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ABSTRACT

Obtaining the desired effect of drugs is highly dependent on their molecular ge-
ometries. Thus, the current prevailing paradigm focuses on 3D point-cloud atom
representations, utilizing graph neural network (GNN) parametrizations, with ro-
tational symmetries baked in via E(3) invariant layers. We prove that such models
must necessarily disregard chirality, a geometric property of the molecules that
cannot be superimposed on their mirror image by rotation and translation. Chi-
rality plays a key role in determining drug safety and potency. To address this
glaring issue, we introduce a novel field-based representation, proposing refer-
ence rotations that replace rotational symmetry constraints. The proposed model
captures all molecular geometries including chirality, while still achieving highly
competitive performance with E(3)-based methods across standard benchmarking
metrics. Code is available at https://dumitrescu-alexandru.github.io/FMG-web/.

1 INTRODUCTION

Developing generative models for specific data modalities requires carefully choosing the generative
method, feature representation, and NN architecture. Field-based representations may offer a uni-
fying perspective, extending the usage of highly successful architectures from natural language or
images to other input modalities Zhuang et al. (2023). We develop Field-based Molecule Generation
(FMG), a generative model of three-dimensional field representations of molecules, which encode
the joint distribution of molecular graphs and 3D conformations.

Organic molecules generally contain a restricted number of atom types, bound mostly through co-
valent bonds, and they can be used as drugs, inhibiting or promoting biological processes. Their
effectiveness crucially depends on successfully binding and interacting with proteins or other small
molecules in the organism. In turn, the interaction between two molecules can only be determined
once their 3D conformations are known. This motivated the development of many generative models
for molecular conformations. Recently, the vast majority of work has been done on generative model
parameterizations that are invariant to the Euclidean group of isometries in 3D, E(3) (Hoogeboom
et al., 2022; Peng et al., 2023; Vignac et al., 2023b; Xu et al., 2023; Wu et al., 2022).

The E(3) group contains any reflections, rotations, and translations, whereas SE(3) ⊂ E(3) (special
E(3)) contains only proper rotations and translations. In general, molecules are not E(3) invariant.
Certain molecules are sensitive to reflections meaning that one cannot superimpose the molecule to
its mirror-image by (proper) rotations and translations. This property is called chirality or handed-
ness, and chiral molecules form enantiomer pairs (Figure 1).

Chiral centers are often tetrahedral carbon configurations containing four unique groups. In molec-
ular biology, chirality is crucial to the potency and safety of drugs. In ibuprofen, albuterol, and
naproxen, one of the two enantiomers was shown to be more effective, while in thalidomide and
propoxyphene, the incorrect enantiomer is toxic and can lead to severe side effects (Smith, 2009).
In proteins, out of 21 standard amino acids, only Glycine is not chiral. Although classically it was
believed that only one chiral configuration is present in nature (Devı́nsky, 2021), patients with disor-
ders such as cataracts, macular degeneration, arteriosclerosis, and Alzheimer’s disease present both
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Figure 1: E(3) invariant spatial features (e.g., relative bond angles and distances) are not suf-
ficient to represent chirality. Subfigure a) depicts a general chiral molecule pair, which cannot be
superimposed by rotations. b) Chiral S-ibuprofen is an efficient COX-inhibitor resulting in pain and
inflammation relief, while the mirror R-ibuprofen is not (Evans, 2001).

(Masters et al., 1977; Fujii et al., 2018). In the drug-like molecule dataset, GEOM, 27% of the
molecules contain chiral centers.

In essence, reflections are distance preserving, and therefore parameterizations that utilize Euclidean
distances will be unable to distinguish enantiomers. Later on, we prove theoretical results that show
how designing enantiomer (reflection) variant features (SE(3) invariant) grows the complexity from
O(n2) (for pairwise Euclidean distances between N atoms) toO(n4). To account for chiral centers,
we instead chose to replace rotation symmetry constraints, and propose reference rotations, which
bring our performance to highly competitive results with E(3) invariant methods.

We organize our contributions as follows:

Theoretical: We prove that functions of E(3) invariant features fail to properly model chiral
molecules. We then link the parametrizing function’s E(3) invariance to the resulting generative
E(3) equivariance. Finally, we prove that SE(3)-invariant, chiral aware features can only be func-
tions of a least four R3 vectors, and the number of such features scales in O(n4).

Practical: We provide solutions to the challenges of handling 3D fields. We present a method
of reorienting molecules to deterministic references, introduce bond fields, describe our diffusion
process design, and complete our pipeline with molecular graph optimization based on fields.

Empirical: Put together, our technical contributions result in SOTA or highly competitive perfor-
mance compared to point-cloud approaches, while keeping chiral-awareness.

2 RELATED WORKS

A large number of generative models for molecules have been proposed. We distinguish them pri-
marily by their molecular representation instead of generative method families.

SMILES SMILES is a string-based representation in which molecular graphs can be sufficiently
encoded (Weininger, 1988), and has been employed in autoregressive (Segler et al., 2018) and vari-
ational autoencoder (VAE) models (Gómez-Bombarelli et al., 2018; Kusner et al., 2017). An im-
portant limitation of SMILES used as input representations for machine learning is that similar
molecular graphs may have very different SMILES encodings (Jin et al., 2018).

Graphs Alternative molecule representations consist of molecular graphs, where vertices encode
atom types and their covalent bonds are represented through adjacency matrices. VAEs (Liu et al.,
2018; Jin et al., 2018), flow-based models (Shi et al., 2020; Verma et al., 2022), reinforcement
learning (Shi et al., 2020; You et al., 2018; Zhou et al., 2019) and diffusion-based methods (Vignac
et al., 2023a; Mercatali et al., 2024) have been developed. The main drawback of only generating
molecular graphs is that full molecular geometry specification is missing, and the functionality of
various drug-like molecules depends on it.
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Point clouds The three-dimensional configuration of a molecule can be encoded as R3 point
clouds of atoms. Molecules reside in the R3 space, and their conformations are symmetric w.r.t.
global translations and rotations. Inspired by this, E(3) equivariant generative methods have been de-
veloped. Autoregressive models (Gebauer et al., 2018; 2019), GNN parametrized diffusion (Hooge-
boom et al., 2022; Peng et al., 2023; Vignac et al., 2023b; Xu et al., 2023; Wu et al., 2022), and
transformer parametrized diffusion (Hua et al., 2023; Huang et al., 2024) methods have recently
gained a lot of interest. Although rotational invariance is well motivated, these methods also encode
the undesired invariance to reflections, which are part of the E(3) group.

Fields The R3 coordinates of atoms in molecules can be used as the mean positions of e.g. Gaus-
sians, which fill the three-dimensional space. These densities can be interpreted as fields, where
each molecule is represented by a function on R3, with values given by the densities of the atoms.
We crucially distinguish this approach from the previously developed methods that use point cloud
formulations by the E(3) symmetries they adhere to. Namely, our approach only respects translation
invariance through the CNN inductive biases, while point cloud approaches respect all E(3) sym-
metries. At the cost of losing rotational invariance, our method can generate chiral conformations
according to data statistics, while E(3) invariant formulations cannot. Similar input representations
have been previously modeled using VAE (Ragoza et al., 2020) and score-based models (Pinheiro
et al., 2023). The latter is the closest to our work, which bases its method on the neural empirical
Bayes framework and only generates atom voxels, based on which they use post-generation bond
extraction. Using diffusion models, we show that field representations can reach SOTA performance
while generating the full molecule specification (including bond fields).

Chiral-aware methods Prior, chiral-aware discriminative methods for molecular analysis have
been developed in (Adams et al., 2022; Liu et al., 2022). Jing et al. (2022) also accounts for chiral-
ity in a generative setting using a diffusion model, but considers the conditional generation of 3D
molecular conformations given a molecular graph p(C|G), while the scope of this work is on the
joint generation p(C,G). Finally, Luo & Ji (2022) uses (Liu et al., 2022) NN parametrization of a
joint p(C,G) AR generative model that, in principle, is chiral-aware, but does not discuss chirality.
AR methods need to define arbitrary node order generation, and whether they can reach diffusion
model performance despite this fact remains an open question. In general, chiral-aware SE(3) diffu-
sion models on point clouds are surprisingly difficult to develop.

3 CHIRALITY AND ISOMETRY GROUPS

Most recent work on molecule generation model E(3) equivariant distributions. Although molecules
respect rotation and translation symmetries, chiral molecules are not symmetric to reflections. In
such cases, the reflected version of a therapeutic drug can become toxic (Smith, 2009).
Proposition 1. If pϕ is an E(3) invariant probability distribution, then pϕ(m) = pϕ(m

′), where m
and m′ are the R3×N positions of enantiomer pairs of molecules with N atoms.

Proposition 1 is a consequence of the fact that pϕ(m) = pϕ(Rm),∀ R orthogonal, detR = ±1.
This implies that NN parameterizations of point-cloud diffusion models should be SE(3) invariant,
but we argue that this becomes intractable.
Lemma 2. Let f : Rm×n → S, for some set S, be a function of m n-dimensional vectors. If m ≤ n
and f is SE(n) invariant, then f is E(n) invariant.

For example, in R3, the reflection of a planar object (m = n = 3) can be recovered by rotations and
translations. This implies that there is no SE(3) invariant function that, applied on triplets of atom
positions, would distinguish enantiomer pairs.
Proposition 3. Let n be the number of atoms of a molecule. The number of features that encode all
chiral configurations of random point clouds scales in O(n4).

The result implies that SE(3) (and not E(3)) invariant features scale prohibitively with the number
of atoms.

