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Abstract

Large Language Models (LLMs) are transforming digital services globally, yet their1

integration into localized and resource-constrained environments, such as those in2

Africa, remains underexplored. This paper presents an extensive approach from3

dataset creation to real-world model deployment of fine-tuned LLMs including4

Llama, Gemma and Deepseek for structured financial, healthcare and communica-5

tion services. We develop structured datasets tailored to African contexts, fine-tune6

several open-source models, and evaluate their ability to accurately extract key7

details from informal messages into structured JSON outputs. We integrate the8

best performing model into our already existing WhatsApp-based AI assistant9

capable of performing tasks like sending reminders, scheduling payments and10

providing healthcare reminders. A comparative analysis reveals the differences in11

model performances, highlighting the best approaches for efficient deployment in12

resource-limited African markets. Our findings suggest that LLM-based solutions13

are viable in bridging the gap in digital services in low-resource settings, allowing14

for inclusivity and accessibility.15

1 Introduction16

Large Language Models (LLMs) are being leveraged all around the globe, offering new opportunities17

to drive innovation and improve efficiency in and around various industries and sectors, transforming18

the way different businesses operate. These models have indeed demonstrated exceptional capabilities19

across a range of tasks including machine translation and summarization in even some low-resource20

contexts as demonstrated in research.21

In the context of structured digital services, high-resource settings have made great strides due to the22

availability of large-scale data making the possibility of creating such applications easy, as compared23

to low-resource contexts where there are still limitations on the deployment of such models, owing24

to the scarce standardized data. There is a growing need for AI systems that are context-aware and25

task-specific in African markets where informal communication norms still exist and mobile first26

interactions dominate.27

Social services in areas such as financial planning, healthcare, and public administration are critical28

for communities across Africa. AI technologies have the potential to enhance these services by29

providing intelligent support and decision-making, from automating appointment scheduling to30

offering personalized health advice. Indeed, early applications of AI in African contexts have shown31

promise: for example, machine learning on satellite imagery has been used to estimate poverty32

levels and support financial inclusion efforts[Jean et al., 2016], and digital data have been harnessed33

for public health surveillance[Zhao et al., 2020]. These successes illustrate the opportunities of34

AI-for-social-good in emerging markets. However, mainstream large language models (LLMs) and35

AI systems often underperform or lack support for African languages and local contexts[Chen et al.,36
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2024]. A recent study evaluating ChatGPT (powered by GPT-4) on 670 languages found that it37

struggles the most with African languages[Chen et al., 2024], recognizing text in Hausa only about38

10–20% of the time[Moorosi, 2024]. Such disparities stem from a shortage of high-quality, relevant39

training data for low-resource languages and domains[Moorosi, 2024].40

There is a pressing need to create datasets that reflect African social service scenarios and languages.41

Traditional dataset curation (e.g., manually collecting conversational data in multiple local languages)42

is expensive and time-consuming. As an alternative, we explore using LLMs to generate and extract43

structured data that can bootstrap model training. Recent advances show that with the right prompts,44

LLMs can produce outputs in structured formats like JSON or XML [Shorten et al., 2024]. By45

guiding an LLM to output, for instance, a JSON record of a dialogue or a service log, we can46

automatically create synthetic training examples. This approach leverages the generative power of47

LLMs to overcome data scarcity, effectively turning the model into a data generator for downstream48

tasks.49

In this paper, we present a framework for designing, fine-tuning and deploying LLMs tailored to50

structured social services in Africa, such as financial reminders, scheduling, and healthcare-related51

communication, using datasets from African contexts derived from real-world use cases.52

Our contribution will include the following:53

• Construction of task-specific datasets that reflect the low-resource scenarios, and annotated54

for structured outputs.55

• A fine-tuning and evaluation pipeline applied to open-source models (Llama, Gemma, and56

Deepseek), and adapted to perform structured JSON generation from natural prompts.57

• A benchmarking methodology using confidence-based sampling to assess the model perfor-58

mance.59

2 Related Work60

2.1 Structured Generation from LLMs61

Structured output generations have recently been an area of interest of research for adapting LLMs62

to domain-specific tasks. Some early methods focused on templated data or classification heads63

and earlier work like T5 and GPT-3 explored generation of machine-readable outputs using prompt64

engineering and task formulations, however more recent work has explored direct generation of65

