 2.

To this end, we establish two complementary two-sample tests for monitoring the performance score:
(1) performance degradation relative to pre-deployment performance, and (2) specification threshold
testing, as described below.

Performance Deviation Testing Implemented through one-sided tests (OST), performance devia-
tion testing assesses whether model performance has remained stable within an acceptable margin
relative to its pre-deployment baseline. This approach is particularly useful for demonstrating sus-
tained performance rather than merely detecting degradation. To this end, we formalize the detection
of performance deviation as a one-sided two-sample testing problem:

Hy: My, — My, < Taeg,

(6)
Hl : Mtg - Mt1 > Tdeg

where 74eg > 0 denotes a predefined threshold representing the maximum tolerable performance

degradation. The decision between H( and H; is made by comparing Mtu and Mtl, computed from
the pre- and post-deployment datasets D" and D; ¥, respectively.

Specification Threshold Testing directly evaluates whether the current model performance meets
predetermined minimum requirements, which is important for regulatory compliance and clinical
safety standards. In contrast to performance deviation testing, specification threshold testing assesses
only whether the post-deployment performance score M, falls below a predefined threshold Tgpec > 0.
The goal is to verify compliance with the specified performance standards. Formally, we have

Hy : Mt1 > Tspec

7
Hl : Mt1 < Tspec- ( )

The decision between H, and H; is based on evaluating the empirical score Mtl using the dataset
D;Y.
1

OP: Impacted Subgroups Identification The performance metrics and hypothesis tests presented
above capture average performance over the entire distribution p(s, c, y), overlooking significant
performance variations across different subgroups. Inspired by Cohort EnrichmentE] [57] and
Exceptional Model Mining (EMM) E] [58] strategies, one can systematically identify subgroups

3Cohort Enrichment refers to identifying subsets of the data where a particular phenomenon (e.g., degradation)
is amplified relative to the general population

“EMM is a generalization of subgroup discovery aimed at finding subpopulations where model behavior
deviates significantly from the global norm—whether in performance, fairness, or other metrics



experiencing meaningful performance decline. We define the subgroup-specific performance as
M7 = g (f,p: (s,c,y | G)) for a candidate subgroup G C S x C. The task of identifying subgroups
with the most greatest performance degradation between ¢ and ¢; is then formalized as the following
optimization problem: maxgcsxc MtgO — Mtg1 ,s.t. |G| > r, where r is a predefined minimum group
size. Solving it offers valuable insights for: (1) identifying features where the model’s discriminative
power has shifted, (2) detecting subgroups that experience disproportionate performance degradation,
and (3) uncovering complex interaction patterns that may signal vulnerable populations.

OP: Addressing Label Scarcity A separate potential direction on addressing label scarcity is
rooted in active learning [59} 160} 61} 162], which aims to develop classification models under limited
label availability. In the context of our work, active learning offers a principled approach to selecting
which covariate instances (s, ¢) should be labeled, thereby improving the performance of the model
f efficiently. Typically, this involves constructing an acquisition function ¢(s, ¢) that quantifies
the informativeness of instances across the covariate space S x C. The instance with the highest
acquisition score, arg max(s cyesxc q(s, ¢), is selected for labeling and used to update the model f.
Representative acquisition functions include ensemble-based uncertainty estimation techniques such
as Query-by-Committee (QBC)[63]] and deep ensembles[64]. Intuitively, these functions measure
the uncertainty of model predictions over the covariate space. Regions with the highest predictive
uncertainty often correspond to areas where the model underperforms. Consequently, prioritizing
label queries in these regions facilitates more effective detection of model degradation.

5.2 Monitoring Prediction Correctness

This section introduces the concept of detecting changes in the joint distribution of model features
and prediction correctness. The performance score monitoring, presented in Section[5.1} evaluates
whether there is overall performance degradation across the entire population. In contrast, the
method described below is designed to detect performance changes even within a local subpopulation
during post-deployment monitoring. This is achieved by framing post-deployment monitoring as a
two-sample testing problem for identifying distributional shifts, rather than differences in average
performance. Before formalizing this approach, we introduce the correctness indicator Z € {0, 1} as
follows:

7 {1, if § =y (correct prediction), ®

0, ifg+#y (incorrect prediction)

where § = f(s) denotes the model’s prediction. Herein, we also reuse the notations of pre- and
post-deployment data, and define D;¢* = {(S, C, Z),};*, and D{** = {(S, C, Z), }}"*, to represent
the collection of covariates and model correctness indicators at to and ¢;. Furthermore, let py, (s, ¢, z)
and py, (s, c, z) denote the joint distributions of (S, C, Z) at t( and ¢1, for which the pre- and post-
deployment datasets D;** and D;** are sampled. We formulate the following hypothesis test to
detect distribution shifts in the model’s predictions:

HO : pto(sacaz) =Py (S,C,Z) (9)

Hy: py(s,c,2) #py (s, 2).
The nonparametric two-sample tests described in Appendix Gl for detecting distributional shifts can
be applied to evaluate the hypothesis from Dj5* and Dy .

This approach provides a distinct advantage over average performance score monitoring, as discussed
in Section 5.1} For instance, it can alert users to significant shifts in model performance within
specific regions of the covariate space, even when the model’s overall performance remains stable.

