Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

Chengzhi Cao "' Yinghao Fu”'? Chao Yang' Shuang Li'

Abstract

In high-stakes fields like healthcare, it is cru-
cial to distill valuable strategic insights from ex-
pert clinicians. This paper focuses on extracting
these knowledge-based insights from demonstra-
tions provided by experts, where we represent the
knowledge as a set of logical rules. Our learn-
ing framework is built upon the classic Inverse
Reinforcement Learning (IRL). We assume that
experts, like clinicians, are rational, and the treat-
ments they choose are the best choices based on
their logical understanding of the situation. Our
algorithm can automatically extract these logical
rules from their demonstrations. We introduce a
neural logic tree generator, which is trained to gen-
erate logical statements step by step, starting from
the goal and working backward. This mirrors the
way humans engage in backward reasoning. Sim-
ilarly, we interpret policy planning as a forward
reasoning process, where the optimal policy is de-
termined by finding the best path forward based
on the provided rules. The neural logic tree gen-
erator and the policy are learned using the IRL
until convergence. This process ultimately leads
to the discovery of the most effective strategic
rules. As a bonus, our algorithm also allows us to
recover the reward function. In our experiments,
we demonstrate that our method excels at discov-
ering meaningful logical rules, particularly in the
context of healthcare.

1. Introduction

Although deep reinforcement learning has been used in
high-stakes systems such as healthcare to aid clinicians in
making medical decisions (Komorowski et al., 2018), the
lack of interpretability of the learned black-box policies
hinders their wide applications in real life. Clinicians are

“Equal contribution 'School of Data Science, The Chinese
University of Hong Kong (Shenzhen) *Department of Biostatistics,
City University of Hong Kong. Correspondence to: Shuang Li
<lishuang@cuhk.edu.cn>.

ICML 2025 Workshop on Programmatic Representations for Agent
Learning, Vancouver, Canada. Copyright 2025 by the author(s).

not satisfied with knowing which action to take in certain
situations but are also interested in understanding why to
take such actions.

In this paper, we focus on answering the following question:
how to automatically uncover the intrinsic logical knowl-
edge to guide the reward design and explain the observa-
tional state-action trajectories from expert demonstrations?
In clinical decision systems, it is desirable to extract de-
scriptive and high-level explanatory rules based on disease
phenotypes and therapies from demonstrations by clinicians.
These discovered logical rules can enhance the sharing of
clinical insights, improve the interpretability of medical poli-
cies, and contribute to the refinement of treatment strategies.

Reward engineering has been a longstanding barrier in many
complex decision-making problems. This paper aims to re-
veal logic-informed reward functions and policies by modi-
fying the classic IRL framework (Ng et al., 2000; Finn et al.,
2016b; Fu et al., 2018). The policies, reward functions, and
their explanatory logical rules will be automatically learned
from the data. Notably, our IRL framework automatically
mines logic rules from data, which may reduce the cog-
nitive bias introduced by humans and alleviate the human
workload. Moreover, the discovered logic rules can be trans-
ferred to similar tasks to assist in reward design and policy
learning, mitigating the sample efficiency bottleneck and
addressing the sparse reward challenge.

Our overall learning framework is built upon the classic
inverse reinforcement learning (IRL). Our IRL involves two
stages: logic tree learning and policy learning. To facilitate
efficient and differentiable rule discovery, we introduce a
neural logic tree generator that generates a composition of
logic variables in a sequential manner by mirroring the back-
ward reasoning process. It starts with generating the goal
and then subsequently generating the symbolic conditions
necessary to achieve that goal. Our formulated IRL will
drive the logic tree generator to adeptly capture the proba-
bilistic distributions of the most effective strategic rules.

Our policy learning, however, can be regarded as forward
reasoning, where the agent is optimized by identifying the
most favorable path for forward chaining, given the dis-
covered rules. The proposed IRL algorithm alternates be-
tween neural logic tree learning and policy learning until
convergence, resembling a cycle of backward and forward

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

reasoning. Once converged, the algorithm yields the best
set of explanatory logic rules and learned policies. As a
by-product, the reward function can be recovered.

To address reward identification challenges in stochastic
environments (Ng et al., 2000), we employ the Deep-PQR
algorithm (Geng et al., 2020), a recent IRL method. Deep-
PQR introduces the concept of “anchor actions” to facilitate
the unique recovery of true reward functions. Overall, our
IRL algorithm strategically optimizes the logic generator
and policy function until convergence, subsequently recov-
ering the Q-function and reward function. Ultimately, the
resulting logic tree informs reward engineering and explains
expert policies.

Our contributions can be summarized as follows:

(i) We present a novel IRL framework that simultaneously
learns experts’ logical reasoning processes and policies from
observational data, enhancing interpretability compared to
black-box solutions.

(if) We introduce a neural rule generator capable of incre-
mentally expanding symbolic trees using arithmetic and
logical operators to explain experts’ demonstrations. This
expansion process is learned in a differentiable way.

(iii) Our reward learning framework is both tractable and
efficient, allowing us to learn intrinsic and unique rewards
guided by symbolic logic trees.

(iv) We evaluate our method on various datasets, includ-
ing synthetic and a real-world healthcare scenario. The
experimental results demonstrate that our symbolic reward
learning framework can outperform most state-of-the-art
methods.

2. Preliminaries: Expert Behavior Models

We consider an agent behavior model under the assumption
of maximizing the entropy-augmented long-term expected
reward. The Markov decision process (MDP) is represented
by (S, A, P,r, po,7), where S denotes the state-space, A
denotes the action-space, P represents the transition proba-
bility distribution, r(s, a) corresponds to the reward func-
tion, po is the initial state distribution, and v € (0, 1) is
the discount factor. State and action variables at time ¢
are denoted as s; and a;, respectively. 7(s,a) represents
the stochastic policy of agents, indicating the conditional
probability p(a;|s;). We model the agent’s behavior 7 as
follows:

mfrlxz'ytE [r(st,ar) +aH (7 (se, 7)) | so=s], (1)
t=0

where H(n(s,-)) := — [, log(n(s,a))n(s,a)da is the in-
formation entropy. o (7 (- | S¢)) with & > 0 is introduced
to encourage the exploration of the agent behavior 7 (s, a).

If we assume the stochastic policy takes a Boltzmann distri-

bution, also known as stochastic energy-based policy, i.e.,
— exp(=£&(s,a)) ;

m(s,a) = T ow(Esada) where £ > 0 is an energy

function. One can prove that (Haarnoja et al., 2017) by as-

suming that agents take energy-based policies, the optimal

policy function by solving Eq. (1) will be

exp (éQ(s,a))
fa'eA exp (éQ (s7a’)) da’’

(s, a) =

@

Moreover, the likelihood of the observed demonstrations
7 = {so,a0,81,a1, - ,ST,ar} can be derived (using the
chain rule) as

T -1
p(r) = HW* (st a) H p(se+1|spa). (3)
=0 t=0

Eq. (2) shows that the optimal agent behavior will take the
actions that yield higher accumulative reward with exponen-
tially higher probabilities. In our paper, we assume that the
experts are adopting the optimal policy of form Eq. (2).

Figure 1. Illustration of a logic tree R. The tree indicates that to
reach the goal Xy, the following logic rules: Xo < X1 A Xo,
X1 < X3 A Xy, and X2 < X5 must be executed.

