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Abstract001

As Large Language Models (LLMs) become002
increasingly widespread, understanding how003
specific training data shapes their outputs is004
crucial for transparency, accountability, privacy,005
and fairness. To explore how LLMs recall and006
replicate learned information, we introduce a007
systematic approach centered on analyzing low-008
perplexity sequences—high-probability text009
spans generated by the model. Our pipeline010
reliably extracts such long sequences across di-011
verse topics while avoiding degeneration, then012
traces them back to their sources in the training013
data. Surprisingly, we find that a substantial014
portion of these low-perplexity spans cannot015
be mapped to the corpus. For those that do016
match, we analyze the types of memorization017
behaviors and quantify the distribution of occur-018
rences across source documents, highlighting019
the scope and nature of verbatim recall.020

1 Introduction021

While Large Language Models (LLMs) are increas-022

ingly applied across various domains, how they023

leverage their training data to make predictions024

remains only partially understood (Review, 2024;025

Bender et al., 2021; Liang et al., 2024). Research026

on training data attribution (TDA) (Carlini et al.,027

2021; Cheng et al., 2025) aims to identify which028

specific parts of the data contribute to a model’s029

output. TDA is considered essential for enhancing030

transparency, effective debugging, accountability,031

and addressing concerns related to privacy and fair-032

ness in LLMs (Guu et al., 2023). A notable area033

within TDA research is LLM memorization (Car-034

lini et al., 2023b; Al-Kaswan et al., 2024; Carlini035

et al., 2023a), which focuses on instances where036

models produce verbatim recall of training data.037

Very recently, the first tool for efficient TDA based038

on exact memorization was introduced (Liu et al.,039

2025a), underscoring the practical importance of040

this research direction.041

To explore how LLMs recall and replicate 042

learned information, we introduce a systematic ap- 043

proach centered on analyzing low-perplexity se- 044

quences in LLM-generated output. Perplexity is 045

a standard metric used to evaluate a model’s abil- 046

ity to predict tokens, with lower perplexity indi- 047

cating higher confidence in its predictions. It is 048

widely employed for model evaluation, fine-tuning, 049

comparison and assessing text generation quality. 050

Notably, in the context of training data attribution 051

(TDA), there is a belief that long low-perplexity 052

sequences suggest either degeneration or verbatim 053

copying from the training data (Gao et al., 2019; 054

Prashanth et al., 2025). In this work, we aim to 055

empirically test the hypothesis, while proposing a 056

method to better understand LLMs’ verbatim recall 057

through low-perplexity analysis. 058

We present an open-source pipeline1 designed to 059

identify and trace low-perplexity spans in LLM out- 060

puts. By targeting specialized domains with rich, 061

distinctive terminology, our approach efficiently 062

extracts long, low-perplexity segments suitable for 063

in-depth analysis. These segments are then mapped 064

back to their origins using indexing and search 065

tools. Although we experimented with both the 066

well-established Elasticsearch (Gormley and Tong, 067

2015) and the recently emerged state-of-the-art In- 068

finigram (Liu et al., 2025b), we report only Infin- 069

igram results due to its superior scalability and 070

efficiency for large-scale mapping. 071

Our analysis reveals that many of these low- 072

perplexity spans cannot be matched to the training 073

data. For those that do, we further categorize the 074

types of memorization behaviors involved. This 075

classification enables us to accurately quantify their 076

distribution across various specialized topics, of- 077

fering deeper insights into how LLMs recall and 078

replicate information. 079

1The code is available at https://anonymous.4open.
science/r/LowPerp-Sequences-Mapping-33F2/README.
md
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Figure 1: Visualization of a generated subsequence that
contains two different low-perplexity sequences longer
than 5 tokens. We have decryption key to decrypt
the information and string of characters that
is used to decrypt. Both having 9 tokens, they will
be split in 9 + 1 − 6 = 4 windows of 6-contiguous
tokens each.