JSON or XML structures. For example, [Geng et al., 2025] introduced JSONSchemaBench, which66

evaluates LLMs on their ability to follow predefined schemas during generation. [Lu et al., 2025]67

proposed schema-aware reinforcement learning to guide structured generation.68

Shorten et al. [2024] introduce a benchmark called StructuredRAG to assess how well LLMs follow69

response formatting instructions, reflecting growing interest in reliable structured generation. They70

report that state-of-the-art models can achieve over 80% success in zero-shot structured output tasks,71

though performance varies by task complexity. Other approaches enforce structure via constrained72

decoding algorithms [Beurer-Kellner et al., 2024], ensuring, for example, that parentheses or JSON73

brackets are balanced and keys are present. Tam et al. [2024] find that while models can be coaxed74

into formats like JSON, overly rigid format requirements may sometimes degrade the quality of the75

answer.76

These approaches emphasize fine-tuning methods, Retrieval-Augmented Generations (RAGs), and77

prompt-engineering to ensure synthetic and semantic validity. Our approach falls within this category,78

but we emphasize task-specific fine-tuning from real-world service messages. These efforts highlight79

the promise of LLMs in producing structured formats, but they are often benchmarked on synthetic80

tasks. Our work grounds this approach in realistic, service-driven datasets.81

2.2 Conversational Interface for Social Services82

There has been a recent increasing interest in using LLMs for the support of public service delivery.83

A number of researchers have explored using language models for public-facing tasks in health84

and finance. [Singhal et al., 2022] developed Med-PaLM, a model fine-tuned on medical question85

answering, while [Rakesh et al., 2025] introduced ChatFin, an LLM-based banking assistant capable86
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of processing finance-related chat inputs. However, these models typically rely on few-shot prompting87

or in-context learning, rather than full finetuning.88

Deploying such AI solutions in practice often requires conversational interfaces and local language89

support, especially for outreach and education. For instance, a health advisory system might take90

symptoms described by a user in Swahili and provide guidance or triage information. Similarly, a91

financial planning assistant might converse in French with users in Francophone African countries92

to help them budget or access micro-loans. These use cases demand both the underlying predictive93

analytics and a user-facing conversational component.94

Our work complements this by developing a fine-tuned model for narrow, operational tasks such as95

reminders and scheduling which require precise extraction and generation.96

2.3 NLP for Low-Resource Context97

Majority of the literature in low-resource context NLP focuses on multilingual modeling, transfer98

learning (Hedderich et al. [2021]) as well as dataset curation. These approaches have been aimed to99

extend language technologies to low-resource settings. Our work, in addition to creating datasets, is100

situated in a setting where our notion of low-resource refers not to the language per se, but to the101

availability of aligned task-specific high quality data, compute and automation infrastructure.102

3 Methodology103

Our approach combines fine-tuning large language models (LLMs) with structured information104

retrieval to enhance AI-driven services in low-resource environments. We focus on financial services,105

healthcare, and general task reminders in English and French, reflecting real-world usage patterns in106

West and Central Africa.107

3.1 Dataset Construction108

Our approach to generating the dataset involved curating six different dataset from real-world109

WhatsApp-style prompts, ranging from financial to healthcare, collected through user experiments. In110

constructing the dataset, for each data instance, we prompt engineered GPT 4o through the OpenAI111

Azure Foundry to create an annotated structured JSON completion, retrieving fields from the initial112

CSV data files such as the sender, recipient, amount, deadlines, actions and other fields. This further113

went through manual annotation for correction. We then performed some additional normalization to114

the phone format and date values.115

Example Dataset116

Below are two examples of prompt-completion pairs used for fine-tuning. Each example consists of a117

user-provided instruction and the expected structured output.118

{
"prompt": "Hi, could you send a reminder to 96 28 81 35 for a debt of 41243.13

FCFA due on 03/05/2025? Reminder to be sent on 01/08/2025.",↪→
"completion": {

"sender_phone": "N/A",
"recipient_phone": "96 28 81 35",
"action": "send reminders",
"action_count": 1,
"deadline_date": "2025-05-03",
"reminder_date": "2025-08-01",
"frequency": "none",
"response-to-sender": "The reminder for the debt of 41243.13 FCFA due on

2025-05-03 will be sent to 96 28 81 35 on 2025-08-01.",↪→
"response_to_recipient": "You have a debt of 41243.13 FCFA due on 2025-05-03.

This is a reminder sent as requested."↪→
}

}
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We then merge and clean the datasets, creating a training corpus of approximately 8700 examples and119

a benchmark test set, which we constructed via a confidence-based sampling approach and manual120

verification.121

3.2 Sampling Dataset for Benchmarking122

We follow a statistical approach which uses the confidence interval calculation. We calculate the123

initial sample size using the z-score from the confidence interval chosen, the data size, an estimated124

proportion and a margin of error. Once that is done, we use the initial sample size to adjust for a finite125

population, which is then going to be our required sampled size.126

The sample size calculation employs the finite population correction formula, suitable for smaller127

datasets, given by:128

n =
n0

1 + (n0−1)
N

, (1)

where the initial sample size n0 is calculated as:129

n0 =
Z2 × p× (1− p)

E2
. (2)

Parameters Explained:130

• N : Population size (total records in the dataset)131

• Z: Z-score (e.g., Z = 1.96 for 95% confidence)132

• p: Estimated proportion133

• E: Margin of error134

3.3 Fine-tuning Setup135

We finetuned three open-source LLMs using task-specific LoRA adapters:136

• LLaMA (1B)137

• DeepSeek (1.5B)138

• Gemma (2B)139

Models were trained using Unsloth’s optimized trainer with 4-bit quantization. We used a ChatML-140

style prompt format and tuned models on JSON generation tasks using SFT (supervised finetuning).141