3. Logic Tree Generator

Our key idea involves the introduction of a neural logic tree
generator, from which a collection of logic rules that need
to be executed to reach the goal will be generated in a top-
down fashion, mirroring the backward reasoning process
of humans. As shown in the left segment of Fig. 2, our
generator takes the observed state-action demonstrations as
input, and initially encodes them into the symbolic predicate
space. Subsequently, it utilizes a Transformer-based autore-
gressive generative model to produce the logic trees. The
obtained logic trees serve as symbolic explanations for the
expert demonstrations. Moreover, they will be subsequently
leveraged in the policy and reward learning phase. We will
defer to Section 4 to discuss the IRL algorithm in terms of
policy and reward learning, where the parameters of our
logic tree generator will also be learned.

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

@ On(a,b) True ifaisonb

@ Isground(b) True if b is the ground

~

True if there is no block on ¢

O Clear(c)

\ SR Tree 1

SR Tree 2

function|™ = = z i 15

-function 1
estimation

SR Tree n/

Syboliciie 'P estimation|_ = _ . _+_
Decoder f

=27y

b J § \

Weights

Reader

________ 1 _

Jiwé?bé%

Juady

ocoYoog

1
1
1
1
1
1
1
1
1
1
1
1
L

High quality tree
Logic Decoder Value function

J/

UONBWISS PIEMAY
|
I %%
+
-.__________;____________r

- rrmmme

———— Policy function

Symbolic Tree Module

l:] Self-Attention I:] Gating

@ Position Embeding

estimation

N e e 7/
@ Character Em_

I:l Conv l:l Cross-Attention

Figure 2. Overview of our proposed framework. Left segment: The diagram depicts the architecture of the neural logic tree. We utilize a
Transformer-based autoregressive generator to create the logic trees in a sequential manner. Right segment: The diagram illustrates our
comprehensive logic-informed Inverse Reinforcement Learning (IRL) framework. The IRL framework employs a Generative Adversarial
Network (GAN)-based cost learning approach, where we formulate a minimax problem to simultaneously train the neural logic generator
and the policy. Additionally, the reward function can be uniquely recovered as a by-product of this process.

3.1. Symbolic Logic Tree

Let X be a predicate set X = {X3, X»,..., X, }, where
each predicate X; € {0, 1} is Boolean logic variable. For-
mally, a symbolic tree R consists of a set of logic rules:

U= N\ Xun A\ "Xop., @

kex uwel} velp

where each logic rule fj from the rule index set K is written
as a conjunctive clause, and I} (resp. I) is the index set
of the variables in X without (resp. with) a NOT operator.
An example of the logic tree R considered in our paper is
shown in Fig. 1, where the tree defines a collection of logic
rules, indicating the conditions that need to be satisfied to
reach the goal.

3.2. Autoregressive Generative Model

Our (amortized) neural logic tree generator is designed to
generate a symbolic logic tree with a distribution py(R |
7), conditional on a state-action trajectory 7. Specifically,
we generate a symbolic logic tree R as a sequence in an
autoregressive manner, according to a pre-order traversal,
ie.,

L
Ps(R|7) =pe(X9 | 1) [[pe(X" |7, X1, (5)
=2

where the index [refers to the position in this pre-order
traversal, and X° = X9 is the goal predicate, and X <l —
(X0,..., X!=1). The goal X° in our model is conceptu-
alized based on the desired outcome of the task, which

may indeed be as binary as success versus failure in certain
scenarios. It is generally fixed throughout a trajectory to
provide a consistent objective. Our logic generator starts
from the root node, representing the final goal, and generates
subsequent subgoals and conditions.

Our symbolic tree generator contains three main compo-
nents: (1) a trajectory reader encodes the raw trajectory
data; (2) an abstract symbolic tree reader encodes the pred-
icates and the previously generated partial symbolic tree;
(3) a decoder integrates the node scheduled for expansion
along with inputs from the two previous readers to predict
the next predicate.

To construct py(R | 7), we begin a trajectory reader,
which tokenizes 7 into the predicate space, resulting in
a sequence of ordering X1, X(2),- .., X(n), where n de-
notes the length of the grounded predicate sequence. This
tokenization is performed using a set of predefined label-
ing functions, which are meticulously designed through
a blend of domain-specific expertise and insights derived
from pre-trained models. Then each grounded predicate
X ;) is further divided into characters cfm , cf(”, o en®
by the first block of the abstract symbolic tree reader,
where m represents the number of characters in X ;). The
character here represents the state/action which is associ-
ated with this predicate. All predicates and characters are
embedded as real-valued vector X1y, X(2), ..., X(,) and

cfO X e then we can re di

1 5Cy ,...5Cm 7, present a predicate
by character embeddings with a fully-connected layer. The
first block of the abstract symbolic tree reader contains

three different sub-layers: self-attention, gating mechanism,

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

and convolution, designed to extract features. The neural
structure of our reader follows the Transformer architecture
and uses multi-head attention to capture long-dependency
information.

While our trees are generated by predicting sequences of
predicates, these predicates alone lack a concrete represen-
tation of the tree’s structure, making them insufficient for
predicting the next predicate. Therefore, the rest blocks of
the abstract symbolic tree reader were used to incorporate
both the predicted predicates and the tree’s structural infor-
mation. Specifically, We encode the rules using an attention
mechanism and subsequently employ a tree convolution
layer to amalgamate the encoded representation of each
node with its ancestors. Our final component is a decoder
that integrates information from generated logic rules with
the state-action trajectory description and predicts the next
predicate. We also employ a pointer network to directly
identify a predicate from the input, designating it as a logic
tree’s terminal node. The decoder treats the non-terminal
node to be expanded as a query, represented as a path from
the root to the node to be expanded. For detailed input
descriptions and neural structures for each module, please
refer to Appendix B.

4. Learning Framework

Next, we introduce our innovative logic-informed IRL
framework, which aims to learn three key components: the
logic tree generator represented as pg, the expert policy, and
the reward function. Our algorithm operates by iteratively
updating the expert policy and the rule generator py until
convergence. Subsequently, we recover the Q-function and
reward function in a specific order. We will provide more
detailed explanations in the following sections.

4.1. Joint estimation of Expert Policy and logic
generator

Logic-Informed Energy Function Our innovation lies
in the design of the energy function, which encapsulates
high-level strategic information revealed from the trajec-
tory, utilizing predefined predicates and logic rules. More
precisely, we propose to parametrize the energy function
using logic-informed features given a generated logic tree
(see Eq. (4)), as outlined in the following equation:

SR == > o 3 Xun)

kEK(R) uel}(R) ©)
- Y X - IR) +e).
vel)(R)

Here, 0 < € < 1, 6;, > 0; the index set of logic rules
and the index set of variables f!, f7 are associated with the

logic tree R; | - | denotes the cardinality of a set; and all
predicate variables X,,, X, are grounded by the trajectory
7. The parameter 6 can be designed as a unique parameter
for each rule within the tree, or it can be shared among all
the rules in the tree. Sharing the parameters across rules
can help reduce the number of parameters that need to be
learned.

Each summand in Eq. (6) (i.e., the value within the big
parentheses), once exponentiated, served as a soft approx-
imation of the logic rule f;(7) as defined in Eq. (4). To
illustrate, when X, (1) = 1 for every u € I}(R) and
X, (1) = 0 for every v € I?(R), we have that fi(1) = 1
and the exponential of the summand equals e™¢. Conversely,
when X,,(7) = 0 for every u € I}, (R) and X, (1) = 1 for
every v € I2(R), we have that f;(7) = 0 and the expo-
nential of the summand equals e~ (R)VLI(R)I+¢ which
is presumably a very small number that is close to 0. The
parameter 0, controls the scaling of the exponential as well
as the weight of each clause in the logic tree. We will revisit
the interpretation of the energy function when we discuss
the policy learning.