2 Experimental setup080

LLM model and training data081

To study low-perplexity sequences we use the082

Pythia model (Biderman et al., 2023) with size083

of 6.9 billion parameters trained on The Pile (Gao084

et al., 2020), which transforms into 300 billion to-085

kens using Pythia tokenizer (Biderman et al., 2023),086

with a vocabulary size |V | = 50, 254.087

Choosing topics and prompts088

To follow our goal of finding low-perplexity se-089

quences, we focus on keyword-specific topics for090

this study. Therefore, we choose genetics, nuclear091

physics, drugs, and cryptography, specialized092

domains in which the team has experience to verify093

the validity of LLM outputs. Since we work with094

The Pile dataset, those topics are represented at095

least as part of its Wikipedia subset. Therefore, to096

generate prompts leading to these topics we utilized097

state-of-the-art LLMs (ChatGPT, Claude) to extract098

Wikipedia quotes. We note that due to Wikipedia099

updates, these may not exactly match the quotes100

from the version included in the Pile.101

In total, for each topic, we randomly select 40102

articles from Wikipedia extract a random quote103

consisting of 20 to 40 tokens. This quote serves104

as a prompt for the Pythia model to complete and105

extend. For each prompt we run 5 generations to106

average the results. This approach provides 200 107

prompts per topic and 800 prompts in total. 108

LLM output generation and perplexities 109

LLMs generate output sequentially—token by 110

token—by sampling the next token based on its 111

logits values and key parameters: topk, which re- 112

stricts choices to the top k most probable words; 113

topp, which selects the smallest set of words with 114

a cumulative probability of p; and temperature T , 115

which controls randomness. We set topk = 20, 116

topp = 0.8, and T = 0.7, with alternative configu- 117

rations discussed in Sec. 3.3. 118

The exact definition of the generation probability 119

of each token (xi) based on the previous tokens 120

(x<i) is 121

p(xi|x<i) =
exp(zi/T )∑|V |
j=1 exp(zj/T )

, 122

where zi are the raw logits and |V | is the vocabulary 123

size of the model. Then, the token perplexity is: 124

P (xi) =
1

p(xi|x<i)
. (1) 125

We define a low-perplexity sequence as a contigu- 126

ous part of the LLM output where each token has 127

a perplexity threshold log2(P ) ≤ 0.152 in base 2, 128

corresponding to a probability threshold of 0.9 or 129

higher. These sequences have different lengths, so 130

to compare the matches in the training data, we fo- 131

cus on their fixed-size subsequences. We call those 132

low-perplexity windows and focus our choice on 133

size of 6 tokens. The choice of a 6-token window is 134

justified as it is short enough to capture meaningful 135

low-perplexity spans while being long enough to 136

avoid random matches. Fig. 1 shows a visualization 137

of the generated tokens and perplexities values. 138

Matching to the training data and its quality 139

Finally, we map low-perplexity windows to the 140

training data. To achieve this, we use Infini- 141

gram (Liu et al., 2025c). Once a low-perplexity 142

window is matched to the training data, we estimate 143

the significance of its text. We do this using per- 144

plexity values (as defined in Equation 1), this time 145

without additional context (i.e., tokens preceding 146

the window), which is also known as standalone 147

perplexity. We denote it as 148

P̂ (xk, . . . , xk+n) = 2−
1
n

∑k+n
i=k log2 p(xi|[xk,...,xi−1]) 149

Low standalone perplexity indicates that the gener- 150

ated text is fluent, coherent, and resembles human- 151

written language (Gonen et al., 2024). 152
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3 Results153

3.1 Descriptive analysis of low-perplexity154

windows155

We begin by identifying all low-perplexity se-156

quences across the four chosen topics. The warm-157

up statistics in Table 1 show that the average158

lengths of these sequences do not vary significantly159

between topics, and our choice of a fixed window160

size of 6 is sufficiently modest.161

Topic L̄ σL

Cryptography 12 11
Drugs 14 15
Genetics 14 14
Nuclear physics 13 12

Table 1: L̄ (resp. σL) represents the average (resp. stan-
dard deviation) of the token lengths for low-perplexity
sequences with at least 6 tokens.