OP: Identifying Impacted Subgroups Similar to the open problems in the previous sub-
section, instead of focusing on the model’s overall performance, we can also identify sub-
groups responsible for performance decline in the case of joint distribution. By selecting a
discrepancy function A(py,,ps, )—where A denotes a measure of discrepancy, such as an f-
divergence [65]—to quantify the difference between distributions, we can formulate the task
of identifying subgroups that exhibit distributional differences as the following optimization
problem:maxgcsxe A (P, (8,¢,2 | G),pi, (s,¢,2 | G)), s.t. |G| > r, where r denotes the min-
imum size of the subgroup, pre-specified based on clinical considerations. Solving this optimization



problem yields a subgroup G of size at least r that maximizes the performance-related distributional
discrepancy between ¢ and ¢ .

OP: Detecting Subtle Shifts Lastly, performance drift often unfolds gradually rather than through
abrupt shifts. Given limited data, designing statistically rigorous and sensitive tests that can detect
such gradual degradation—especially within specific patient subgroups—remains an important
open challenge. Promising directions include the use of active two-sample testing strategies [23l],
which adaptively select informative samples to boost test power under label scarcity, as well as
adaptive windowing and monitoring methods [39} 40] that track cumulative changes over time and
are well-suited for detecting subtle shifts.

6 Alternative Views

Several well-established research threads could serve as alternatives to the post-deployment monitor-
ing problem. We examine the pros and cons of the top three alternatives to our proposed approach:
continual learning, Bayesian change—point detection, and conformal-prediction—based monitoring.

Continual Learning or lifelong learning algorithms update model parameters online to accommo-
date non-stationary data distributions [66} 67} 68]]. Advantages include low latency adaptation as well
as theoretical guarantees. Models can react to drift on the very next batch, which is attractive when
label feedback is cheap. Additionally, PAC-Bayesian [69] or regret bounds are available for certain
online update rules. However, this comes with several limitations: label requirement, auditability and
traceability and silent failure. State-of-the-art continual learners still rely on frequent ground-truth
labels to avoid catastrophic forgetting [70]]. In clinical applications, those labels are costly or delayed.
Regulatory guidelines (e.g. FDA SaMD) require reproducible model versions. Online updates create
a moving target that complicates version control, performance analysis, and root-cause analysis [11].
Finally, without an external test, online updates can chase noisy fluctuations and cause silent accuracy
drops [71]], which in turn may widen performance gaps for under-represented sub-groups in the data
[72]].

Bayesian Change—Point Detection (BOCPD) offers a probabilistic approach by maintaining a
posterior distribution over run lengths and updating this belief as new data stream in [73} [74]. This
method provides coherent uncertainty quantification, allowing drift detection systems to trigger
alarms based on posterior probabilities. It is also sequentially efficient: when using conjugate-
exponential models, updates can be computed in constant amortized time per observation. However,
BOCPD relies heavily on calibrated priors, which are rarely available or reliable in clinical contexts.
Furthermore, applying BOCPD to high-dimensional data often requires approximate inference via
particle filters or sequential Monte Carlo methods, which may be computationally infeasible for
hospital-scale EHR feeds. Importantly, while BOCPD indicates when a change occurred, it does not
identify where the change took place—limiting its usefulness in root-cause analysis and mitigation
planning.

Conformal Prediction and Exchangeability Martingales offers a distribution-free framework for
post-deployment monitoring. These methods maintain finite-sample validity under the assumption
of exchangeability and have been extended to detect drift by monitoring conformal p-values or
exchangeability martingales [[75) [76, [77]. They are attractive in that they do not require strong
parametric assumptions, and variants such as Mondrian or conditional conformal predictors can
operate effectively using weak labels. Still, this approach has notable weaknesses. The assumption
of exchangeability is fragile in real-world settings like healthcare, where temporal, site-level, and
treatment-based correlations are pervasive and violate i.i.d. conditions [78]. Furthermore, the signal
provided by conformal methods is often blunt: they flag distributional shift only after prediction sets
inflate, and do not distinguish between covariate and concept drift, nor do they identify the specific
subgroups affected. As such, they tend to be reactive rather than proactive—triggering alarms after
performance degrades, rather than before.

Summary Two-sample hypothesis testing combines rigorous error control, label efficiency, and
interpretability. It provides explicit a-level guarantees on type I error and power-based control of
type II error. Unlike conformal methods, label-free tests such as kernel MMD [79] compare input



distributions directly and highlight the feature regions driving the difference, providing regulator-
friendly, interpretable evidence of shift. Detection is also modular: once drift is identified, retraining,
recalibration, or continual learning can follow as appropriate. In contrast, continual learning, Bayesian
monitoring, and conformal prediction each address part of the monitoring problem but fall short on
one or more axes—supervision cost, statistical guarantees, or auditability. Hypothesis testing, by
covering all three, is the most robust and regulator-ready foundation for monitoring Al systems in
healthcare.

7 Limitations and Future Directions

This position paper focuses on statistically valid, label-efficient post-deployment monitoring and
intentionally stops short of a fully causal treatment of failure attribution or label-semantics dynamics;
we discuss monitoring of surrogate-label drift but leave causal analyses to future work. While we do
not assume i.i.d. behavior across time (i.e., we assume that the data distribution has shifted relative to
pre-deployment), we do assume that data are locally i.i.d. within pre- and post-deployment windows;
extending the framework to handle explicit temporal dependence, time-series change detection, and
broader nonstationarity is a natural next step.

While our formulation is modality-agnostic—operating on learned embeddings and applying the
same drift, performance, and subgroup tests—we note a trade-off: higher dimensionality increases
sample requirements and can reduce power. Consequently, label-efficient tactics (e.g., sequential
looks and active labeling) together with clear reporting of margins and thresholds are key.

