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ABSTRACT

Representation learning is a crucial task of deep learning, which aims to project
texts and other symbolic inputs into mathematical embedding. Traditional represen-
tation learning encodes symbolic data into an Euclidean space. However, the high
dimensionality of the Euclidean space used for embedding words presents consid-
erable computational and storage challenges. Hyperbolic space has emerged as a
promising alternative for word embedding, which demonstrates strong representa-
tion and generalization capacities, particularly for latent hierarchies of language
data. In this paper, we analyze the Skip-Gram Negative-sampling representa-
tion learning method in hyperbolic spaces, and explore the potential relationship
between the mutual information and hyperbolic embedding. Furthermore, we
establish generalization error bounds for hyperbolic embedding. These bounds
demonstrate the dimensional parsimony of hyperbolic space and its relationship
between the generalization error and the sample size. Finally, we conduct two
experiments on the Wordnet dataset and the THUNews dataset, whose results
further validate our theoretical properties.

1 INTRODUCTION

Representation learning has gained widespread attention in the past decade as a significant task of
natural language processing (NLP). Various methods have been proposed to embed words into vector
spaces to facilitate further inference. The most straightforward approach is one-hot embedding,
which converts each word into a binary vector corresponding to its position in the vocabulary. Latent
Semantic Indexing (LSI) (Deerwester et al., 1990) generates low dimensional word embedding by
applying singular value decomposition of the word-context matrix. Then a model called Latent
Dirichlet Allocation (LDA) (Blei et al., 2001) was introduced based on the bag of words hypothesis.
The neural language model further advanced word embeddings Bengio et al. (2000), followed by
Mnih and Hinton’s development of Neural Probabilistic Language Models (NPLMs) Mnih and Hinton
(2008). Collobert and Weston Collobert et al. (2008) proposed pre-trained word embeddings through
multitask learning. Mikolov’s Word2Vec Mikolov et al. (2013) remains a powerful toolkit for training
word embeddings, alongside widely used methods like GloVe Pennington et al. (2014) and FastText
Bojanowski et al. (2017), which play crucial roles in various NLP tasks.

Although projecting words into an Euclidean space has achieved remarkable success in various
applications, these word embedding methods need high dimensional spaces as the representing ability
is positively proportional to the space dimension. Due to the immense computational and storage
burden brought by high dimensions, we hope to reduce the dimensionality of the representation
space. To address this issue, Nickel and Kiela applied word embedding in Poincare disk (Nickel and
Kiela, 2017), benefiting from the stochastic Riemannian optimization (RSGD) (Bonnabel, 2013).
This approach alleviates the dimension constraints by substituting Euclidean space with hyperbolic
space. Following their work, numerous studies based on Hyperbolic embedding have been researched
such as embedding graphs in Poincare ball (Sala et al., 2018). Beyond the Poincare disk, Poincare
hyperplane (Ganea et al., 2018b), hyperbolic cone (Ganea et al., 2018a), and hyperbolic disks (Suzuki
et al., 2019) are been considered as embedding spaces.

In this article, we aim to quantitatively assess the effectiveness of hyperbolic embedding. However, it
is challenging to directly characterize the embedding error of words, because the true embedding
of words in a certain space is often hard to specify accurately. To address this, we first establish a
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relationship between mutual information and the hyperbolic embedding method. We then analyze the
error between the embedding distance matrix and mutual information matrix, and provide theoretical
properties for error bounds in hyperbolic embedding. We divide the error bounds into two components:
the spatial error, which reflects the influence of the dimensions and the structure of the hyperbolic
space on the embedding error; and the generalization error, which describes the relationship between
the error and the sample size across different spaces. Additionally, we verify the theoretical results of
hyperbolic embedding on the Wordnet and THUNews datasets.

This paper is organized as follows: Section 2 provides a brief introduction to the Lorentz model,
Poincare ball, and key details of hyperbolic embedding. In section 3, we analyze the relationship
between Hyperbolic embedding and the mutual information matrix for words. Then we make a
further theoretical analysis for the generalization error bound of hyperbolic embedding. Section
4 outlines the experiment setups, presents and discusses the experiment results. Finally, section 5
provides a short summary of this paper.

2 PRELIMINARIES

We begin with a brief review of hyperbolic spaces, then give a description about Hyperbolic embed-
ding. Next, we introduce Skip-Gram with Negative Sampling (SGNS) methods, which is adopted by
the Word2Vec (Mikolov et al., 2013) and the hyperbolic embedding.

2.1 HYPERBOLIC SPACE

Differing from Euclidean space whose curvature is identically equal to 0, the hyperbolic space is
a smooth Riemannian manifoldM = Hn with a constant negative curvature κ, for instance, the
Lorentz model is a hyperbolic space with curvature equal to −1.