Proofs can be found in Appendix B. There, we also concretely describe the model types we refer
to in Proposition 3, which include all SOTA diffusion models (Hoogeboom et al., 2022; Peng et al.,
2023; Vignac et al., 2023b; Xu et al., 2023; Wu et al., 2022).
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Figure 2: a) Atom ua and bond ub fields noise schedules. b) Sampling illustration. A subset of 200
3D locations with the highest values are shown for all ua and ub channels. c) Extracting atoms and
bonds from the resulting ua and ub fields at t = 0. d) Visualizing the optimized atoms and bonds.

4 MOLECULAR FIELD DIFFUSION

In this Section, we propose a diffusion model to generate molecular fields.

4.1 FIELD REPRESENTATION

We consider a molecule as a set of atoms {ai,mi} and a set of bonds {bij ,mij}, with atom types
ai ∈ A = {H,C,N,O,P,S, . . .}, bond types bij ∈ B = {b1, b2, b3}, and we assume atom locations
mi ∈ R3 and mid-point bond locations mij =

mi+mj

2 in Ångströms.

We start by representing a molecule using a collection of continuous 3D fields, one for each atom
and bond type. We define the field for atom type a, ua, as a mixture of radial basis functions (RBFs)
positioned on the atoms’ centers

ua(x) = γa

N∑
i=1

1[ai = a] exp

(
− 1

2σ2
a

||x−mi||2
)
, (1)

where N is the number of atoms, 1[·] is the indicator function, the variance σ2
a represents the size

of atom type a, and γa normalises the channels to unit interval ua(x) ∈ [0, 1] (see Appendix C for
field parameter values). We create bond fields similarly

ub(x) = γb
∑
(i,j)

1[bij = b] exp

(
− 1

2σ2
b

||x−mij ||2
)
. (2)

We evaluate a molecule’s atom and bond fields ua, ub at a fixed set G of H×W ×D (height, width,
and depth) locations, and create a vector-valued field based on which multi-channel 4D tensors are
derived

u = (uH,uC, . . . ;ub1 ,ub2 ,ub3) ∈ RK×H×W×D, (3)
where K = |A|+|B| is the number of channels. We use tensor u as the input molecule representation
for the diffusion model.

4.2 DIFFUSION MODEL

We consider a diffusion generative model to generate molecular fields u. In diffusion models, the
data is incrementally noised by a forward process, and our goal is to learn a denoising reverse process
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parameterised by θ. We consider the field tensors ut over time t ∈ [0, 1], where u0 at time t = 0 are
the observed or generated tensors. Figure 2b depicts an example of our denoising reverse process.

We follow the denoising diffusion probabilistic model (DDPM) proposed in (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Kingma et al., 2021), and refer the reader to the original publications for
full derivations. We note that our tensor fields are effectively multi-channel 3D images, and thus
image-based diffusion models translate to molecular voxel grid fields in a straightforward manner.

Forward process We begin by assuming a Gaussian forward process
q(ut|u0) = N (ut|αtu0, σ

2
t I), (4)

where αt ∈ [0, 1] monotonically reduces the original signal u0, while σt ∈ [0, 1] monotonically
increases noise. We choose a variance-preserving noise specification, where

αt =
√

1− σ2
t (5)

At t = 1 we obtain pure noise q(u1|u0) = N (0, I).

Forward posterior The forward process admits a tractable conditional posterior distribution for
an intermediate state us if we know both the original state u0 and further noised state ut for s < t,

q
(
us|ut,u0) = N

(
αtsσ

2
s

σ2
t

ut +
αsσ

2
ts

σ2
t

u0,
σ2
tsσ

2
s

σ2
t

I

)
, (6)

where αts = αt/αs and σ2
ts = σ2

t − α2
tsσ

2
s (See cf. Kingma et al. (2021)). Due to Gaussianity of

the forward, the posterior interpolates linearly between the endpoints while adding variance.

Reverse process Our goal is to learn a generative process that reverses the forward by matching
their marginals. The reverse process can be framed as the posterior of the forward

pθ(us|ut) = q
(
us

∣∣ut,u0 := ûθ(ut, t)
)
, (7)

where we replace the observation conditioning u0 with a fully denoised prediction ûθ(ut, t) from a
neural network parameterised by θ.

Parameterisation In practice, it is often more efficient to train a neural network to predict the
added noise ϵ ∼ N (0, I) of

ut = αtu0 + σtϵ, (8)
than to predict the signal u0. We then train a neural network ϵθ(ut) to predict the noise ϵ, and follow
the above equations with a substitution

ûθ = ut/αt − σtϵ̂θ(ut, t)/αt. (9)

Loss The diffusion model admits a variational lower bound (Kingma et al., 2021), but earlier works
have argued for a simplified loss (Ho et al., 2020)

Lsimple = Eu0,t,ϵ

[
||ϵ− ϵ̂θ(ut, t)||2

]
, (10)

where we learn to denoise arbitrary combinations of observations u0, noises ϵ and noise scales
t ∼ U(0, 1). We also opt for the simple loss Lsimple.

4.3 NOISE SCHEDULES

To further emphasize the stability of generated molecules, Vignac et al. (2023b) and Peng et al.
(2023) employed separate noise schedulers for the bonds, atom types, and their positions using a
modified cosine and a sigmoid scheduler, respectively. We also observed increased performance
using a similar approach to Vignac et al. (2023b), which adds a parameter ν to the original cosine
schedule from (Nichol & Dhariwal, 2021):

αt = cos

(
π

2

(t+ s)ν

1 + s

)2

, (11)

where αt determines the signal amplitude for each time t in Equation 4, and we set ν to 1 and 1.5 for
atom and bond channels, respectively. The schedule αt and its effect on generation can be seen in
Figure 2, where bonds are denoised faster than atoms, increasing the generated molecules’ stability.
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4.4 CLASSIFIER FREE GUIDANCE

Ho & Salimans (2022) empirically showed that using an approximation of the implicit classifier
p(y|ut) ∝ p(ut|y)/p(ut) achieves similar conditional generation performance to (Dhariwal &
Nichol, 2021), without needing a separately trained classifier pϕ(y|ut) for multiple noise levels
t. During sampling, the conditional and unconditional noise estimators ϵθ(ut;y) and ϵθ(ut) are
linearly interpolated:

ϵ̃θ(ut;y) = (1 + β)ϵθ(ut;y)− βϵθ(ut), (12)
where we note that ϵθ(ut;y) and ϵθ(ut) are up to a constant equal to the conditional and marginal
score estimates∇u log pθ(ut|y) and ∇u log pθ(ut).

Point-cloud approaches always strictly enforce the generated atom counts. We determine the effect
of atom count conditioning using classifier-free guidance on generated molecule statistics. While
not strictly necessary for our field-based formulation, we show that atom count conditioning yields
molecule graph quality improvements. Further details can be found in Appendix G.

4.5 ARCHITECTURE CHOICE, ROTATION INVARIANCE AND SCALING

We parametrize the denoiser ϵθ with a three-dimensional U-Net architecture, which consists of
ResNet blocks, scaling layers, and attention layers. CNN layers provide useful translational invari-
ance inductive biases but lack rotation invariance.

We propose a simple technique that side-steps the issue by orienting each molecule wrt its principal
components V = (v1,v2,v3) of their atom positions M = (m1, . . . ,mN ). Oriented molecules
M̃ = VTM have a canonical frame of reference V, where the axis of the largest variation is placed
on the horizontal axis, the second-largest on the vertical axis, and the smallest on the depth axis.
This ensures a high overlap between the large values of fields from different molecules.

Compared to previous methods that use E(3) invariant NN and can generate molecules with any ro-
tation, our method (on optimality) will only generate molecules according to this frame of reference.
NN hyperparameters can be found in Appendix D.

Our method’s scaling is dependent on the evaluated field locations G. In Appendix J, we derive the
upper limit of our method’s scaling and show that it differs substantially from empirical values, even
surpassing the generation speed of (Hoogeboom et al., 2022) for the largest molecules.

4.6 EXTRACTING MOLECULAR GRAPHS

We briefly illustrate the molecular graph extraction method and give additional details in Ap-
pendix E. To extract a molecular graph from the generated fields u = (uH,uC, . . . ,ub1 ,ub2 ,ub3),
we first initialize the number of atoms N , their positions {mi}, and their types {ai}, using a com-
putationally efficient peak picking algorithm which retrieves sets Ma of atom positions mi, for each
atom type. We then optimize the mean-squared error loss between the values of the generated fields
ua, and the corresponding atom RBF function values determined by mi ∈ Ma by matching the
generated atom fields ua against the RBF mixtures induced by {mi} across the grid points G

argmin
{mi}

∑
a∈A

∑
x∈G

[
ua(x)− γa

N∑
i=1

1[ai = a] exp
(
− 1

2σ2
a

||x−mi||2
)]2

. (13)

Similarly, given the fixed, optimized atom positions {mi} we initialize bonds. All atom position
pairs (mi,mj) within certain distances define our initial bond set B. We then consider sets Bij,b

of values ub around bond positions mij = (mi +mj)/2, that are above predefined thresholds, for
every (mi,mj) ∈ B. For all Bij,b ̸= ∅ we assign γij and optimize:

argmin
γij

∑
b∈B

∑
x∈G

(
ub(x)−

∑
(i,j)

γij1[bij = b] exp
(
− 1

2σ2
b

||x−mij ||2
))2

, (14)

where the small RBF component values γij corresponding to erroneously detected bonds are re-
moved.
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5 EVALUATION

We briefly present the benchmarking metrics and refer to Appendix H for details and definitions.

Basic molecule properties We use atom and molecule neutrality and validity. Neutrality is the
same metric defined in (Hoogeboom et al., 2022) as ”stability”, but, since other work considered
stable atoms even those without a formal charge of 0 (Vignac et al., 2023b), we denote it neutrality,
to clarify and distinguish from their definitions Atom neutrality is the percentage of atoms with
a formal charge of 0, while we consider molecules as neutral if all their atoms are neutral (note
how the definition slightly differs from the chemical one). Unlike validity, neutrality cannot be
trivially increased by e.g., generating only covalent type 1 bonds, or other trivial solutions that
may increase this metric at the expense of other distribution properties (Hoogeboom et al., 2022).
We treat neutrality like any other distribution property, and we aim to match the generated neutral
molecule fraction of the data.

