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ABSTRACT

Text-to-motion generation has advanced with diffusion models, yet existing sys-
tems often collapse complex multi-action prompts into a single embedding, lead-
ing to omissions, reordering, or unnatural transitions. In this work, we shift per-
spective by introducing a principled definition of an event as the smallest seman-
tically self-contained action or state change in a text prompt that can be tem-
porally aligned with a motion segment. Building on this definition, we pro-
pose Event-T2M, a diffusion-based framework that decomposes prompts into
events, encodes each with a motion-aware retrieval model, and integrates them
through event-based cross-attention in Conformer blocks. Existing benchmarks
mix simple and multi-event prompts, making it unclear whether models that suc-
ceed on single actions generalize to multi-action cases. To address this, we con-
struct HumanML3D-E, the first benchmark stratified by event count. Experiments
on HumanML3D, KIT-ML, and HumanML3D-E show that Event-T2M matches
state-of-the-art baselines on standard tests while outperforming them as event
complexity increases. Human studies validate the plausibility of our event defini-
tion, the reliability of HumanML3D-E, and the superiority of Event-T2M in gen-
erating multi-event motions that preserve order and naturalness close to ground-
truth. These results establish event-level conditioning as a generalizable principle
for advancing text-to-motion generation beyond single-action prompts.

1 INTRODUCTION

Text-to-motion generation has recently achieved striking numerical results on benchmarks such as
HumanML3D (Guo et al., 2022) and KIT-ML (Plappert et al., 2016), with state-of-the-art models
pushing Fréchet Inception Distance (FID) to the second decimal place. However, these numbers ob-
scure a critical limitation rooted in the benchmarks themselves. HumanML3D, for example, primar-
ily consists of simple, easy-to-generate motions; as a result, most research has focused on refining
performance on trivial motions rather than tackling the challenge of hard-to-generate. In essence,
the field has become adept at making simple motions slightly better while ignoring the complex,
temporally ordered behaviors where text-to-motion could truly matter. Consequently, when a de-
scription such as “run forward, then stop, then wave” is given, leading systems frequently merge,
skip, or reorder actions. This misalignment between benchmark success and the demands of struc-
tured real-world motion remains a key obstacle to deploying text-to-motion techniques in practical
applications such as animation pipelines (Kappel et al., 2021), video production (Majoe et al., 2009;
Yeasin et al., 2004), and embodied agents (Yoshida et al., 2025).

To move beyond this impasse, it is necessary first to characterize compositional complexity rather
than treat all prompts as equally difficult. Existing datasets and evaluation protocols do not dis-
tinguish between simple single-action descriptions and complex multi-action sequences, making
it impossible to assess whether improvements on low-complexity motions carry over to scenarios
requiring higher temporal and structural complexity.

In this work, we make three main contributions. (1) We reframe text-to-motion generation around
the notion of an event, introducing a principled definition of an event as the smallest semantically
self-contained action or state change described in a text prompt whose execution can be temporally
isolated and mapped to a contiguous motion segment. (2) Building on this definition, we propose
Event-T2M. This diffusion-based model that injects event tokens through a novel event-based cross-
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attention module (ECA), enabling the generation of complex multi-action sequences and achieving
state-of-the-art performance on HumanML3D and KIT-ML. (3) To rigorously assess whether gains
on simple motions generalize to compositional cases, we construct and release HumanML3D-E,
the first benchmark that systematically stratifies text-to-motion prompts by event count, thereby
introducing a reproducible evaluation protocol for event-level complexity and demonstrating the
advantages of Event-T2M under increasing compositional demands.

2 RELATED WORKS

2.1 COMPLEX TEXT-TO-MOTION SYNTHESIS

Text-to-motion generation has made remarkable progress since the introduction of the Hu-
manML3D (Guo et al., 2022). Research has mainly diverged into two directions: Vector Quantized-
Variational AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017)-based models and diffusion (Ho
et al., 2020)-based models, pioneered respectively by T2M-GPT (Zhang et al., 2023a) and Mo-
tionDiffuse (Zhang et al., 2024a). VQ-VAE work has primarily focused on reducing quantization
loss (Guo et al., 2024). Meanwhile, diffusion-based approaches have concentrated on improving
model performance while simultaneously reducing the inference time of the diffusion process (Chen
et al., 2023; Zeng et al., 2025). Across both, the main objective has been higher scores on Hu-
manML3D, with many works achieving state-of-the-art results.

Beyond these benchmark-driven gains, some diffusion-based studies explicitly target more complex
behaviors. GraphMotion (Jin et al., 2023) enriches text with semantic graphs to encourage compo-
sitional generation, though its evaluation is limited. MotionMamba (Zhang et al., 2024b) defines
“complex” motions merely by filtering longer HumanML3D sequences, offering limited insight into
true compositionality.

