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Abstract

Pose estimation is essential for many applications within
computer vision and robotics. Yet few works provide rig-
orous uncertainty quantification for poses under dense or
learned models, despite their uses. We derive a closed-form
lower bound on the covariance of camera pose estimates by
treating a differentiable renderer as a measurement func-
tion. We linearize image formation with respect to a small
pose perturbation on the manifold and yield a render-aware
Cram’er–Rao bound. Our approach reduces to classical
bundle-adjustment uncertainty, ensuring continuity with vi-
sion theory. It also naturally extends to multi-agent settings
by fusing Fisher information across cameras. Our statisti-
cal formulation has downstream applications for tasks such
as cooperative perception and novel view synthesis without
requiring explicit keypoint correspondences.

1. Introduction
Estimating the 6-DoF pose of a camera from images is
foundational for vision and robotics. Neural rendering
(NeRF [14], Instant-NGP [15], 3D Gaussian Splatting [11])
can offer a dense, differentiable photometric measurement
model where each pixel depends on the pose. Works such
as iNeRF [13] found that we may “invert” the renderer to
localize cameras by photometric alignment. Despite this
rapid progress on practical pose recovery, there is little the-
ory quantifying how accurately pose can be estimated from
these dense renderers, or how scene content (texture, depth
variation, symmetries) fundamentally limits identifiability.

Classical geometric vision provides a natural lens to an-
swer this question. The Cramér–Rao bound (CRB) lower-
bounds the covariance of any unbiased estimator in terms
of the Fisher information. In SfM/SLAM, the pose covari-
ance of a bundle-adjustment (BA) solution relates to the in-
verse Hessian of the reprojection error. This is why CRBs
have informed optimal design in pose-graph SLAM [5];
vision methods plan viewpoints by maximizing Fisher in-
formation [19]. However, these analyses typically as-
sume feature-based measurements (e.g., 2D–3D correspon-

dences). In contrast, Neural renderers give us a dense pho-
tometric observation governed by a complex, differentiable
image formation pipeline.

We address this gap by deriving a render-aware CRB
for pose on SE(3). We treat I = R(θ;x) as the observa-
tion model with fixed scene θ and pose x ∈ SE(3). Next,
we can linearize image formation with respect to a tan-
gent perturbation ξ ∈ se(3), compute the per-pixel Jaco-
bian J = ∂R/∂ξ, and assemble a Fisher information ma-
trix (FIM) I(x) = J⊤Σ−1J . The bound Cov(ξ) ⪰ I(x)−1

then quantifies the best-achievable pose accuracy.
Additionally, the eigenstructure of I(x) exposes identifi-

ability. High-texture and high-parallax regions yield large
information. Low-texture or symmetric content induces
degeneracies (near-zero eigenvalues). Crucially, the for-
mulation reduces to classical BA covariance in the pin-
hole/feature limit, providing continuity with established
theory.

While our derivation begins with a single camera, we
adopt the convention of treating each camera as an agent.
We show how this makes the formulation immediately ex-
tensible to multi-camera or cross-device settings, a use-
ful downstream application. The method, in short, is to
combine the Fisher information contributions from multi-
ple agents, enabling efficient cooperative perception, fu-
sion, and communication.

Contributions. (i) A general CRB for camera pose with
differentiable renderers on SE(3); (ii) practical autodiff
recipes for per-ray Jacobians across NeRF/3DGS; (iii) con-
nections to BA/SLAM uncertainty and diagnostics for de-
generacy; (iv) a compact protocol for empirical validation;
(v) a multi-agent extension supporting cooperative percep-
tion and fusion

2. Related Works
Differentiable Rendering for Pose Estimation. Differ-
entiable rendering can be used for camera pose estimation
by enabling analysis-by-synthesis alignment. Neural ren-
dering methods like NeRF provide dense and continuous
scene representations that can produce photorealistic im-
ages given a camera pose. Following works (e.g. Instant-



Figure 1. Pipeline: fixed scene θ and pose x → render I; autodiff
gives J = ∂R/∂ξ; FIM J⊤Σ−1J ; pose CRB I(x)−1; interpret
as ellipsoids in rotation/translation.