Definition 1. Let R(n,1) denote a (n+1)-dimensional Minkowski space, which is a real vector space
Rn+1 with Minkowski dot product:

⟨u, v⟩M :=

n∑
i=1

uivi − un+1vn+1, (1)

for u = (u1, · · · , un+1) ∈ R(n+1), v = (v1, · · · , vn+1) ∈ R(n+1) with n ≥ 2.

The first n dimension can be viewed as a n-dimensional Euclidean space and company with a negative
dimension. The Lorentz model is a subset of Minkowski space as one common hyperbolic model
(Bridson and Haefliger, 2013).

Definition 2. The Lorentz model H(n,1) is defined as following:

H(n,1) =
{
x ∈ R(n,1) | ⟨x, x⟩M = −1, xn > 0

}
, (2)

where Hn,1 is a smooth Riemann manifold displayed in Figure 1. The inner produce between u ∈ Hn

and v ∈ Hn is defined as [u, v] = ⟨u, v⟩M . The geodesic distance denotes the length of the shortest
curvature on the manifold. The geodesic distance of the Lorentz model is defined as

dHn,1(u, v) = arccosh (− [u, v]). (3)

The Poincare ball model in n-dimension is a hyperbolic space bounded in the n-dimensional sphere,
which can be defined by a projection shown in Figure 1: First choose a point P on Lorentz model,
then form a line by extending P to point P0 = (0, 0, · · · , 0,−1), the intersection point of this line
and hyperplane

{
x ∈ R(n,1) : xn+1 = 0

}
compose a Poincare ball in Rn. More formally, we define

the Poincare ball model as follows.
Definition 3. Poincare ball (Bc

n, g
B) is a n-dimensional smooth manifold, where

Bc
n =

{
x ∈ Rn : c∥x∥2 < 1

}
, (4)

Where gB is a Riemannian metric defined as (λc
x)

2gE , gE = Id is Euclidean metric, conformal factor
λc
x = 2

(1−c∥x∥2)
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Figure 1: The Lorentz model and the Poincare ball in a 3-dimension Minkowski space

More precisely, we set the Poincare ball radius c = 1, then the geodesic distance between u ∈ Bn
c

and v ∈ Bn
c in a Poincare ball is

dBn
c
(u, v) = arccosh (1 + δ(u, v)) , (5)

where δ(u, v) is defined as

δ(u, v) = 2
∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2) , (6)

where ∥.∥ is an Euclidean norm.

2.2 HYPERBOLIC EMBEDDING

Skip-gram model, first introduced in Word2Vec (Mikolov et al., 2013), is predicting the tar-
get word condition on its context which is usually the group of the words around the target
word. We set the notation to follow the Omer Levy and Yoav Goldberg (Levy and Goldberg,
2014). For a word w ∈ Vw and the context c ∈ Vc, where Vw and Vc are the dictionaries of
words and context. A sentence of length L is a bag of words W = {w1, w2, · · · , wL−1, wL}.
Typically, we set the contexts of word wi are the 2l words surrounding wi in the articles,
c = (wi−l, wi−l+1, · · · , wi−1, wi+1, · · · , wi+l−1, wi+l). We denote the probability of w condi-
tion on c as P (w | c), skip-gram model choose sigmoid function to calculate the probability in

P (w | c) = σ(w · c) = 1

1 + e−w·c , (7)

where w, c ∈ Rd are the word embedding of word w and context c, d is the dimension of the
embedding space.

Furthermore, Let y be a sigh variable, P (y = 1 | w, c) indicates the probability that (w, c) appears in
dataset D, P (y = 0 | w, c) indicates the probability that (w, c) does not. The objective function of
the skip-gram model is to maximize P (y = 1 | w, c) for the observed date, given by max log σ(w ·c).
Negative sampling tries to maximize P (y = 1 | w, c) while minimum P (y = 0 | w, c) for random
negative samples, which are drawn from empirical uni-gram distribution PD(c) = #(c)

|D| , where
#(c),#(w) and #(w, c) denotes the times that c, w and (w, c) appears in datasetX . The probability
of observed data with negative samples is given by (y = 1 | w, c)P (y = 0 | w, cN ), where cN is the
negative sample. Then the objective function with negative samples is:

max
∑

w∈Vw

∑
c∈Vc

#(w, c)

(
log σ(w · c) + k

ne∑
i=1

[
log(1− σ(w · ciN))

])
, (8)

where ne is the number of negative samples, k is a factor. This objective function makes word-context
pair (w, c) have similar embedding. This is made by the assumption that the closer words have similar
meanings.
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Poincare embedding (Nickel and Kiela, 2017) changes the embedding space from Euclidean space to
Poincare disk as hyperbolic space can reduce the dimension of the embedding space. The distance
between points w, c ∈ B1

d is

d(w, c) = arcosh

(
1 + 2

∥w − c∥2
(1− ∥w∥2) (1− ∥c∥2)

)
. (9)

For a pair (w, c), maximum the objective function

L =
∑

w∈Vw

∑
c∈Vc

#(w, c)

(
log σ(d(w, c)) + k

ne∑
i=1

[
log(1− σ(d(w, ciN )))

])
, (10)

where k is the negative sampling factor, ne is the number of the negative samples, cN is the negative
sample drawn from distribution PD(c) =

#(c)
|D| .

