
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VALM: VARIATIONAL AUTOENCODER LANGUAGE
MODELS FOR HIGHLY PARALLEL TEXT GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive language models have shown impressive abilities across domains.
However, their token-by-token decoding limits inference speed. We introduce
Variational Autoencoder Language Models (VALM), a non-autoregressive archi-
tecture that predicts entire sequences in parallel from a single global latent, with
no denoising or diffusion losses. VALM uses a bidirectional transformer encoder
and decoder with an ELBO objective, reducing sequential depth from O(LT) to
O(L) for an L-layer network generating T tokens. We train VALM-1, which
generates 32 tokens in a single forward pass, demonstrating the applicability of
pure VAEs to discrete text and presenting a novel approach to high-throughput
language modeling on standard GPUs.

1 INTRODUCTION

Autoregressive language models (ARLMs) deliver strong results across NLP, math, and code, but
inference is sequential: tokens are decoded one at a time. Latency scales with output length, and the
sequential depth of an L-layer network is O(LT) for T tokens.

Inspired by the success of diffusion in images, diffusion LMs have shown that ARLMs are not the
only viable architecture for language modelling. They perform iterative denoising over K steps in
discrete token space or continuous embeddings (then discretize); quality improves with larger K,
but latency scales with the number of iterations and hand-tuned schedules.

Before diffusion dominated vision, Variational AutoEncoders VAEs mapped a single latent to a full-
resolution image in one shot: global structure is planned in the latent and rendered in parallel, so
sequential depth depends on network depth, not output length. We port this idea to text: a single
global latent z conditions a bidirectional decoder that predicts all positions in parallel, collapsing
sequential depth from O(LT) to O(L).
We propose VALM, a non-autoregressive variational language model that generates full sequences
in a single forward pass. As shown in Figure 1, a bidirectional encoder compresses a target sequence
into a global latent z during training; a bidirectional decoder predicts all positions in parallel given
z. Both components are standard Transformers with no causal masks. Training uses an evidence
lower bound ELBO objective with a Gaussian prior p(z) = N (0, I); there is no denoising loss, no
score matching, and no teacher distillation. At inference we sample z ∼ N (0, I) once and decode
all token logits at once.

Contributions

1. Method. VALM: a non-autoregressive VAE for text with bidirectional encoder and decoder
that decodes all positions from a single global latent z in one pass.

2. Prototype. VALM-1, a reference implementation that generates simple but coherent 32-
token spans in one pass.

3. Scaling signals. Preliminary scaling on TinyStories and WikiText-103: loss improves pre-
dictably with parameters and data, without any collapse, suggesting room for further scal-
ing.

Taken together, these results show that (i) single-pass language modeling is viable - AR or multi-step
refinement is not the only option, (ii) a plain VAE without auxiliary AR or diffusion components

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The cat sat on the mat

Bidirectional Encoder

Pool embeddings

µ logσ2

sample z ∼ N (µ,diag(σ2))

Bidirectional Decoder

The cat sat on the mat

Training

Loss

sample z ∼ N (0, I)

Bidirectional Decoder

Per-position argmax

The cat sat on the mat

Inference

Figure 1: VAE model architecture. Left: Training. A bidirectional encoder pools and projects to-
ken embeddings to produce µ and log σ2; we sample z via reparameterization and minimize masked
token cross-entropy plus βKL

(
qϕ(z | x) ∥ p(z)

)
(where KL denotes the Kullback-Leibler diver-

gence). Right: Inference. Sample z ∼ N (0, I); a bidirectional decoder predicts all positions in one
forward pass given z and absolute positions, then take per-position argmax. No autoregressive path
or iterative refinement.

can model discrete text, and (iii) removing the AR path addresses the usual posterior-collapse issue
in text VAEs because the decoder must use z.

2 METHOD

2.1 LANGUAGE MODELS

The goal of generative language modeling is to estimate a distribution over token sequences x1:T =
(x1, . . . , xT) drawn from a vocabulary V , i.e., pθ(x1:T) ∈ ∆(V T).

A standard approach is autoregressive (AR) modeling via the chain rule:

pθ(x1:T) =

T∏
t=1

pθ
(
xt | x<t

)
, (1)

where each factor pθ(· | x<t) is a categorical distribution over V with
∑

v∈V pθ(xt=v | x<t) = 1.

Training. Autoregressive LMs (ARLMs) are typically trained to minimize token-level cross-
entropy:

LAR(x) = −
T∑

t=1

log pθ(xt | x<t). (2)

Inference cost. Generation proceeds sequentially: xt ∼ pθ(· | x<t) (or argmax) for t =
1, . . . , T . This imposes a token-by-token dependency: wall-clock latency scales as O(T), and the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

sequential depth of an L-layer network scales as O(LT). Even with batched matrix multiplies,
bandwidth and activation memory grow with sequence length T , limiting parallel speedups.1

2.2 WHY NAIVE PARALLEL DECODING FAILS

A naive way to remove the sequential bottleneck is to drop the conditionals from the AR factorization
and assume tokenwise independence, predicting all positions in parallel,

p̃θ(x1:T) =

T∏
t=1

p̃θ(xt), (3)

i.e., train a network that maps a constant or random input to per-position logits and minimizes cross-
entropy.

This independence assumption is false for natural language: token choices depend on surrounding
context, and the correct joint distribution cannot be reconstructed from per-token marginals. For
example:

• Collocations and names. Independence makes New Angeles/Los York as likely as New
York/Los Angeles.

• Language consistency. Trained on English and Chinese, an independent decoder freely
mixes scripts within a sentence.

• Sequence-level exclusivity. On a toy corpus with only AAAA or BBBB (each w.p. 1/2), the
marginal optimum sets P (xt=A)=1/2 for all t, so the independent model generates mixes
like ABAB, BBAB, etc., which have zero probability under the true data.