Molecule graph quality We compute atom total variation (TVa) and bond total variation (TVb)
between the datasets and generated distributions, and report the sum of the distances over all atom
and bond types, respectively.

Next, we report the average maximum similarity between the test dataset and generated molecules
(MST). We compute the Morgan fingerprints (Zhong & Guan, 2023) of all the generated and test
dataset molecular graphs and determine the maximum Tanimoto similarity between each generated
molecule and the test set.

Molecular conformation metrics To assess the quality of the generated 3D molecular conforma-
tions, we employ the Wasserstein metrics introduced in (Vignac et al., 2023b), and compute bond
angle (BA) and bond length (BL) W1 distance between generated and data distributions. We addi-
tionally compute conformational energies (CEMMFF and CExTB) W1 distances, based on the MMFF
and GFN2-xTB (Bannwarth et al., 2019) energies, respectively, of generated and data conforma-
tions. Since point-cloud methods may create large outliers and W1 distances are outlier sensitive,
we restrict generated angles and lengths to those generated within the data limits (see Appendix H).

6 EXPERIMENTS AND RESULTS

We report the basic molecule properties and molecule graph quality metrics in Tables 1 and 2, while
molecule conformation and conditional generation results can be found in Appendix A.1 and A.2.

Previous methods have employed many different settings for molecule generation. While all of
them may be valid approaches, it makes benchmarking challenging. We note in Appendix I how
explicit aromatic generation makes it difficult to compute and compare certain metric values against
Kekule representations (used in this work). In Tables 1 and 2, we annotate explicit aromatic formu-
lations with (‡). Methods that employ post-generation corrections or algorithmic bond extractions
are annotated with (†). The methods we tested ourselves are marked with (*).

6.1 QM9

QM9 (Ramakrishnan et al., 2014) is a small molecule dataset, containing 134k molecules of at most
29 atoms (including hydrogen). We use the splits from (Hoogeboom et al., 2022), with 100k, 18k,
and 10k molecules for training, validation, and testing respectively. We use 98522 molecules out of
100k, selected s.t. mi ± 2σ of all atom RBF components fit within the evaluated field positions G.

Basic molecular properties are reported in Table 1. We achieve state-of-the-art performance in terms
of molecule and atom neutrality. In Table 2, the maximum test similarity and the bond distribution
are competitive to the point-cloud approaches, while MiDi performs very well on TVa.

This is likely an effect of our model trading the correct atom count generation for improved neu-
trality. Point cloud methods are hard-constrained to generate specific numbers of atoms, while our
method may remove or add atoms in favor of other properties. In Appendix G, we report a small
shift in the generated atom count distribution compared to the desired conditioning, while increasing
the strength of classification guidance β in Table 3 significantly decreases TVa.
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Table 1: Basic molecule properties for molecules generated by models trained on the QM9 and
GEOM-Drugs datasets, based on 10k samples. We report the mean and standard deviation of the
metrics for three different runs (each generating 10k samples) for QM9. The remark column (R)
symbols represent: (*) re-tested by us ; (†) post-processing corrections or algorithmic bond extrac-
tion; (‡) explicit aromatic bonds. Results for methods with † or ‡ are in italics since they cannot
be directly compared with purely generative models. An H column ✓ denotes explicit hydrogen
generation.

QM9 GEOM-Drugs

Neutrality Neutrality

Model H R Atom(%) Mol(%) Val(%) R Atom(%) Mol(%) Val(%)

MolDiff ✓ (†, ‡) - - 97.0 - - - -
VoxMol ✓ (†) 99.2 89.3 98.7 (†) 98.1 75.0 93.4
MiDi ✓ (*) 98.3 84.5 96.7 (*,‡) 96.8 31.3 62.7
JODO ✓ - 98.5 88.2 98.1 (*‡) 97.0 36.7 77.8
EDM ✓ (*) 98.1 81.9 91.6 (*) 81.0 0.5 3.0
GDM-AUG ✓ - 97.6 71.6 90.4 - - -
EDM-Bridge ✓ - 98.8 84.6 92.0 - - - -
G-Schnet ✓ - 95.7 68.1 85.5 - - - -
GeoLDM ✓ - 98.9 89.4 93.8 - 84.4 - 99.3
FMG ✓ - 99.4± 0.1 91.5± 1.4 98.8 ± 0.3 - 94.7 16.5 64.9

Data ✓ - 99.9 99.6 99.6 - 99.4 86.2 89.6

MolDiff - - - - (∗, ‡) - - 85.0
FMG - - - - - - - 80.0

Table 2: Molecule graph quality of generated samples from models trained on the QM9 and GEOM
datasets, based on 10k samples. We report the mean and standard deviation of the metrics for three
different runs (each generating 10k samples) for QM9. See Table 1 for description of symbols.

QM9 GEOM-Drugs

Model H R MST (↑) TVa(↓) TVb(↓) R MST (↑) TVa(↓) TVb(↓)

MiDi ✓ (*) 0.57 0.19 0.81 (*,‡) 0.53 1.07 -
EDM ✓ (*) 0.55 0.49 0.98 (*) 0.46 1.63 5.72
JODO ✓ (*) 0.58 0.19 0.89 (*, ‡) 0.58 1.07 -
FMG ✓ - 0.54± 0.00 0.52 ± 0.02 0.95 ± 0.01 - 0.49 2.4 4.78

MolDiff - - - - (*,‡) 0.62 2.03 -
FMG - - - - 0.50 0.63 4.58

Although our NN architecture is not invariant to SE(3) transformations, our method achieves satis-
factory conformational accuracy, with a very low distance between generated and data distributions.
We report the W1 distances for bond angles, bond distances, and conformation energy distributions
in Appendix A.1, Table 4, and show the corresponding CDFs in Figures 4 and 5.

6.2 QM9 CONDITIONAL GENERATION

We employ the same setting as in previous work (Hoogeboom et al., 2022), training molecule prop-
erty discriminator models on 50% of the QM9 data, and conditional generation models on the re-
maining 50%. Our generated molecules are then tested using the classifiers. Further details of the
experiment and the results are reported in Appendix A.2.

We compare the difference between the highest and lowest occupied molecular energies ∆ϵ and the
polarizability α of the generated molecules, compared to the true, conditional values. FMG outper-
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Figure 3: Kernel density estimation of detR, resulted from the data and generated molecules. EDM
is unable to distinguish and correctly generate the enantiomer distribution, while the E(3) variant
method (GNN) generates improper, 0 volume conformations. FMG matches the enantiomer distri-
bution.

forms EDM in terms of molecular stability, while EDM is better in its fidelity to the conditioning
variables c.

Additionally, our method generates similar fidelity to the conditioning variable c, even without
classification-free guidance on the number of atoms Na ∼ p(Na|c). This could prove useful in
situations where the conditional p(Na|c), cannot be accurately determined based on data statistics
(e.g., for generating ligands that interact with specific proteins).

6.3 GEOM-DRUGS

The Geometric Ensemble Of Molecules (GEOM) dataset (Axelrod & Gómez-Bombarelli, 2022)
contains molecules of up to 181 atoms and 37 million conformations along with their corresponding
energies. Following previous work (Hoogeboom et al., 2022; Peng et al., 2023), we select the 30
lowest energy conformers for each molecule graph. Similar to (Peng et al., 2023), we also restrict
the data points to only those molecules that contain atoms from {H, C, N, O, F, P, S, Cl}. We
extract those molecules that can be contained in the pre-defined evaluated positions that determine
the tensors ua and ub, similar to our QM9 experiments. After filtering, the data contains 96.7% of
the training molecular conformations and 99.7% unique molecular graph coverage.

We report basic molecule properties in Table 1, where our method achieves highly competitive neu-
tral atoms and molecule percentages. Because of post-generation bond extractions and corrections
(marked with (†)) and other bond representation choices, it remains unfortunately difficult to reli-
ably compare against all methods (please refer to Appendix I for details). In Table 2, we see the
same effect mentioned in the QM9 experiments, where the method has a worse TVa metric, likely
caused by our method favoring other metrics to correct atom counts. When H atoms are not explicitly
generated, our generated atom distribution becomes significantly closer to the data.

The conformational properties of the generated molecules are detailed in Appendix A.1. Our method
performs well, even with significantly more complex molecules.

6.4 E(3) INVARIANCE AND CHIRALITY ANALYSIS

In this section, we empirically confirm that E(3) invariant implementations lead to invariance wrt
enantiomers and show that our proposed method captures all molecular geometries. Our setting
consists of a synthetic dataset of 48 chiral molecules with a skewed enantiomer distribution. Details
of the experiment are provided in Appendix B.2.

Figure 3 shows the KDEs of generated tetrahedron determinants of R = [mO−mC,mN−mC,mH−
mC]

T ∈ R3×3. The E(3) equivariant generative method (EDM) has pϕ(detR) = pϕ(−detR),
which empirically attests Proposition 1.
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Table 3: FMG performance with various design choices.

Neutrality

Model Val(%) Atom(%) Mol(%) TVa(↓) TVb(↓)

EDM 91.6 98.1 81.9 0.49 0.98
FMGaug 95.8 98.6 82.6 0.69 0.94
FMGβ=0 98.6 99.3 92.2 1.02 1.16
FMGβ=2 98.8 99.4 91.5 0.52 0.95
FMGβ=5 98.6 99.4 92.2 0.48 1.02
FMGdist 97.7 99.1 90.9 0.54 1.00

We also test a point-cloud method that is variant to reflections. The work of Hoogeboom et al.
(2022) (GDM-AUG in Figure 3) provides a variant of their method, where atom positions {mi} are
concatenated to node features. Interestingly, although this method has pϕ(detR) ̸= pϕ(−detR),
it generates many unnatural conformations, with tetrahedrons of approximately 0 volume.