2.2 TOKEN-LEVEL CONDITION FOR FINE-GRAINED ALIGNMENT

Recent advances in text-to-motion increasingly adopt token-level cross-attention for fine-grained
alignment between text and motion. A representative example is AttT2M (Zhong et al., 2023),
which combines body-part attention and global-local motion-text attention. Motion is first encoded
into a discrete latent space using a VQ-VAE whose encoder preserves body-part structure, ensuring
token interactions reflect part-level dependencies. During generation, local cross-attention links mo-
tion tokens with individual words, while global attention via sentence embeddings provides holistic
guidance. This design improves interpretability and motion quality, yielding strong results on Hu-
manML3D (Guo et al., 2022) and KIT-ML (Plappert et al., 2016).

MMM (Pinyoanuntapong et al., 2024) extends this line with masked motion modeling, reconstruct-
ing motion tokens from masked segments conditioned on text. By jointly encoding text and mo-
tion in a single transformer, MMM enables bidirectional attention, reinforcing token-level align-
ment. Together, AttT2M and MMM demonstrate the benefit of token-level conditioning for richer
text–motion correspondences.

However, much of the literature still relies on CLIP (Radford et al., 2021), whose text encoder rep-
resents an entire prompt with a single global embedding (e.g., the [EOS] token) when performing
image–text matching. This design obscures the temporal order of multi-step descriptions. For ex-
ample, “run forward, then stop, then wave” may collapse into one undifferentiated vector, leading to
merged or reordered actions. In addition, CLIP’s pretraining on broad image–text corpora provides
weak supervision for motion, overlooking temporal continuity and event transitions that are critical
for compositional generation.

To address these issues, we leverage TMR (Text-to-Motion Retrieval) (Petrovich et al., 2023),
trained explicitly for motion-language alignment, injecting domain expertise absent in CLIP. Fur-
thermore, instead of collapsing the entire prompt into one token, we introduce event-level tokeniza-
tion: representative tokens are extracted per event, allowing feature matching that preserves temporal
order and enhancing robustness to sequentially complex motions.
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Figure 1: Main Architecture of Event-T2M. An input prompt is split into clauses by an LLM, en-
coded as event tokens with a TMR encoder, and fused with a global token. Tokens guide the diffusion
process through an event-level module, enabling generation of sequentially complex motions.

3 METHOD

We design Event-T2M, a diffusion-based text-to-motion generator tailored to handle complex se-
quential motions by explicitly modeling event structure. Our approach builds on three key ideas:
(1) decomposing text into an event sequence using a Large Language Model (LLM), (2) embedding
each event into an event token via a motion-specialized TMR encoder, and (3) injecting these event
tokens through an event-based cross-attention (ECA) module inside Conformer (Gulati et al., 2020)
blocks to capture both local and global sequencing.

3.1 TEXT TO EVENT TOKENS

We formalize an event as the smallest semantically self-contained action or state change described
in a natural-language prompt, whose execution can be temporally isolated and mapped to a con-
tiguous segment of the target motion. This definition is inspired by prior work on temporal action
segmentation (Jin et al., 2023)

Formally, a text prompt W is segmented into a sequence of clauses {Ck}Kk=1 by an LLM, where K
denotes the number of clauses obtained under fixed linguistic rules. A clause Ck is mapped to an
event if it (1) expresses an action or state change by the same agent, (2) is semantically interpretable
without requiring adjacent clauses, and (3) corresponds to a temporally coherent segment in motion
space. This formulation yields a natural intermediate unit between words and full sentences: for
example, “A person steps backward, jumps up, runs forward, then runs backward” is segmented into
four events, each corresponding to one atomic action. We use Gemini 2.5 Flash (Comanici et al.,
2025) to segment W . The used prompt is depicted in Appendix A.9.

To interface with motion models, we represent each event as an event token. Concretely, each clause
(or event) Ck is embedded using the TMR encoder, which we denote by fTMR:

Ek = fTMR(Ck), Ek ∈ RDy ,

where Dy is the embedding dimension of the TMR encoder. Stacking yields the event tokens used
by cross-attention.

E =

E⊤
1
· · ·
E⊤

K

 ∈ RK×Dy

To complement these event-level representations, we introduce a global text token G = fTMR(W )
derived from the entire prompt W . This token serves as a holistic summary of the text, allowing
the model to fall back on global semantics when local event cues are ambiguous and to maintain
coherence across long or compositional sequences.

3
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3.2 ARCHITECTURE OVERVIEW

Overall architecture is shown in Figure 1. Given a textual prompt W and its corresponding motion
token sequence M = {mi}Li=1, where each mi ∈ RDm and Dm is the pose feature dimension, we
train a conditional denoiser φθ under a standard forward diffusion process with variance schedule
{βt}Tt=1.