NGP and 3D Gaussian Splatting) now provide fast differen-
tiable image formation. Because of these advances, gradi-
ents of the rendering process can be used for pose optimiza-
tion. For example, iNeRF (Inverting NeRF) demonstrated
that a pretrained radiance field can be directly “inverted” to
recover 6-DoF camera pose via gradient-based photomet-
ric alignment. Such works show how differentiable neu-
ral renderers, whether used post hoc for localization [13] or
in-loop during mapping [12], can reliably estimate camera
pose by minimizing pixel-wise reprojection error without
explicit correspondences.

Uncertainty Quantification in Neural Rendering.
Quantifying uncertainty in neural scene representations is
a recent goal. Bayes’ Rays introduces a post-hoc Laplace
approximation for NeRFs to estimate per-pixel confidence
intervals [9]. FisherRF leverages Fisher information to
guide view selection and quantify parameter uncertainty
[10]. Current directions are focused towards scene /
model uncertainty. Our work is aimed towards uncertainty
for camera poses given a fixed scene. By deriving a
render-aware CRB on pose covariance, we provide a com-
plementary, pose-centric analysis that captures geometric
identifiability alongside model confidence.

Information-Theoretic Analyses of Camera Pose. In-
formation theory provides a lens to evaluate and improve
pose estimation. Chen et al. derive CRBs for pose-graph
SLAM and propose optimal design metrics to distribute
sensing effort [5]. Zhang and Scaramuzza extend this idea
by introducing the Fisher Information Field for active vi-
sual localization [19]. These approaches, however, assume
feature-based measurements. In contrast, we treat a dif-
ferentiable renderer as the observation model, yielding a
dense photometric FIM for camera pose. By linearizing the
full image formation process, our analysis bridges classical
Fisher information methods with neural rendering, allow-
ing us to quantify pose identifiability even without explicit
correspondences.

Multi-Agent and Cooperative Perception. Multi-agent
SLAM frameworks such as Kimera-Multi [18] and
COVINS [16] demonstrate that sharing information across

agents significantly improves localization accuracy and ro-
bustness. To build on top of this theme, we propose a prin-
cipled method of fusing uncertainty by combining per-pixel
Jacobians into a joint Fisher information matrix on a com-
mon reference frame. This yields a rigorous multi-agent
pose CRB that ultimately aids cooperative view planning
by communicating only the most informative observations.

Manifold and Statistical Estimation Foundations.
Standard Lie-group state estimation and information theory
are followed throughout our work. Barfoot’s text for SE(3)
estimation [4], Solà’s micro-Lie treatment and Jacobian
calculus [17], and Riemannian optimization background [1]
justify local coordinates, reparameterization invariance,
and reporting covariance in the tangent of SE(3).

3. Methodology
We define pose estimation as recovering a transformation
x ∈ SE(3) from an image I ∈ RM generated by a differen-
tiable renderer R

I = R(θ;x) + η, η ∼ N (0,Σ), (1)

with fixed scene parameters θ and pixel-noise covariance
Σ ∈ RM×M (not necessarily diagonal). Let ξ ∈ se(3)
be a minimal twist so that the perturbed pose is exp(ξ)x.
Linearizing the image formation at ξ = 0 gives

R(θ; exp(ξ)x) ≈ R(θ;x) + J ξ,

J ≜
∂R(θ; exp(ξ)x)

∂ξ

∣∣∣∣
ξ=0

∈ RM×6.
(2)

3.1. Core Derivation
Theorem 1 (Render-aware Fisher information on SE(3)).
Under the Gaussian model (1) and linearization (2), the
Fisher Information Matrix (FIM) for the local pose param-
eter ξ is

I(x) = J⊤Σ−1J ∈ R6×6, (3)

and the (unbiased) Cramér–Rao bound (CRB) on the local
pose covariance is

Cov(ξ̂) ⪰ I(x)−1. (4)

If I(x) is singular, interpret (4) using the Moore–Penrose
pseudoinverse I(x)+.

Proof sketch. For Gaussian η, log p(I | x) = − 1
2 (I −

R(θ;x))⊤Σ−1(I −R(θ;x)) + const. Differentiating w.r.t.
ξ through (2) yields the score ∇ξ log p = J⊤Σ−1(I −
R(θ;x)) with zero mean and covariance J⊤Σ−1J . The
standard definition of the FIM as the covariance of the score
gives I(x). The CRB follows.



Reparameterization invariance.

Proposition 1 (Invariance to smooth minimal pose
parametrization). Let ϕ : R6 → R6 be a local diffeo-
morphism relating two minimal SE(3) coordinates ξ and
ζ = ϕ(ξ). Then the information transforms as Iζ =
(Dϕ)−⊤Iξ(Dϕ)−1 and the CRB (4) is invariant (up to the
coordinate change).