Finally, FMG captures the distribution well.

6.5 ABLATION

We determine the aspects of our method that contribute the most to our competitive performance.
In Table 3, FMGaug receives augmented fields based on randomly rotated sets of atom coordinates
{mi} during training, FMGβ , β ∈ {0, 2, 5} varies the degree of classification free guidance on the
number of atoms (see Section 4.4), and FMGdist is the performance of the molecular graphs, where
bonds are extracted according to bond pairwise atom distances, without considering ub channels.
The rotation alignment is the main factor that increases the neutrality metric to state-of-the-art per-
formance, as FMGaug performance drops significantly, while classification guidance improves TVa.

For FMGdist, we determine bonds based on the lookup table from (Hoogeboom et al., 2022). This
confirms that our molecular conformations analyzed in Appendix A.1 are remarkably good since the
model’s neutrality remains SOTA even when bonds are solely based on the atom positions {mi}.

7 CONCLUSION

We demonstrated that continuous field-based molecular representations can achieve highly competi-
tive results. Through theoretical and empirical analysis, we confirmed that E(3) equivariant methods
consistently generate enantiomers with equal probabilities. This is crucial, as incorrect specification
of enantiomers can lead to a loss of drug effectiveness or severe side effects. We also discuss in
detail why developing a corrected SE(3) invariant point-cloud method would be significantly more
challenging and show that our alternative successfully generates correct chiral properties.

Limitations and future work. While point-cloud methods scale quadratically with the number of
atoms, our method depends directly on the size and shape of the molecules. For any new dataset,
the dimensions of the field tensors will always dictate the method’s computational feasibility and
should be carefully considered.

Our tensor dimensions remain fairly large (even with our coarse resolution). Adaptations of current
solutions of improved scaling (Gu et al., 2024; Ramesh et al., 2022; Rombach et al., 2022) could, in
principle, allow for much larger architectures. In turn, scaling at the expense of group invariances
may result in significant strides towards drug-like molecule design (Abramson et al., 2024).

We show significant performance gains using reference rotations, keeping general graph metrics
competitive to E(3) formulations while obtaining chiral sensitivity. It remains, however, an open
question whether our method can be applied to other 3D object generation tasks.
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tor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and John M. Jumper. Accurate
structure prediction of biomolecular interactions with alphafold 3. Nature, 2024. ISSN 1476-
4687. 10

Keir Adams, Lagnajit Pattanaik, and Connor W. Coley. Learning 3d representations of molecular
chirality with invariance to bond rotations. In ICLR, 2022. 3
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jamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy Hirzel, Ryan
Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous rep-
resentation of molecules. ACS Central Science, 4(2):268–276, 2018. 2

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS workshop DGM,
2022. 6

11



Published as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020. 5, 24

Emiel Hoogeboom, Vı́ctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3D. In ICML, 2022. 1, 3, 6, 7, 8, 9, 10, 16, 18, 19, 22, 34

Chenqing Hua, Sitao Luan, Minkai Xu, Zhitao Ying, Jie Fu, Stefano Ermon, and Doina Precup.
MUDiff: Unified diffusion for complete molecule generation. In The Second Learning on Graphs
Conference, 2023. 3

Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Learning joint 2-d and 3-d graph diffusion
models for complete molecule generation. IEEE Transactions on Neural Networks and Learning
Systems, 35(9):11857–11871, 2024. 3

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In ICML, 2018. 2

Bowen Jing, Gabriele Corso, Jeffrey Chang, Regina Barzilay, and Tommi Jaakkola. Torsional diffu-
sion for molecular conformer generation. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), NeurIPS, 2022. 3

Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. In
NeurIPS, 2021. 5
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A ADDITIONAL EXPERIMENTS AND DETAILS

A.1 CONFORMATIONAL ANALYSIS

We compute the Wasserstein W1 distances for bond angle (BA), and bond lengths (BL) and re-
spectively averaged over atom and bond types. We additionally compute conformational energies
(CEMMFF and CExTB) W1 (definitions of these metrics can be found in Appndix H). We report the
W1 distances in Tables 4 and 5. In Figures 4 and 5, we also plot the CDF of the distributions, based
on which the W1 distances were computed and in Figure 6 and 7 we report the histograms of xTB
energies.

Note that for the GEOM-Drugs dataset, MiDi and JODO use explicitly generated aromatic bond
types, and thus has a different bond type set B compared to ours. This also affects the distributions
of the bond types 1 and 2 and we therefore omit MiDi from the GEOM-Drugs bond distance metric
BL.

Fields cannot enforce the number of atoms N that will be generated, while point clouds do so,
sampling N ∼ pD(N) during generation. While not enforcing the number of atoms provides use-
ful flexibility (e.g., in conditional generation, the conditioning may be p(·|y), instead of p(·|y,N),
where the latter requires knowledge of the joint p(y,N)), we find TVa (ablation Table 3) and CExTB
(Table 4) to gain significant improvements as a result of atom count conditioning (from no con-
ditioning, FMGβ=0, to FMGβ=2 which was used in this paper), but in this work, we opted for
classifier-free guidance on binned atom intervals (see Appendix G), rather than conditioning on a
specific atom count. The high impact of atom count conditioning on these metrics provides a strong
indication that, if more fine-grained conditioning is adopted, fields will achieve similar TVa and
CExTB numbers as point-clouds.

Table 4: Conformation results of molecules generated by models trained on the QM9 dataset, based
on 10k samples. We report the mean and standard deviation of the metrics for three different runs
(each generating 10k samples). The remark column (R) symbols represent: (*) re-tested by us.
Reported bond length W1 distances (BL) are multiplied by 100.

Model R BL (↓W1) BA (↓W1) CEMMFF (↓W1) CExTB (↓W1)

EDM (*) 0.47 0.68 3.45 0.30
MiDi (*) 1.92 0.95 3.12 0.34
JODO (*) 0.62 0.83 1.41 0.22
FMG - 0.59±0.01 1.08 ± 0.12 2.15± 0.385 0.71±0.02

FMGβ=0 - - - - 0.98

Table 5: Conformation results of molecules generated by models trained on the GEOM-Drugs, based
on 10k samples. The remark column (R) symbols represent: (*) re-tested by us ; (†) post-processing
corrections or algorithmic bond extraction; (‡) explicit aromatic bonds. Reported bond length W1
distances (BL) are multiplied by 102.

Model R BL (↓W1) BA (↓W1) CEMMFF (↓W1) CExTB (↓W1)

EDM (*) 8.84 4.36 - 1.93
MiDi (*,‡) - 1.38 40.98 1.82
JODO (*,‡) - 0.351 7.59 1.21
FMG - 2.74 1.00 53.14 3.22
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Figure 4: Cumulative distribution function plot of generated and training data for MiDi, EDM, and
FMG for the GEOM-Drugs and QM9 datasets. All models capture these conformational properties
very well on QM9, and reasonably well on GEOM.
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Figure 5: Cumulative distribution function plot of generated and training data energy conformations
(kcal/mol) for MiDi, EDM, and FMG for the GEOM-Drugs and QM9 datasets. On GEOM, not
enough valid samples were obtained to compute the energy distribution. Both models generate
higher energies than the data on GEOM-Drugs (notably, MiDi was trained on a subset of lower
energy molecules on GEOM).
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Figure 6: xTB energy conformations (Eh) for MiDi, EDM, JODO, and FMG for the QM9 dataset.
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Figure 7: xTB energy conformations (Eh) for MiDi, EDM, JODO, and FMG for the GEOM-Drugs
dataset.

A.2 CONDITIONAL GENERATION

We train classifiers ϕc for the two considered properties, α and ∆ϵ. The property classifiers ϕc are
E(3) invariant graph neural networks that receive pairwise distances between atoms ||mi − mj ||
and atom types as categorical features, similar to the architecture used for parametrizing EDM.
We follow the setting from (Hoogeboom et al., 2022), splitting the 100 thousand molecules into two
equal subsets, and training our generative method and property classifiers on each of the two subsets,
respectively.

To sample the properties c ∼ pD, we split molecular properties in one thousand equal bins, and form,
based on training data statistics, the conditional and marginal categorical distributions p(N |ci), and
p(ci), where ci is the ith property bin and N is the number of atoms. We test our conditional model
by sampling two thousand pairs of [ci, N ] ∼ p(ci)p(N |ci), and further sample the actual conditional
property c ∼ U(ci,0, ci,1), with which we condition the generative model on ϵθ(ft, t, Na, c).

We test our generative models by predicting the generated molecules’ properties, and computing the
L1 loss between those predictions and the conditioning variable c used during generation.

In Table 6, FMG is the trained conditional method for the two properties, respectively, and FMGβ=0

is the same model, where we do not use classification-free guidances on the number of atoms ac-
cording to the property p(N |c).
We also include additional baselines: FMGuc is an unconditional model, where we sample molecules
according to an appropriate number of atoms p(Na|c), and FMGrnd are completely random samples,
from an unconditional model.

Table 6: Conditional generation results. Atom and Mol Neutrality are reported in percentages. The
mean results of 2k samples generated by our methods are shown.

α ∆ϵ

Neutrality Neutrality

Model L1(↓) Atom Mol L1 (↓) Atom Mol Conditional

EDM 2.76 - 80.4 655 - 81.7 ✓
FMG 3.55 99.0 86.8 746 98.9 84.5 ✓
FMGβ=0 3.92 99.0 86.7 734 98.6 83.0 ✓

FMGuc 6.92 99.4 91.5 1259 99.4 91.5
FMGrnd 9.03 99.4 91.5 1451 99.4 91.5

We implement property conditioning by shift-scaling the channels, as presented in (Perez et al.,
2018), for all U-Net layers (similar to time and number of atoms conditioning). Note that we did not
use classifier-free guidance for molecular properties c.
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B CHIRALITY ANALYSIS AND E(3) INVARIANCE

In Appendix B.1, we develop our theoretical analysis and in Appendix B.2 we describe our chirality
experiment details.