Block overview. We stack N identical Event-T2M blocks. The input to the network is M . In the
diffusion process, M is represented as the clean motion x0, and at each step t, we maintain a noisy
motion xt. Each block then updates it:

xt ← xt + LIMM(concat(xt, t)), (1)
xt ← ATII(xt, G), (2)
xt ← 0.5 ∗ xt + FFN(xt). (3)
xt ← xt +ConformerSA(xt), (4)
xt ← xt + ECA(xt, E), (5)
xt ← xt +ConformerConv(xt), (6)
xt ← 0.5 ∗ xt + FFN(xt), (7)
xt ← xt + LIMM(xt). (8)

Text dropout implements classifier-free guidance (CFG) (Ho & Salimans, 2022) during training.
Empirically, we observed that a 0.5 residual weight yields smoother optimization and improved
stability under strong event-level supervision while keeping the feed-forward contribution balanced
with the attention and event-conditioned branches, which aligns with the intuition from Macaron-
style architectures (Lu et al., 2019) that split the feed-forward effect across two residual paths.

Local Information Modeling Module (LIMM). We implement the LIMM as a depthwise-
pointwise 1D convolutional block, followed by GroupNorm and ReLU. This design enforces short-
horizon smoothness with negligible parameter cost:

LIMM(xt) = ReLU
(
GN

(
PW(DW(xt))

))
, (9)

where DW denotes depthwise convolution (kernel size 3), PW denotes pointwise convolution, and
GN denotes GroupNorm. This reduces reliance on global attention for local kinematics while im-
proving stability and contacts.

Adaptive Textual Information Injector (ATII). Unlike conventional cross-attention that mixes
text and motion indiscriminately, ATII injects segment-aware semantics through channel-wise gat-
ing. Inspired by (Zeng et al., 2025), we first downsample the input motion sequence by a ratio of
S via a lightweight point-wise convolution layer, yielding M ′ = {m′

j}L
′

j=1. Then, the global text
embedding G is adaptively filtered by the local downsampled motion state m′

j :

ĝj = Sigmoid
(
Wc[m

′
j ⊕G]

)
⊙G, (10)

where Wc is a fully connected projection, ⊕ denotes concatenation, ⊙ is channel-wise product.
The gated text feature ĝi encodes segment-specific semantics, which are then fused with motion by
another projection:

ATII(xt, G)j = Wf [m
′
j ⊕ ĝj ]. (11)

This adaptive injection mechanism provides stronger alignment between text and local motion, while
avoiding excessive overhead compared to full cross-attention.

Conformer for global and local sequencing. ConformerSA(·) and ConformerConv(·) correspond
to the self-attention and convolutional submodules of a Conformer-style architecture (Gulati et al.,
2020). Specifically, ConformerSA(·) implements multi-head self-attention with relative positional
bias along time, allowing motion tokens to capture long-range temporal dependencies. In con-
trast, ConformerConv(·) applies a depthwise separable 1D convolution with Gated Linear Units
(GLU) (Dauphin et al., 2017), modeling short-range and phase-local motion patterns. These sub-
modules play complementary roles: self-attention integrates global context across the motion se-
quence, while convolution sharpens local dynamics such as step phases or contact transitions. We

4
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follow the standard Conformer design, where self-attention and convolution are placed between two
feed-forward layers.

Event-based Cross-attention (ECA). To inject event-level semantics, we replace the standard
self-attention sublayer in each Conformer block with a motion-to-text cross-attention mechanism.
In this formulation, the motion tokens provide the queries, while the event tokens act as the keys and
values.

Let xctx
t ∈ RL′×D be the current motion context, obtained from the ConformerSA sublayer. For H

heads of dimension dh, we compute motion-to-text cross-attention by projecting motion tokens xctx
t

into queries and event tokens E into keys and values:

Qm = xctx
t WQ ∈ R(L′)×(Hdh), (12)

Ke = EWK ∈ R(K)×(Hdh), (13)

Ve = EWV ∈ R(K)×(Hdh), (14)

where splitting across heads gives Q(h)
m ,K

(h)
e , V

(h)
e ∈ R(·)×dh . Multi-head cross-attention is then

applied as

A(h) = softmax
(

Q(h)
m (K(h)

e )⊤√
dh

)
, (15)

Z(h) = A(h)V (h)
e , (16)

with outputs concatenated as Z = Concath Z
(h)WO. We then define the event-based cross-

attention mapping as
ECA(xt, E) = γ ·Dropout(Z), (17)

where γ is a learnable scaling factor initialized near zero for stable optimization.

3.3 DIFFUSION OBJECTIVE AND SAMPLING

We formulate motion generation as conditional denoising diffusion. At each t, a noisy motion
sample is constructed as

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I). (18)

Then, the denoiser φθ is trained to recover x0 from xt under event-level conditioning:

L(θ) = Ex0,t,ϵ

[
∥x0 − φθ(xt, t, G,E) ∥22

]
. (19)

To enable CFG, text conditioning is randomly dropped with probability τ , creating an unconditional
path during training. At inference, we combine conditional and unconditional predictions through
CFG, which sharpens motion-text alignment while preserving generative diversity. We adopt a 10-
step Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) for efficient generation.