With a slight abuse of notation, we introduce a logic-
informed energy function, which can be interpreted as the
product of experts (Hinton, 2002), where each generated
logic tree sample can be regarded as an expert’s logical
reasoning used in the energy function.

597(25(7') = ER~P¢('|‘F) [59 (T; R)] (7)

Here, each symbolic tree ‘R independently evaluates the
likelihood of a trajectory 7 as exp(—&p(7;R)). The distri-
bution of expert’s logic trees is py (- | 7) and the expression
exp(—&p,» (7)) represents the combined likelihood.

It is crucial to note that £y ,(7) is dependent on the learn-
able parameter 6 and the distribution py of the logic tree R.
During the learning process, the objective is to minimize
the energy when applying an expert demonstration 7. In
other words, the energy function is trained to increase the
likelihood of grounding each predicate X; within the sym-
bolic tree R and the goal predicate. In practice, to make
the expectation tractable, we will use the top-K logic trees
with generated probabilities to approximate the expectation.
This selection reflects a snapshot of the most probable trees
at a given iteration and allows us to approximate the expec-
tation without the computational expense of considering all
possible trees. In our experiments, we use ' = 1, and the
performance is quite satisfactory.

GAN Guided Cost Learning Now, given the logic-
informed energy function, we consider a discriminator of
the form

exp(—E&y,¢(7))
exp(—E€9,4(7)) + Pr, (1)’

Do,p4(T) = (®)

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

where p,. , represents the likelihood of a trajectory 7 induced
from a policy m,, parameterized by 1; exp(—E&p 4(T)) rep-
resents the likelihood of a state-action trajectory 7 induced
from the logic-informed energy model Eq. (7). The GAN-
guided cost learning framework considers a minimax prob-

lem:)
min IIQI%XETNWXPE,[[log Do, g, (1) +

Erer, [log(l — DO,q&,w(T))]'

The discriminator maximizes the log-likelihood between the
encapsulated raw data trajectory and the generated trajec-
tories by the current policy . Practically, we replace
with a mixture between the raw data trajectory and the gener-
ated trajectories by the current policy. Given 1), the optimal
discriminator satisfies £y ¢ (7) = —logpy(7), at which
the output of the discriminator is 1/2 for all trajectories.

&)

The GAN objective can be trained using gradient-
based algorithms with appropriate parameterization. Be-
fore that, we can compute the gradient of £y 4(7) as
Erep, (1) [Velogpg(R | 7) - E(7;R)]. Therefore,
we can compute the gradient of the GAN objective
with respect to ¢ using the log-derivative trick, which
yields VgE,or .. [108Dp gy y(T)] + Eror, [log(l —

Dy, p,5(7))]-

Policy learning can be regarded as the importance sampling
used for estimating the partition function of an energy-based
model (Finn et al., 2016a). In other words, given the current
energy function, the policy is trained to generate state-action
trajectories that will yield a low-energy function (i.e., a high
probability), resulting in the logic trees being more likely to
be satisfied. In essence, policy learning is about finding the
most effective path to achieve the end goal given the current
logic rules.

Therefore, our overall logic-informed IRL can be seen as a
cycle of alternating between backward reasoning and for-
ward reasoning until convergence is achieved. Consequently,
we can learn the best probabilistic distribution of the logic
trees as well as the policy.

4.2. Reward Recovery

After learning the expert policy, we recover the reward func-
tion using the deep PQR algorithm (Geng et al., 2020),
which is a modification to the well-known AIRL (Fu et al.,
2018) to address the reward ambiguity. This is achieved
by first identifying the Q-function under an anchor-action
assumption and then estimating the reward function.

Two-stage Q-function Estimation Recall from Eq. (2)
the relationship between the expert policy and the optimal Q-
function, the ratio remains unchanged if Q*(s, a) is shifted
by a function U(s). As a result, Q* is not identifiable in
the above form. To resolve this issue, we adopt the anchor-

action assumption (Geng et al., 2020), which postulates
the presence of an anchor action a® € A such that its
reward values (-, a®) is fixed beforehand. In our setting,
the anchor action is chosen as a “non-action”, yielding no
reward. Given the anchor estimator QA and the policy
estimator b the Q-function is estimated by:

Q(s,a) = alog(m;(s,a))

. 10
aloglmyls,at) £ OMs).

Thereby, we can apply the Fitted-Q-Iteration Identification
method, which amounts to solving a simple one-action
MDP.

Reward Estimation Given the Q-function estimator Q
and the policy estimator ;- the reward function is estimated
in a manner similar to the Bellman equation:

= Q(s,a) — 7By [~alog(7(s',a?))
+Q(s',a%) | s,al.

7(s,a)

(11)

Here, ES/ denotes the estimated expectation over the state
variable s’, which represents the one-step look-ahead state
variable. The main idea behind the formulation in Eq. (11)
is to replace the value function in the Bellman equation with
a specification that explicitly incorporates agent policies
into the reward functions. This representation avoids the
direct calculation of the value function, simplifying the esti-
mation of the expectation. To estimate the expectation, we
use a deep neural network given 7 (s, a) and Q(s, a), trans-
forming the reward estimation problem into a supervised
learning task.

With this formulation, we can effectively estimate the re-
ward function in a more direct manner without explicitly
computing the value function. By considering the impact
of agent policies, we obtain a more refined representation
of the reward, enabling efficient supervised learning for the
reward estimation process. The use of deep neural networks
in this approach provides a flexible and scalable framework
for reward estimation, making it applicable to a wide range
of applications.

We want to emphasize that even though our reward function
is defined at the state-action level, its learning process is
implicitly influenced by the symbolic logic trees that we’ve
learned. The learned logic trees, being at a higher level of
strategy description, are more generalizable than the reward
function.

5. Experiment

In this section, to test the robustness of our proposed frame-
work, we conduct several experiments on synthetic and

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

Table 1. Comparison between different methods in the blocks world, sorting integers, and finding shortest paths, where m is the number
of blocks in the blocks world environment or the size of the arrays/graphs in the sorting/path environment. The performance is evaluated
by two metrics and separated by “/”’: the probability of completing the task during the test, and the average Moves used by the agents

when they complete the task.

BlocksWorld Sortin Finding Path . .

Methods - I— 16— =%0 SSI0 me80 A0 mego Running time
NLM 100%/70 83%/247 100%/41 89%/216 100%/4 100%/32 66.9s
MemNN | 57%/231 0%/N/A 96%/745 74%/1385 35%/36 0%/N/A 101.3s
MaxEnt-IRL | 429%/264 0%/N/A 82%/811 44%/1879 26%/49 0%/N/A 32.65
Deep PQR | 78%/125 43%/362 100%/165 70%/553 77%/31 31%/198 161.0s
AIRL | 53%/305 24%/1147 92%/766 71%/1406 71%/42 0%/N/A 70.8s
Ours 100%/59 93%/189 100%/41 97%/170 100%/4 100%/29 57.2s

real-world datasets and show that our method can solve a
broad set of decision-making tasks, such as block manipula-
tion and healthcare event prediction, and meanwhile provide
strategic explanations.