In the paper, we present statistical tests with binary outcomes. A natural extension is to treat
validity as a continuum shaped by Pareto trade-offs among false-alarm control, detection delay,
label budget, and subgroup granularity. Different operating points allocate limited risk and labeling
resources differently across populations and time, tracing a frontier of feasible guarantees. This
mirrors fairness—accuracy trade-offs in risk scoring: incompatible desiderata cannot be simultaneously
optimized, so practitioners must select context-specific operating points with explicit, transparent
priorities [80].

While our work focuses on data- and model-level monitoring, deployments should also track
downstream clinical impact—e.g., shifts in treatment patterns, workflow latency, and patient out-
comes—using pragmatic designs with governance-backed thresholds; this operational layer is com-
plementary to our scope. Finally, while we present a traditional ML formulation, emerging generative
tools (e.g., LLMs, diffusion models, agents, and synthetic-data pipelines) introduce additional mon-
itoring challenges—including prompt and data-provenance drift, stochastic output variability and
hallucinations, content and usage safety, and generator-downstream feedback loops—that our frame-
work does not yet cover. Extending statistically valid monitoring to these generative settings is an
important direction for future work.

8 Conclusion

In this paper, we have presented a statistical framework for monitoring the performance of Al-based
digital health technologies post-deployment. By framing performance degradation detection as a
series of hypothesis testing problems, we provide rigorous methods for identifying distributional
shifts and model performance degradation, and we pose several open problems, notably in addressing
label scarcity and impacted subgroup identification. Our approach enables statistically grounded,
evidence-based criteria for detecting when intervention is needed, reduces reliance on subjective
assessments, and facilitates targeted performance analysis across different patient populations, while
also aligning with the FDA’s approach to performance evaluation.
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A Reasons for the Data Shift

| Reason | Example
Changes in Demographics Changes in patient demographics alter input features like age or comorbidities [81
& | Data Quality Issues New EHR system leads to missing test results or erroneous data entry [81
% [ Changes in Data Collection Methods Transitioning to a new system changes lab result units or reference ranges [82
£ | Regulatory and Compliance Changes Privacy regulations limit the use of certain features critical for predictions [83]
-8 [“Adversarial Attacks and Data Poisoning Falsifying patient records skews model predictions [84
£ [ Ethical Constraints and Bias Mitigation Efforts Bias-mitigation interventions can change which features are used for prediction [7]
S [ Changes in Measurement Techniques New [ab assay for troponin provides results that aren’t comparable to the previous method [85]
Changes in Population Health Trends Aging populations or increases in chronic conditions shift the input feature distribution [81]
“ | Seasonal Disease Prevalence Flu prevalence increases in winter, changing the proportion of positive cases [86]
2 [ Seasonal Health Campaigns Public health campaigns can influence patient behavior [81
,3 ‘Weather-related health issues Weather-related health issues can arise due to heatwaves or cold snaps [81]
_ | Changes in Treatment Protocols New clinical guidelines alter the relationship between symptoms and outcomes [81]
g | Feedback Loops Additional care prevents readmission, and the model misinterprets this as reduced risk [87]
A | External Changes in Clinical Practice Adoption of new surgical techniques changes complication patterns [81]
8. | Changes in Related Policies or Economic Factors Insurance policy changes alter patient behavior and readmission patterns [81
E Emergence of Unmeasured Confounding Variables | Environmental hazards change disease presentation patterns [88]
S Interaction Effects from Concurrent Models A'new AT triage system changes patient flow and case severity [89
Evolution of Disease Characteristics New variants alter symptom-outcome relationships [90

Table 2: Reasons and examples for covariate shift, label shift and concept drift in the healthcare
domain.
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B Label Shift

Following the taxonomy in [26], label shift (also called prior probability shift or target shift) corre-
sponds to the case where the marginal distribution of outcomes changes while the conditional distri-
bution of features given outcomes remains fixed. Formally, label shift occurs when py, (y) # pt, (y)
for some y € Y, while py, (s,c | y) = pi,(s,c | y) holds Vy € Y and V(s,c) € S x C. This type
of shift is prevalent in the settings, where disease prevalence naturally fluctuates due to seasonal
patterns, public health interventions, demographic changes, and evolving clinical practices.

To detect label shift, we formulate a hypothesis test on the marginal label distribution. Let p;, (y) and
pt, (y) denote the marginal distributions of outcomes at ¢y and ¢;. We test:

Ho: pi,(y) =pe,(y) Vyel
Hy: p(y) #p0(y) el

Note: we assume that py, (s, ¢ | y) = py, (s, ¢ | y) holds Vy € YV and V(s, c) € S x C. When label
shift is detected, several mitigation strategies are available that do not require full model retraining

[91]. For probabilistic classifiers, output probabilities can be adjusted using the ratio % to
to (2

(10)

account for changed base rates, while binary classifiers can undergo decision threshold recalibration
to maintain desired operating characteristics (e.g., sensitivity/specificity trade-offs) under the new

class distribution. When retraining is feasible, importance weights w; = % can be applied to
o (Ui

training samples to simulate the target distribution [43]]. Additionally, Expectation-Maximization
approaches such as Black Box Shift Estimation (BBSE) [43] can estimate label shift and correct
predictions using only unlabeled post-deployment data and a confusion matrix, though these methods
carry their own assumptions and limitations.