B.1 THEORETICAL ANALYSIS

In Appendix B.1.1, we draw the connection between a NN’s E(3) invariance and its resulting invari-
ance to enantiomer pairs.

In Appendix B.1.2, we show how point-cloud Diffusion models parametrized by E(3) invariant NN
become E(3) equivariant.

We give proofs of Proposition1, Lemma 2, and Proposition 3, in Appendix B.1.3, B.1.4, and B.1.5.
In Appendix B.1.6 we discuss cases where Proposition 3 applies.

B.1.1 E(3) INVARIANCE OF NNS AND CHIRALITY

Let v1,v2 ∈ R3 be two, three-dimensional vectors, and let d = v1 − v2. By definition, orthogonal
matrices Q have an inverse equal to Q−1 = QT . Therefore, it is easy to see that ||Qd|| = ||d||
since

||Qd||2 = (Qd)T (Qd) = dTQTQd = dT Id = dTd = ||d||2, (15)

where I is the identity matrix, and || · || is the L2 norm. Since reflection and rotation matrices are
orthogonal, it follows, that the Euclidean distances between any two vectors v1,v2 are invariant to
orthogonal matrix multiplication, and, therefore, to any rotation or reflection matrix.

Consider now the cosine of the angle between any two vectors v1,v2 ∈ R3, transformed by an
orthogonal matrix Q. We have that

cos(Qv1,Qv2) =
Qv1 ·Qv2

||Qv1||||Qv2||
=

(Qv1)
T (Qv2)

||v1||||v2||
=

vT
1 Iv2

||v1||||v2||
=

v1 · v2

||v1||||v2||
= cos(v1,v2),

(16)

where we have used equation 15 for ||Qvi|| = ||vi||. All distances and angles between all vectors
in the R3 space are therefore preserved.

Any function ϕ (e.g., a neural network) that receives pairwise atom distances or angles will therefore
be invariant to orthogonal matrix multiplication and implicitly, to reflections.

R3

R2

R1

R1

R3

R2

Figure 8: R and S configurations of a general tetrahedral configuration with four, distinct residues
(the 4th atom, perpendicular to the planar perspective was not annotated for simplicity). The deter-
minant det[mR1−mC ,mR2−mC ,mR3−mC ] is constant under rotations, but changes sign after
reflections. Equivalently, the sign changes when swapping mR1 and mR3 positions, which defines
the clockwise (left) or counterclockwise (right) orientation. The determinant sign or, equivalently,
the orientation determines the enantiomer R or S configuration.
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Consider a tetrahedral configuration, where the central carbon atom is positioned at mC , and is
connected to four unique residues R1, R2, R3, and R4, initially positioned at mR1,mR2,mR3, and
mR4, respectively (see Figure 8). Observing the molecule along the R4-C-axis, a way of defining
the chirality of the molecule is to specify the ordering of the remaining residues in clockwise or
counterclockwise orientation. Assuming we start with R2 position fixed at mR2, swapping R1
and R3 positions has the effect of reversing the rotation direction and creating a distinct chiral
configuration. Now, considering the plane defined by mR2, the central carbon position mC , and
mR4, the same effect can be achieved by a reflection about this plane.

By Householder transformation, a reflection about a hyperplane (in this case, plane), can be defined
by the plane’s normal vector (perpendicular to the plane and of norm 1), for any plane that passes
the origin:

P = I − 2vvT , (17)

where the reflection matrix P leaves any vector on the plane unchanged. Translating the object by,
e.g., −(mR2 +mC + mR4)/3, the plane now passes the origin, meaning we can determine such a
matrix P for the mR2,mC , mR4, and swap mR3 and mR1 with that reflection.

In general, a reflection about any plane can be achieved by a specific translation, a rotation, and a
reflection, applied to the whole R3 space (after reflection, the molecule may be moved back with
an opposite translation and rotation). As Euclidean distances and angles between any two vectors
are preserved under each of these operations, it follows that Euclidean distances and angles become
invariant to the chirality.

To our knowledge, all current point-cloud-based methods use Euclidean distances or relative angles
between atom position vectors mi,mj , e.g., for message passing in their GNN architectures. These
methods cannot distinguish enantiomers. As such, their resulting E(3) invariant probability distri-
butions will always produce them completely at random, and the molecular graphs will not change
based on whether the S or R enantiomer configuration is present in that molecule.

B.1.2 E(3) INVARIANCE OF THE GENERATIVE SETTING (DDPM)

The problem arising from E(3) invariant neural networks in molecule generation is the E(3) equiv-
ariance of the resulting conditional probability distribution pϕ(ms|mt). Concretely, for a set of
positions m = {m1, . . . ,mN},mi ∈ R3, the R and S enantiomer configurations of molecules will
be equally likely, since the marginal becomes E(3) invariant pϕ(m) = pϕ(Rm),∀R orthogonal.
We illustrate this in the context of EDM (Hoogeboom et al., 2022). Consider a set of R3 points
{m1, . . . ,mN} of a molecule containing N atoms and a neural network ϕm. At each layer l in the
GNN network parametrizing EDM, positions are updated as follows:

ml+1
i = ml

i +
∑
i ̸=j

ml
i −ml

j

dij + 1
ϕm(dij , . . .), (18)

where ϕm receives atom pair Euclidean distances and other features that are E(3) invariant.

Every layer is a linear combination of atom positions mi with E(3) invariant coefficients that are
equal to 1 or have the form {±ϕm(dij , . . .)/(1 + dij)}. The update at layer l + 1 of atom i is
then given by ml+1

i = T l+1
i (ml), and since T l+1

i ’s coefficients are E(3) invariant, the equality
T l+1
i (Rml) = RT l+1

i (ml) holds for all orthogonal matrices R.

Consider now the ϵϕ parametrization of the reverse DDPM process

pϕ(ms|mt, t) = N (ms;µµµϕ(ms, s, t),Σ(s, t)), (19)

where

µµµϕ(mt; s, t) =
1

αts
mt −

σ2
ts

αtsσt
ϵϕ(mt, t), (20)

where αts = αt/αs and σ2
ts = σ2

t − α2
tsσ

2
s , keeping the notation from Section 4.2. It follows that
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µµµϕ(Rmt; s, t) =
1

αts
Rmt −

σ2
ts

αtsσt
ϵϕ(Rmt, t)

=
1

αts
Rmt −

σ2
ts

αtsσt
Rϵϕ(mt, t) equivariance of ϵϕ

=R(
1

αts
mt −

σ2
ts

αtsσt
ϵϕ(mt, t))

=Rµµµϕ(mt; s, t),

Since the covariance matrix of the reverse process Σ does not depend on positions m, and because
of the µµµϕ equivariance wrt E(3), we have that

pϕ(ms|mt, t) = pϕ(Rms|Rmt, t),∀t. (21)

We give a short version of the proof from (Xu et al., 2022; Hoogeboom et al., 2022), which shows
how the conditional pϕ(ms|mt, t) and marginal pϕ(m1) being, respectively, equivariant and invari-
ant to a symmetry group, results in the invariance of pϕ(m0). Following (Hoogeboom et al., 2022),
we have

p(Rms) =

∫
mt

p(Rms|mt)p(mt)

=

∫
mt

p(Rms|RR−1mt)p(RR−1mt)

=

∫
mt

p(ms|R−1mt)p(R
−1mt) Invariance of p(mt) & equivariance of p(ms|mt)

=

∫
m′

p(ms|m′)p(m′) · | detR| Change of variables m′ = Rmt

=p(ms),

where we note that the change of variables m′ = Rmt also changes the integration volume, and the
equality stands for both detR = ±1 (rotation and reflection matrices).

Observing that p(m1) = N (0, I) is invariant to orthogonal matrix multiplication, it follows that
p(m0) = p(Rm0) for all orthogonal matrices R (induction). We have shown how reflection matri-
ces R switch the R and S chiral configurations of a molecule at the beginning of this section. This
result can be empirically observed in the orange line of the main text Figure 3.

B.1.3 PROPOSITION 1 PROOF.

Consider atom positions m ∈ R3×N and m′ ∈ R3×N from enantiomer R and S configurations,
and pϕ an E(3) invariant probability distribution. E(3) invariance implies SE(3) invariance, since
SE(3)⊂E(3). This gives

pϕ(m) = pϕ(R+m+ t), (22)

for all rotation matrices R+ (orthogonal, with detR+ = 1) and t is a translation vector. The E(3)
invariance of pϕ gives

pϕ(R−(R+m+ t)) = pϕ(R+m+ t) = pϕ(m), (23)

where R− is orthogonal, with detR− = −1.

We restate that swapping two residue positions mR1 and mR3 of atoms R1 and R3 connected to
a chiral center will change the clockwise or counterclockwise orientation (see Figure 8). Swapping
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mR1 and mR3 positions can be achieved through a reflection about the plane defined by the points
{mR4,mC ,mR2}. In turn, a reflection about a plane can be expressed as a rotation, a translation,
and a reflection. This implies that ∃R+,R−, t, s.t. m′ = R−(R+m+ t), which gives

pϕ(m
′) = pϕ(R−(R+m+ t)) = pϕ(m). (24)

B.1.4 LEMMA 2 PROOF.