5.1. Synthetic Experiments

We test our model’s capability of decision-making in the
classic blocks world domain by slightly extending the model
to fit the formulation of the Markov Decision Process (MDP)
in reinforcement learning. Additionally, we perform exper-
iments specifically designed to validate the accuracy and
quality of our estimated reward function.

Experimental Setting. We further show our model’s
ability to tackle algorithmic tasks, such as BlocksWorld,
Sorting, and Path. We view an algorithm as a sequence of
primitive actions and cast it as a reinforcement learning prob-
lem. Each synthetic dataset contains 1, 000 event streams
partitioned into three sets: training (70%), validation (15%),
and test (15%).

Baselines For IRL, we consider the classic MaxEnt-IRL
proposed in (Ziebart et al., 2008), which estimates the Q-
function and treats it as the reward function. Further, we
include the AIRL method (Fu et al., 2018), which attempts
to distinguish the reward function from the ()-function by a
disentangling procedure. Moreover, we consider three base-
lines as representatives of the connectionist and symbolicist:
Memory Networks (MemNN) (Sukhbaatar et al., 2015) and
Neural Logic Machine (NLM) (Dong et al., 2019). We also
make comparisons with other models such as Deep PQR
(Geng et al., 2020).

Results. The results have been shown in Table 1. Notably,
the performance gap between our approach and the Neu-
ral Logic Machines (NLM) (Dong et al., 2019) is evident.
While both methods achieve close to the best possible result
on each task, there is little room for improvement. But ours

obtain fewer moves when finishing all tasks. The MemNN
(Sukhbaatar et al., 2015) method is ineffective when the
size of the arrays/graphs in the sorting/path environment be-
comes larger. Deep PQR (Geng et al., 2020) can presumably
learn disentangled rewards, but we find that the formulation
does not perform well even in learning rewards in the orig-
inal task, let alone transferring to a new domain. It learns
successfully in the training domain but does not acquire a
representation that is suitable for transfer to test domains,
with a 78% success rate of completing the BlocksWorld
task (m=40). In contrast, our method not only excels in
learning disentangled rewards but also adapts effectively to
significant domain shifts, even in high-dimensional environ-
ments where exact reward extraction is challenging. The
accuracy of our reward function estimates, as evidenced by
the results of reward recovery, further validates the align-
ment of our approach with expert decisions, despite the
constraints of our dataset.

Moreover, we also show a most likely logic tree generated
from our algorithm in Fig. 3 to demonstrate its effectiveness.
Given an initial configuration of blocks world, our goal is to
transform it into a target configuration by taking a sequence
of Move operations. The learning system should recover a
set of rules and generalize to a blocks world that contains
more blocks than those encountered during training. In our
tree architecture, the leaf nodes define the initial states, and
the inner nodes are determined by gating functions encoding
the probability of taking the rightmost branch at each leaf
node.

Rule Evaluation In the real-world dataset, there is no
ground truth of learned logic rules, so we follow (Li et al.,
2022) to verify our model’s rule discovery ability on syn-
thetic datasets with a known set of ground-truth rules and
weights. Note that it was originally utilized for the temporal
point process, so we modify it by adding spatial variables
(such as “left, right, front, and behind”) to fit in our set-
tings. The weight learning results on 4 synthetic datasets

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

1
I:I Root 1®E
Voo ld] [e]
\:I Action ! el i
1 Target World Step two

Success

1

Above(a,d)

Moveable(a)

1
1
1
H o
4] [el i,
' [a][e] [£]! - | Placeable(d) | | OnGround(a) | | Clear(a) |
—
T / Description
1 C Step one ‘ Above(c,f) Clear(d) |
] 1d| % Above(x,y) Trueifxisony
alle Move(c,f) OnGround(x) True if x is on the ground
== I _— Moveable(c) Clear(x) True if there is nothing on x
I® (] i Placeable(x) OnGround(x)AClear(x)
! d
1 []]
i[a][e] [f]} :
| imia worid_! | Clea) | | OnGround(p| | Clear(d | Action step <«— Judge step

Figure 3. A logic tree induced by our algorithm in BlocksWorld task. In the first step, we move the block c onto the block f. In the second

step, we move the block a onto the block d to the target configuration.

are shown in Table 3.

Running time We show the runtime for all methods aver-
aged on BlocksWorld tasks. Note that all methods are tested
on an RTX 2080Ti GPU. The Table 1 shows the time of 100
evaluation episodes. Our method is simpler to train at the
same time achieving even better performance.

5.2. Real-world Experiments

Baselines. To compare our method with state-of-the-art
models, we select the following methods as baselines: 1)
RNN/Attention-based model: Chet (Lu et al., 2021a), Hi-
TANet (Luo et al., 2020), ConCare (Ma et al., 2019), CGL
(Lu et al., 2021b), Deep PQR (Geng et al., 2020) and NLRL
(Jiang & Luo, 2019).

Results. We report the mean and standard deviations of
evaluation metrics by running each model 5 times with
different parameter initializations. Table 2 shows the re-
sults of diagnosis prediction using w-F; (%) and R@k (%).
It shows that our method outperforms baselines on both
datasets. Note that our method is better than CGL (Lu et al.,
2021b) even without medical ontology graphs used in these
two models. It further validates the significance of learning
logic rules in health-care prediction. The attention-based
method (Ma et al., 2019) and graph-based method (Lu et al.,
2021b) can force models to only focus on the visits that
contain risk factors and ignore the rest visits. Aggregating
all visits together may further induce noise and hurt final

performance. Our approach underscores the importance of
explainable Al, balancing a slight uptick in performance
with a marked improvement in transparency.

6. Related Work

Inverse reinforcement learning In the Machine Learning
literature, inverse reinforcement learning (IRL) is a form of
imitation learning and learning from demonstration. Imita-
tion learning aims at learning policies from expert demon-
strations, and IRL methods accomplish this by first inferring
the expert’s reward function (Jiang & Luo, 2019). The sec-
ond goal is to run RL in a different environment with the
estimated reward, where rewards are likely to transfer more
readily across environments compared to policies. Previous
IRL approaches have included maximum margin approaches
(Abbeel & Ng, 2004; Jain et al., 2006) and probabilistic ap-
proaches such as (Levine et al., 2011; Ziebart et al., 2008).
In this work, we work under the maximum IRL framework
of (Geng et al., 2020). Some advantages of this framework
are that it removes ambiguity between demonstrations and
the expert policy, and allows us to cast the reward learning
problem as a maximum likelihood problem. Generative
adversarial imitation learning (Ho & Ermon, 2016) differs
from our work in that it is not an IRL algorithm that seeks to
recover reward functions. It aims only to recover the expert’s
policy, which is a less portable representation for transfer.
(Uchibe, 2018) does not interleave policy optimization with
reward learning within an adversarial framework. Improv-
ing a policy within an adversarial framework corresponds

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

Table 2. Diagnosis prediction results on MIMIC-III and MIMIC-IV using w-Fi (%) and R@Ek (%).