OP: Label Scarcity Detecting label shift requires access to ground truth labels Y at both pre- and
post-deployment stages to estimate py, (y) and py, (y). While label shift detection requires fewer
labels than concept drift detection (only marginal distributions rather than joint distributions), the
fundamental label scarcity problem remains. Active sampling strategies that prioritize diverse samples
across the feature space (rather than focusing on model uncertainty as in active learning) may be
more appropriate for label shift detection. Stratified sampling approaches that ensure representation
across key demographic and clinical subgroups can improve prevalence estimation efficiency.

C Performance Metrics

Selecting appropriate metrics is critical to assessing model degradation. Binary classification tasks
in healthcare require complementary metrics that capture different aspects of clinical performance
and align with specific medical decision-making needs. While accuracy provides an overall measure
of correctness, sensitivity, and specificity, offer insights into a model’s ability to identify positive
and negative cases, respectively - particularly important when false negatives (missed diagnoses) or
false positives (unnecessary interventions) carry different clinical consequences. Table [3|provides
a comprehensive overview of these metrics, their mathematical formulations, and their distribution
assumptions. Understanding these properties, particularly their asymptotic behavior and required
assumptions, is essential for constructing valid statistical tests for performance degradation.

Accuracy measures the overall proportion of correct predictions but can be misleading in healthcare
settings where class imbalance is common. For instance, a model predicting a rare disease might
achieve high accuracy by simply predicting "negative" for all cases. Precision quantifies how often
positive predictions are correct, which is crucial in scenarios where false positives lead to unnecessary
interventions. Recall (sensitivity) measures the model’s ability to identify actual positive cases, vital
in conditions where missing a diagnosis could be life-threatening. Conversely, specificity indicates
the model’s ability to correctly identify negative cases, particularly when false positives could lead to
unnecessary, expensive, or risky procedures.

Positive and Negative Predictive Values (PPV and NPV) are particularly relevant for clinical decision-
making as they answer the physician’s primary question: given the model’s prediction, what is the
probability it is correct? The F1 score balances precision and recall, useful when false positives and
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Name Metric Distribution Assumptions Distribution
- Observations are independent.

Accuracy TP+ TN - Number Qf correct predictions follows a blnqmla! distribution. Binomial distribution
- - Sample size large enough for normal approximation
TP + FP + FN + TN (np > 5). n(1 - p) > 5).
Precision - Observations are independent.
L. - Number of true positives among predicted positives follows
(Positive TP PRI ST,
P _— a binomial distribution. Binomial distribution
Predictive TP + FP Lo cample size f al Lo
Value (PPV)) - Large sample size for normal approximation
(np > 5),n(1—p) >5).
- Observations are independent.
Recall TP - Number of true positives among actual positives follows . [
P _— . S Binomial distribution
(Sensitivity) TP + FN a binomial distribution.
- Large number of positive cases for normal approximation.
- Complex function of two proportions (Precision and Recall).
Precision x Recall - Distribution i i i
F1 Score rec;ﬁron x Reca Distribution is not e_asﬂy defined analytlcauy ) Null distribution is unknown
Precision + Recall - Normal approximation may not be appropriate even with large n
- bootstrap methods recommended for inference n
- Observations are independent.
o N - Number of true negatives among actual negatives follows . [
Specificity TN TP a binomial distribution. Binomial distribution
- Large number of negative cases for normal approximation.
Negati - Observations are independent.
egative b . .
A N - Number of true negatives among predicted negatives follows . e
Predictive - . et Binomial distribution
TN + FN a binomial distribution.
Value (NPV) N . .
- Large sample size for normal approximation.
- Average of two proportions (Sensitivity and Specificity).
- Assumes independence between Sensitivity and
Balanced Sensitivity + Specificity  Specificity estimates. T
A _ - Lo . Exact distribution is complex
ccuracy 2 - Normal approximation may be used if both components

have normal distributions.
- Approximate normal distribution under large n

Table 3: Distribution Assumptions for Common Performance Metrics

negatives have significant clinical implications. Balanced accuracy, the average of sensitivity and
specificity, provides a more representative performance measure for imbalanced datasets, common in
medical conditions with low prevalence.

Most performance metrics mentioned in this section follow binomial distributions, reflecting their
foundation in counting correct and incorrect predictions. Under sufficient sample sizes specified in
Table [3] these metrics converge to normal distributions through the Central Limit Theorem. This
convergence occurs when we have enough samples of each class (np > 5 and n(1 — p) > 5)
for fundamental metrics like accuracy and precision. The resulting normal approximation enables
straightforward statistical inference through confidence intervals and hypothesis tests. However,
composite metrics require more careful statistical consideration. The balanced accuracy, while still
asymptotically normal, has a variance that must account for the relationship between its components.
The F1 score presents even greater challenges due to its nonlinear nature as a harmonic mean of
precision and recall. Its sampling distribution resists simple analytical characterization, necessitating
bootstrap methods or the delta method for reliable inference in practice.