• Word order and basic syntax. Factorized models cannot enforce number agreement or
canonical order (e.g., the cat chased the mouse vs. the ungrammatical cat the mouse the
chased).

One might try to manually fix this by adding a small conditioning latent z per sequence (e.g., a bit
or scalar) encoding factors such as:

• collocation pattern (e.g., west or east coast city),
• language/script (e.g., English vs. Chinese),
• more vowels vs. more consonants, or sequence identity in a bimodal corpus (e.g., choose
AAAA vs. BBBB),

• syntactic pattern (e.g., subject-verb-object (SVO) vs. subject-object-verb (SOV); singular
vs. plural agreement).

This breaks for two reasons: (1) We cannot hand-enumerate all relevant linguistic factors; it is
expensive, incomplete and defeats the purpose of learning structure from data. (2) At inference
the latents are unknown; naive independent sampling of z ignores multi-modality and correlations
between factors, producing inconsistent outputs.

These issues motivate learning both the sequence-level latent(s) and their distribution end-to-end,
which we address with autoencoders (AEs), specifically variational autoencoders (VAEs).

2.3 AUTOENCODERS

A deterministic autoencoder introduces a learned encoder fϕ and decoder gθ:

x1:T
fϕ−−→ z

gθ−−→ x̂1:T ,

and minimizes reconstruction loss (token-level cross-entropy for text):

LAE(x) = −
T∑

t=1

log pθ(xt | fϕ(x), t). (4)

1The attention KV cache typically scales as O(LT d) per sequence (model width d); large T or large
batches trade memory for throughput.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

This addresses the first issue, we learn the required features (language, topic, style, word order..) to
help the decoder reconstruct, without hand-specifying factors.

However, two problems remain:

(i) No calibrated prior. At inference we need a rule to sample z, but plain AEs learn latents with an
unknown, highly non-Gaussian data distribution; naive sampling from an ad-hoc prior can produce
off-manifold latents and incoherent outputs.

(ii) Uncontrolled capacity. If z is too small, reconstruction fails. If z is high-dimensional, the
encoder can pass through the entire sequence unchanged, and both encoder and decoder collapse to
identity functions. Generic regularizers (dropout/weight decay) do not provide an explicit informa-
tion budget.

These motivate a probabilistic latent model with (a) a learnable posterior for z and (b) an explicit
prior that enables sampling and controls capacity.

2.4 VARIATIONAL AUTOENCODERS

A VAE introduces a distribution over latent variables z to model a sequence x1:T and maximizes the
evidence lower bound (ELBO):

ELBO(x) = Eqϕ(z|x)[log pθ(x | z)]−DKL

(
qϕ(z | x) ∥ p(z)

)
, (5)

with prior p(z) = N (0, I). The encoder defines a Gaussian posterior

qϕ(z | x) = N
(
µϕ(x), diag(σ

2
ϕ(x))

)
, z = µϕ(x) + σϕ(x)⊙ ϵ, ϵ ∼ N (0, I), (6)

and the decoder pθ(x | z) scores x conditioned on z (autoregressively in classic text VAEs; non-
autoregressively in VALM). Training minimizes the negative ELBO, i.e., token-level reconstruction
(cross-entropy in practice) plus a KL regularizer.

Inference. Unconditional generation samples z ∼ p(z) and decodes once from pθ(x | z). Condi-
tional variants use z ∼ qϕ(z | xobs).

Intuition. The KL term controls the information capacity of the latent bottleneck: it discourages
qϕ(z | x) from carrying a code that directly passes through the uncompressed x, and the reparam-
eterization z = µ + σ ⊙ ϵ injects noise that encourages smooth, generative latents. In classic text
VAEs with strong AR decoders this can lead to posterior collapse (the decoder ignores z); VALM
removes the AR path so the decoder must use z to model sequence-level dependencies.

2.5 APPLICATION TO TEXT: VALM

VAEs are most common in continuous domains such as images and audio; here we apply the same
probabilistic latent approach to discrete text and decode in a single pass 2. We train with Alg. 1 and
generate with Alg. 2.

Architectural choice. In all experiments the encoder and decoder are bidirectional Transformers,
with no causal masking and no autoregressive components. This contrasts with prior text-VAEs
that keep an AR decoder and use z only as a global control signal, retaining sequential inference
and enabling the decoder to ignore z (posterior collapse). VALM removes the causal path entirely:
decoding depends on z only, so the latent must carry sequence-level information and inference is
fully parallel.

Decoder and z injection. The decoder is a bidirectional Transformer that conditions on z and
absolute positions to model

pθ(x | z) =

T∏
t=1

pθ
(
xt | z, t

)
, (7)

emitting per-position logits in a single forward pass.
2We maintain continuous latents; inputs and outputs are discrete tokens.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To condition on z, we project it to the model width and broadcast to all positions:

e
(0)
t = E[xt]︸ ︷︷ ︸

token embed

+ P [t]︸︷︷︸
positional

+ Wzz + bz︸ ︷︷ ︸
global latent bias

, Wzz + bz ∈ Rdmodel . (8)

Complexity and sequential cost Let T be sequence length and L the number of Transformer
layers. AR decoding performs T dependent steps: O(LT). VALM computes all logits in one
pass: O(L). This comparison concerns sequential depth (latency), not total arithmetic: for a fixed
architecture and sequence length, per-sample FLOPs per pass are on the same order; VALM reduces
the number of dependent steps, not the overall amount of compute. These depth statements hold
for a fixed architecture; matching a target quality may require different L or width across AR and
VALM.

2.6 β-ADJUSTED VAES

We optionally weight the KL term:

L(x) = −Eqϕ(z|x)[log pθ(x | z)] + β ·DKL

(
qϕ(z | x) ∥ p(z)

)
, (9)

but keep to β = 1 by default.

We anneal β linearly from 0 to 1 over the first 15% of steps:

βt = min

(
1,

t

0.15T

)
. (10)

2.7 PADDING AND VARIABLE LENGTH

We train on fixed-length blocks of Tmax tokens. Each sequence x is truncated or right-padded with
<pad> to length Tmax. The decoder always outputs Tmax logits; at inference we detokenize and
drop <pad> tokens.