Methods MIMIC-IIT MIMIC-IV
w-I R@10 R@20 w-I R@10 R@20
Chet 22.63(0.08) 28.64(0.13) 37.87(0.09) | 26.35(0.13) 30.28(0.09) 38.69(0.15)
HiTANet | 21.15(0.19) 26.02(0.25) 35.97(0.18) | 24.92(0.27) 27.45(0.33) 36.37(0.24)
ConCare | 20.94(0.06) 24.04(0.16) 34.11(0.12) | 23.59(0.18) 26.52(0.13) 35.23(0.07)
Deep PQR | 20.86(0.14) 24.61(0.08) 34.23(0.11) | 23.13(0.13) 26.39(0.06) 35.45(0.19)
CGL 21.92(0.12) 26.64(0.30) 36.72(0.15) | 25.41(0.08) 28.52(0.42) 37.15(0.29)
NLRL | 20.23(0.06) 24.59(0.09) 34.03(0.07) | 23.75(0.19) 26.80(0.14) 35.70(0.15)
Ours 22.78(0.09) 29.01(0.11) 38.10(0.08) | 26.47(0.10) 30.35(0.07) 38.65(0.11)

Table 3. Rule discovery and weight learning results (GT
weights/learned weights) on 4 synthetic datasets.

Weights wWo w1 Wo
Dataset-1 | 1.00/0.94 1.00/0.91 2.00/1.85
Dataset-2 | 1.00/0.82 0.50/0.34 0.50/0.44
Dataset-3 | 1.00/0.89 1.50/1.33 1.50/1.39
Dataset-4 | 2.00/1.82 1.00/0.87 1.00/0.90

to training an amortized sampler for an energy-based model.
Our work instead focuses on how to achieve generalization
within the standard IRL formulation.

Intrinsic Rewards Learning Rewards learning aims at
using heuristically designed intrinsic rewards in RL set-
tings leading to interesting formulations. Liu et al. (Liu
et al., 2014) propose a multi-agent architecture in which
each agent, in addition to performing the standard role of
designing appropriate policies, learns good reward functions
from experience using a gradient-based approach. Kulkarni
et al. (Kulkarni et al., 2016) present to integrate hierarchi-
cal action-value functions, operating at different temporal
scales with goal-driven intrinsically motivated deep rein-
forcement learning. Dilokthanakul et al. (Dilokthanakul
et al., 2017) design the discrete sets of sub-goals and their
related intrinsic rewards that the meta-controller can select
from. (Zheng et al., 2018) build on the optimal rewards
framework to define the optimal intrinsic reward function as
one that when used by an RL agent achieves behavior that
optimizes the task-specifying or extrinsic reward function.
Our work differs from these works in that the reward func-
tions discovered are low-dimensional symbolic trees instead
of high-dimensional neural networks.

7. Limitations and Discussion

We can enhance our logic-informed IRL framework in sev-
eral ways: (i) Currently, the accuracy of the generated logic
trees needs validation by human experts. In future work,
we can develop a human-in-the-loop algorithm that allows

flexible incorporation of human expert opinions in rule gen-
eration. (if) In the current version, users must specify the
predicate set in advance. However, can we enable our algo-
rithm to automatically discover new concepts or predicates?
(iii) At present, we employ a neural logic rule generator.
In the future, we may replace it with a different approach
like LL.Ms, and we’re interested in evaluating the perfor-
mance of our logic-informed IRL with this new knowledge
generator.

8. Conclusion

In this paper, we present a logic-informed IRL framework.
A neural logic generator is trained to produce logical rules to
explain expert demonstrations and their underlying logical
reasonings. Using the proposed IRL framework, both the
neural logic generator and the policy are learned through a
minimax optimization until the algorithm converges. Our
overall logic-informed IRL can be seen as a cycle of alter-
nating between backward reasoning and forward reasoning
until convergence is achieved. As a bonus, our approach
can also uniquely recover the reward functions. We empiri-
cally evaluated our methods on synthetic and real healthcare
datasets, which demonstrated promising results.

Impact Statement

This paper introduces a novel framework aimed at enhanc-
ing the interpretability of decision-making systems through
Inverse Reinforcement Learning, with a focus on logical
reasoning processes. For application, particularly in health-
care, the proposed method can be used to learn the reward
function of doctors managing the mechanical ventilation of
patients and their sedation while being ventilated. It can
develop an RL agent that can balance the risks of long-term
mechanical ventilation with removing the ventilation too
quickly from a patient. A reward function that encodes this
information is difficult to handcraft and therefore should be
learned from expert demonstrations. It suggests significant
potential for societal benefits by improving decision-making
accuracy and transparency.

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

References

Abbeel, P. and Ng, A. Apprenticeship learning via inverse
reinforcement learning. Proceedings of the twenty-first in-
ternational conference on Machine learning, 2004. URL

https://api.semanticscholar.org/CorpusiD:207155342.

Dilokthanakul, N., Kaplanis, C., Pawlowski, N.,
and Shanahan, M. Feature control as intrinsic
motivation for hierarchical reinforcement learn-
ing. IEEE Transactions on Neural Networks and
Learning Systems, 30:3409-3418, 2017. URL
https://api.semanticscholar.org/Corpus|D:38464943.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D.
Neural logic machines, 2019.

Finn, C., Christiano, P., Abbeel, P.,, and Levine, S. A con-
nection between generative adversarial networks, inverse
reinforcement learning, and energy-based models. arXiv
preprint arXiv:1611.03852, 2016a.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:
Deep inverse optimal control via policy optimization. In
International conference on machine learning, pp. 49-58.
PMLR, 2016b.

Fu, J., Luo, K., and Levine, S. Learning robust rewards with
adversarial inverse reinforcement learning. In Interna-
tional Conference on Learning Representations (ICLR),
2018.

Geng, S., Nassif, H., Manzanares, C., Reppen, M., and Sir-
car, R. Deep pqr: Solving inverse reinforcement learning
using anchor actions. In International Conference on
Machine Learning, pp. 3431-3441. PMLR, 2020.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
International conference on machine learning, pp. 1352—
1361. PMLR, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp- 770-778, 2016.

Hinton, G. E. Training products of experts by minimizing
contrastive divergence. Neural computation, 14(8):1771-
1800, 2002.

Ho, J. and Ermon, S. Generative adversar-
ial imitation learning. In Neural Infor-
mation Processing Systems, 2016. URL

https://api.semanticscholar.org/CorpusID:16153365.

Jain, A., Hu, M., Ratliff, N. D., Bagnell, D,
and Zinkevich, M. A. Maximum margin plan-
ning. Proceedings of the 23rd international

conference on Machine learning, 2006. URL
https://api.semanticscholar.org/Corpus|D:263868651.

Jiang, Z. and Luo, S. Neural logic reinforcement learning. In
International conference on machine learning, pp. 3110-
3119. PMLR, 2019.

Johnson, A. E., Bulgarelli, L., Shen, L., Gayles, A., Sham-
mout, A., Horng, S., Pollard, T. J., Hao, S., Moody, B.,
Gow, B., et al. Mimic-iv, a freely accessible electronic
health record dataset. Scientific data, 10(1):1, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C.,
and Faisal, A. A. The artificial intelligence clinician
learns optimal treatment strategies for sepsis in intensive
care. Nature medicine, 24(11):1716-1720, 2018.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. B. Hierarchical deep reinforcement learn-
ing: Integrating temporal abstraction and intrinsic
motivation. ArXiv, abs/1604.06057, 2016. URL
https://api.semanticscholar.org/Corpus|D:4669377.

Levine, S., Popovic, Z., and Koltun, V. Nonlinear inverse
reinforcement learning with gaussian processes. In
Neural Information Processing Systems, 2011. URL
https://api.semanticscholar.org/CorpusID:12063228.