D Choosing A Statistical Hypothesis Test and Heuristics

Statistical hypothesis testing relies on knowing the distribution of the test statistic under the null
hypothesis. If this null distribution is known, we can directly compute the probability of observing a
given test statistic and define a corresponding critical region. However, in many practical settings, the
null distribution is not known and must be estimated. One approach is to assume a specific parametric
form (e.g., Gaussian) and estimate its parameters from data. Alternatively, non-parametric methods
such as permutation tests [92} /93] make fewer assumptions and instead rely on data-driven resampling
procedures. We broadly categorize tests into parametric and non-parametric, as summarized in
Table

In addition to formal test statistics, our framework includes heuristics—such as control charts,
process monitoring techniques, and distance or divergence measures—as practical tools for detecting
distribution shifts. It is essential to distinguish between statistically rigorous hypothesis tests,
including both parametric and non-parametric approaches, and heuristic methods. Parametric tests,
such as the t-test or F-test, rely on assumptions like normality and independence and typically
require larger sample sizes; however, they offer precise Type I and Type II error control under these
conditions. Non-parametric tests, such as the Kolmogorov—Smirnov test or the Friedman—Rafsky
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test, are equally valid in a statistical sense and provide robust inference without strong distributional
assumptions. In contrast, heuristics like the Wasserstein Distance or Maximum Mean Discrepancy
can be powerful in practice—especially in high-dimensional or complex settings—but often rely on
empirically determined thresholds and lack formal guarantees on error rates. Table[I] summarizes
these methods, and their detailed mathematical formulations are provided in Appendices [F]and [G|

Selecting an appropriate evaluation method for detecting shifts in clinical data distributions requires
careful consideration of the type of change, the nature of the data, and the practical constraints in
post-deployment settings. Table [I|summarizes the range of test statistics and heuristics available for
detecting changes in means, variances, or full distributions. Below, we provide a guided walkthrough
of how to select among these tools, grounded in real-world examples and tradeoffs inherent to each
method.

Determine parametric vs. non-parametric regime. The first key decision is whether to adopt
a parametric or non-parametric approach. Parametric tests assume data follow a known distri-
bution—typically Gaussian—and offer efficient, high-power tests when these assumptions hold.
However, real-world post-deployment data often violate these assumptions: distributions may be
skewed, heavy-tailed, or multi-modal; features may be categorical, ordinal, or continuous; and
high-dimensional settings are common (e.g., embeddings, imaging, multimodal EHRs). In such cases,
non-parametric methods are more robust.

Define the type of shift of interest. If the goal is to detect changes in the mean of a feature or model
output, parametric methods like the z-fest (requires known variance and normality) or the two-sample
t-test (assumes equal variance) are natural starting points. When variance equality is uncertain,
Welch’s t-test relaxes that assumption and provides robust inference under heteroskedasticity. For
instance, a shift in average glucose levels between pre- and post-deployment periods can be assessed
using these tests. For variance shifts, the F-fest compares two variances under normality, while
Bartlett’s test generalizes this to multiple groups with better stability. However, both are sensitive to
non-normality. In such cases, Levene’s test, a non-parametric alternative, offers robustness at the cost
of slightly lower power.

Select tests suited to your feature space and dimensionality. When monitoring high-dimensional,
heterogeneous, or structured data—such as EHR records, where inputs include demographics, vitals,
and lab values—methods like Energy Distance and Maximum Mean Discrepancy (MMD) are advanta-
geous. MMD, in particular, is effective in detecting subtle distributional changes in image embeddings
or textual representations, assuming an appropriate kernel is chosen. Similarly, Wasserstein Distance,
rooted in optimal transport theory, captures support and shape shifts (e.g., population drift) even when
distributions do not overlap. For distribution pairs with full support overlap, Kullback-Leibler (KL)
divergence or its symmetric counterpart, Jensen-Shannon (JS) divergence, are informative but require
density estimation, which may be infeasible in high dimensions.

Consider temporal monitoring and real-time detection. For settings that require ongoing moni-
toring of streaming features (e.g., tracking patient inflow distributions or model prediction confidence),
univariate process control tools offer lightweight yet powerful diagnostics. Shewhart control charts
are designed to detect sudden shifts in feature means (e.g., a sudden increase in patient temperature),
while CUSUM charts accumulate deviations over time to detect persistent small changes. EWMA
(Exponentially Weighted Moving Average) charts offer smoother detection of gradual changes and are
particularly useful when the underlying process drifts slowly, as may occur with seasonal disease
incidence or chronic care trends. While these methods assume univariate i.i.d. data, they can be
extended to multivariate settings using multivariate statistical process control (MSPC) methods, albeit
with stronger distributional assumptions.

Practical limitations and methodological tradeoffs. Each method comes with tradeoffs. Para-
metric tests like ¢- and F'-fests are statistically efficient but brittle under assumption violations.
Non-parametric tests (e.g., KS, MMD, Wasserstein Distance) are flexible but often require larger
samples for power, careful kernel or metric selection, and suffer from the “curse of dimensionality.”
Tests like Friedman—Rafsky, which uses graph-based minimum spanning tree construction, are espe-
cially useful for multivariate shifts but can be computationally intensive. In addition, tests such as JS
Divergence or Energy Distance may be hard to interpret clinically without well-defined thresholds.
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Therefore, practitioners must balance statistical power, interpretability, computational burden, and
alignment with clinical relevance when choosing an evaluation method.

In summary There is no universally optimal method for detecting distributional shifts. Instead,
Table[I] provides a toolbox for context-specific decision making. When assumptions are met, para-
metric tests offer high power and clean interpretability. For complex, high-dimensional, or weakly
labeled post-deployment settings, non-parametric distributional distances—such as MMD, Wasser-
stein, and Friedman—Rafsky—are more robust and generalizable. Refer to Appendices [Fand [G]for
the descriptions of the parametric and non-parametric tests, respectively.