To optimize objective function 10, we can employ stochastic Riemannian optimization methods
(Bonnabel, 2013). The embeddings of w and c are given by parametric functions w = fθ(w) and
c = fθ(c), respectively. Let ∇R ∈ TθB denote the Riemannian gradient of objective function L at
the point θ ∈ B1

d. RSGD updates the word embedding of the form
θt+1 = Rθt(−ηt∇RL(θt)), (11)

where Rθt denotes the retraction onto B1
d at θ and ηt denotes the learning rate at time t. More

precisely, we give the full update form as

θt+1 ← proj(θt − ηt
(1− ∥θt∥2)2

4
∇E), (12)

where∇E is the Euclidean gradient, proj(·) is function to constrain the embedding within B1
d, which

takes the follow form

proj(θ) =

{
θ/∥θ∥ − ε, if ∥θ∥ ≥ 1

θ, otherwise
. (13)

3 HYPERBOLIC DISTANCE AS MUTUAL INFORMATION

The Hyperbolic space, with its infinitely nested structure, has an ultra-strong information storage
capacity, which can greatly reduce the spatial dimensions required for us to seek word representations.
However, the understanding of the relationship between the space dimension, sample size, and
the embedding error after embedding is still lacking. As directly characterizing the truth word
embedding in different spaces is quite challenging, We turn to characterizing the relationships
between the embedding target of the objective function. Similar to the results from Omer Levy and
Yoav Goldberg (Levy and Goldberg, 2014), SGNS in Word2Vec embeds the words and the contexts as
mutual information matrix factorization: the dot product w · c equals to PMI(x, y) = log P (x,y)

P (x)P (y) ,
which was obtained in the Euclidean space, we first established the relationship between hyperbolic
embedding through SGNS method and mutual information matrix. we complete this analysis on
Poincare embedding to figure out the relation between the hyperbolic distance matrix and mutual
information matrix. Following the previous result from graph embedding(Suzuki et al., 2021)
(Tabaghi and Dokmanić, 2020), we derive a bound for both the space error and the generalization
error. We combine the space error and the generalization error to the embedding error and elaborate
the parsimony of the embedding dimension.

3.1 MATRIX FACTORIZATION IN POINCARE EMBEDDING

In this part, we characterize the true values of the embedding so that we can proceed to analyze the
errors in the following parts. Firstly, to characterize the error of the embedding results of hyperbolic
embedding, we need to understand what the optimal solution is when using the SGNS method. To
analyze the embedding from the SGNS method, we start from the optimization of the objective
function 10. Then, we have

L =
∑

w∈Vw

∑
c∈Vc

#(w, c) log σ(d(w, c)) +
∑

w∈Vw

∑
c∈Vc

#(w, c)

(
k

ne∑
i=1

[
log(1− σ(d(w, ciN )))

])
.

(14)
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Consider that all the negative samples are drawn from the empirical distribution, and assume that
#(w) is sufficiently large for a large dataset and set k = 1,

L =
∑

w∈Vw

∑
c∈Vc

[
#(w, c) log σ(d(w, c)) +

#(c) ·#(w) · ne

| D | log (1− σ(d(w, c)))

]
(15)

where | D | is the size of the dataset. Denote t = d(w, c). From the derivation of t,

∂L
∂t

=
e−t

1 + e−t

(
#(w, c) +

#(c) ·#(w) · ne

| D |

)
− #(c) ·#(w) · ne

| D | (16)

We found the relationship of the function d for the target embedding.

t = log
#(w) ·#(c)

| D | #(w, c)
+ log ne. (17)

Notice that − log #(w)·#(c)
|D|#(w,c) is the point-wise mutual information (PMI) for (w, c). This result

indicates that d(w, c) is the mutual information between w and c. Then we capture the truth target
of the function d between word w and context c using the SGNS method. The detailed derivation
process has been placed in the appendix.

Following this result, the distance matrix between the words and the context indicates the true mutual
information matrix t ∈ R|Vw|×|V⌋| on the word-context pair set Vw×Vc, the element tw,c of t denotes
the true mutual information between word w and context c. Each row of the mutual information
matrix means the mutual information relation between a word and a context. This is equivalent to
representing the word through the probability distribution of its contributions to the context. When
the co-occurrence probabilities of two words with the context are similar, it also fully indicates the
interchangeability between the two words, that is, the similarity between the two words.