3.4 Evaluation Metrics142

We assessed the performance of the finetuned models using both exact and partial matching metrics,143

including exact match accuracy, field-level accuracy, and token-level metrics such as BLEU and144

ROUGE-L (on text responses).145

1. Exact Match Accuracy: This metric compares the model’s prediction string to the reference146

string to measure how often the strings match(IBM). This metric is strict, where all labels147

have to match correctly for a correct classification (Lukasik et al. [2024].148

2. Field Accuracy: To evaluate models more leniently, we compute token-level correctness149

across all fields. Each field is treated independently.150

3. BLEU: To assess the quality of free-form text fields—particularly the fields ’response-to-151

sender’ and ’response-to-recipient’, we use BLEU (Bilingual Evaluation Understudy). We152

report the average BLEU over the two response fields.153

4. ROUGE-L F1: The longest common subsequence between the reference and model’s154

prediction is captured by the ROUGE-L F1 score, which we calculate. ROUGE-L is155

appropriate for assessing the coherence and fluency of generated responses and places an156

emphasis on sequence-level similarities.157
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4 Results and Discussion158

The results for the finetuned models are presented in two parts. First, we report the training loss159

curves for each of the models, and then we evaluate model performance using structured prediction160

metrics, as mentioned in Subsection 3.4.161

4.1 Training Losses162

All the models were trained for approximately 4300 steps. The number of epochs varied due to the163

variation in dataset tokenization and batch length: LLaMA was trained for 2 epochs, while Gemma164

and DeepSeek were each trained for 8 epochs.165

Figure 1: LLaMA Train Loss Figure 2: Gemma Train Loss Figure 3: DeepSeek Train Loss

The diagrams in Figure 4.1 above, shows the progression of the losses for three finetuned models (i.e.,166

Llama, Gemma, and Deepseek) on our datasets. DeepSeek decreases the fastest and the most steadily,167

stabilizing below a loss value of 0.1759. Gemma’s loss decreases smoothly to around 0.1577 with168

minor fluctuations. LLaMA starts from a very different and higher loss value (>2.0), perhaps due to169

different scaling or initialization, but converges quickly to similar values as the other two models.170

4.2 Evaluation Results171

Table 1 shows a summary of the evaluation results for the three fine-tuned models on the structured172

prediction task. Metrics include exact match accuracy, field-level accuracy, BLEU score, and173

ROUGE-L F1.174

Table 1: Evaluation results for the fine-tuned models on structured prediction.

Model Exact Match Field Accuracy BLEU ROUGE-L F1
LLaMA 0.0057 0.4710 0.1801 0.4035
Gemma 0.0263 0.5799 0.2731 0.4921
DeepSeek 0.0263 0.6094 0.2891 0.5181

The evaluation results show clear differences in model performance on the structured prediction task.175

While exact match scores are low across all models (≤ 2.6%), this is expected given the strict nature176

of the metric—requiring every field in the structured output to be correct.177

Looking beyond exact match, field-level accuracy and text generation metrics (BLEU and ROUGE-L178

F1) provide a more refined view:179

• DeepSeek achieved the highest field accuracy (0.6094) and also led in both BLEU (0.2891)180

and ROUGE-L F1 (0.5181), suggesting it is most reliable at producing both correct field181

values and fluent text in ’response-to-sender’ and ’response-to-recipient’.182

• Gemma performed competitively, with a field accuracy of 0.5799 and slightly lower text183

quality metrics than DeepSeek, indicating a consistent but marginally less precise output.184

• LLaMA, despite completing training, lagged behind both models in all metrics. Its low185

BLEU (0.1801) and ROUGE-L (0.4035) suggest challenges in generating fluent, correct186

text responses—likely impacted by the shorter training duration (2 epochs vs. 8).187

Overall, DeepSeek appears to generalize best on this task, with Gemma close behind. LLaMA may188

require longer training or adjusted hyperparameters to match their performance.189
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5 Conclusion190

This paper presents a practical framework for deploying LLMs in low-resource service delivery con-191

texts, highlighting how carefully curated datasets, lightweight fine-tuning, and structured evaluation192

can yield useful automation tools. Rather than relying on general-purpose reasoning capabilities, we193

show that narrow, reliable models trained on real-world prompts can power transactional workflows194

such as reminders and scheduling.195

We demonstrate that with minimal resources and careful annotation, it is possible to build and deploy196

efficient LLMs tailored for social service use cases.197

Our results suggest that task-specific finetuned models offer a viable and accessible path for automat-198

ing structured social interactions in emerging digital economies.199

6 Limitations200

Looking forward, there are several avenues for improvement. First, incorporating more African201

languages explicitly in the training (possibly via translation or community data efforts) would enhance202

the system’s inclusivity.203
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