E Turning Heuristics into Statistical Tests

Heuristics When to Use / Notes Data Distribution Assumptions
g [IShewhart Control Charts For process monitoring; detects sudden shifts normality, stable process, markov process
; = | OCUSUM Chart For detecting small, persistent shifts over time stable process, known target value
& OEWMA For detecting gradual changes with weighted historical data | stable baseline, mean stationarity
5 2 []Energy Distance Measures statistical distances between distributions
E ﬁ [IWasserstein Distance When distributions have little or no overlap; captures shape/support shifts
& {g []Kullback-Leibler (KL) Divergence | When distributions have complete support overlap; information-theoretic interpretation; asymmetric measure
2 a []Jensen-Shannon (JS) Divergence Bounded symmetric variant of KL divergence; use if distributions may not overlap; symmetric measure

Table 4: Summary of two sample test statistics and heuristics for detecting differences between py,
and p;,, including assumptions and use cases. All methods assume i.i.d. data. Note: “M" denotes
mean, “V" denotes variance

While divergence measures such as Jensen-Shannon divergence, Maximum Mean Discrepancy
(MMD), Energy Distance, and Wasserstein distance provide powerful tools for quantifying dissim-
ilarity between distributions, they are not hypothesis tests on their own. To formally test whether
two distributions differ, these measures must be embedded within a hypothesis testing framework
that controls Type I and Type II errors. We now describe a general procedure to transform any such
divergence into a valid two-sample test using permutation testing [92, 93]

Let D(D,, D;, ) be any divergence or distance-based dissimilarity measure between distributions,
such as: Jensen-Shannon divergence, Energy Distance or Wasserstein Distance.

Permutation-Based Hypothesis Testing Procedure The permutation test simulates the distribution
of a test statistic (e.g., Jensen—Shannon divergence) under the null hypothesis Hy, and computes the
p-value using this null distribution based on the observed two samples, Dy, and D, , to determine
whether to reject Hy. The permutation test is performed as follows.

1. Compute Observed Statistic:
Toos = D(Dy,, Dt,)
2. Construct the Null Distribution via Permutation:
* Pool the data: D = D, U Dy,
* For B iterations (e.g., B = 1000):
(a) Randomly permute the labels of the pooled dataset.

(b) Split the permuted data into two groups of sizes ng and n; according to the
permuted labels.

(c) Compute the test statistic T} using (T)) based on the two permuted groups.
* This yields an empirical null distribution {77, ...,T5}.
3. Compute the p-value (right-sidedf]:
1B
p=73 ;H(Tb > Tos) -
4. Make a Decision: Reject Hy if p < «, for a chosen significance level « (e.g., 0.05).

3Left-sided or two-sided p-values can be computed analogously without loss of generality.
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Benefits and Limitations This approach makes minimal assumptions—it is non-parametric, ap-
plicable in high-dimensional settings, and works with mixed or complex data types. However, its
statistical power depends on the choice of divergence measure, the sample size, and the number of
permutations B. Care must also be taken when the divergence relies on kernel or transport parameters,
which should be selected independently of the test data to avoid selection bias.

F Parametric Tests and Heuristics

F.1 Mean Shift

z test [94] is a parametric test used to determine whether the means of two independent populations
differ significantly, under the assumption that population variances are known. The test statistic is:

Xo— Xy

z =
o3 91
no ni

where X and X are the sample means from the pre- and post-deployment periods, and o2, 0% are
the known variances of the metric in each period. Under the null hypothesis, Z ~ N(0,1), and a
two-sided p-value can be computed accordingly. We reject the null hypothesis if:

|Z‘ > Za/2

where z,, /5 is the critical value from the standard normal distribution (mean 0, variance 1). In practice,
the z-test is appropriate when the sample sizes are large (invoking the Central Limit Theorem) or
when the variances are reliably estimated from historical data. Despite its simplicity, it provides a
strong baseline for detecting statistically significant changes in model performance.

Two-Sample t-Test [95] assesses whether the means of two independent samples differ significantly,
assuming normally distributed data with equal variances. The test statistic is given by:

Xo - Xy
1 1
5\ 7o T nr

_ [(no—1)sg 4 (ng —1)s?
Sp = i

t:

where X, and s7 denote the sample mean and variance of group k, and ny, represents the sample size,
with degrees of freedom df = ng+ny — 2. The null hypothesis (Hg) assumes no difference in means
(o = p1), while the alternative hypothesis (H1) suggests a shift in mean. This test is appropriate
for detecting mean shifts in p;, (the post-deployment distribution) when normality assumptions hold.
With the critical value of

[t] > tay2,4r
where t,, /2 gy is the critical value from Student’s t-distribution.
Welch’s t-Test [96] When variances are unequal, Welch’s t-test modifies the degrees of freedom

using the Welch-Satterthwaite equation, improving robustness. Welch’s t-test is used to compare the
means of two samples when the assumption of equal variances does not hold.

Xo — X1

t= 2 2
s2 s2

no + ni

To test the null hypothesis Hy : 111 = p2, we calculate the critical value ¢, /3 4 from the t-distribution
with df degrees of freedom. Reject Hy if:

22



t| > tas2,qr-

The degrees of freedom are computed using the Welch-Satterthwaite equation:

2 52
s
20 51

df_

o
oom

2 ﬁ
ni

Shewhart Control Charts [97] track the mean (u) and standard deviation (o) of continuous
variables, in our case one of the features of the model, flagging when values by examining if the
newly collected values are outside the upper control limit (UCL) and lower control limit (LCL):

UCL:ILL0+LO'07 LCL:M(]*LCTO

where 11, 0g are baseline parameters, in our case values during the pre-deployment period, and L
(typically 3 for 99.73% confidence) sets control limits. Despite detecting large shifts, this method
presents a limitation as it only uses a single point in time for evaluation and does not consider the
dynamics of change. Small shifts in the distribution may go undetected.