Let M ′ = {m1, . . . ,mm}, m ≤ n,mi ∈ Rn be n-dimensional vectors, and f : Rm×n → S be an
SE(n) invariant function. Center the object in 0, creating

M = {m1 − m̄, . . . ,mm − m̄} (25)

where m̄ = 1
m

∑m
i=1 mi. Observe how the vectors of M are linearly dependent, since

m∑
i=1

(mi − m̄) =

m∑
i=1

(mi)− n · 1
n

m∑
i=1

mi = 000 (26)

This means that dim(M) ≤ m− 1 ≤ n− 1, which gives dim(M⊥) ≥ 1, since M contains at most
n− 1 linearly independent vectors. This gives

M⊥ = {x ∈ Rn|⟨x,m⟩ = 0,∀m ∈ Span(M)} ≠ {000}. (27)

Let p ∈ M⊥ be any of M ’s hyperplane normal vectors (perpendicular to all vectors in M and
unit length). Using the Householder transformation, define a reflection matrix about the hyperplane
using

P = I − 2ppT . (28)

Note how any vector in M is unchanged when reflecting by P, since

Pm = (I − 2ppT )m = m− 2ppTm = m− 000,∀m ∈M. (29)

For all R, det(R) = −1 and R orthogonal (reflection matrix), note how

f(M) = f(RPM) since RP is a proper rotation matrix and f is SE(3) invariant (30)
= f(RM) since PM = M (31)

where RP is a proper rotation matrix since it is orthogonal and det(RP ) = det(R)det(P ) =
−1 · −1 = 1.

We have established that f is reflection invariant for 0-centered objects of m ≤ n Rn vectors. We
will utilize the translation invariance of f to extend the proof to any M ′ object of m ≤ nRn vectors.

Let Tv be a translation operator applied to a set of vectors:

Tv(M
′) = {m1 + v, . . . ,mm + v}. (32)

Let R be a reflection matrix. Then
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f(RM ′) = f(RTm̄(M)) from eq. 25, M ′ = Tm̄(M)

= f(R{m1 − m̄+ m̄, . . . ,mm − m̄+ m̄})
= f({Rm1 −Rm̄+Rm̄, . . . ,Rmm −Rm̄+Rm̄})
= f(TRm̄(RM))

= f(RM) translation invariance
= f(M) equation 31
= f(Tm̄(M)) translation invariance

= f(M ′),

which means that for any set of m ≤ n n-dimensional vectors M ′, an SE(n) invariant function f
has f(RM ′) = f(M ′). Together with translation and rotation invariances of f , this implies that f
is E(n) invariant.

Remark 1. If f : Rk×n → S, k ≤ n is SE(n) invariant (equivalently E(n) invariant), and g : Sm →
P , then g(f(M1), . . . f(Mm)), with Mi ∈ Rk×n is E(n) invariant.

The remark is made by applying any translation, rotation, and reflections to Mi which leaves f
unchanged. And will be useful for our next proof.

B.1.5 PROPOSITION 3 PROOF.

Proposition 3 proof. Assume n vectors m1, . . . ,mn in R3, where n ≥ 5. Also, assume f :
Rm×3 → S is an SE(3) invariant function, but not E(3) invariant. We know m ≥ 4, by Lemma 2.
Consider f(m1,m2,m3,m4) = sign(det([m1 −m4,m2 −m4,m3 −m4])), and note that it is
SE(3) invariant (rotations and translations leave the function unchanged, whereas reflections change
its sign).

Remark 2. Enantiomer configuration is a local property, which can only be determined by at least
4 vectors from its set of 5 atoms (4 residues and one central atom), and f can be used to determine
chirality. Throughout this proof, we refer to ”chirality” as the clockwise or counterclockwise atom
arrangements when looking down from one vertex of a tetrahedron.

Let M and M ′ be 4 atom subsets. Assume any triplet subset of M has three linearly independent
vectors. Then, f(M) conveys no information on any other set f(M ′), unless M = M ′. Intuitively,
choose any plane from M . The resulting determinant’s sign, which distinguishes chiral centers, will
depend on what side of the plane we choose the 4th point. The fact that f can be used to determine
chirality stems from the equivalence between the classical chirality definition (using rotations) and
determinant signs (see the beginning of Appendix B.1). All 4 sets of atoms need to be evaluated to
have all potential enantiomer states that can happen in n atom molecules.

We now observe that we do not strictly need to compute f(·) for all ordered sets of 4 atoms. For a
set of 4 atoms, observe how their permutations may, at most, the sign:

f(m1,m2,m3,m4) = f(πe(m1,m2,m3,m4)) = −f(πo(m1,m2,m3,m4)), (33)

where we denote by πe and πo even and odd permutation, respectively. Therefore, we need
(
n
4

)
to

compute all unordered sets of 4 atoms, giving O(n4).

Remark 3. The
(
n
4

)
features f(mi1,mi2,mi3,mi4) need paired atom type information

(ai1,ai2,ai3,ai4) using a function that is order-variant on atoms, meaning.

g(f(mi1,mi2,mi3,mi4), (ai1,ai2,ai3,ai4)) ̸= g(f(mi1,mi2,mi3,mi4), (π(ai1,ai2,ai3,ai4))),
(34)

where π is any permutation except the identity.
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B.1.6 CASES WHERE PROPOSITION 3 APPLIES

Consider the distributions p1, . . . , pn, with pi(mi) = N (000, I),∀i and random associated atom types
{ai} (also drawn from an uninformative distribution). The task is transforming these distributions
into the conformer distribution of n atom molecules, some of which contain chiral centers. By the
uninformative assumption, we need to compute the chirality of all sets of 5 atoms, since all sets have
equal probability of being chiral. By remarks 1, 2 and 3, this scales prohibitively, in O(n4).

Chiral-aware, SE(3) invariance becomes intractable in point-cloud, diffusion models since the oc-
currence of reflections needs to be assessed in local neighborhoods (we are specifically interested in
potential reflections of chiral centers, but all atoms may be part of chiral centers equally likely). For
diffusion methods that define uninformative and identically distributed vector positions at t = 1, it
implies that all sets of 4 atoms may be part of tetrahedrons at t = 0.

Examples of E(3) invariant diffusion models operating on point-clouds are (Hoogeboom et al., 2022;
Peng et al., 2023; Vignac et al., 2023b; Xu et al., 2023; Wu et al., 2022). All these methods imple-
ment NN ϕ activating on sets of {f(M1), . . . , f(Mn)}, where M1 ∈ R2×3, and f are Euclidean
norms f(Mi) = ||Mi,1 −Mi,2||2. They are E(3) invariant by Remark 1, and can only be made
chiral-aware using O(n4) scaling, by Proposition 3.

B.2 EXPERIMENT DETAILS

We create a dataset of 48 molecules, each one having a central tetrahedral carbon that is always
connected to the set of four atoms C = {C, H, N, O}. We create multiple unique molecules, by
connecting the three atoms C,N,O ∈ C to other arbitrary residues. In Figure 9, we show half of
the molecular graphs within our data. For each of them, we create molecular conformations using
RDKit. Note how in this experiment we are not necessarily interested in creating realistic molecules,
but simply any molecules that contain chiral configurations.

Figure 9: Molecular graphs of half of the chiral dataset.

We train FMG for 10k iterations, and EDM for 300k iterations, and test it for multiple checkpoints.
Since the dataset is small, we do not use mini-batches and set our batch size to the data length.

C FIELD PARAMETERS

For the QM9 dataset, we determined that a resolution of 0.33Å and 323 voxels for each molecule
is a good compromise between the sample size and the percentage of the dataset’s samples (the
total size being u ∈ R8×32×32×32, for 5 and 3 atom and bond channels, respectively). We set the
RBF component’s σ = 0.224, for all fields, and γ = 0.176. The component values γ = 0.176
were determined as the maximum value of an RBF component having its positions m in one of the
evaluated positions G. Although the field parameters do not reflect the actual, physical size of the
atoms, we note how true physical fields may be recovered by appropriately scaling the variance of
each atom RBF component, based on the channels a they belong to.
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We used the same resolution for GEOM. After rotating all molecules using the principle components
of the atom position vectors, the resulting tensors u ∈ R11×64×40×32 were enough to cover 96.66%
of the total data points and 99.71% unique molecular graphs.

The field hyperparameters were selected during early experimentation. We focused on the effect of
field hyperparameters on fitting ua(x) and ub(x) to the generated fieldsuuua anduuub (Equations 13 and
14 and Appendix E). We compute the ”extraction accuracy”, which measures how many molecules
have the same molecular graph extracted from the fields they create. We additionally report the
average ”distance from original”, computed as the average Euclidean distance between the correct
atom positions and the ones extracted. For both, we determine how robust they are for various levels
of noise applied to the fields. Ablation of field hyperparameters for the resulting diffusion model’s
accuracy was not performed, due to the heavy computational resources required.

Field standard deviation σ: Intuitively, larger standard deviations σ would facilitate smaller re-
ceptive field CNN kernels to capture longer distance neighboring RBF components. At the same
time, we require that molecular graphs and conformations are correctly extracted. Figure 10 shows
how increasing σ worsens the extraction accuracy, and our choice (σ2 = 0.05) prioritized molecular
conformation (distance from original) and graph (Extraction accuracy) reliability over noise levels.
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Figure 10: Noise robustness for the graph extraction procedure for various σ field values.

Field component weight γ: The component weights may be thought of as an input normalization
parameter. Therefore, we did not consider other values than 0.176, which should normalize inputs
to roughly values between [0, 1].

Resolution r: In general, it is desired to have as low resolution as possible, as this will influence
the input dimensionality and, correspondingly, the depth of the parametrizing NN for limited com-
putational resources. At the same time, the accurate extraction of conformers and graphs must be
ensured. Figure 11 shows how lowering the resolution from 0.33 (our choice) to 0.44Å worsens ”ex-
traction accuracy” and ”distance from original” across noise levels. We note, however, that r = 0.44
may still be a valid choice, assuming the resulting NN would have low enough amounts of noise.
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Figure 11: Noise robustness for the graph extraction procedure for two resolution levels.