4 EXPERIMENTS

We systematically evaluate Event-T2M to verify whether its event-level conditioning genuinely ex-
tends text-to-motion generation beyond single-action prompts. Our experiments combine standard
quantitative benchmarks with newly constructed event-stratified test sets and complementary hu-
man studies. This design allows us to assess (1) competitiveness on existing benchmark settings,
(2) robustness and compositional fidelity on multi-event prompts of increasing complexity, and (3)
both the validity of our event-aware decomposition and the perceptual quality of generated motions
from a user’s perspective. Together, these evaluations offer a comprehensive view of Event-T2M’s
effectiveness and reveal how explicit event-level representations translate into measurable gains in
realism, alignment, and human-perceived naturalness.
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Table 1: Comparison on the HumanML3D, KIT-ML, and Motion-X test sets with existing state-of-
the-art approaches. For each metric, “↑” denotes that larger values are better, while “↓” denotes that
smaller values are better. The best score is marked in bold and the second-best is underlined.

Datasets Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

HumanML3D

T2M (Guo et al., 2022) 0.455±.003 0.636±.003 0.736±.002 1.087±.021 3.347±.008 2.219±.074

MDM (Tevet et al., 2022) 0.320±.005 0.498±.004 0.611±.007 0.544±.044 5.566±.027 2.799±.072

MotionDiffuse (Zhang et al., 2024a) 0.491±.001 0.681±.001 0.782±.001 0.630±.011 3.113±.001 1.553±.042

MLD (Chen et al., 2023) 0.481±.003 0.673±.003 0.772±.002 0.473±.013 3.196±.010 2.413±.079

T2M-GPT (Zhang et al., 2023a) 0.491±.003 0.680±.003 0.775±.002 0.116±.004 3.118±.011 1.856±.011

AttT2M (Zhong et al., 2023) 0.499±.003 0.690±.002 0.786±.002 0.112±.006 3.038±.007 2.452±.051

FineMoGen (Zhang et al., 2023c) 0.504±.003 0.690±.002 0.784±.002 0.151±.008 2.998±.008 2.696±.079

GraphMotion (Jin et al., 2023) 0.504±.003 0.699±.002 0.785±.002 0.116±.007 3.070±.008 2.766±.096

MMM (Pinyoanuntapong et al., 2024) 0.515±.002 0.708±.002 0.804±.002 0.089±.005 2.926±.007 1.226±.035

MoMask (Guo et al., 2024) 0.521±.002 0.713±.003 0.807±.002 0.045±.002 2.958±.008 1.241±.040

Light-T2M (Zeng et al., 2025) 0.511±.003 0.699±.002 0.795±.002 0.040±.002 3.002±.008 1.670±.061

MoGenTS (Yuan et al., 2024) 0.529±.003 0.719±.002 0.812±.002 0.033±.001 2.867±.006 -

Event-T2M (Ours) 0.562±.002 0.754±.003 0.842±.002 0.056±.002 2.711±.005 0.949±.026

KIT-ML

T2M (Guo et al., 2022) 0.361±.006 0.559±.007 0.681±.007 3.022±.107 3.488±.028 2.052±.107

MDM (Tevet et al., 2022) - - 0.396±.004 0.497±.021 9.191±.022 1.907±.214

MotionDiffuse (Zhang et al., 2024a) 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 0.730±.013

MLD (Chen et al., 2023) 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 2.192±.071

T2M-GPT (Zhang et al., 2023a) 0.402±.006 0.619±.005 0.737±.006 0.717±.041 3.053±.026 1.912±.036

AttT2M (Zhong et al., 2023) 0.413±.006 0.632±.006 0.751±.006 0.870±.039 3.039±.021 2.281±.047

FineMoGen (Zhang et al., 2023c) 0.432±.006 0.649±.005 0.772±.006 0.178±.007 2.869±.014 1.877±.093

GraphMotion (Jin et al., 2023) 0.429±.007 0.648±.006 0.769±.006 0.313±.013 3.076±.022 3.627±.113

MMM (Pinyoanuntapong et al., 2024) 0.404±.005 0.621±.005 0.744±.004 0.316±.028 2.977±.019 1.232±.039

MoMask (Guo et al., 2024) 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 1.131±.043

Light-T2M (Zeng et al., 2025) 0.444±.006 0.670±.007 0.794±.005 0.161±.009 2.746±.016 1.005±.036

MoGenTS (Yuan et al., 2024) 0.445±.006 0.671±.006 0.797±.005 0.143±.004 2.711±.024 -

Event-T2M (Ours) 0.439±.005 0.669±.006 0.788±.005 0.159±.004 2.742±.016 0.762±.026

Motion-X

AttT2M (Zhong et al., 2023) 0.461±.004 0.664±.004 0.768±.004 0.232±.016 3.455±.015 2.053±.043

MoMask (Guo et al., 2024) 0.460±.004 0.662±.004 0.768±.004 0.297±.016 3.510±.018 1.442±.041