Li, S., Feng, M., Wang, L., Essofi, A., Cao, Y., Yan, J.,
and Song, L. Explaining point processes by learning
interpretable temporal logic rules. In International
Conference on Learning Representations, 2022. URL
https://api.semanticscholar.org/CorpusID:247613805.

Liu, B. D,, Singh, S., Lewis, R. L., and Qin, S. Optimal
rewards for cooperative agents. I[EEE Transactions on Au-
tonomous Mental Development, 6:286-297, 2014. URL
https://api.semanticscholar.org/CorpusID:6013954.

Lu, C, Han, T., and Ning, Y. Context-aware health
event prediction via transition functions on dynamic
disease graphs. ArXiv, abs/2112.05195, 2021a. URL
https://api.semanticscholar.org/CorpusID:245117528.

Lu, C., Reddy, C. K., Chakraborty, P., Kleinberg, S., and
Ning, Y. Collaborative graph learning with auxiliary
text for temporal event prediction in healthcare. arXiv
preprint arXiv:2105.07542, 2021b.

Luo, J., Ye, M., Xiao, C., and Ma, F. Hitanet: Hierarchi-
cal time-aware attention networks for risk prediction on
electronic health records. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 647-656, 2020.

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

Ma, L., Zhang, C., Wang, Y., Ruan, W., Wang,],
Tang, W., Ma, X., Gao, X., and Gao, J. Con-
care: Personalized clinical feature embedding
via capturing the healthcare context. In AAAI
Conference on Artificial Intelligence, 2019. URL
https://api.semanticscholar.org/CorpusID:208310294.

Ng, A. Y., Russell, S., et al. Algorithms for inverse reinforce-
ment learning. In International Conference on Machine
Learning (ICML), volume 1, pp. 2, 2000.

Sukhbaatar, S., Weston, J., Fergus, R., et al. End-to-end
memory networks. Advances in neural information pro-
cessing systems, 28, 2015.

Uchibe, E. Model-free deep inverse reinforce-
ment learning by logistic regression. Neural
Processing Letters, 47:891-905, 2018. URL

https://api.semanticscholar.org/Corpusl|D:23855231.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Zheng, Z., Oh, J., and Singh, S. On learning intrin-
sic rewards for policy gradient methods. In Neu-
ral Information Processing Systems, 2018. URL
https://api.semanticscholar.org/Corpus|D:4933781.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433-1438. Chicago, IL, USA, 2008.

10

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

A. The Maximum Entropy Policy

In this appendix, we present proofs for the theorems that demonstrate how a policy function can be monotonically optimized
with respect to the maximum entropy objective. Recall the objective function of Max-Entropy RL:

Tt = aurgrnﬁuxzvtE(St,at)NPTr [r(se,ar) + oM (7 (se,-)) | so =s]. (12)
=0

This objective corresponds to maximizing the discounted expected reward and entropy for future states originating from
every state-action tuple (s, at) weighted by its probability p, under the current policy. We begin by defining the Q-function
for any given policy 7. This Q-value represents the expected total reward, taking into account both rewards and entropy,
under the policy 7:

Q" (s,a) =19+ E nyt (re + oM (7 (st,7))) | - (13)

t=1

The discounted maximum entropy policy objective can now be defined as:
™) = D Bl [Q7(5t:80) + o (7 (s.))] (14)
t

If we greedily maximizes the sum of entropy and value with one-step look-ahead, then we obtain 7 from =:
Ear [Q7(s,@)] + aH (7 (s,+)) < Eanr [Q7(s,a)] + aH (7 (s,-)) . (15)

When we assume that the entropy parameter o = 1, it is worth noting that:

H(m(s,")) + Eanr [Q7(s,2)] = =Drr [(s,) [|T (s,)] +10g/e><p (Q7 (s,a)) da. (16)
Then we can show that () is bounded for any s:

Q7 (s,a) = Es, H(m (s1,7)) + Ea,or [Q7 (s1,21)]]

H (fT (s1,°)) + Ea s [Q7 (s1,21)]]

7 (s1,7) + 1)) +7°Es, [H (7 (52, -))
) + 1))+ 7B, [H (7 (s2,

(7 (s1,-)) +71) +9° (H (7 (s2,-)) + 12)]

Eay~i [Q7 (s3,23)]]

Jri

=Q" (s,a). (17
So when we start with an arbitrary policy 7y and define the policy iteration as:
exp (; Q™ (s, a))
Jaweaexp (3Q7 (s, &) da’

Then Q™ (s, a) optimized monotonically, so 7r; will converge to 7., and the optimal policy must satisfy this energy-based
Boltzmann distribution.

mi(s,a) = (18)

Note that Q(s, a) can be calculated as

Q(s,a) :=r(s,a) +max]E {Z Y [r (Se, Ay) + oM (7 (S,)] | s,a}. (19)

11

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

For GAN guided cost learning, we can compute the gradient of the GAN objective with respect to ¢ using the log-derivative
trick, which yields:

VoEr~togen 108 Do,6,(7)] + Ernr, [10g(1 = Dp,p,5(7))]
exp(—Erp,(1n)[€a(T;R)])
eXP(—ER~p¢(-\7) [Eo(T:R)]) + Pry (1)
exp(—Er~p, (11 [Eo (T3 R)])
exXp(—Ernp, (1) [E0(T; R)]) + P, (7)

= —]:ETNﬂ-cxperl [V¢(€9’¢(T)] + ETNTrcxperl . V(pge,(j)(T)

+]ETNﬂw . V¢gg’¢<7') . (20)

B. Transformer-based Symbolic Tree Generator

We generate the symbolic tree by predicting the predicates of the rules. Given the state-action trajectory and the currently
generated partial abstract symbolic tree, our model can calculate the probabilities of the predicate to expand this node, as
shown in Eq. (6) in the main paper.

B.1. Abstract symbolic tree reader

We design an abstract symbolic tree reader to model the structure of the generated partial symbolic tree. While our trees
are generated by predicting sequences of predicates, these predicates alone lack a concrete representation of the tree’s
structure, making them insufficient for predicting the next predicate. Therefore, we apply the abstract symbolic tree reader
to incorporate both the predicted predicates and the tree’s structural information. It contains a stack of blocks, with the first
block containing three distinct sub-layers previously introduced: self-attention, the gating mechanism, and the convolution
layer. A residual connection is employed between each pair of consecutive sub-layers, following the approach outlined in
(He et al., 2016), and is subsequently followed by layer normalization.