D MODEL AND OPTIMIZATION PARAMETERS

Diffusion Model We use 100 timesteps t ∈ [0, 1] for our diffusion processes, the ϵ parametriza-
tion, and the modified cosine scheduler for αt, as presented in main Section 4. The conditional scale
for the classifier-free guidance was kept to β = 2 during the generation phase, for our main results
(unless explicitly mentioned otherwise).
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Optimization We optimize the Lsimple objective using Adam optimizer with 8 ·10−5 learning rate
and (0.9, 0.99) for the Adam’s β parameters. The models are trained using batch sizes of 32 and 64,
for GEOM-Drugs and QM9 datasets, respectively.

U-Net We use a three-dimensional adaptation of the U-Net employed by (Ho et al., 2020). For
both GEOM-Drugs and QM9 datasets, we use the same hyperparameters, except for the batch size.
The architecture consists of three U-Net layers, with linear attention for each resolution level, except
the last one, which uses full attention. Its initial convolution converts the 8 and 11 channels (for QM9
and GEOM-Drugs datasets, respectively), into a hidden representation of R128×H×W×D, which is
halved for each of the H,W,D dimensions, while its channel size is multiplied by 1, 2, and 3.

Resources For the QM9 experiments, we use four A100 GPUs (40GB memory version) for 180
hours, and 1.2 million iterations (or about 780 epochs). On the GEOM-Drugs dataset, we used the
same four A100 GPUs for 330 hours and trained our explicit H GEOM-Drugs model for 1.32 million
iterations (6 epochs), and our implicit one for 1.2 million iterations (5.5 epochs).

E MOLECULE GRAPH EXTRACTION PARAMETERS AND ALGORITHMS

The molecular graph extraction has four components, used in the following order: deterministic
peak extraction, atom positions optimization, deterministic bond extraction, and γij parameter opti-
mization that removes false bonds.

Deterministic peak extraction The algorithm works by defining a simple, recursive flood-fill
algorithm for retrieving the neighbors. Assuming the RBF functions have a small σ parameter and
reasonably small amounts of noise produced by the diffusion model, it should never fail to extract
the correct number of atoms and their approximate positions from the fields.

Algorithm 1 Peak extraction
Input: fields u ∈ RNx×Ny×Nz , threshold t, q ← {x;u(x) > t}; Am ← {}
repeat
p = q.pop()
neigh← get neigh(p, t,u)
Am.insert(mean(neigh, p))
q.pop(neigh)

until q is empty
return Am

Optimizing the atom positions The initial atom positions retrieved in the Am sets are further
optimized using Equation 13. Note how both atom numbers and their types are obtained using the
peak extraction algorithm, and the optimization only fine-tunes their positions {mi}.

Bond detection The distances between any two bonds bij and bjk are half as large as the distances
between the atoms ai and ak, meaning ||mij − mjk||2 = ||mi − mk||2/2. This may create a
significantly larger overlap between the bond RBF components than the atoms’ RBF components.
Therefore, we treat the bond assignment differently and do not reuse Algorithm 1. Using the op-
timized atom positions Ma, we check for all the atom pairs mi,mj ∈ Ma that are within some
predetermined threshold distance ||mi −mj ||2 < d1 and create sets

Bij,b = {ub(x); ||x−mij ||2 < d2,ub(x) > tb,x ∈ G},
where G consists of the evaluated field locations, tb is an additional bond threshold, and d2 is the
radius of the sphere centered on mij , around which we check for ub values. A covalent bond type b
is added between atoms i and j if Bij,b ̸= ∅.

To ensure we don’t miss bonds due to the low resolution, we select a large sphere (determined by its
radius d2) around the approximate bond positions mij and small threshold values tb. This may then
recover bonds at positions where the model did not generate a true RBF bond component.
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Bond optimization γij To remove erroneous bonds, extracted due to our lenient bond-extraction
parameters (d1, d2, tb), we optimize the γij values for all Bij,b ̸= ∅ assuming the mean bond
positions mij fixed, using equation 14. In Figure 12, we analyze how robust the method is to
various degrees of uniform noise. We choose 300 molecules from the QM9 dataset and gradually
increase the noise amount to the voxelized field values u.

0 0.05 0.1 0.2
U(0, x)

0.975

0.980

0.985

0.990

0.995

1.000

Ac
cu

ra
cy

with optimization w/o optimization

Figure 12: Performance of the graph extraction method for various degrees of noise. The bond
optimization step is crucial and makes the method highly robust to noise.

Figure 13 illustrates a bond that was initially extracted based on Bij,b ̸= ∅, but removed after
optimizing and finding the low γij value.
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Figure 13: Upper left subfigure illustrates a noisy covalent bond type 1 channel values ũb1 = ub1+ϵ
(according to the color bar), where ϵ has the same dimension as ub1 and ϵijk ∼ U(0, 0.1). The bond
marked with “x” on the left is removed since its optimized γij value (right bar plot) is significantly
lower than the rest.

Parameters We choose threshold parameter t = 0.3 in Algorithm 1. For bond detection, we
choose a large distance d1 of 0.35Å (for reference, the margin used to detect bond type 1 based
on distance in the ablation Table 3 is 0.1Å). The distance d2 = 0.45 Å will result in the method
checking for the closest midpoint voxel to mij and a few others directly in contact with it. The
bond threshold is set to tb = 0.3. Both the mean positions m and bond RBF component factors
γij are optimized using gradient descent for 500 iterations and a learning rate of 5. All parameters
were selected according to robustness analyses, such as the one illustrated in Figure 12, based on
the training data.
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F GENERATED SAMPLES

F.1 QM9 SAMPLES

Figures 14 and 15 depict a set of random valid samples from a model trained on QM9.
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Figure 14: Random valid samples from FMG trained on QM9. To the left of each molecule, the top
200 largest ua and ub values are shown along their corresponding extracted atoms and bonds.
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Figure 15: Random valid samples from FMG trained on QM9. To the left of each molecule, the top
200 largest ua and ub values are shown along their corresponding extracted atoms and bonds.
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F.2 GEOM-DRUGS SAMPLES

Figures 16 and 17 depict a set of random valid samples from a model trained on GEOM.
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Figure 16: Random valid samples from FMG trained on GEOM. To the left of each molecule, the
top 200 largest ua and ub values are shown along their corresponding extracted atoms and bonds.
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Figure 17: Random valid samples from FMG trained on GEOM. To the left of each molecule, the
top 200 largest ua and ub values are shown along their corresponding extracted atoms and bonds.

G CLASSIFICATION-FREE GUIDANCE ANALYSIS

We create 17 and 91 bins for QM9 and GEOM-Drugs data sets, respectively, and assign them indices
that we use as categorical conditioning variables. This led to a better match between the generated
and data atom distributions (measured using TVa) (see Table 3) and we deem it relevant when com-
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paring to point-cloud-based approaches since these methods strictly enforce the number of generated
atoms.

We determine how accurately the classification free guidance results in molecules containing the
conditioned number of atoms. We compute the accuracy as the percentage of generated molecules
in the correct conditioning bin N , the L1 distance between the binned number of atoms generated
by the model Ñ , and the conditioning bin N as min(|Ñhigh − Nlow|, |Nhigh − Ñlow|) (or 0, when
N = Ñ ), and “L1 lower” is the fraction of the total L1 distance attributed to incorrectly generated
bins because of a strictly lower number of atoms generated Ñ < N (as a measure of distribution
skewness).

In Figure 18, the generated bin accuracy is relatively low but is generally off by approximately 1
atom (measured by the L1 distance) for the QM9 dataset. In terms of the distribution shift, L1 lower
suggests that the QM9 FMG model tends to generate more atoms than the conditioning variable.

Similar results in terms of accuracy and L1 distance can be noted in the GEOM-Drugs dataset
(relative to the much larger possible number of atoms), but now the shift is in the opposite direction.
This could be an artifact of the number of training iterations: early on in the QM9 dataset training
experiments, we observed that the model tends to generate a lower number of atoms and bonds,
which likely explains this opposite shift of the GEOM-Drugs method. For reference, our GEOM-
Drugs model has been trained for about 6 epochs, compared to its QM9 counterpart (about 780).
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Figure 18: Histogram of the generated number of atom classes Ñ and the conditioning used N .
Small and more significant atom number distribution shifts occur for QM9 and GEOM-Drugs
datasets, respectively. Together with the result of Table 3 which shows how critical it is to en-
force the correct number of atoms for TVa, this result suggests that our method may remove atoms
for stability, inducing an atom distribution shift.

H PERFORMANCE METRIC DETAILS

Validity: Percentage of valid molecules, computed using RDKit’s SanitizeMol function, com-
puted using explicit H atoms.

Neutrality: Percentage of generated atoms that have a formal charge of 0, and percentage of
molecules that contain all atoms with a formal charge of 0.

Among our molecular quality metrics, the atom and bond total variation distances TVa and TVb are a
good measure of how well most of the data modes are captured, whereas MST should better measure
the quality of the molecules. For instance, if the method captures a single mode of distribution well,
and generates very high-quality molecules, it may still have relatively bad TVa and TVb.

TVa, TVb We define TVa and TVb as:
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TVa =
∑
a∈A

N∑
Na=i

|pD(Na)− pg(Na)|

TVb =
∑
b∈B

N∑
Nb=i

|pD(Nb)− pg(Nb)|,

where Na, Nb are the numbers of atoms and bonds of type b, a and b are the atom and bond types,
A and B are the sets of atoms and bonds considered, pD and pg are probability distributions based
on data and generated statistics, and | · | is the absolute value.

MST: Denoting the Tanimoto Similarity as TS= (v1∩v2)/(v1∪v2), where v1 and v2 are Morgan
Fingerprints based on molecular graphs, we compute the average maximum similarity to test (MST)
as:

1

N

N∑
i=1

max
vt∈Vtest

TS(vi,vt),

where V is the set of all test set Morgan Fingerprints.