Light-T2M (Zeng et al., 2025) 0.473±.006 0.669±.004 0.773±.003 0.131±.012 3.409±.017 1.594±.068

MoGenTS (Yuan et al., 2024) 0.458±.003 0.664±.005 0.768±.004 0.102±.008 3.498±.018 0.763±.034

Event-T2M (Ours) 0.519±.005 0.729±.004 0.823±.005 0.109±.005 2.979±.016 0.921±.035

4.1 BENCHMARKS AND METRICS

Standard Benchmarks. We adopt the official train, val, and test splits of HumanML3D (Guo
et al., 2022), KIT-ML (Plappert et al., 2016), and Motion-X (Lin et al., 2023). Following prior work,
motions are represented in root space with root velocities and local joint features. HumanML3D
provides long and diverse descriptions, KIT-ML offers shorter prompts, and Motion-X serves as a
large-scale dataset, allowing us to assess complex, simpler, and diverse settings.

Event-stratified Subset: HumanML3D-E. To examine performance under compositional com-
plexity, we apply our LLM-based event decomposition to HumanML3D test prompts and group
them by event count: at least 2 events, at least 3 events, and at least 4 events (e.g., “walk left, turn,
jump, kick” falls into ≥4 group). These subsets provide increasingly challenging settings to test
whether gains on simple prompts transfer to longer, sequential instructions. Full construction details
are in Appendix A.5.

Evaluation Metrics. We follow the standard HumanML3D evaluation pipeline: (1) sample N
candidate motions per text (N=20 by default), (2) embed text and motion using the released eval-
uators, and (3) compute widely used metrics. Specifically, we report FID (generation realism),
R-Precision (text–motion alignment, Top-1/2/3), MM-Dist (absolute alignment), and MModality
(intra-prompt diversity). Following recent recommendations (Guo et al., 2024; Zeng et al., 2025),
we omit the Diversity metric due to instability. All numbers are averaged over the test set with
95% confidence intervals estimated from repeated sampling. A detailed definition of each metric is
provided in Appendix A.2.

4.2 MAIN RESULTS

Standard test sets (HumanML3D, KIT-ML, and Motion-X). On the standard HumanML3D,
KIT-ML, and Motion-X test splits, Event-T2M achieves performance on par with recent strong
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Table 2: Comparison on the HumanML3D, KIT-ML, and Motion-X test sets with MARDM ap-
proaches. For each metric, “↑” denotes that larger values are better, while “↓” denotes that smaller
values are better.

Datasets Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑ CLIP-score ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

HumanML3D
MARDM-DDPM (Meng et al., 2024) 0.492±.006 0.690±.005 0.790±.005 0.116±.004 3.349±.010 2.470±.053 0.637±.005

MARDM-SiT (Meng et al., 2024) 0.500±.004 0.695±.003 0.795±.003 0.114±.007 3.270±.009 2.231±.071 0.642±.002

Event-T2M (Ours) 0.549±.002 0.744±.001 0.836±.001 0.114±.003 2.948±.008 1.008±.052 0.665±.001

KIT-ML
MARDM-DDPM (Meng et al., 2024) 0.375±.006 0.597±.008 0.739±.006 0.340±.020 3.489±.018 1.479±.078 0.681±.003

MARDM-SiT (Meng et al., 2024) 0.387±.006 0.610±.006 0.749±.006 0.242±.014 3.374±.019 1.312±.053 0.692±.002

Event-T2M (Ours) 0.379±.005 0.599±.005 0.732±.006 0.273±.013 3.573±.022 0.933±.046 0.690±.001

Motion-X
MARDM-DDPM (Meng et al., 2024) 0.392±.003 0.592±.003 0.711±.004 0.132±.008 3.844±.014 2.058±.067 0.639±.001

MARDM-SiT (Meng et al., 2024) 0.405±.003 0.606±.004 0.721±.003 0.134±.006 3.761±.014 1.973±.061 0.648±.001

Event-T2M (Ours) 0.547±.002 0.743±.002 0.834±.002 0.115±.004 2.942±.007 0.963±.044 0.666±.001

Table 3: Comparative results on HumanML3D-E against state-of-the-art baselines. “Condition
2/3/4” denotes prompts with at least 2, 3, and 4 events, respectively.