Loss masking.

Lrec(x, z) = −
1∑
t mt

Tmax∑
t=1

mt log pθ(xt | z, t), mt = 1[xt ̸= <pad>]. (11)

2.8 TEMPERATURE

AR LMs typically control diversity with logit temperature (token-level softmax scaling). In VALM,
per-token sampling breaks global consistency because all positions are decoded independently given
a single z. We therefore control diversity by scaling the latent instead.

Definition. With prior p(z) = N (0, I), introduce a latent temperature τ > 0 at inference and
sample

z ∼ N (0, τ2I) ⇐⇒ z = τ ϵ, ϵ ∼ N (0, I). (12)

This preserves global coupling: one z drives all positions in a single pass. τ = 0 yields a determin-
istic output (fixed z); increasing τ increases diversity at the cost of inference coherence.

2.9 SUMMARY

VALM replaces the autoregressive path with a single global latent z and a bidirectional decoder
that emits all token logits in one pass. Training maximizes the ELBO with masked reconstruction
(pads ignored) and a KL regularizer; inference samples z from the prior and decodes once. Or-
der is preserved by absolute positional conditioning, and sampling uses a standard Gaussian prior
p(z) = N (0, I). Latent temperature (Sec. 2.8) modulates global diversity at inference. Unless stated
otherwise, VALM is unconditional.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 VALM training (single pass)

1: Input: batch x (padded/truncated to Tmax), positions t=1:Tmax, mask mt=1[xt ̸= <pad>]
2: (µ, σ)← Encϕ(x)
3: Sample ϵ∼N (0, I); z ← µ+ σ ⊙ ϵ
4: logits← Decθ(z, positions) ▷ parallel per-token logits

5: Reconstruction: Lrec = −
1∑
t mt

Tmax∑
t=1

mt log pθ(xt | z, t)

6: KL: LKL = DKL

(
qϕ(z | x) ∥ p(z)

)
7: Total loss: L ← Lrec + β LKL
8: Update ϕ, θ with AdamW

Algorithm 2 VALM inference (single pass)

1: Unconditional: sample z ∼ N (0, τ2I) with latent temperature τ (see Sec. 2.8; default τ = 1)
2: logits← Decθ(z, positions)
3: x̂t ← argmax logitst
4: Detokenize; drop <pad> tokens

3 EXPERIMENTS

3.1 VALM-1 MODEL

To test if VALM can produce coherent text in one pass, we train VALM-1.

Hyperparameters VALM-1 has d model=1024, n layers=16 and 420M overall parameters
divided between 201M encoder, 201M decoder, 16.8M embedding and 0.1M latent-projection
parameters. We train with β = 2.0 for 1500 epochs. Where not stated otherwise, we use the
hyperparameters listed in Appendix B.

Dataset We use only the passage field of the bAbI dataset for unconditional modeling; the question
and answer fields are discarded. VALM-1 is trained purely for unconditional generation; no QA
tasks are used.

id bAbI passage excerpts

A Mary went back to the bedroom.
Daniel travelled to the office.
Daniel went back to the garden.
John journeyed to the office.

B Daniel is in the office.
Daniel journeyed to the garden.
John is in the office.
Daniel went back to the bedroom.

Table 1: Manually selected bAbI ”passage” lines used for qualitative style reference. Truncated to
32 tokens to match the model’s tokenizer.

Single-pass coherence. At τ = 0.5, the random samples in Table 2 read as coherent bAbI-style
passages despite being produced in one forward pass that emits all 32 tokens in parallel. The model
follows the dataset’s line-by-line event template (short SVO or copular sentences) in e.g. Table 2.
It keeps short-horizon entity and object links: id=1 threads ”Antoine is tired” → ”Antoine moved
to the bedroom” → ”Antoine took the pajamas there”; id=4 keeps the thirst-milk link (”Sumit is
thirsty” → ”Sumit took the milk there”); id=5 maintains the apple across transfers (”Mary took
the apple there” → ”Mary passed the apple to John” → ”John handed the apple to Mary”). These
patterns indicate local role consistency and event chaining from a single global latent, not from
autoregressive conditioning.

3No manual selection or sorting; same decoding parameters across rows.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

id text id text

1 Antoine is tired.
Antoine moved to the bedroom.
Antoine took the pajamas there.
Jason is bored ...

2 Sandra journeyed to bedroom.
Mary journeyed to the bedroom.
Sandra got the football there.
Sandra put down ...

3 Sandra journeyed to the office.
Mary journeyed to the bathroom.
Sandra got the football.
John moved to the garden. ...

4 Sumit is thirsty.
Sumit took the milk there.
Antoine is tired.
Sff journeyed to the office. ...

5 Daniel travelled to the office.
Mary took the apple there.
Mary passed the apple to John.
John handed the apple to Mary.
John ...

6 Mary and Sandra moved to the kitchen.
Sandra and Mary journeyed to the hallway.
Daniel and Sandra went back to ...

7 Sumit is thirsty.
Antoine is thirsty.
Jason is thirsty.
Yann is tired.
Yann journey ...

8 Sandra journeyed to the bathroom.
John journeyed to the kitchen.
Sandra journeyed to the hallway.
Daniel journeyed ...

9 Bill moved to the bedroom.
Jeff went to the hallway.
Jeff travelled to the bedroom.
Bill went to the office. ...

10 Mary travelled to the bedroom.
Mary is in the garden.
John is in the bathroom.
Daniel is in the bedroom.
Mary moved to ...