Further, we studied the relationship between the word PMI and Pearson correlation coefficients.
Interestingly, when we choose the random variables Xw and Xc to represent the indicator functions
of whether the word and the context appear. Then XwXc represents whether w and c appear
simultaneously. The Pearson correlation coefficient between Xw and Xc is

Cor(Xw, Xc) =
E (XwXc)

σwσc
=

P (w, c)√
P (w)(1− P (w))P (c)(1− P (c))

, (18)

where P (w, c) is the probability of XwXc = 1, P (w) is the probability of Xw = 1 and P (c) is the
probability of Xc = 1. Furthermore, when we take the negative logarithm of the correlation, we
discover the relationship

− logCor(Xw, Xc) = log
P (w)P (c)

P (w, c)
+

1

2
log(

1

P (w)
− 1)(

1

P (c)
− 1) (19)

From the above formula, we can see that there is a strong similarity between the Pearson correlation
coefficient of Xw and Xc and the PMI matrix. This can help us further understand the PMI matrix.

3.2 PARSIMONY EMBEDDING BY USING POINCARE DISK

In this section, we will introduce the parsimony property of hyperbolic embedding, which indicates
that hyperbolic space can store information using a much smaller embedding space dimension
compared to Euclidean space. However, our research also finds that the parsimony property of
hyperbolic space requires training with more samples and has greater computational complexity when
calculating distances for the encoding.

Following the results from the previous section, the distance matrix of word embedding obtained
by the SGNS method in the hyperbolic embedding is a characterization of the original mutual
information matrix between words. By analyzing the error between the distance matrix obtained from
the embedding in hyperbolic space and the original PMI matrix, we connect the problem of word
embedding to graph embedding, thereby enabling theoretical analysis of the errors in the hyperbolic
embedding. We divide the obtained error bound into two parts. The first part characterizes the error
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caused by the encoding space on the encoding, and the second part analyzes the error introduced by
the training of the SGNS encoding method.

Considering that the variety of contexts increases exponentially with the size of the context window,
and for a matrix of size Vw × Vc, its rank is limited by Vw. In our subsequent analysis, we choose the
size of the context window to be 1, that is, Vc = Vw = V , and at this time, the PMI matrix is a square
matrix, which is easier to analyze. Under this circumstance, the embedding is obtained through the
SGNS method using the word pairs.

If we focus on the the mutual information matrix t̂ ∈ R|V|×|V|, the element t̂w,c of t̂ denotes the
embedding distance between word w and context c. In particular, we need to assume the mutual
information between the same word is zero, which means the recurring words in the same sentence
do not provide additional information. We denote the dataset D with negative data as an augmented
dataset. And arguments d(w, c) of objective function L switch to the corresponding elements tw,c in
matrix t. Then we define a group of distance matrix called permissible matrix set Pt of t.
Definition 4. Permissible matrix set in Hyperbolic space is defined as Pt = {ti,j}, where ti,j =
d(xi, xj) and xi is a point in hyperbolic space for all i.

This definition contains all distance matrices t = {ti,j} that can be encoded in the hyperbolic spaces.
In another way, t̂ can be defined as

t̂ := argmin
t∈Pt

LD (t) , (20)

where the LD is the objective function following section 2 based on the sample set D with negative
samples. This reconstructed information matrix is estimated from the embedding result by calculating
the embedding distance matrix.

Furthermore, we define the total error E by the difference between the objective function on the
reconstructed information matrix and the real information matrix as following

E = L
(
t̂
)
− L∗ (t) , (21)

where L = E(LD) denote the expectation of loss function LD.

Before beginning further analysis, we give some assumptions first.
Assumption 1. For ∀w, c ∈ V , tw,c is bounded by ρ > 0.
Assumption 2. The loss function L is Lipschitz continuous with Lipschitz constant l and the absolute
value of Function L is bounded by a constant c.

The assumption 1 is a natural assumption, as in most cases, words are embedded into a bounded
space. And assumption 2 is a technique setting for theoretical analysis.

To give a more precise bound, the embedding error E is divided into two parts as equation 22 shows.

E = L (t)− L
(
t̂
)
≤ |L ((t))− L ((t∗)) |+ |L

(
t̂
)
− L (t∗) |, (22)

where the expected minimize t∗ is defined as

t∗ := argmin
t∈Ph

L (t) . (23)

Define the first part as E1 and the second part as E2, that is,

E1 := |L (t)− L (t∗) |, E2 := |L
(
t̂
)
− L (t∗) |. (24)

The first part E1 comes from the embedding ability of the embedding space called space error, the
second part E2 comes from the sample sets called generalization error.

We first give a definition of the Gramian matrix of Poincare ball Gp in equation 25,

Gp = {gi,j} = {1 + 2
||vi − vj ||2

(1− ||vi||2)(1− ||vj ||2)
}. (25)

Then the Poincare distance matrix is represented as

t = arcosh (Gp) , (26)

6
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where arcosh (·) is an element-wise function.