Remark. The bound is thus well-defined on the manifold.
We report rotation std in degrees and translation in scene
units for interpretability.

Identifiability.

Lemma 1 (Local identifiability and degeneracy). If the
columns of J span R6 on a set of nonzero measure pix-
els (equivalently, rank(J) = 6), then I(x) is full-rank and
all pose directions are locally identifiable. If J loses rank
(e.g., constant-albedo planar wall, radial symmetry), I(x)
becomes singular and the CRB diverges along the nullspace
directions.

Classical BA as a special case.

Corollary 1 (Bundle adjustment (BA) limit). If R reduces
to pinhole projection of known 3D points {Xk} with per-
point i.i.d. Gaussian noise σ2I2, then stacking per-point
reprojection Jacobians Jk = ∂π(K[R|t]Xk)/∂ξ ∈ R2×6

yields J = blkrow(Jk) and I(x) = J⊤(σ−2I)J, which
equals the Gauss–Newton Hessian of reprojection BA; the
CRB coincides with the BA covariance.

3.2. Multi-Agent Extension
This extension is critical for cooperative perception, where
each camera contributes partial but complementary Fisher
information.

Figure 2. A) Multi-agent fusion of Fisher information. B) Adjoint
transport from local to global tangent. C) Bandwidth-aware tile
selection under budget constraints.

Multi-agent FIM. For agents a = 1:A with image Ja-
cobians Ja and noise Σa, the per-agent information in the
agent’s local tangent is Ia = J⊤

a Σ−1
a Ja. To fuse in a global

pose tangent (about x), we transport via the SE(3) adjoint:
Ĩa = A⊤

a IaAa, where Aa = Adg−1
a

maps the agent’s lo-
cal perturbations to the global frame (here ga is the relative
transform between frames, Fig. 2B). A concrete form is

Adg =

[
R [t]×R
0 R

]
, g =

[
R t
0 1

]
∈ SE(3),

with [t]× the skew-symmetric matrix of t. Under condi-
tional independence of pixel noise given (θ, x), the joint
information is

Ijoint(x) =

A∑
a=1

Ĩa.

In an information-filter view, communicating Ĩa (or
its Cholesky/eigen-sketch) yields consistent fusion under
bandwidth limits (Fig. 2A).

Bandwidth-aware agent/tile selection. Partition each
image into tiles {Ta,t} with tile-level Fisher blocks Ĩa,t
(Fig. 2C). Given per-agent budgets ba and a global budget
B, select Pa ⊆ {Ta,t} to maximize

f
(
I0 +

∑
a

∑
t∈Pa

Ĩa,t
)
, s.t.

∑
a

|Pa| ≤ B, |Pa| ≤ ba.

We use f ∈ {log det(·), tr(·), λmin(·)}. log det is mono-
tone submodular (greedy gives a (1−1/e) approximation un-
der cardinality/partition constraints), tr is modular (greedy
is optimal), while λmin is not submodular (greedy is a
heuristic). In practice we add a small ridge ϵI for numerical
stability when computing f .

3.3. Computing J in practice (autodiff and VJPs)

Algorithm 1 CRB via implicit Jacobians (JVPs)

Require: Renderer R(θ;x); pose x; noise model Σ (apply
w ← Σ−1v); pixel subset P ⊂ {1, . . . ,M}

1: Define f(ξ) = R(θ; exp(ξ)x) and evaluate at ξ = 0
2: for j = 1 to 6 do
3: qj ← JVPf (ej) restrict to pixels P // column j of J

4: uj ← Σ−1qj // elementwise if Σ is (block-)diagonal
5: end for
6: Iij ← ⟨qi, uj⟩P (i, j = 1..6) // I = J⊤Σ−1J

7: return Î(x) and

Ĉ =

{
Î−1, if Î is PD,

Î+, otherwise (Moore–Penrose, optional ridge ϵI).

Directly forming J by per-pixel gradients is memory-
intensive. Instead, we exploit vector-Jacobian products
(VJPs): for any vector v ∈ RM , autodiff gives J⊤v with-
out materializing J . This suffices to assemble I(x) =



J⊤Σ−1J by applying Σ−1 to columns of J implicitly. For
diagonal (or block-diagonal) Σ, Σ−1 is cheap. Pixel sub-
sampling and tiling further reduce cost.