Table 2: Random VALM-1 single-pass generations (τ = 0.5).3

Limits and errors. Yet the model sometimes generates the wrong token at a single position (e.g.,
”Sandra journeyed to bedroom” instead of ”Sandra journeyed to the bedroom”) or a corrupted name
(”Sff” instead of ”Jeff”). It also has verb-form errors (”Yann journey”), and occasional state mis-
matches within a sample (id=10: ”Mary travelled to the bedroom” followed by ”Mary is in the
garden”). Several endings are truncated mid-event, which is due to the fixed 32-token output limit
rather than a loss of coherence.

The per-token KL divergence reached 0.4 at the end of training, which corresponds to approxi-
mately 0.58 bits per token. This indicates the model uses the latent to pass information while still
compressing it; under KL collapse it would be near zero. Training curves are shown in Appendix D.

3.2 SCALING LAWS

To study the performance of VALM, we trained 124 VALM variants on TinyStories (Eldan & Li,
2023) and 45 VALM runs on WikiText-103 (Merity et al., 2016). We fit a two-factor power law

L(N,P) ≈ c + at N
−αt + ap P

−αp , (13)

to the validation (TinyStories) and train (WikiText-103)4 losses, respectively.

Dataset runs αt αp c at ap R2

TinyStories (VALM) 124 0.27 0.32 2.11 68.31 83.37 0.83
WikiText-103 (VALM) 45 0.09 0.32 0.88 13.78 49.93 0.95
Chinchilla AR (ref.) 400 0.34 0.28 1.69 406.40 410.70 -

Table 3: Combined scaling fits: VALM on TinyStories and WikiText-103 (Merity et al., 2016), and
AR reference exponents from Chinchilla (Hoffmann et al., 2022).

These results are for VALM’s ELBO objective; absolute constants are not directly comparable to AR
cross-entropy fits, but the exponents are informative, showing that token and parameter sensitivity

4Unfortunately, due to a software bug the validation losses weren’t recorded for these runs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

follow similar orders to strong AR baselines and support near-balanced compute splits, albeit with
a weaker scaling result on tokens for WikiText-103 VALM. We generally observed no KL collapse;
issues appeared only under extreme hyperparameters (see Appendix E.2).

3.3 ABLATION WITH NAIVE NO-ENCODER MODEL

We run an ablation with no encoder and a fixed, learnable latent. Loss is much higher (train 0.66→
3.55, +2.90; val 1.62→ 3.43, +1.81) and samples degrade to frequent tokens and punctuation. See
Appendix E.3 for details and examples.

4 RELATED WORK

4.1 AUTOENCODER WITH AUTOREGRESSIVE COMPONENTS

AR decoders conditioned on a latent (posterior collapse) Most text VAEs keep an autoregres-
sive decoder and use z as a weak control signal (Bowman et al., 2016; Zhao et al., 2017; Wen et al.,
2017; Li et al., 2020; Kaiser et al., 2018a). This often collapses the posterior under teacher forcing
because the AR path explains the data without using z (He et al., 2019; Fu et al., 2019). Variants
with RNN/CNN decoders or auxiliary/local AR losses retain the same failure mode (Yang et al.,
2017; Zhang et al., 2017). VALM: removes the AR path and decodes all positions in one pass from
a single global z.

Human-readable latent texts / discrete bottlenecks Compressing to discrete or human-readable
latents adds discrete training (REINFORCE, Gumbel, codebooks) and usually decodes autoregres-
sively from the latent text (Kaiser et al., 2018a; Li et al., 2020). VALM: continuous Gaussian latent,
no AR component.

Discrete latents and vector quantization VQ models compress to short code sequences and often
train a separate AR prior over codes (Kaiser et al., 2018b; Razavi et al., 2019). VALM: no AR prior
at any level.

4.2 OTHER

Diffusion / masked language model (MLM) / iterative refinement Masked-LM and refinement
models generate by repeatedly masking and filling or by denoising over multiple steps (Lee et al.,
2018; Ghazvininejad et al., 2019; Wang et al., 2021). They require a schedule (mask ratio or noise
level) and K > 1 passes at inference; even ”constant time” CMLM uses a fixed small number
of refinement steps rather than a single pass (Ghazvininejad et al., 2019). Commercial diffusion
systems report high throughput but still use step-by-step refinement and do not release weights
(Labs et al., 2025; DeepMind, 2024) VALM does not iterate and we publish architectural details.

One-step decoders vs. VALM The inference-time decoder of a one-step distilled diffusion model,
a GAN, or Parallel WaveNet looks like VALM (single latent→ per-position logits in one pass). How-
ever, training them requires: (1) a teacher and denoising/score-matching objective with noise sched-
ules and often guidance (distilled diffusion) (Lee et al., 2018; Ghazvininejad et al., 2019; Yin et al.,
2024; Xie et al., 2024; Song et al., 2023; Chen et al., 2025); (2) an adversarial discriminator with
RL/continuous relaxations for discrete tokens, yielding unstable dynamics that trail MLE baselines
(GANs) (Yu et al., 2017; Caccia et al., 2020; Ren et al., 2023); (3) an autoregressive teacher and in-
vertible flow constraints with probability density distillation (Parallel WaveNet) (van den Oord et al.,
2017). VALM instead uses plain likelihood (ELBO) with a calibrated Gaussian prior: no teacher, no
guidance, no discriminator, no invertibility/flow constraints, and no AR path.

Non-autoregressive translation (NAT/NAR) Similar to a naive parallel approach, but translation
restricts outputs to a target language. There are still many valid translations for a single source
sentence, hence the ”multimodality problem”5. NAT systems add extra signals or procedures-word

5Here ”multimodality” means one-to-many target ambiguity in translation: multiple valid target sequences
for the same source. It does not refer to multimodal inputs like text+image.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

fertilities, CTC, auxiliary regularizers, or iterative refinement-and often predict length explicitly (Gu
et al., 2018; Libovický & Helcl, 2018; Shu & Nakayama, 2019; Saharia et al., 2020; Gu & Kong,
2021; Li et al., 2022; Zhou et al., 2022). In contrast, VALM is unconditional with (i) no iterative
refinement, (ii) no separate length module - padding handles variable length, and (iii) a single global
latent that binds sequence-level choices.