Considering the transformation from Poincare ball to Lorentz model is a bijection. In the following
part, the discussion focuses on the Lorentz model. The Gramian matrix of Lorentz model is

Gl = {gi,j} = {−⟨vi − vj , vi − vj⟩M}. (27)
Then the Lorentz distance matrix is represented as

t = arcosh (Gl) . (28)
Applied the point-wise cosh(·) function to the matrix in Ph, we have the Permissible matrix set of
PGl

. Then we transfer the estimation target to a processed point-wise mutual information matrix t′

defined as equation
t′ = cosh t (29)

by applying point-wise cosh(·) function to the matrix t.
Theorem 1. Under the Assumption 1 and the Assumption 2, the embedding space error E1 in H(n,1)

is bounded by

E1 ≤ l arcosh

2

|V|−n∑
i=1

cosh (ρ)λt′,i

 , (30)

where the λt′,i is the eigenvalue for matrix t′ sorted in ascending order, for i ∈ {1, 2, · · · , |V|}.
This theorem gives a result that the space error E1 is decreasing while the dimension of embedding
space is increasing.

Based on the Rademacher complexity of the objective function, the generalization error E2 is derived
in the following theorem.
Theorem 2. Under assumption 1 and assumption 2. For any δ > 0, the sample error E2 is bounded
with probability over 1− δ by following equation

E2 ≤
2ω(ρ)

|D| l|V|
(√

2|D|ν ln |V|+ κ

3
ln |V|

)
+ 2c

√
ln 2

δ

|D| . (31)

where ω(ρ) = cosh2(ρ) + sinh2(ρ), κ = 1
2 , ν = 1

4 for Lorentz model, ω(ρ) = (2ρ)2, κ = 2, ν = 4
for Euclidean model.

The proof of Theorem 2 mainly following the Rademacher complexityRD (h(PGl
)) from (Suzuki

et al., 2021) and the generalization error theory from (Bartlett and Mendelson, 2002). More detailed
information is in the supplementary materials.

The Theorem 2 shows that E2 is limited by the dataset size |D|, and the Theorem 1 shows that E1 is
limited by the dimension of hyperbolic space. Both errors grow as the length of vocabulary grows.
The space error aspect: The Theorem 1 explains that hyperbolic embedding, facilitated by nonlinear
transformations within Minkowski space, enables the compression of high-dimensional Euclidean
information into a lower-dimensional framework. Importantly, this embedding technique preserves
a linear approximation to the target matrix prior to undergoing the nonlinear transformation. Since
it directly analyzes the error brought by the space, it is very tight. The generalization error aspect:
The Theorem 2 highlights that training within a low-dimensional hyperbolic space necessitates a
larger sample size relative to that required in high-dimensional Euclidean space to ensure sufficient
training efficacy. This observation underscores the interplay between sample size and the dimension
of the space selected for embedding. For the Theorem 2, as it depends on the characterization of
the Rademacher complexity, when there is a more delicate characterization of the complexity of
hyperbolic space, this bound can also be further refined. Based on what we currently understand, the
results indicate that the performance of the Theorem 2 matches our experimental results.

4 EXPERIMENT RESULT

To further validate our theoretical findings, we conducted the following experiments. We conduct
experiments on a smaller dataset: Wordnet mammals, and a more complicated dataset: THUNews.
We inspected the dimension of the Gramian matrix and the reconstructed distance matrix, and we also
tested the embedding result in different sample sizes. All these experiments are run on a MacBook
Pro with M1 chips.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1 HYPERBOLIC EMBEDDING TEST ON WORDNET MAMMALS

Wordnet is a classical word embedding dataset, which was free to use on https://wordnet.princeton.edu.
Wordnet is a large lexical English database. Nouns, verbs, adjectives, and adverbs are grouped into
sets of cognitive synonyms (synsets), each expressing a distinct concept. Considering the computation
consumption, we applied an embedding algorithm on the mammal subset which is combined with
different mammal nouns. This dataset has 1180 words and 6541 word pairs.

From the result of Section 3, we can approximate the point-wise mutual information matrix by
constructing the distance matrix between words. From the information theory perspective, there is
more information in the mutual information matrix as the mutual information matrix has a higher
rank. To investigate the embedding ability of different embedding spaces, we compare the restored
point-wise mutual information matrix of different spaces.

Table 1: The rank of embedding distance matrices in the Euclidean spaces of different dimensions
trained on 1180 words by SGNS method

Dimension 10 100 200 300 800 1000
Distance 9 72 126 166 294 327
Dot 2 3 5 6 9 10

NOTES: Dimension refers to the dimension of the Euclidean
spaces. Distance denotes d(w, c) = ||w − c||2, which is the
distance in the Euclidean space. Dot denotes d(w, c) = w ·c,
which is the dot product. The higher the rank of the matrix, the
more information the embedding distance matrices contain.