From selected low-perplexity sequences, we162

pass a sliding window of 6 tokens and stride 1163

and proceed to our main interest – low-perplexity164

windows matched to the training data. We denote165

the number of occurances by c. Table 2 presents166

the comparison of windows at least with one match167

across different topics. We observe having signifi-168

cantly more of long low-perplexity sequences on169

drugs. We believe this is due to the presence of170

repetitive long drug names and their strong con-171

nection to biomedical literature, which is widely172

represented in the Pile dataset through the inclu-173

sion of PubMed. On the other side, it is likely that174

nuclear physics is less present in the Pile, which175

explains the lower number of counts.176

Figure 2: Boxplots comparing the number of matches of
low-perplexity windows that occur in the training data,
across different topics.

In the above results, only windows with at least 177

one exact match in the training data are considered. 178

While intuitively one might expect low-perplexity 179

windows to almost always have matches, we ver- 180

ify this experimentally. Surprisingly, a substantial 181

proportion of them do not match any part of the 182

corpus. As shown in Table 4, on average, only 40% 183

of low-perplexity windows have exact matches at 184

least once (Nc>0), while others have no matches 185

regardless their low perplexity. 186

Topic N Nc>0 Nc>0/N Nrep/N

Cryptography 1667 801 48% 75%
Drugs 1785 593 33% 64%
Genetics 1826 793 43% 73%
Nuclear physics 1343 470 35% 70%
Total 6621 2657 40% 70%

Table 2: The total number of low-perplexity windows
N for each topic, number and percentage of those win-
dows that have exact matching the training data Nc>0.
Nrep/N is the percentage of low-perplexity sequences
repeating the prompt (see Appendix C).

Finally, examining the matched windows, we 187

find that a large fraction partially repeats the 188

prompt (Nrep). We suspect this is due to the spe- 189

cialized keywords in the prompt and therefore we 190

retain these repetitions for further analysis. Ap- 191

pendix C presents an example of such repetition. 192

3.2 The nature of low-perplexity sequences 193

Now, we further explore the behaviors exhibited 194

by the model when generating low-perplexity se- 195

quences. We analyze this through two main mea- 196

sures. First, we revisit the concept of stand-alone 197

perplexity to assess how human-like the gener- 198

ated text appears. Second, we categorize the low- 199

perplexity windows into four groups, based on the 200

number of their matches in the training data (c). 201

These categories capture different types of recall 202

and generalization behaviors. The results are pre- 203

sented in Figure 3, which represents a key contri- 204

bution of this work. 205

• Synthetic coherence (c = 0): These win- 206

dows are synthetically generated by the model 207

without any exact matches in the training data. 208

Interestingly, the stand-alone perplexities vary 209

widely, including high values. However, as 210

shown in Appendix B, even the generations 211

with the highest perplexity scores remain co- 212

herent and are not non-sensical. 213
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Figure 3: Illustration of the low-perplexity sequences,
for the Cryptography topic.

• Memorization (0 < c < 5) The model214

has generated text containing highly specific215

knowledge, which can be traced back with216

high precision to its origins in the training217

data. Such traceability is particularly valu-218

able for identifying instances of private and219

sensitive data leakage, memorized and repro-220

duced by the model. An example is given in221

Appendix D.222

• Segmental replication (5 ≤ c < 50) These223

windows contain relatively niche information224

that appears across multiple sources, often re-225

flecting standardized phrases or terminology226

within specific domains. Alongside memoriza-227

tion, segmental replication helps efficiently228

trace LLM outputs to their origins, revealing229

how specialized knowledge is represented.230

• Frequently encountered text (50 < c) These231

windows correspond to common phrases232

or widely used expressions that appear fre-233

quently across many documents in the train-234

ing data. When c becomes very large, it typ-235

ically reflects standardized text such as legal236

disclaimers, licensing terms or HTML tags237

(i.e., <div><\div>), indicating heavy repeti-238

tion across the corpus.239

Particular examples of each behavior can be240

found in Appendix B. The thresholds of 5 and 50241

are chosen arbitrarily but are fixed for consistency242

in sampling and to enable precise counting, as pre-243

sented in Table 3.244

3.3 Impact of LLM generation parameters245

In the previous experiments, LLM generation pa-246

rameters were fixed as described in Sec. 2; here,247

Topic STH MEM SEG FET

Cryptography 52% 12% 23% 13%
Drugs 67% 6% 9% 18%
Genetics 57% 15% 16% 12%
Nuclear physics 65% 15% 15% 5%