Self-Attention Within our Transformer block, multi-head attention is utilized to effectively capture long-range depen-
dencies and facilitate the learning of non-linear features. In the case of a sequence of mapping predicates denoted as
X1y, X(2)s - - - » X(n) their embeddings are obtained through a lookup table. Additionally, positional encoding is employed
to encode positional information, which is computed as follows:

. t+J
pj,i[2k] = sin <100002k/]>, 2D
: i+J
p;i[2k + 1] = sin <100002k/j >, (22)

Here, p; ;[-] refers to a specific dimension within the vector p; ;. In this context, j represents the jth block and k represents
the embedding size. In the initial reader block, the input consists of the sum of the table-lookup embedding and the position
embedding. In subsequent blocks, the input is the vector sum of the lower Transformer block’s output and the position
embedding specific to that block. The self-attention mechanism employed here follows the same architecture as described in

self

the original Transformer (Vaswani et al., 2017). We denote the output of the self-attention as Xzfil)‘ , Xz"él)‘ Lo X

Gating Mechanism Character embeddings are incorporated after self-attention, and the softmax weight kgf)) for character

embeddings is obtained through a transformation from character embedding X(;). The softmax weight kgf)) for the

Transformer’s output is derived from a linear transformation of X?il)f. Additionally, the control vector q;) is obtained from

X?fl)f through a linear transformation. The gate can be computed as follows:

o) - aff)] = softmax{af k{Y) af k(7). (23)

agf)) , and agf)) , are used to weigh the features of the Transformer’s layer cgf)) and the features of character embeddings c

which are transformed from ijl)f and XEE)), respectively. So the output of gating can computed as follows:

(e)

7

g = o) e o) el (24)
8.1 = XY XG0, (25)

12

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

Convolution Following the gating process, two convolutional layers are utilized to capture local features surrounding each
predicate and produce the following output:

(conv,l) __ (conv,l) [y (conv,l—=1) ~r(conv,l—1)
X = WX G o 1y2)0 5 K 1) 2 (26)

Here, [represents the convolutional layer, and w denotes the window size. X (©°™:!) corresponds to the output of the I-th

convolutional layer. It is important to note that the input to the first layer is the output of the gating process, denoted as X’(’j;e

To encompass various aspects of information, we represent the tree as a sequence of predicates. We then encode the rules
using an attention mechanism and subsequently employ a tree convolution layer to amalgamate the encoded representation
of each node with its ancestors. Suppose we have a sequence of predicates X1y, X(2), ..., X(p), where P denotes the
sequence’s length. Within the Abstract Symbolic Tree Reader, we generate four types of embeddings:

Predicate sequence embedding. To encode the information of predicates, we use table-lookup embeddings to present these
P predicates as real-valued vectors X (1), X2y, ..., X(p)-

Predicate definition embedding. The former embedding represents the predicates as an atomic token and loses the
information of the predicates’ content, so we introduce predicate definition embedding here. For a symbolic predicate
i:a— B,...,0Kk, where « is the parent node and f1, . .., Bk are child nodes (which can be terminal or non-terminal
symbols), the index ¢ is the predicate’s ID. We encode the predicate content as a vector X, using a fully connected layer
with inputs being the table-lookup embeddings «, 31, - - - , B of the respective symbols, and the sequence is padded to a
maximum length. The predicate definition features ng;, Xg;, cee XEZIQ) are then computed by another fully-connected
layer as follows:

ng) = WP [X5); X5 al. Q27
Here, X ;) represents the table-lookup embedding of the predicate X ;) in the symbolic tree, while X, represents the
content-encoded predicate representation.

Position embeddings. Position embeddings are computed as in Eq. (21), representing the position of each predicate within
the sequence X (1), X(2), ..., X(p)-

Depth embeddings. As position embeddings may not capture the position of a predicate within the symbolic tree, we
introduce depth embedding. Similar to predicate definition embedding, we represent the depth of the predicate based on its
parent node without the content embedding.

These embeddings are input into the reader, and after passing through four distinct sub-layers, they are transformed into
XE‘;; 2 Xg;)s v ,XE‘;S;). In contrast to the first block, we incorporate a cross-attention sub-layer and transform the
convolution layer into a tree convolution layer. The cross-attention sub-layer is informed of the input trajectory, facilitated
by multi-head attention. The tree-convolution layer is used to amalgamate information about a node and its ancestors.
Traditional Transformer architectures struggle to maintain the relationship between two nodes that are far apart in the rule
but close in structure. Further details are shown below.

Cross-Attention Incorporating information from the input trajectory is essential. Therefore, we involve the output of
the trajectory reader here. This is achieved through a multi-head attention mechanism, following the same approach as the
attention mechanism in the Transformer decoder’s attention to its encoder.

Tree Convolution Utilizing a traditional convolutional layer to effectively amalgamate information from a node with its
ancestors poses challenges. To address this issue, we treat the symbolic tree as a graph and employ an adjacency matrix
denoted as M to represent the directed relationships within the graph. When one predicate X ;y serves as the parent of

Xy, itis represented by M(;;) = 1. Assuming the outputs of the preceding layer are X y), . .., Xp), we can ascertain the
parents of these nodes through matrix multiplication with M:
(parent) (parent)y
[X(l) " 7X(P) } - [X(l)a"' 7X(P)]M' (28)
Here, X(fmm) represents the parent of the ith node. It’s important to note that the father of the root node is the padded root

node. The tree-based convolution window applied to the current sub-tree is given by:

X(tconv,l) — f(W(tconv,l) [X(tconv,l—l), X(tconv,l—l), o X(tconv,l—l)Mw—l) (29)

13

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

where W (™) i5 the wighrs of the convolutional layer. and w is the window size. [is the layer of these convolutional
layers. Similar to the convolution layer in the trajectory reader, the input of the first tree convolution layer is the output of
the attention layer.

B.2. Decoder of Symbolic Tree Generator

Our final component is a decoder that integrates information from generated logic rules with the state-action trajectory
description and predicts the next predicate. It consists of a stack of blocks, each containing several sub-layers. Each
sub-layer is surrounded by a residual connection followed by layer normalization. The decoder treats the non-terminal node
to be expanded as a query, represented as a path from the root to the node to be expanded. These nodes in the path are
represented as real-valued vectors, then a fully connected layer is applied to these vectors and outputs a path of the symbolic

tree. Then two attention layers were applied to integrate the outputs of the first block X(Sat), X(sat), cee XE‘ {;'t) and the

1) (2 n
tree convolutional block XE?)S t), XES)S t), RN Xgaps)t). Finally, two fully connected layers were used to extract features for

prediction.
C. Q-Function with respect to the Anchor Action

To begin, let’s isolate the case where ¢ = 0 from the summation in the value function and derive the following expression:
V(s) =E[r(s,Ao) + aH (7" (s,-))] + D _V'E[r (S, Ar) + oM (" (S1,-))]. (30)
t=1

By the definition of Q-function in the Eq. (13), we can get:
V(s) =E[Q(s,A)] + aH (" (s,)) . €29)

where the expectation is over the action following the optimal policy Eq. (2) in the main paper. Next, by the definition of
expectation and information entropy, we can derive

Vis) = /aEA Q (s,a) 7" (s,a)da — a/ELEAlog (7" (s,a)) 7 (s,a) da

= Q (s,a)7" (s,a)da — « — 7" (s,a)da
acA acA @

Q(S,a’)> /] .
+oz/aeAlog /a/eAexp(” da'| 7* (s,a) da
[on(22)]
a’cA o
= alog [/ exp <Q(s,a)) da} . (32)
acA o

A
Then, we consider a anchor action a#, and extract « log [exp (Q(Saa))] from Eq. (32):

< Q(s,a) d
V(s) = alog Jaa® p(“) : + alog [exp (Q(aa‘ﬂ)]

exp (L)) o
= alog <1) +Q (s,a?)
* (s,a4)
= —alog (7" (s,a®)) + Q (s,a?) . (33)
Then according to the Theorem 2. in (Haarnoja et al., 2017), we have
Q(s,a) =7 (s,a) +7E[V(s)]. (34)
Finally, by taking Eq. (33) into Eq. (34), we get the connection:
Q(s,a) =r(s,a) + VEy [—alog(ﬂ*(s’, a)) + Q(s',a”) | s7a]) (35)

= alog

14

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

—— Patient A Succs
Patient B p—
— Patient C
! i
Treatment 11 Treatment IV
T~ = oSN
| Temperature | | | SpO2 Low l | WBCC | | | Systolic High |
i i
Treatment I Treatment I11
Temperature || RR High | | PCHigh | | WBCC High |

High

Figure 4. Multidimensional trees of logic strategy generated in MIMIC III dataset. WBCC: White blood cell count; PC: platelets count;
RR: Respiratory rate; HR: Heart rate. The leaf nodes present some symptoms of the patient, and each dashed box means that by taking
some treatments, the patient may lessen the symptoms. After taking four treatments, the patient fully recovered from all illnesses.