Specialized hardware Accelerators such as Cerebras and Groq reduce AR latency by hardware
speedups but keep the O(TL) sequential dependency (Cerebras Systems, 2021; Groq, Inc., 2024).
VALM: removes the token-by-token dependency algorithmically.

4.3 AUTOENCODERS AND FLOWS

Bag-of-Words (BoW) decoders and plain autoencoders BoW decoders drop order and are not
viable sequence generators (Miao et al., 2016; Srivastava & Sutton, 2017). Deterministic autoen-
coders reconstruct but lack a calibrated prior, so sampling is off-manifold (Zhang et al., 2017; 2018;
Montero et al., 2021). VALM: preserves order via positional conditioning and samples from a simple
Gaussian prior.

Plain (non-variational) convolutional autoencoders Deterministic CNN autoencoders decode
non-autoregressively for reconstruction; related set-prediction decoders target selection rather than
unconditional generation (Zhang et al., 2017; 2018; UCSD NLP Group, 2017; Cheng et al., 2023).
VALM: probabilistic latent with an ELBO objective and single-pass generation.

Normalizing flows FlowSeq and IAF-style models can generate in one shot but require invert-
ibility, Jacobian terms, or categorical/argmax relaxations, adding architectural and training cost
(Kingma et al., 2016; Ziegler & Rush, 2019; Ma et al., 2019; Su et al., 2020; Hoogeboom et al.,
2021). VALM: standard non-invertible transformers with no log-det terms.

5 LIMITATIONS AND FUTURE WORK

Scope and scale. Our experiments are small and on modest corpora; results may not transfer to
larger vocabularies, longer contexts, or diverse domains. Future work can evaluate larger models on
larger datasets and longer sequences.

Unconditional decoding and limited control. VALM-1 decodes from a single global latent z
without conditioning on a prompt, so it cannot continue a prefix, answer questions, or enforce con-
straints. There is no mechanism for length, topic, or style control, and no safety filtering during
decoding. Token-level temperature is ineffective under our factorization; only latent temperature
controls diversity, and only coarsely. Future work can introduce conditioning for more practical use
cases.

6 CONCLUSION

We introduced VALM, a non-autoregressive variational language model that emits all token logits
in a single pass from a global latent. In small-scale experiments, VALM-1 produces coherent 32-
token spans and shows predictable improvements with model/data scale under an ELBO objective.
Removing the autoregressive path forces the decoder to use the latent, which mitigated posterior-
collapse issues we observed only under extreme hyperparameters, and showing the applicability
of pure VAEs to text. While current results are unconditional and short-context, they indicate that
single-pass generation is viable; future work will add conditioning, extend context, and evaluate
larger models on broader corpora.

Ethics Statement Data provenance and licensing. We train exclusively on public datasets (bAbI
passages only, TinyStories, WikiText-103). We did not scrape private sources or collect new data.

Dual-use and misuse. Standard risks of spam, bias, and toxicity persist. Faster, high-throughput
generation can also make it harder for users to verify outputs in real time, increasing the chance of
unvetted content spreading. VALM-1 is a small, unconditional research model and is not intended

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

for production use. For any future, larger or fine-tuned variants, we recommend rate limiting, content
filtering, abuse reporting channels, and provenance measures (e.g., optional watermarking) to reduce
misuse.

Reproducibility Statement We release code, configuration files, and experimental scripts to re-
produce training and evaluation as an anonymous repository. The configuration files contain all
hyperparameters and random seeds.

Acknowledgments Left empty during peer review.

REFERENCES

Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, Andrew M. Dai, Rafal Józefowicz, and Samy
Bengio. Generating sentences from a continuous space. In Proceedings of CoNLL, 2016.

Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent Char-
lin. Language gans falling short. In ICLR, 2020.

Cerebras Systems. Wafer-scale engine 2 (wse-2). https://www.cerebras.net/
wafer-scale-engine-2/, 2021. Accessed 2025-09-24.

Tianqi Chen, Shujian Zhang, and Mingyuan Zhou. Dlm-one: Diffusion language models for one-
step sequence generation. arXiv:2506.00290, 2025.

Xiaoxia Cheng, Yongliang Shen, and Weiming Lu. A set prediction network for extractive sum-
marization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the
Association for Computational Linguistics: ACL 2023, pp. 4766–4777, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.293. URL
https://aclanthology.org/2023.findings-acl.293/.

DeepMind. Gemini diffusion. https://deepmind.google/models/
gemini-diffusion/, 2024. Accessed 2025-09-23.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023. URL https://arxiv.org/
abs/2305.07759. TinyStories dataset.

Hao Fu et al. Cyclical annealing schedule: A simple approach to mitigating kl vanishing.
arXiv:1903.10145, 2019.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv:1904.09324, 2019. EMNLP-IJCNLP
2019 version available.

Groq, Inc. Groq lpu inference engine. https://groq.com/, 2024. Accessed 2025-09-24.

Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade.
In Findings of ACL-IJCNLP, 2021.

Jiatao Gu, James Bradbury, Caiming Xiong, and Richard Socher. Non-autoregressive neural ma-
chine translation. arXiv:1711.02281, 2018.

Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging inference
networks and variational posterior collapse. arXiv:1901.05534, 2019.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Thomas
Rutherford, Kathryn Millican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc,
Aidan Clark, Diego de Las Casas, Amr Guy, Jacob Menick, Benjamin Cottier, Luke Martens,
Alex Book, Simon Osindero, Jack Rae, Amelia Glaese, Laurent Sifre, David Silver, Karen Si-
monyan, Koray Kavukcuoglu, and Erich Elsen. Training compute-optimal large language models.
arXiv:2203.15556, 2022. URL https://arxiv.org/abs/2203.15556.