Cumulative Sum (CUSUM) Charts [98] addresses the limitations, by considering the current and
historical values, accumulating deviations from target values to detect small but persistent shifts in
feature distributions. CUSUM Charts accumulate deviations from the target value p:

St =max(0, S | + (z¢ — po) — k)
S; = min(0, S, + (~a, + o) — )
where x; is the value of the feature at time ¢, k is a reference value chosen for detection sensitivity
and S = Sy = 0. Given a control limit & > 0 is, the decision rule is defined by
St >h
Sy < —h

While CUSUM Charts achieve the desired goal while addressing the limitations, there are a few
drawbacks. Once the shift is detected, the next detection process has to restart from the initial value.

EWMA (Exponentially Weighted Moving Average) Charts [99] provide more convenience
without jeopardizing the performance of CUSUM charts. The chart calculates the weighted average
of the historical data up to the current time; by weighting recent observations more heavily to identify
emerging trends. EWMA Charts are defined as:

= )\xt + (1 - )\)Et_l
Where Ey = 19, A € (0,1] is the weighting parameter. The control limits are given by:

A
U?st = m(l -(1- /\)zt)a(z)
UCL; = po + pog,

LCL; = po — pog,
where p is a parameter. Note: we assume that variance remains unchanged after the distribution shift.

The univariate approaches discussed above are computationally efficient, but they can miss complex
feature interactions and face multiple testing challenges when monitoring many features simultane-
ously [100]. While all of the presented methods can be generalized to the multivariate setting, known
as Multivariate Statistical Process (MSPC) control charts. The major limitation is the assumption that
the processes distribution is multivariate normal [101], methods may not capture complex nonlinear
relationships.
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F.2 Variance Shift

F-Test [102] is used to compare the variances of two independent samples to determine if they are
significantly different, assuming normal distribution. It is based on the ratio of sample variances:

where s% and s? are the sample variances of groups 0 and 1. The null hypothesis assumes equal
variances (Hy : 0(2) = 0?). The test statistic follows an F-distribution with degrees of freedom:
dfy = ng — 1, dfy = nq — 1. The critical value is obtained from the F-distribution table at the chosen
significance level «, denoted as Fy, 4f, ar,. The critical value is:

Feritical = Fa7df1,df2 :

Bartlett’s Test [103] Bartlett’s test assesses whether multiple groups have equal variance under the
assumption of normality. It is more sensitive to deviations from normality than Levene’s test. The
test statistic, for 2 distributions is:

no+ny —2)lns2 — 1, n; — 1) 1Ins?
p =0 i
1 1 1 1
1+ 3 (Zi=0 ni—1 n0+n1—2)

2 (no —1)s§ + (n1 — 1)s}

P 710+TL1—2

B:

where: s? is the sample variance of group, sf) is the pooled variance:

The test statistic follows a chi-square distribution with df = 1, with the critical value of:
2
Beritical = Xa,1-

G Non-Parametric Tests and Heuristics

G.1 Mean Shift

Evaluating the hypothesis test requires methods that can detect distributional changes across different
scales. For individual features, classical statistical approaches provide efficient monitoring of
univariate distributions. For the full joint distribution, distance and divergence measures enable direct
hypothesis testing in high-dimensional spaces. Relying on the methodology described in [101], we
outline the Statistical Process Control (SPC) methods test for shifts in univariate or low-dimensional
projections of the data.

Mann-Whitney U Test [104] The Mann-Whitney U test (Wilcoxon rank-sum test) is a non-
parametric alternative for comparing median shifts between two samples:

no(no + 1)

U =ngni + 5

— Ry

where R is the sum of ranks in sample 0. The critical value is obtained from standard U-statistic
tables (e.g. for ng = n; = 20 and a = 0.05 ¢ = 127).

G.2 Varience Shift
Levene’s Test [105] Levene’s test is a robust alternative to the F-test for comparing variances when

normality cannot be assumed. It tests whether multiple groups have equal variance by transforming
data into deviations from the group mean or median. The test statistic for 2 distributions is:
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Zg:o ni(Zi. — Z.)*
1 n;
Dico 21 (Zij — Zi.)?

WZ(TL0+TL1—2)~

where: IV is the total number of observations, & is the number of groups, Zij =|X;; — )_(i| (absolute
deviations from group means or medians), Z; = 7’1 Z 1 Zijs 2. =~ Zzl 0 Zn Z;;. The test
statistic follows an F-distribution with df; = k; —land de N — k. The critical value is:

Wcritical = Fa,l,ng+n1—2~

G.3 Distribution Shift

Kolmogorov-Smirnov (KS) Test [106,107] The KS test evaluates differences between empirical
cumulative distribution functions (ECDFs):

D = sup |Fo(z) — Fa(@)]

ng + 11
NNy

Deritical = C(a)

where c(a) is a constant based on the significance level (e.g. 1.36 for & = 0.05)

Anderson-Darling Test [108] evaluates whether a sample follows a given distribution, improving
upon the Kolmogorov-Smirnov test by giving more weight to the tails. For a sample of size n, the
test statistic is:

Let Xy and X be pre-deployment and post-deployment samples of sizes ny and ni, respectively,
with N = ng + n;. Denote by Z(y), ..., Z(n) the pooled and ordered combined sample, and let H
be the number of observations from Xo among {Z(y), . .., Z(;)}. The two-sample Anderson-Darling
test statistic is defined as:

nonl no7M1

Z HN—noj) .

j=1

Critical values for the Anderson-Darling test depend on the distribution being tested. For a normal
distribution, significance thresholds are tabulated, with rejection occurring if:

Acmtzcal A?x

The Friedman-Rafsky test [109] is a multivariate nonparametric, graph-based test used to
determine whether two samples are drawn from the same distribution. Given two combined samples
Z from p;, and p;, , The Friedman-Rafsky test constructs the Minimum Spanning Tree (MST) T" over
Z, where each point in Z is a node and edges are weighted by the distance d(x, y) (e.g., Euclidean
distance) between points. The test statistic is the number of edges in the MST that connect points
from different groups (cross-edges). Let R denote the total number of runs (or clusters) in the MST,
where a "run" is defined as a sequence of connected nodes belonging to the same group (either X or
Y).

Z ]]-group(ﬂci )Fgroup(;)
(i,))€T

Note R counts the number of edges connecting points from different samples.

The critical region for rejection of Hj is determined via permutation testing, where the labels of
X and Y are randomly permuted to generate the null distribution of . Reject H if standardized
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statistic exceeds critical value:

R — E[R]
> Cqo
Var(R)
where:
E[R] _ 2’)’L()711_
ng+ni —1
2n0n1 W — (Tl() +ny — 1))
Var(R) =
ar(R) (no +n1)(ng +n1 — 1) ( 2(ng +n1 —2)

where ng, nq are sample sizes and W is the number of cross-edges in pairs of adjacent edges in 7.

Energy Distance [110] is a nonparametric measure of the distance between two probability distri-
butions P and Q. It is derived from the concept of statistical potential energy, where the "energy"
depends on pairwise distances between points in the distributions. The Energy Distance is directly
related to the distance between characteristic functions of the two distributions and can be used to
conduct two-sample tests. This metric does not require density estimation and is particularly useful
for comparing high-dimensional or non-Euclidean distributions. The Energy Distance is defined as:

Dg(pry,py) = 2E[d(X, Y)] — E[d(X, X')] — E[d(Y,Y")],
where d is the distance metric (e.g., Euclidean distance) and X, X’ ~ p;,, Y, Y’ ~ p;,.

Maximum Mean Discrepancy (MMD) [79] measures distribution distances in reproducing kernel
Hilbert space, avoiding explicit density estimation by comparing statistical moments of the distribu-
tions. The MMD between two probability distributions at two different times p;, and p;, is defined
as:

MMD (D1, pt,) = |[Exmpy, [(X)] = Exyp,, [0(V)]]],,

where ¢ : X — H is a feature mapping function that maps elements from the input space X to a
reproducing kernel Hilbert space (RKHS) H. For example, a Gaussian or Laplacian kernel, k(z, -).
To test the statistical significance using empirical data we can calculate Biased Empirical Estimate of
MMD (MMDy,) and employ the following acceptance region:

n

1 & 2 v 1
MMDy (pty s pt, ) = 2 Z k(zi,x5) — poopy sz(%»y]) t3 Z k(yi»yj)

i,j=1 i=1 j=1 i,7=1

2K
MMDy (pty» Pty ) < \/;(1 +v/2loga1)

where, « is the hypothesis test level (e.g., 0.05), K is the upper bound on the kernel function (1 for a
normalized kernel), and m, n are sample sizes from each distributions.

High-Dimensional Distribution Testing divergence measures enable comprehensive hypothesis testing
in high-dimensional spaces. These methods build on statistical divergence estimation [[L11] and
kernel methods [31]].

Wasserstein distance [112] motivated by the optimal transport theory [113] provides theoretically
grounded distribution comparisons [27]] by measuring the minimum "cost" of transforming one
distribution into another. These distances are especially useful in healthcare applications as they
account for the underlying geometry of the feature space. Recent advances in computational optimal
transport have made these methods practical for high-dimensional medical data. The Wasserstein
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distance of order p between two probability distributions at different points in time p;, and p;, on a
metric space (X, d) is defined as:

1/p
Wp(ptoaptl) = ( Hlf / d(.’l?, y)p dﬂ'(.]?, y))
XXX

mE€I(pey Pty )

where d(z,y) is the metric (or distance function) on the space X. II(P, Q) is the set of all joint
probability distributions (also called couplings) 7(z y) on X x X such that the marginal distributions

are py, and py, . ie., [, w(z,y) de = py, (y), [y 7(z,y) dy = py, ().

The family of f-Divergences [114] , including Kullback-Leibler (KL) divergence [115]] and Jensen-
Shannon divergence [[116] , offer another approach to distribution comparison. While these methods
provide strong theoretical guarantees, they require density estimation which can be challenging in
high dimensions. The (KL) divergence between two probability distributions p;, and p;, over a
shared domain X is defined as:

Dt (x)
b _ 2) 1o dx,
KL (Pto [Pt ) /Xpt"( )log P, ()

provided that p;,(z) > 0 = p¢,(x) > 0forall z € X.

The JS divergence between two probability distributions p;, and p¢, is a symmetric and bounded
measure defined as:

1 1
§DKL(pt0||M> + §DKL(pt1 [ M)

where M = 1(py, + pt, ) is the average distribution.

Dys(ps, ||pt,) =
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