Condition Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

2

AttT2M (Zhong et al., 2023) 0.479±.003 0.665±.003 0.761±.003 0.171±.007 3.181±.010 1.899±.115

GraphMotion (Jin et al., 2023) 0.468±.003 0.646±.003 0.741±.002 0.252±.012 3.302±.012 2.415±.079

MoMask (Guo et al., 2024) 0.497±.004 0.691±.003 0.790±.003 0.065±.002 3.061±.009 1.282±.043

Light-T2M (Zeng et al., 2025) 0.462±.003 0.647±.003 0.747±.004 0.077±.004 3.278±.010 1.692±.058

MoGenTS (Yuan et al., 2024) 0.496±.003 0.690±.002 0.787±.002 0.049±.003 3.039±.010 0.868±.037

Event-T2M (Ours) 0.536±.002 0.732±.002 0.824±.002 0.079±.003 2.836±.006 0.976±.043

3

AttT2M (Zhong et al., 2023) 0.431±.005 0.613±.005 0.715±.004 0.464±.031 3.329±.018 1.960±.105

GraphMotion (Jin et al., 2023) 0.420±.006 0.599±.007 0.698±.006 0.458±.026 3.440±.023 2.427±.065

MoMask (Guo et al., 2024) 0.466±.006 0.652±.006 0.752±.005 0.142±.008 3.169±.015 1.320±.038

Light-T2M (Zeng et al., 2025) 0.404±.005 0.594±.006 0.699±.004 0.193±.009 3.396±.015 1.740±.055

MoGenTS (Yuan et al., 2024) 0.452±.004 0.644±.005 0.751±.005 0.147±.009 3.122±.018 0.894±.028

Event-T2M (Ours) 0.487±.005 0.687±.004 0.790±.004 0.137±.003 2.928±.010 1.010±.029

4

AttT2M (Zhong et al., 2023) 0.407±.013 0.581±.010 0.688±.010 1.077±.104 3.455±.041 2.049±.099

GraphMotion (Jin et al., 2023) 0.399±.012 0.615±.012 0.723±.010 0.857±.056 3.521±.049 2.547±.066

MoMask (Guo et al., 2024) 0.441±.013 0.633±.014 0.734±.013 0.418±.030 3.205±.042 1.334±.046

Light-T2M (Zeng et al., 2025) 0.365±.010 0.552±.006 0.662±.010 0.627±.027 3.586±.027 1.863±.064

MoGenTS (Yuan et al., 2024) 0.420±.012 0.613±.010 0.715±.013 0.423±.038 3.241±.039 0.879±.032

Event-T2M (Ours) 0.466±.008 0.660±.008 0.767±.007 0.265±.007 3.063±.015 1.039±.028

baselines (Table 1 and 2). This demonstrates that the proposed event-based cross-attention preserves
competitiveness on the simple, single-event prompts that dominate existing benchmarks, ensuring
that our improvements on complex prompts do not come at the expense of overall accuracy.

Event-stratified sets (HumanML3D-E). We emphasize that all models are trained on the stan-
dard HumanML3D training set and only evaluated on HumanML3D-E. On these event-stratified
subsets, Event-T2M exhibits consistent and substantial improvements, particularly under the most
demanding setting of≥4 events (Table 3, Figure 2a). As event count increases, baseline methods that
rely on a single global text embedding frequently underfit later actions or conflate multiple events,
leading to degraded quality (FID) and weaker alignment (R-Precision). In contrast, Event-T2M’s
explicit event-level conditioning enables sequentially faithful synthesis, preserving both action order
and smooth transitions.

Efficiency analysis. Figure 2b plots FID at ≥4 events against the number of trainable parame-
ters. Event-T2M occupies a favorable point on this curve: it achieves substantially better fidelity
under complex prompts while maintaining parameter counts comparable to, or smaller than, recent
baselines.

4.3 ABLATIONS AND ANALYSIS

Effect of ECA. Table 4 shows that adding the ECA consistently improves performance on
HumanML3D-E. R-Precision rises across conditions, reflecting stronger text–motion alignment,
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Figure 2: Overall comparison of Event-T2M: (a) As event counts increase (≥1,≥2,≥3,≥4), Event-
T2M consistently achieves the lowest FID and the highest R-Precision, while baselines degrade
sharply under compositional complexity. (b) Efficiency analysis at ≥4 events shows that Event-
T2M achieves high accuracy with low model size, demonstrating its compactness and scalability.

Table 4: Ablation study on text encoders and conditioning methods on HumanML3D-E.

Text Encoder Condition Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

TMR

2 Event-T2M (Token-level) 0.521±.003 0.718±.002 0.815±.002 0.082±.003 2.915±.008 0.999±.032

Event-T2M (Event-level) 0.536±.002 0.732±.002 0.824±.002 0.079±.003 2.836±.006 0.976±.043

3 Event-T2M (Token-level) 0.463±.005 0.664±.005 0.773±.003 0.162±.006 3.031±.009 1.035±.045

Event-T2M (Event-level) 0.487±.005 0.687±.004 0.790±.004 0.137±.003 2.928±.010 1.010±.029

4 Event-T2M (Token-level) 0.440±.011 0.635±.010 0.740±.009 0.355±.011 3.168±.016 1.141±.026

Event-T2M (Event-level) 0.466±.008 0.660±.008 0.767±.007 0.265±.007 3.063±.015 1.039±.028

CLIP

2 Event-T2M (Token-level) 0.474±.003 0.664±.003 0.767±.003 0.153±.004 3.149±.010 1.875±.057

Event-T2M (Event-level) 0.494±.003 0.681±.003 0.779±.003 0.052±.002 3.079±.010 1.577±.060