D. Implemental Details

For all the deep learning-based models, we implement them in PyTorch and train them on Ubuntu 16.04 with 3090 GPU.
The batch size is set to 50 for all the methods. The dimension of the final hidden state for prediction is set to 256, i.e.,
[= 256. The layer of RNN or Transformer is set to 1 for all the methods unless there is a hierarchical structure. Dropout
methods are used for all the models in the final prediction layer unless there is a default setting. The dropout rate is set to 0.5.
Adam (Kingma & Ba, 2014) optimizer is used for all the methods. For the learning rate, we use the grid search approach to
select the best one for each method according to the validation set.

E. Dataset Description

BlocksWorld. In this environment, the agent will learn how to stack the blocks into certain styles, that are widely used
as a benchmark problem in the relational reinforcement learning research. The blocks world environment contains two
worlds: the initial world and the target world, each containing the ground and m blocks. The task is to take actions in the
operating world and make its configuration the same as the target world. The agent receives positive rewards only when it
accomplishes the task and the sparse reward setting brings significant hardness.

MIMIC Dataset. We consider the Medical Information Mart for Intensive Care (MIMIC-III) database and MIMIC-IV
(Johnson et al., 2023) database to predict prescription based on 8 observations — temperature, white blood cell count, heart
rate, hematocrit, hemoglobin, blood pressure, creatinine, and potassium. MIMIC-III contains 7,493 patients with multiple
visits from 2001 to 2012, while there are 85,155 patients in MIMIC-IV with multiple visits from 2008 to 2019. Since there
is an overlapped time range between MIMIC-III and MIMIC-1V, we randomly sampled 10,000 patients from MIMIC-IV
from 2013 to 2019. By the nature of real-world clinical practice, observation history must be considered by the acting
policies — making our decision-making environments partially observable.

Sorting. This task trends to iterative swap elements to sort the array in ascending order. Given a length-m array a of
integers, We treat each slot in the array as an object and input their index relations and numeral relations to each model.

Finding Path. Given an undirected graph represented by its adjacency matrix as relations, the algorithm needs to find a
path from a start node to the target node. We formulate the shortest path task as a decision-making task. The agent iteratively
chooses the next node along the path. In the next step, the starting node will become the next node.

15

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

F. Visualization of MIMIC dataset

To Explain patient trajectories, our real-world example studies decision-making within the MIMIC-III dataset in Fig. 4.
Let Patient A initially have the sepsis symptoms including above-average body temperature, high respiratory rate, high
white blood cell count, and so on, progressing towards rehabilitation, progressing towards rehabilitation. Let Patient B is
diagnosed with high body temperature at the first visit without other symptoms, and Patient C is diagnosed with high white
blood cell count and high platelets count. Take Patient A as an example, our generated strategy gives a certain diagnosis of
sepsis by dividing his symptoms into four parts and therapy them separately. Firstly, considering the high temperature, high
respiratory rate, and high heart rate, this strategy suggests Treatment I, such as taking the medicine to decrease the body
temperature down to the normal level, following treating the low SpO2 by Treatment II at the following time step. Also, the
other symptoms (including high platelets count, high white blood cell count and high systolic) are solved by Treatment III
and IV hierarchically. Our policy correctly learns that treatments are only needed until the diagnosis is confirmed. Moreover,
the symptoms of Patient B and Patient C are the sub-tree of Patient A, so their treatment strategies are also included in this
sepsis treatment system, and other complications can also be treated by following this strategy.

Table 4. Ablation study of removing different portions (denoted as p) of the input predicate. Note that p=10% means that we remove 10%
predicates from the framework. We show diagnosis prediction results on MIMIC-III using w-F1 (%) and R @k (%).

Metrics R@10 R@20
p=0% 29.01(0.11) 38.10(0.08)
p=10% 25.32(0.16) 33.45(0.14)
p=20% 23.21(0.18) 32.81(0.07)
p=30% 19.93(0.08) 31.64(0.11)
p=40% 18.24(0.09) 30.83(0.06)

G. Additional Results

Our generator takes the observed state-action demonstrations as input, and initially encodes them into the symbolic predicate
space. So the input predicate has a great influence on the final results. Moreover, we removed different portions (denoted as
p) of the input predicate, and the results are shown in the Table 4. we can see that when we remove some input predicates,
the performance of R@ 10 and R@20 drops significantly.

Our findings, detailed in Table 5, demonstrate that our method outperforms others in both performance and reward recovery.
Notably, the performance gap between our approach and the Neural Logic Machines (NLM) (Dong et al., 2019) is evident.

For generated rules, we add some explanation about the logic rule and corresponding actions from Blocks World environment.
For example, a block should be moved if (1) it is moveable; and (2) there is at least one block below it that does not match
the target configuration. Call the desired predicate “ShouldMove(x)”. Note that this is only a part of logic rules needed to
complete the Blocks World challenge. The learner also needs to figure out where should the block be moved onto. And
we can also add some complex predicates to suit in some specific conditions. We list our defined predicates in Table 6 the
learned rules relate to the Blocks World here in Table 7.

Table 5. Mean Squared Error (MSE) for reward recovery with a different number of blocks, where m is the number of blocks in the blocks
world environment.

Block Num m=10 m=20 m=30 m=40 m=50
NLM 0.225 0219 0.138 0439 0.21
Ours 0.093 0.139 0.124 0351 0.155

16

Discovering Logic-Informed Intrinsic Rewards to Explain Human Policies

Table 6. Defined predicates for Blocks World. These predicates describe the state of each block and the interaction between different

blocks.

Predicate Explanation

Above(a,b) The block a is above the block b

Clear(a) There is no blocks on the block a
Moveable(a) The block a is movable

SameY(a,b) the block a and the block b have the same Y-axis
SameX(a,b) the block a and the block b have the same X-axis
Placeable(a) the block a is placeable
InitialWorld(a) There is the initial settings
ShouldMove(a,b) the block a should be moved onto the block b, and increase the world ID
Onground(a) The block a is on the ground
SameWorldID(a,b) The block a and the block b is in the same world
SmallerWorldID(a,b) The world ID of block a is smaller than the block b

Table 7. Part of learned rules in Blocks World generated by our framework.

Rule 1: SameXAbove(x, y) < SameWorldID(x, y) A SameX(x, y) A Above(X, y)

Rule 2:

Clear(x) «+ V'y = SameXAbove(y,x)

Rule 3:

Moveable(x) < Clear(x) A = OnGround(x)

Rule 4:

InitialWorld(x) < V y = SmallerWorldID(y, x)

Rule 5:

ShouldMove(x) < (V' y = SmallerWorldID(y, x)) A (V' y = SameWorldID(y, x)

A SameX(y, x) A Above(y, X)) A (3 y SameWorldID(y,x) A SameX(x,y)A Above(x,y))
A =(3 z = SameWorldID(y, z) A SamelD(y, z) A SameX(y, z) A SameY (y, z))

17