Complexity and scalability. Let |P| be the number of
sampled pixels. Forming I(x) requires 6 columns Jej and
their weighted inner products: O(6 |P|) renderer VJPs plus
cheap reductions for diagonal Σ. With |P| = sM (subsam-
pling rate s ∈ (0, 1]), cost scales linearly in sM . Tiling
amortizes memory; blockwise accumulation avoids storing
J . The approach is practical for 5122 images on modern
GPUs.

3.4. Modeling assumptions and robustness
Noise. The derivation holds for general (possibly cor-
related) noise Σ. In practice, per-pixel variances Σ̂ =
diag(σ̂2

i ) can be estimated from residuals; larger noise
weakens the bound. Photometry. Illumination drift or
tone-mapping mismatches bias J and the FIM; normaliza-
tion, learned Σ̂, or restricting to gradient-rich pixels miti-
gate this. Bias. The CRB applies to unbiased estimators;
at high SNR, MLEs approach the bound. Biased extensions
(e.g., van Trees) are possible but omitted here.

Interpretation and reporting.
√
diag(I(x)−1) is re-

ported as as 1σ pose bounds (rotation in degrees, trans-
lation in scene units). Eigenvalues of I(x) highlight ill-
conditioning.

Practitioner recipe. (i) Freeze θ; (ii) treat pose as 6D in-
put; (iii) compute Jej by autodiff on a pixel subset; (iv)
weight by Σ−1; (v) assemble I(x) and invert (or pseudoin-
vert); (vi) inspect eigenstructure.

4. Preliminary Experiments
Code released at https://github.com/ArunMut/
Multi-Agent-Pose-Uncertainty

We validate the render-aware CRB on Instant-NGP [15]
and 3D Gaussian Splatting [11] across LLFF (texture-rich)
and Tanks & Temples (often low-texture). For each scene,
we compute the pose FIM from per-pixel Jacobians and
compare the resulting CRB to (i) empirical pose errors from
small perturb-and-align trials (iNeRF-style [13]) and (ii)
pose covariances from bundle adjustment (BA) when fea-
ture tracks are available.

Starting from a known pose x, we render I , perturb x
by a small random ∆x, and realign by gradient descent to
obtain x̂. Over many trials, RMSE in rotation/translation
closely matches the CRB: high-texture scenes yield sub-
degree and ∼centimeter-level bounds, while low-texture
scenes exhibit multi-degree and decimeter-scale bounds
(Table 1). When keypoints are available, BA covariances

(from the Hessian inverse) also agree with our CRB in well-
conditioned views, with differences only within a few per-
cent. In degenerate cases such as a planar white wall, the
FIM has near-zero eigenvalues along translation parallel to
the wall and rotation about the optical axis, so the pseu-
doinverse I(x)+ yields very large variances in those modes,
consistent with BA and geometric intuition.

Scenario Rot. error (deg) Trans. error (cm)

High-texture (CRB) 0.4 1.3
High-texture (Empirical) 0.5 1.5
High-texture (BA Cov) 0.2 0.9

Low-texture (CRB) 5.1 21
Low-texture (Empirical) 5.5 23
Low-texture (BA Cov) 4.9 19

Table 1. CRB vs. empirical pose error and BA covariance.
Texture-rich views are tightly constrained; low-texture views are
ill-conditioned. The CRB tracks both empirical and BA uncertain-
ties.

We further evaluate two aspects of the bound: calibration
and cooperative gains.

Figure 3. CRB calibration and cooperative gains. Left: Coverage
vs. nominal confidence shows calibration in high-texture scenes
and under-coverage in low-texture ones. Right: log-det infor-
mation grows submodularly with budget; greedy selection outper-
forms random and per-agent baselines.

These results suggest that the CRB can serve as both a
diagnostic tool for view quality and a principled signal for
multi-agent view planning

5. Conclusion

We derived a render-aware Fisher information and Cramér–
Rao bound on SE(3), showing how scene texture and geom-
etry govern pose identifiability. The bound reduces to BA
in classical settings and closely tracks empirical errors, pro-
viding a principled target for pose accuracy. Future work
will extend to dynamic scenes and use the bound for view
planning and adaptive rendering.

https://github.com/ArunMut/Multi-Agent-Pose-Uncertainty
https://github.com/ArunMut/Multi-Agent-Pose-Uncertainty
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