Table 3: Distribution of categories across topics. Cat-
egories: Synthetic coherence (STH), Memorization
(MEM), Segmental replication (SEG), and Frequently
encountered text (FET).

we explore the impact of varying these settings. 248

While certain configurations increase the number 249

of low-perplexity windows (i.e. decreasing tem- 250

perature), it influences a rise in degeneration and 251

repetitive patterns in the LLM outputs. Notably, Ta- 252

ble4 highlights this effect for varying temperature 253

values. We highlight that yet the overall percent- 254

age of non-zero matches as well as stand-alone 255

perplexity remains largely unchanged. 256

T N Nc>0 N>0/N Nrep/N P̂

0.2 8466 4099 48% 89% 7.9
0.3 6055 2600 43% 88% 7.9
0.4 4789 2155 45% 81% 8
0.5 3205 1462 46% 81% 8
0.6 2294 1060 46% 78% 8
0.7 1826 793 43% 73% 8

Table 4: Number of low-perplexity sequences and
matches when varying the temperature. Done on the
Genetics topic.

4 Conclusion 257

We proposed a pipeline to identify and analyze 258

low-perplexity sequences in LLM outputs. We cat- 259

egorized sequences by their match frequency in the 260

training data and identified four distinct behaviors. 261

We also conducted a statistical analysis of these cat- 262

egories, notably finding that many low-perplexity 263

sequences do not match the corpus at all. This 264

approach improves understanding of how models 265

recall learned information and, in some cases, en- 266

ables more efficient training data attribution. 267
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5 Limitations268

Our threshold selection approach in Figure 3 relies269

on estimations that require more rigorous exami-270

nation. The absence of clear clustering suggests271

these thresholds may represent gradual transitions272

rather than abrupt boundaries. We also found that273

high standalone perplexity does not consistently274

indicate nonsensical text (see Appendix B), chal-275

lenging its reliability as a degeneration detector.276

For future work, we encourage exploring alterna-277

tive evaluation methods, such as model-as-a-judge278

approaches (Zheng et al., 2023), to more accurately279

identify text degeneration.280

A methodological limitation worth addressing281

is the potential bias introduced by our prompt gen-282

eration technique. Since some prompts originate283

from the Pile dataset, this may artificially inflate284

certain sequence counts. Further studies incorporat-285

ing manually crafted prompts would help quantify286

and mitigate this bias.287

Additionally, trying different model sizes, and in-288

cluding a wider set of prompts, from non-scientific289

domains without specific keywords would allow to290

state the limitations more clearly.291

Our pipeline may serve as an additional tool292

for Training Data Attribution (TDA) investigations.293

We anticipate future research exploring the rela-294

tionships between low-perplexity windows and se-295

quences, as briefly discussed in Appendix D. Addi-296

tionally, comparative analyses between our method297

and other state-of-the-art TDA approaches would298

be valuable for establishing best practices in this299

emerging field, alongside with efficiency measure-300

ments.301

6 Ethics statements302

Training data extraction is a threat to user privacy,303

as this can be used to find Personally Identifiable In-304

formation (PII) such as leaked passwords, address305

or contact information (Brown et al., 2022). We306

try to mitigate this in the following way. First, we307

work on a publicly available model, and use exam-308

ples from Wikipedia, also publicly available. How-309

ever, we acknowledge that the Pile dataset, which310

was used to train the Pythia models, contains copy-311

righted material (Monology, 2021). Given these312

concerns, we advocate for future research to pri-313

oritize copyright-compliant datasets that respect314

creators’ intellectual property rights while advanc-315

ing our understanding of model behavior. On the316

other hand, our work contribute to training data317

transparency, and can help to detect copyright in- 318

fringement. We also recall that our method requires 319

to possess an indexing of the training data, which is 320

not the case for the state-of-the-art models. We be- 321

lieve that the impact of this paper does not present 322

direct major risks and encourage further work in 323

this direction. 324

For transparency, we give an estimation of the 325

CO2 emitted by the computation. We used ap- 326

proximately 100 hours of GPU with an average 327

consumption of 250W, and considering the CO2 328

emissions per kilowatt-hour in the region we are lo- 329

cated in to be 38.30 gCO2eq/kWh (Power, 2024), 330

this totals to 100× 0.25× 38.30 = 957 gCO2eq. 331
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A Visualization of degeneration440