10

https://www.cerebras.net/wafer-scale-engine-2/
https://www.cerebras.net/wafer-scale-engine-2/
https://aclanthology.org/2023.findings-acl.293/
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://groq.com/
https://arxiv.org/abs/2203.15556

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Emiel Hoogeboom et al. Argmax flows and multinomial diffusion: Learning categorical distribu-
tions. In NeurIPS, 2021.

Łukasz Kaiser, Samy Bengio, Aidan Roy, et al. Discrete autoencoders for sequence models.
arXiv:1801.09797, 2018a.

Łukasz Kaiser, Aidan N. Roy, Ashish Vaswani, et al. Fast decoding in sequence models using
discrete latent variables. arXiv:1803.03382, 2018b.

Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, et al. Improving variational inference with
inverse autoregressive flow. arXiv:1606.04934, 2016.

Inception Labs, Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer
Birnbaum, Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, Aditya Grover, and
Volodymyr Kuleshov. Mercury: Ultra-fast language models based on diffusion. arXiv preprint
arXiv:2506.17298, 2025. doi: 10.48550/arXiv.2506.17298. URL https://arxiv.org/
abs/2506.17298.

Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. arXiv:1802.06901, 2018.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao. Op-
timus: Organizing sentences via pre-trained modeling of a latent space. In EMNLP, pp. 4678–
4699, 2020. doi: 10.18653/v1/2020.emnlp-main.378. URL https://aclanthology.org/
2020.emnlp-main.378/.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Elmer: A
non-autoregressive pre-trained language model for efficient and effective text generation.
arXiv:2210.13304, 2022. URL https://arxiv.org/abs/2210.13304.

Jindřich Libovický and Jindřich Helcl. End-to-end non-autoregressive neural machine translation
with connectionist temporal classification. In EMNLP, 2018.

Xuezhe Ma, Chunting Zhou, Xian Li, and Graham Neubig. Flowseq: Non-autoregressive condi-
tional sequence generation with generative flow. In EMNLP-IJCNLP, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016. URL https://arxiv.org/abs/1609.
07843. Introduces the WikiText-103 language modeling dataset.

Yishu Miao, Lei Yu, and Phil Blunsom. Neural variational inference for text processing. In ICML,
2016.

Iván Montero et al. Sentence bottleneck autoencoders from transformer language models.
arXiv:2109.00055, 2021.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2. arXiv:1906.00446, 2019.

Da Ren, Yi Cai, and Qing Li. Unlocking the power of gans in non-autoregressive text generation.
arXiv:2305.03977, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Mohammad Norouzi, and Anelia Angelova. Non-
autoregressive machine translation with latent alignments. In ICML (PMLR v119), 2020.

Raphael Shu and Hideki Nakayama. Latent-variable non-autoregressive neural machine translation
with deterministic inference using a delta posterior. arXiv:1908.07181, 2019.

Yang Song, Chenlin Meng, and Stefano Ermon. Consistency models. arXiv:2303.01469, 2023.

Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models. In ICLR,
2017.

Jianlin Su et al. Bert-flow: Learning better sentence representations with better structured latent
space. arXiv:2011.05864, 2020.

11

https://arxiv.org/abs/2506.17298
https://arxiv.org/abs/2506.17298
https://aclanthology.org/2020.emnlp-main.378/
https://aclanthology.org/2020.emnlp-main.378/
https://arxiv.org/abs/2210.13304
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

UCSD NLP Group. Speeding up context-based sentence representation learning with non-
autoregressive convolutional decoding. https://pages.ucsd.edu/˜desa/Speeding_
up_Context_based_Sentence_Representation_Learning___with_Non_
autoregressive_Convolutional_Decoding.pdf, 2017. Accessed 2025-09-24.

Aaron van den Oord, Yazhe Li, Igor Babuschkin, Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George Van Den Driessche, Edward Lockhart, Luis C. Cobo, Florian Stimberg,
et al. Parallel wavenet: Fast high-fidelity speech synthesis. arXiv:1711.10433, 2017.

Kexin Wang, Nils Reimers, and Iryna Gurevych. Tsdae: Using transformer-based sequential de-
noising auto-encoder for unsupervised sentence embedding learning. In Findings of ACL, 2021.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić, Milica Gasic, Lina M. Rojas-Barahona, Pei-Hao
Su, Stefan Ultes, and Steve Young. A network-based end-to-end trainable task-oriented dialogue
system. In EACL, 2017. Commonly cited as latent intention dialogue models (LIDA).

Sirui Xie, Zhisheng Xiao, Diederik P. Kingma, Tingbo Hou, Ying Nian Wu, Kevin Murphy, Tim
Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models. In Advances
in Neural Information Processing Systems, 2024.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. Improved variational
autoencoders for text modeling using dilated convolutions. arXiv:1702.08139, 2017.

T. Yin, A. Vahdat, K. Kreis, and et al. One-step diffusion with distribution matching distillation. In
CVPR, 2024.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets
with policy gradient. In AAAI, 2017.

Xiang Zhang et al. Byte-level recursive convolutional auto-encoder for text. arXiv:1802.01817,
2018.

Yishuai Zhang et al. Deconvolutional paragraph representation learning. arXiv:1708.04729, 2017.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi. Learning discourse-level diversity for neural
dialog models using conditional variational autoencoders. In ACL, 2017.

Chunting Zhou et al. A call for clarity in non-autoregressive sequence modeling. arXiv:2205.10577,
2022.

Zachary Ziegler and Alexander M. Rush. Latent normalizing flows for discrete sequences.
arXiv:1901.10548, 2019.

A APPENDIX

B HYPERPARAMETERS

We use symmetric encoder and decoder transformer stacks with the same size and hyperparameters.
We use no label smoothing.

B.1 DATASETS & PREPROCESSING

Corpora. We use bAbI (passages only), TinyStories, and WikiText-103 via Hugging Face Datasets:
Muennighoff/babi, skeskinen/TinyStories-hf, and wikitext-103-raw-v1.
For bAbI we rename passage to text and discard question/answer (unconditional mod-
eling only).