Table 2: The rank of embedding distance matrices and Gramian matrices in the Poincare spaces of
different dimensions trained on 1180 words by SGNS method

Dimension 2 4 6 8 10
Distance 544 644 689 687 686
Gramian 3 4 5 5 6

NOTES: Dimension refers to the dimension of the
Poincare spaces. Distance denotes d(w, c), which
is defined in (5), the distance in Poincare space.
Gramian refers to the gramian matrix in the Poincare
spaces defined as (25). We can observe that the low-
dimensional Poincare space can store information
from high-dimensional PMI matrices, and the dimen-
sions of their Gramian matrices, as shown in Theorem
1, are low-dimensional.

We test the rank of the restored point-wise mutual information matrix which is in the shape of
1180× 1180. To test the rank of the matrix, we sum from large eigenvalues to small ones until the
summation reaches 90% of the trace of the matrix. The number of eigenvalues count is the rank of
the matrix. From Table 1, we test d(w, c) measured by distance and dot product. In Table 2, we
test the rank of the restored point-wise mutual information matrix and the Gramian matrix defined
as equation 29. It is obvious that even the rank of the distance matrix in the 2-dimension Poincare
ball is much higher than in Euclidean spaces, which means that the Poincare ball preserves much
more super-linear information. Furthermore, we give the rank of the distance matrix and the Gramian
matrix t′ in Table 3.

The result of the Lorentz model leads to the result of Theorem 1, which indicates that Hyperbolic
space contains more super-liner information, but liner in the Gramian matrix. This result means that
we can conserve dimensions of the encoding space through the use of hyperbolic surfaces.

To test the result of Theorem 2, we train hyperbolic embedding in the Lorentz model of all nouns in
Wordnet, which has 15500 words and 743087 word pairs. Due to the computational constraint, we
only test in a 2-dimensional Lorentz model, the training loss is 1.39762, which is higher than the
Mammols dataset as theorem 2 shows. we compared the error changes of word embedding on the
WordNet dataset under different training sample sizes and found that the training error in hyperbolic
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Table 3: The training loss, the rank of embedding distance matrices and Granian matrices in Lorentz
space of different dimensions trained on 1180 words by SGNS method

Dimension 2 4 6 8 10
Distance 13 649 660 666 666
Gramian 4 4 5 5 6
Training Loss 0.69868 0.94085 0.94228 0.94506 0.94465

NOTES: Dimension refers to the dimension of the Lorentz spaces. Distance
denotes d(w, c), which is defined in (3). Gramian refers to the gramian matrix in
Lorentz space defined as (28). The rank of the distance matrix in Lorentz space
is slightly less than that in the Poincare space. The dimensions of their Gramian
matrices, as shown in Theorem 1, are low-dimensional.

space decreases more slowly with the increase of sample size compared to Euclidean space. Moreover,
hyperbolic space requires more than 70,000 samples to achieve to achieve convergence of the training
error. While Euclidean space only needs 50,000 samples to achieve convergence of the training error.
This is consistent with the theorem’s prediction that hyperbolic space requires a larger sample size
for training.

4.2 HYPERBOLIC EMBEDDING TEST ON THUNEWS

We further conducted experiments on our theoretical results using the Thucnews dataset. The
Thucnews dataset contains 65000 Chinese news across 10 categories. We extracted 27 million word
pairs from the news in Thucnews and embedded all 1496 words using the SGNS method in both
hyperbolic and Euclidean spaces. The experimental results are as follows:

1, The reconstructed high-dimensional distance matrix demonstrates the powerful dimensionality
compression capability of hyperbolic space. Since the Poincare surface of d dimensions is projected
from the (d+ 1)-dimensional Lorentz model, its Gramian matrix, as revealed in our Theorem 1, is
indeed of (d+ 1)-dimensions, which also explains the linear core behind the nonlinear functions in
hyperbolic space. The dimensions of the word mutual information matrix are 1,377, and after adding
negative sample regularization, the dimensions are 1,387. The experimental results for the Poincare
surface are in table 4:

Table 4: The rank of embedding distance matrices and Gramian matrices in Lorentz Space of
different dimensions trained on 1496 words by SGNS method

Dimension 2 4 6 8
Rank of the distance matrix 719 836 849 849
Rank of the Gramian matrix 3 5 7 9

NOTES: Dimension refers to the dimension of the Lorentz spaces.
d(w, c) is defined in (3), the distance in Lorentz space. Gramian
refers to the gramian matrices in the Lorentz spaces defined as (28).
Compared to Euclidean space, the low-dimensional Lorentz space
stores more information about the PMI matrix, demonstrating the
Parsimony property of hyperbolic embedding. The result of the
Gramian matrix also verifies Theorem 1.