While we did not include degeneration region in441

Fig. 3, we still encountered it during the genera-442

tion. Fig. 4 shows an example of it. This exclusion443

stemmed from two observations: the repetitive pat-444

terns extended beyond our window size parameters,445

and the degenerated text displayed surprisingly low446

standalone perplexity values. These findings high-447

light a limitation in using perplexity-based metrics448

alone for degeneration detection and suggest the449

need for complementary approaches.

Figure 4: Example of the perplexities of an output that
degenerates.

450

B Examples of texts per category.451

Tab. 5 presents examples of low-perplexity win-452

dows belonging to different categories. We also453

added example of high perplexities.454

C Example of repetition.455

We show here an example of the model repeating456

the prompt. The repetition is highlighted in red.457

The end has been cut for better readability.458

category text

Frequently encoun-
tered text

synthetic cannabinoid.

a function that takes as input an
Standards and Technology (NIST)

Memorization alcohol, sugar, water, and
to the evaluation of a cryptographic
of information that is used to en-
crypt

Segmental replica-
tion

has been defined as "the study

used for PET and SPECT imaging
understanding of the genetic basis
of common

Synthetic coherence and genetics. fireball starts to form.
The
the exchanged keys are computa-
tionally indistinguishable from
. Developmental genetics is also
the

High stan-
dalone perplexity
(log2(P̂ ) > 12)

orandom cipher digit stream (key

ion CN − is also being removed
a sudden influx of fast neutrons

Table 5: Examples of text fragments and their cate-
gories.

Example of Prompt Repetition

Prompt:

There are a number of standards re-
lated to cryptography. Standard algo-
rithms and protocols provide a focus
for study; standards for popular ap-
plications attract a large amount of
cryptanalysis.

Output:

Standards provide a focus for crypt-
analysis. Standards for popular ap-
plications attract a large amount of
cryptanalysis. There are a number
of standards related to cryptogra-
phy. Standard algorithms and pro-
tocols provide a focus for study; stan-
dards for popular applications attract
a large amount of cryptanalysis. Stan-
dards provide a focus for cryptanal-
ysis. Standards for popular applica-
tions attract [...]

459
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D Surrounding of sequences match460

When a sequence has a low number of matches (in461

the memorization part, see Sec. 3.2) in the training462

data, one can look at the original document con-463

taining the sequence. Below is an example. The464

part in bold has one exact match to the Pile, and465

the extract is shown below.466

Segment match

Prompt:

A message authentication code
(MAC) is a short piece of informa-
tion used to authenticate a message.

Output:

The MAC is a function of a secret
key and the message. The message is
the information being protected. The
key is a secret known only to the
sender and receiver. The MAC is a
function of the key and the message.
The MAC is a short piece of informa-
tion used to authenticate a message.
[...]

Document matching:

[...] HMAC is a well-known algo-
rithm for generating a message au-
thentication code (MAC) that can be
used to verify the integrity and au-
thenticity of a message.
This class requires Qt 4.3.0 or
greater.
To verify a message, the sender cre-
ates a MAC using a key, which is
a secret known only to the sender
and recipient, and the content of the
message. This MAC is then sent
along with the message. The recipi-
ent then creates another MAC using
the shared key and the content of the
message. If the two codes match, the
message is verified. [...]

467

The document comes from GitHub. Interestingly,468

while the passage in itself does not refer to MAC, 469

the matching document is talking about MAC. Al- 470

though further investigation is required to assess 471

this, it might indicate that the context between low- 472

perplexity sequences that match to the training data 473

is related to the original document. 474
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