3 Event-T2M (Token-level) 0.423±.006 0.618±.005 0.728±.004 0.206±.008 3.254±.011 1.905±.056

Event-T2M (Event-level) 0.423±.005 0.618±.005 0.729±.005 0.141±.004 3.245±.015 1.627±.052

4 Event-T2M (Token-level) 0.399±.012 0.597±.010 0.709±.010 0.468±.021 3.339±.032 1.991±.060

Event-T2M (Event-level) 0.374±.010 0.578±.007 0.690±.007 0.425±.022 3.467±.022 1.674±.059

while FID decreases, indicating more coherent and realistic motion. Unlike token-level attention,
which disperses semantics across individual words and often fails to preserve ordered dependencies,
ECA grounds generation directly in event tokens. This targeted conditioning prevents the model
from collapsing sequential actions, enabling it to respect event order with greater fidelity.

Effect of Text Encoder. Replacing CLIP with TMR yields consistent improvements in R-
Precision, particularly on prompts with≥3 events. While CLIP’s large-scale image–text pretraining
captures simple, single-action semantics, it lacks the motion-specific knowledge needed for sequen-
tial behaviors. TMR, trained directly on motion–text pairs, provides richer event-centric represen-
tations. As a result, Event-T2M with TMR not only maintains competitive performance on simple
cases but achieves clear gains on multi-event prompts, validating our hypothesis that motion-aware
encoders are crucial for scaling beyond single-event benchmarks.

4.4 USER STUDY

We conducted two user studies with distinct goals; Full details are in Appendix A.6 and A.7.

Study 1: Validating event decomposition. To test whether our event definition yields a con-
vincing evaluation basis, we compared three alternatives: (1) human-annotated action splits, (2)
verb-aware LLM segmentation, and (3) our event-aware LLM segmentation. Verb-aware segmenta-
tion simply splits prompts by action verbs (e.g., “run”), without considering temporal coherence
or semantic self-containment. For each participant, 20 prompts were randomly sampled from
HumanML3D-E with ≥3 events, and human evaluators rated whether the resulting segmentation
was natural and distinguishable.
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Figure 3: Results of the user study (7-point Likert scale). Error bars denote standard errors. (a)
Fidelity, (b) Order alignment, and (c) Naturalness. Event-T2M achieves significant gains over all
competing methods and performs on par with ground-truth (GT).

Event-T2M
(Ours)

AttT2M

GraphMotion

MoMask

Light-T2M

A man walks forward and kicks with one foot two times and 
walks backward then pauses and then kicks into the air two times.

Timestep

omission omission

omission
omission

omission
omission

addition

order
misalignment

omission omission

Figure 4: Qualitative comparison with a complex multi-event prompt. Event-T2M executes all
events in order and with correct counts, while baselines often fail to generate them faithfully. See
supplementary video for full motions.

The study analysis presents that event-aware segmentation was rated on par with human annotation
and significantly better than naive verb-aware segmentation. This validates both the plausibility of
our event definition and the reliability of HumanML3D-E as a benchmark.

Study 2: Perceptual Validation of Event-T2M. To examine the perceptual quality of motions
generated by Event-T2M, we compared it with baselines (AttT2M, GraphMotion, Light-T2M, and
MoMask) and with ground-truth. Human evaluators rated 20 samples from HumanML3D-E along
three criteria: (1) how well the motion follows the text without omissions or additions (Fidelity), (2)
how well the motion follows the order specified in the text (Order alignment), and (3) how natural
the motion appears (Naturalness). Ratings were collected on a 7-point Likert scale.
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As shown in Figure 3, Event-T2M consistently outperformed baselines and achieved scores indistin-
guishable from ground-truth, demonstrating its strength in faithfully generating multi-event motions.

4.5 QUALITATIVE RESULTS

Figure 4 illustrates model outputs for the challenging prompt “A man walks forward and kicks
with one foot two times and walks backward then pauses and then kicks into the air two times.”,
which contains seven distinct events. Among the methods, Event-T2M is the only one that realizes
all actions in the correct sequence while ensuring smooth transitions. In contrast, baselines often
shorten the motion, blend distinct events, or substitute unrelated actions. As further confirmed in
additional examples (see supplementary video and Appendix A.8), Event-T2M faithfully maintains
both event semantics and temporal order.

5 FAILURE CASE ANALYSIS.

To better understand the limitations of existing text-to-motion models in complex scenarios, we
conduct a targeted failure case analysis on text prompts containing≥ 4 events. We specifically focus
on long, compositional descriptions that require preserving a chain of distinct sub-actions. Across
such prompts, we observe a consistent pattern: existing models (AttT2M, GraphMotion, Light-
T2M, MARDM (Meng et al., 2024), MoGenTS (Yuan et al., 2024), and MoMask) frequently omit
events, generate incorrect or spurious events, and occasionally produce motions that exceed their
maximum motion length or exhibit clear physical artifacts. In particular, MARDM and MoMask
often fail to reconstruct the full event sequence, either by dropping intermediate sub-motions or
by inserting unintended transitions, suggesting that they struggle to faithfully realize multi-stage,
event-rich instructions.