Taking into account that a higher dimensional reconstruction distance matrix in word embedding can
better preserve the differentiated information between different words in the PMI matrix, it helps us
to better recognize and utilize these words. The high-dimensional Euclidean space is clearly weaker
in preserving the rank information in the PMI matrix compared to the low-dimensional hyperbolic
space. The experimental results for the Euclidean space are in table 5:

2, The results are consistent with the findings of our Theorem 2. We can see that the embedding
loss in hyperbolic space is greatly affected by the size of samples, while in Euclidean space when
there is an ample amount of samples, it is less affected by changes in the sample size. To achieve the
same training effect, the hyperbolic space with lower dimensions requires more samples. As the final
convergence errors are close, we choose to conduct comparative experiments using a 2-dimensional
Poincare space and a 400-dimensional Euclidean space. The results are presented in plot 2.
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Table 5: The rank of embedding distance matrices in Euclidean Space of different dimensions trained
on 1496 words by SGNS method

Dimension 100 200 400 600 800
Rank 67 72 187 244 294

NOTES: Dimension refers to the dimensions of the
Euclidean spaces. Rank refers to the rank of the re-
constructed distance matrices. d(w, c) is the distance
in Euclidean space.

Figure 2: The plot of the number of training samples and training error in the 2-dimensional Poincare
space and the 400-dimensional Euclidean space. As described in Theorem 2, compared to Euclidean
space, the training error convergence in hyperbolic space requires larger samples.

3, Training in the hyperbolic space is more time-consuming. Under the same training parameters
such as the number of samples, number of iterations, batch size, etc., it takes 48 seconds for a training
iteration in the 400-dimensional Euclidean space, while it takes 91 seconds for a training iteration in
the 2-dimensional Poincare space. The main reason for this phenomenon is that hyperbolic encoding
requires the use of the RSGD (Riemannian Stochastic Gradient Descent) method, which involves
additional computations for the Riemannian curvature at the current point when calculating gradients,
and this curvature computation is often quite complex, leading to significant additional computational
consumption. Additionally, calculating the distance between points in hyperbolic space requires the
use of a complex distance function, which also significantly increases the computational complexity
of the hyperbolic embedding. These experimental results tell us that the space-compression property
of hyperbolic encoding requires a substantial amount of additional computational consumption and
larger samples.

5 CONCLUSION

In this work, we give a brief analysis of the Hyperbolic embedding from the mutual information
matrix. We reveal the relationship between the point-wise mutual information matrix and the distance
matrix of embedding. Then following this result, we give an analysis of the errors of the hyperbolic
embedding including the embedding errors and the generalization errors. Our findings indicate that
low-dimensional hyperbolic spaces can accommodate more linear structures of mutual information,
highlighting the equivalence between the Gramian matrix in hyperbolic embedding and the dimension
of the space. Furthermore, we demonstrate that hyperbolic embedding is more unstable during
training than its Euclidean counterpart, necessitating more samples for effective training. This
analysis illustrates the relationship between

the dimension of embedding space, training dataset, vocabulary length, and the embedding error.
These theoretical insights significantly enhance our comprehension of ongoing research initiatives,
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including Hyperbolic Neural Networks (HNN) and Hyperbolic Graph Convolutional Networks
(HGCN). They provide a more profound appreciation of the benefits and limitations associated with
utilizing hyperbolic space for data embedding, which is crucial for advanced analysis and inferential
tasks.
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A APPENDIX

A.1 THE DEDUCTION FROM THE DISTANCE MATRIX TO PMI MATRIX

To analyze the embedding from the SGNS method, we start from the optimization of the objective
function 10. Then, we have

L =
∑

w∈Vw

∑
c∈Vc

#(w, c)

(
log σ(d(w, c)) + k

ne∑
i=1

[
log(1− σ(d(w, ciN )))

])

=
∑

w∈Vw

∑
c∈Vc

#(w, c) log σ(d(w, c)) +
∑

w∈Vw

∑
c∈Vc

#(w, c)

(
k

ne∑
i=1

[
log(1− σ(d(w, ciN )))

])
.

(32)
Notice that all the negative samples are drawn from the empirical distribution, we combine negative
samples for the same word w,

L =
∑

w∈Vw

∑
c∈Vc

#(w, c) log σ(d(w, c)) +
∑

w∈Vw

(
k

·ne∑
i=1

#(w)
[
log(1− σ(d(w, ciN )))

])
(33)

Assume that #(w) is sufficient large for a large dataset and set k = 1, we have

L =
∑

w∈Vw

∑
c∈Vc

#(w, c) log σ(d(w, c)) +
∑

w∈Vw

(
#(w)ne · E

[
log
(
1− σ(d(w, ciN ))

)])
=
∑

w∈Vw

∑
c∈Vc

#(w, c) log σ(d(w, c)) +
∑

w∈Vw

∑
c∈Vc

#(c) ·#(w) · ne

| D | [log (1− σ(d(w, c)))]

=
∑

w∈Vw

∑
c∈Vc

[
#(w, c) log σ(d(w, c)) +

#(c) ·#(w) · ne

| D | log (1− σ(d(w, c)))