Splits. We rely on the datasets’ provided train/validation splits; we do not use a test
split. When sub-sampling is requested (HPO sweeps), we select the first train samples and
test samples examples from the respective splits after shuffling. Training batches are shuffled;
random seeds (e.g., 42) are set in configs for reproducibility.

12

https://pages.ucsd.edu/~desa/Speeding_up_Context_based_Sentence_Representation_Learning___with_Non_autoregressive_Convolutional_Decoding.pdf
https://pages.ucsd.edu/~desa/Speeding_up_Context_based_Sentence_Representation_Learning___with_Non_autoregressive_Convolutional_Decoding.pdf
https://pages.ucsd.edu/~desa/Speeding_up_Context_based_Sentence_Representation_Learning___with_Non_autoregressive_Convolutional_Decoding.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Default hyperparameters

Category Value
Data / Tokenization
Sequence length Tmax 32
Tokenizer Custom BPE tokenizer trained on TinyStories
Vocab size 8196

Model (Transformer)
dmodel 1024
Layers (Enc/Dec) 16 / 16
Heads (Enc/Dec) 8 / 8
Feedforward dff 4× dmodel = 4096
Activation (FFN) GELU
Positional encodings Absolute (learned); RoPE/ALiBi not used
Normalization Pre-norm (LayerNorm)
Dropout 0.0 (disabled)
Implementation built-in PyTorch Transformer

Latent z
Global latent dim dz 32
β (ELBO weight) 1.0
β warmup ratio 0.15 (enabled)
Latent temperature τ (inference) 1.0 (default)
KL term uses standard weighting β; no free-bits.

Optimization / Training
Optimizer AdamW
Adam (β1, β2) (0.95, 0.95)
Peak LR 8× 10−4

LR schedule Cosine decay to zero with linear warmup
LR warmup ratio 0.10
Batch size 512
Grad. accumulation 1
Weight decay 0.0 (disabled)
Gradient clipping Disabled
Precision 16-mixed
Activation checkpointing Enabled at residual vectors of each layer

Other
seed 42

Filtering. Before tokenization we drop empty or whitespace-only rows; we apply no additional
deduplication or cleaning.

Tokenizer. A custom BPE tokenizer trained on TinyStories (vocab size 8196) with a pad token
<pad>. We tokenize with truncation and right-padding to a fixed maximum length seq len= 32,
and we keep only input ids (no attention masks).

Note on conditioning. Some VAEs for text and audio include side information c and model p(x |
z, c) (e.g., prompts, class labels, or transcripts). In this work we restrict to unconditional VAEs:
no prompts or auxiliary conditioning-z is the only context variable. As a result, generations are
random sentences from the overall training distribution, and utility is limited by short context and
small datasets; our aim here is to demonstrate feasibility and provide a transparent baseline. Future
work will add conditioning for controlled generation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Name Type Params Mode

model VALM 420 M train
model.tok emb Embedding 8.4 M train
model.encoder TransformerEncoder 201 M train
model.to mu Linear 32.8 K train
model.to logvar Linear 32.8 K train
model.z2dec Linear 32.8 K train
model.decoder TransformerEncoder 201 M train
model.output fc Linear 8.4 M train

Table 5: VALM-1 detailed parameter count.

C VALM-1 DETAILED PARAMETER COUNT

C.1 LATENT HEADS AND Z2DEC SETUP

Latent heads. The encoder produces a single pooled vector henc ∈ Rdmodel (see Fig. 1). Two linear
heads map this to the mean and log-variance of a diagonal Gaussian posterior:

µ = Wµ henc + bµ, Wµ ∈ Rdz×dmodel ,

log σ2 = Wlogvar henc + blogvar, Wlogvar ∈ Rdz×dmodel .

We use qϕ(z | x) = N
(
µ, diag(σ2)

)
with reparameterization z = µ + σ ⊙ ϵ, ϵ ∼ N (0, I) and

σ = exp
(
1
2 log σ

2
)
.

z2dec projection. A linear map projects z ∈ Rdz to the model width and adds a global bias to every
position in the decoder input (Eq. 7):

hz = Wzz + bz ∈ Rdmodel , e
(0)
t = E[xt] + P [t] + hz.

Here Wz ∈ Rdmodel×dz and bz ∈ Rdmodel . This module corresponds to model.z2dec in Table 5.

Initialization. Unless noted otherwise, linear layers use the PyTorch defaults for weights, and all
projection biases are initialized to 0.0 (to mu, to logvar, and z2dec).

D TRAINING CURVES FOR VALM-1

0 5000 10000 15000 20000 25000
Step

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Training: Loss and Components (no beta)
train_rec
train_kl
elbo name

Figure 2: ELBO loss and components.

0 5000 10000 15000 20000 25000
Step

0.2

0.4

0.6

0.8

1.0

Va
lu

e

Accuracy
train_acc

Figure 3: Word accuracy: During training what
percent of tokens had the correct token as the
most likely predicted by the model.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

id text id text

0 Mice are afraid of cats.
Wolves are afraid of mice.
Sheep are afraid of mice.
Emily is a sheep.
W ...

1 Theiel is is of the red.
Theand is is of the the.
The went is theang the.
The moved is the ...

2 The hallway is east of the bedroom.
The bedroom is east of the.
The to is north of the to.
The is ...

3 Sandra picked up the milk there.
John went to the hallway.
Mary moved to the office.
Sandra dropped the milk. ...

4 The hallway is north suitcase the garden.
The bigger is n boxh chocolates.
The chestThe bigger than the container.
The box ...

5 Sandra travelled to the kitchen.
John is in the bedroom.
Mary is not in the hallway.
Mary is in the bathroom.
Mary ...

6 Billats are took the football there.
J ff gave the football to Fred.
Fred moved to the kitchen.
Bill gave are afraid to the ...

7 The bedroom is south of the garden.
The bathroom is south of the hallway.
The office is west of the hallway.
The bedroom is ...