BL, BA, CEMMFF, and CExTB: We determine the Wasserstein W1 distance between the generated
and data bond angles, bond lengths, and Merck molecular force field energies (in kcal/mol).

The angle distributions are defined for all atom types that have two or more bonds, and we consider
all pair-wise angles between position vectors mi −mk, and mj −mk, for any two atoms i and j
connected to the same central atom k. We consider the average W1 distance over all atom types, and
we denote it by BA.

Similarly, we create bond Euclidean distance distributions for all bond types b ∈ B and denote our
averaged W1 distance over all bond types as BL.

We use discretized bins of length lθ = 0.1 degrees for angles, ld = 0.01Å for bond Euclidean
distances, and le = 0.1 (kcal/mol) for conformation energies, and approximate the generated and
data cumulative distribution functions Fg and Fd and compute:

BA = lθ
1

NA

∑
a∈A

∑
x∈Ba

|Fd,a(x)− Fg,a(x)|

BL = ld
1

NB

∑
b∈B

∑
x∈Bb

|Fd,b(x)− Fg,b(x)|,

where the bin upper limits Ba, Bb, and Be are chosen to contain all maximum and minimum values
of the generated and training data samples, NA and NB are the number of unique atoms and bonds
considered (e.g., we excluded H and F for BA computations, as these atoms never have two bonds).

For both Merck molecular force field (CEMMFF) and xTB (CExTB) we use the same bin length le and
compute the metics in the same way:

CE = le
∑
x∈Be

|Fd,e(x)− Fg,e(x)|,

where Fd,e may be either MMFF or xTB CDF of generated and data energies.

Outlier problems of W1 distance: Compared to our method, point-cloud methods may generate
a molecule with an arbitrarily long bond length (i.e., l →∞), making the BL W1 metric arbitrarily
high based on one or few bonds. Let pθ and pD be the generated and data bond length distributions.
If their corresponding CDFs are Fθ and FD, the W1 distance can be equivalently written as
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W1(pθ, pD) =

∫
R
|Fθ(l)− FD(l)|dl

where the integration is over the generated and data molecule lengths l. In fields, bond lengths are
constrained by the chosen evaluated points G, while in point clouds, l may be arbitrarily high. In
turn, this can theoretically incur arbitrarily high penalties due to a few outliers. In practice, this does
not happen (Appendix A.1, Figure4, depicting the CDFs of bond lengths), and we further ensure
we don’t have such an outlier advantage by restricting the bond lengths and angles to only those
generated within the data limits when computing BA and EL metrics.

I EXPLICIT AROMATIC BONDS AND NEUTRALITY

Problem explanation In our settings, we have used the Kekulé molecule representations, which
represent aromatic bonds as alternating covalent bond types 1 and 2. In Figure 19, we show three
different such aromatic molecules, using the Kekulé representation. Noting that the N and C valen-
cies are 3 and 4, respectively, all formal charges are 0 in these cases (all carbons are assumed to be
implicitly connected to a H).

Pyrrole Pyrazole Phenanthroline

Figure 19: Three aromatic molecules, with increasingly harder to determine neutrality.

Instead of the alternating bond types 1 and 2, an equivalent representation denotes these bonds as a
separate “aromatic” bond. By considering an electron occupancy of 1.5 for aromatic bonds, Pyrrole
has the problem that the N in its molecular graph is apparently (but not in actuality) ionized, having
a formal charge of -1. Furthermore, in Pyrrazole, only one of the N atoms should have the (apparent)
formal charge -1. Lastly, the C atoms connecting to two rings in Phenanthroline would have a formal
charge of -0.5 (as it connects with three 1.5 bonds).

This induces ambiguity. One way to solve this would be to use RDKit and convert the explicit
aromatic representation to Kekulé representations. However, in the case of invalid molecules (about
38% of the generated molecules by MiDi), it becomes hard, if not impossible, to determine exactly
how many atoms connecting to a (potentially incorrect) aromatic ring have the formal charge 0.

Explaining the reported results for MiDi We have used the molecules reported in the MiDi
github repository. We note that on the QM9 dataset, both our method and MiDi generate molecules
in Kekulé form, and they are directly comparable in Table 1 (QM9 columns). For the GEOM-Drugs
neutrality results in Table 1 (GEOM-Drugs columns), we have reported an upper-bound for MiDi, by
considering bond type “aromatic” as 1.5 electron occupancy and allowing C to have both 0 and -0.5
formal charge. Since many N atoms in GEOM-Drugs are (in actuality) ionized, it is not ”allowed”
to have a formal charge of -1. Regardless, the comparison is very hard to do, and it is difficult to say
which model generates more neutral atoms or molecules.
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MTS bias We compute the maximum test similarity using valid molecules. This results in a
bias in the methods that generate aromatic bonds explicitly, as RDKit will require these molecular
graphs to be converted to Kekulé representations (Table 2). In this case, this metric will not consider
molecules containing incorrect aromatic rings (as determined by RDKit’s SanitizeMol). However,
in our case, since we directly generate Kekulé molecule representations, this quality filter does not
exist anymore, and samples that have incorrect aromatic rings (but are not identified as aromatic
because of e.g., one circle atom being incorrectly hybridized) will be considered in the final metric.
Note how this bias is unrelated to the performance of the generative model, as those unkekulizable
molecules are still generated by explicit-aromatic generating methods, but are simply filtered out by
this metric.

J COMPLEXITY ANALYSIS

J.0.1 TIME SCALING

We use convolutional layers as the main blocks of our UNet parametrization. As such, the complex-
ity of our NN scales linearly with H ·W ·D. We omit the channel term Cin ·Cout, as it is equivalent
to the hidden activations on node states from point-cloud methods. Linear attention layers are added
after each UNet layer, giving O(H ·W ·D).

Comparatively, all layers of point-cloud DDPM methods scale quadratically in the number of atoms
O(N2). The scaling of these two methods is not directly comparable, since the number of atoms
does not directly relate to the necessary volume that encompasses all molecules of that size, which
is highly dataset-dependent. Still, a theoretical upper limit can be determined.

Consider a dataset that contains molecules of atoms, which, for simplicity, are all C atoms bonded
through covalent bond type 1 (approximately Å). We now discuss how the atoms should be arranged
to create the worst possible scenario (without considering physical constraints). The upper limit of
our grid sizes would be achieved when all three of the following n-atom molecules are present:

• One molecule has all atoms placed linearly, which will determine H = N · 1.35Å, and
W = D = 0.

• One molecule is perfectly planar, having H = W = N ·1.35
2 and D=0. Note that W > H is

not possible, since our alignment method (Section 3.5) would rotate the molecule s.t. the
longest axis is H .

• One molecule has H = W = D = N ·1.35
3

The scaling of our convolutional layers would beO( 1.35Nr · 1.35N2r · 1.35N3r ), where r is the resolution
of our evaluated field locations. We compare the number of floating point operations in terms of the
number of atoms in Figure 20. For FMG, we show both the theoretical maximum and the grids that
encompass GEOM-Drugs molecules of various numbers of atoms. In Figure 21, we determine the
training and generation time (in seconds) of FMG and EDM.

When close to the theoretical upper limit, our method becomes intractable, but this case is highly
unrealistic (Figure 20, comparing ”FMG max” with ”FMG GEOM”). In Figure 2 a), FMG has
a comparable generation time but takes longer to train. Figure 2 b) depicts our training time for
various molecule sizes, where 99.7% of the molecules are kept (used in this work). The molecule
graphs were chosen s.t. they fit within a grid size of 64 · 40 · 32.
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Figure 20: Number of floating point operations for EDM and FMG over the number of atoms in
a molecule. The theoretical maximum of FMG differs substantially from the real datasets, and its
practicality relies on application specifications. For the axis lengths in FMG 0.33Å was used (same
value as the one used in our model).
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Figure 21: Time elapsed (in seconds) for EDM and FMG models, over various molecule sizes
(in number of atoms, and tensor field volumes, for EDM and FMG, respectively). We used 100
iterations with a batch of four molecules to determine the training curves. For this experiment, we
used an Nvidia A100 GPU. a) All GEOM-Drugs molecules are considered. b) Only molecules used
in the current work (99.7% of the molecules) that fit within our grid size of 64·40·32 are used in the
analysis.

J.0.2 MEMORY SCALING

Increasing the molecule sizes has a significant impact on memory overhead. Similar to the analysis
done in the time scaling analysis in Appendix J.0.1, we construct grids that can fit all GEOM-
Drugs molecules with a certain number of atoms N . We report the maximum memory allocated for
EDM (Hoogeboom et al., 2022) and our method, when generating samples of various atom sizes
(determined on the x label by the number of atoms N , or dots denoting volume sizes), with 32
samples per batch.

Figure 22 a) shows that our method performs better for larger molecules, but worse for smaller ones.
We note here that GNN architecture batching is done by considering a single large graph, where
nodes from different batches are disconnected. Therefore, adjacency matrices of this implementation
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have poor scaling for large batch sizes: ((
∑

b∈B Nb)
2), where B is the batch sizes and Nb is the

number of atoms in a molecule.

We find that increasing the number of unique channels (atoms or bonds) is negligible and linear. The
additional memory required stems from the input CNN layer’s kernel dimension (the depth sizes of
the initial 3D CNN kernels are equal to |A| + |B|), and the larger intermediate states. However,
these are considerably smaller than the architecture’s overhead (Figure 22 b). Channel scaling is
performed with a batch size of 1.
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Figure 22: Memory scaling in terms of molecule size for generating molecules. a) We report the
maximum GPU memory allocated when sampling for various grid sizes, which fit all molecules of
the corresponding number of atoms. We additionally report the memory when using the grid sizes
chosen for this work. b) Generation memory in terms of the number of channels.
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