]
(34)

where | D | is the size of the dataset. Then we expend σ(·),

L = −
∑

w∈Vw

∑
c∈Vc

[
#(w, c) log

(
1 + e−d(w,c)

)
+

#(c) ·#(w) · ne

| D |
(
log
(
1 + e−d(w,c)

)
− log

(
e−d(w,c)

))]
= −

∑
w∈Vw

∑
c∈Vc

[(
#(w, c) +

#(c) ·#(w) · ne

| D |

)
log
(
1 + e−d(w,c)

)
+

#(c) ·#(w) · ne

| D | d(w, c)

]
(35)
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Derived by t, where t = d(w, c), we have

∂L
∂t

=
e−t

1 + e−t

(
#(w, c) +

#(c) ·#(w) · ne

| D |

)
− #(c) ·#(w) · ne

| D | (36)

When reaching the maximum, we set the derivative to zero:

e−t

1 + e−t

(
#(w, c) +

#(c) ·#(w) · ne

| D |

)
=

#(c) ·#(w) · ne

| D | (37)

With some simplification, we have

t = log
#(w) ·#(c)

| D | #(w, c)
+ log ne. (38)

Notice that − log #(w)·#(c)
|D|#(w,c) is the point-wise mutual information (PMI) for (w, c). This result

indicates that d(w, c) is the mutual information between w and c.

A.2 PROOF OF THE THEOREM 1

In this subsection, we provide the details of the proof of Theorem 2.

We consider the matrix t′ defined in equation 29. We have the following lemma.

Lemma 1. Let t′ be the hyperbolic Gram matrix for a set of points x1, · · · , xN ∈ H(n,1), Then
t′ = t+ + t−, and

t+, t−is positive definite

rank t+ ≤ n

rank t− ≤ 1

diag{t′} = −1
e⊤i t

′ej ≤ −1,where{ei} is standard basis
Conversely, matrix arccosh(t′) that satisfies the above conditions is a hyperbolic distance for a set of
N points in H(n,1).

This lemma is proved in Proposition 1 of (Tabaghi and Dokmanić, 2020). Combined with the
definition of t⋆ in equation 23, we can easily acquire the result of theorem 1.

A.3 PROOF OF THEOREM 2

In this subsection, we provide the details of the proof of Theorem 2.

To prove this theorem, we first give the definition of Rademacher complexity.
Definition 5. For a training dataset D = {x1, x2, · · · , xm}, which has m samples. Rademacher
complexity of a function family F = {f | f : X → R} is defined asRD(F)

RD(F) = EDE{σi}

[
1

m
sup
f∈F

m∑
i=1

σif(xi)

]
(39)

Where ED denotes the expectation for every sample xi under sample distribution. The σi, for
i ∈ {1, 2, · · · ,m} denoted a binary random variable in {−1,+1} with equal probability.

Following the results from previous work (Bartlett and Mendelson, 2002), (Kakade et al., 2008), we
have theorem 3
Theorem 3. Under assumption 2, For any δ > 0, the following inequality holds with probability
over 1− δ for all f ∈ F

E(L(f)) ≤ LD(f) + 2lRD(F) + c

√
log (1/δ)

2m
(40)

Where RD(F) is the Redamacher complexity of a function class F , l is the Lipschitz constant of
function L() and c is the upper bound in Assumption 2.
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From theorem 3, for any δ > 0, we have equation 41 with probability over 1− δ from equation 20
and equation 23.

L
(
t̂
)
− L (t∗) ≤ (LD (t∗)− L (t∗)) +

(
LD
(
t̂
)
− LD (t∗)

)
+
(
L
(
t̂
)
− LD

(
t̂
))

≤ 2lRD (h(Pt)) + 2c

√
log (2/δ)

2m

(41)

The function family is defined by h(Pt), which is determined by distance matrix t, and h() is a
transform function. Then we give the Rademacher complexity RD (h(PGl

)), where the h() =
arcosh() and distance matrix t is Gramian matrix Gl, in the form

RD (h(PGl
)) := EDEσ

[
1

m
sup

Gl∈PGl

m∑
i=1

σi arcosh (Gl)

]
(42)

Lemma 2. Under assumption 1, theRD (h(PGl
)) is bounded by following inequality:

RD (h(PGl
)) ≤ ω (ρ)

(√
2mν ln |V|

m
+

κ|V| ln |V|
3m

)
(43)

where ω(ρ) = cosh2(ρ) + sinh2(ρ), κ = 1
2 , ν = 1

4 for Lorentz model, ω(ρ) = (2ρ)2, κ = 2, ν = 4
for Euclidean model.

The proof of this lemma is following the proof of Lemma 11 in (Suzuki et al., 2021).

The experiment code is open at https://github.com/flaneur10/Hyperbolic-embedding-error.
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