8 Mary and John went back to the kitchen.
After that they went back to the garden.
Daniel and Daniel went to the bathroom.
Mary ...

9 Mary travelled to the office.
Sandra moved to the kitchen.
Mary grabbed the milk there.
John got the apple there.
Sand ...

Table 6: Random VALM-1 single-pass generations at latent temperature τ = 1.0. More errors than
at τ = 0.5 (cf. Table 2).6

count mean std min 5% 25% 50% 75% 95% max

params 124 5.77e+07 3.52e+07 98,304 393,216 3.07e+07 5.66e+07 8.49e+07 1.01e+08 2.01e+08
tokens 124 5.65e+06 3.26e+07 8,096 100,132 100,132 131,072 524,288 2.12e+06 2.12e+08
flops 124 1.28e+14 1.57e+14 1.25e+12 5.49e+12 2.96e+13 6.05e+13 1.78e+14 5.34e+14 6.23e+14

Table 7: Summary statistics for the TinyStories scaling law.

E SCALING LAW FIT

E.1 SUMMARY STATS (PARAMS, TOKENS, FLOPS)

E.2 KL COLLAPSE FOR EXTREME HYPERPARAMETERS

In rare settings with extreme hyperparameters we observed a failure mode where the encoder poste-
rior stays close to the prior across examples (i.e., µ≈0, σ≈1), effectively minimizing the KL term
while leaving the reconstruction loss large. This is a suboptimal local minimum in which the model
does not use the latent to encode information.

This differs from classic posterior collapse in text VAEs with powerful autoregressive decoders,
where the decoder can explain the data without z and collapse can be optimal for that objective. In
VALM, decoding depends on z, so collapse arises only from optimization pathologies or extreme
settings.

When did it occur? Only under extreme choices such as very small weight-initialization scale, very
deep stacks (e.g., 32 layers), or very large β in β-VAE. Mitigations that helped in our tests include
mild β warmup, standard initialization scales, and moderate depth.

6No manual selection or sorting; same decoding parameters across rows.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E.3 ABLATION: NO ENCODER - FIXED LEARNABLE LATENT

We remove the encoder and replace qϕ(z | x) with a single trainable vector z⋆ that is shared across
all examples. Training minimizes reconstruction only; the KL term is zero by construction because
z is deterministic and global. At inference we decode once from z⋆.

Outcome. Validation loss increases, word accuracy decreases, and samples collapse toward a sin-
gle passage template with small token-level variations. This confirms that learning a posterior that
depends on x is necessary even for short spans.

Task Setting Val loss Val acc KL/token

bAbI (passages) VALM-1 baseline 1.6229 - ≈0.58 bits
bAbI (passages) No encoder, z⋆ 3.4331 - 0.00
TinyStories VALM-1 baseline - - ≈0.58 bits
TinyStories No encoder, z⋆ - - 0.00

Table 8: Ablation removing the encoder and using a single trainable global latent z⋆.

bAbI numbers (seq=32). Baseline: train= 0.6550, val= 1.6229. No-encoder: train= 3.5543,
val= 3.4331. Deltas: +2.8993 train, +1.8102 val. Samples from the no-encoder variant were
highly repetitive (e.g., ”The and is the the the ..”), indicating collapse toward a single template.

id baseline (temp=1.0) id no encoder (temp=1.0)

1 Bill went back the the this there. \\Yesterday
Fred journey to to bedroom office. \\Bill
morning travelled the the school.
\\Yesterdayed to the

1 Theand is the the the.. \\the the... \\the. the..
\\the the..

2 John and isandra \\to the garden. \\After
that theyumit the kitchen. \\Johnason journey
moved to the garden. \\After that they

2 Theand is the the the.. \\the the... \\the. the..
\\the the..

Table 9: Qualitative comparison at τ = 1.0 (seq=32). The no-encoder variant collapses to high-
frequency tokens and punctuation, while the baseline retains event-like structure despite errors. No-
tation: \\denotes a line break.

Why this happens. With no encoder, the decoder receives no information about the input x. Under
cross-entropy, the best it can do is predict corpus-level frequent tokens at each position. On bAbI
that means tokens like ”the” and periods; hence the repetitive fragments above.

E.4 WHY PAD (NOT EOS).

VALM decodes in one pass, so no explicit <eos> is needed. Since positions are conditionally
independent given z, an <eos> at one index would not suppress later logits; masked padding is
simpler and avoids length bias.

F OTHER NOTES

F.1 USE OF LLMS

LLMs were used to (1) help write experimental code and scripts and (2) correcting spelling and
formatting in the final version of the paper.

F.2 SCOPE AND NEXT STEPS.

We did not use prompts/conditioning, did not train for > 32 tokens, and did not compare against
strong autoregressive baselines-our goal here was to introduce the method, demonstrate feasibility

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

of single-pass text generation and provide a transparent recipe. Next, we will add conditioning,
extend context length, and evaluate larger models on broader corpora and tasks.

17

	Introduction
	Method
	Language models
	Why naive parallel decoding fails
	Autoencoders
	Variational Autoencoders
	Application to text: VALM
	-adjusted VAEs
	Padding and variable length
	Temperature
	Summary

	Experiments
	VALM-1 model
	Scaling laws
	Ablation with naive no-encoder model

	Related Work
	Autoencoder with Autoregressive components
	Other
	Autoencoders and Flows

	Limitations and Future Work
	Conclusion
	Appendix
	Hyperparameters
	Datasets & Preprocessing

	VALM-1 Detailed Parameter Count
	Latent heads and z2dec setup

	Training Curves for VALM-1
	Scaling Law Fit
	Summary stats (params, tokens, FLOPs)
	KL collapse for extreme hyperparameters
	Ablation: No Encoder - Fixed Learnable Latent
	Why pad (not EOS).

	Other Notes
	Use of LLMs
	Scope and Next Steps.