These tendencies are illustrated by the following example: “Man is standing straight, feet not mov-
ing, hinges at the waist to reach both hands down to his feet, then puts his arms up, bent at the
elbows, twists his torso to the left, and then to the right, and then facing forward leans over to the
left, and then over to the right, stretching.” For this prompt, AttT2M fails to realize the “hinges at
the waist” event, GraphMotion exhibits both event omission and physical errors, Light-T2M and
MARDM omit events and sometimes exceed the maximum motion length, and MoGenTS and Mo-
Mask also miss parts of the described sequence. By contrast, Event-T2M generates all of the de-
scribed events, albeit with a slightly permuted order, indicating that it can still cover the complete
set of intended sub-actions even when the motion is long and structurally complex.

Overall, these observations suggest that Event-T2M is comparatively more robust at preserving
the full set of events in complex, multi-event prompts than prior sentence-level or token-level ap-
proaches. We attribute this robustness to the event-level formulation, which encourages the model
to align distinct motion segments with explicit semantic units, thereby reducing the likelihood of
dropping, conflating, or corrupting events during generation.

6 CONCLUSION

We presented Event-T2M, a diffusion framework that leverages event-level decomposition and
cross-attention to synthesize sequentially complex motions from natural language. Across Hu-
manML3D, KIT-ML, and our event-stratified HumanML3D-E, Event-T2M demonstrates strong
performance on standard test sets and consistent improvements under multi-event prompts. Human
evaluations further confirm that our model generates motions that preserve both order and semantics
while maintaining naturalness comparable to real data.

Our work establishes explicit event-level conditioning as a scalable recipe for robust text-to-motion
generation, moving the field beyond single-event benchmarks. Nonetheless, challenges remain:
current models do not consider long-horizon physical plausibility, natural human–object interac-
tions, and seamless integration into downstream applications such as animation pipelines, embodied
agents, and video production. Future directions include incorporating physics-aware objectives, en-
abling fine-grained event editing, and extending event-based conditioning to multimodal settings
involving vision and audio.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed descriptions of our model architecture, training
setup, and evaluation protocols in the main text and supplementary. In addition, the full implemen-
tation and code are included in the supplementary materials, enabling independent researchers to
replicate our results.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We set the maximum diffusion step to 1000, with linearly increasing variances βt ranging from
1 × 10−4 to 2 × 10−2. For fast inference, we employ UniPC (Zhao et al., 2023) using 10 time
steps. The model architecture consists of N = 4 blocks with a hidden dimension of 256 and a
downsampling factor of 8. The guidance scale is fixed at 4, while text dropout is applied with
probability 0.2. Training is carried out with AdamW (Loshchilov & Hutter, 2017), using a learning
rate of 1 × 10−4, cosine annealing scheduling, and a batch size of 128 on two NVIDIA RTX 4090
GPUs. We train for 600 epochs on HumanML3D and 1,000 epochs on KIT-ML.

During training, checkpoints are saved at regular intervals, and the final model is selected based on
the lowest FID score on the validation set. In particular, each Event-level Conditioning Module uses
a local convolution width of 4, and a block expansion factor of 2. The Depth-wise Conv1D layers
have a kernel size of 3 and a stride of 1.

A.2 EVALUATION METRICS DETAILS

We evaluate our model using several widely adopted measures introduced in T2M (Guo et al., 2022).
Below, we briefly describe each metric without relying on explicit formulae.

FID assesses how close the generated motions are to real human motions in terms of feature dis-
tribution. Specifically, it compares the mean and covariance of features extracted from generated
samples with those from ground-truth. A smaller value indicates that the distribution of generated
motions better matches the real data.

R-Precision measures the semantic consistency between text descriptions and generated motions.
For each motion, we form a candidate pool of text descriptions that includes the correct caption and
several distractors randomly sampled from the dataset. If the true description is found within the
top-k retrieved captions when ranking by similarity, the retrieval is counted as correct. We report
results for k = 1, 2, and 3 to capture different levels of retrieval difficulty.

MM-Dist evaluates the alignment between a generated motion and its paired textual description. It
computes the average distance between their respective feature embeddings. Lower values indicate
stronger semantic correspondence between the motion and its caption.

Multimodality focuses on variation among motions generated from the same text description. For
each caption, multiple motion samples are generated, and their feature differences are averaged. A
model that achieves higher scores on this metric is better at producing a wide range of plausible
motions from identical textual input.

A.3 DETAILS ON HUMANML3D AND KIT-ML

The HumanML3D corpus (Guo et al., 2022) is built by integrating motion data from two large-
scale sources: HumanAct12 (Guo et al., 2020) and AMASS (Mahmood et al., 2019). These
source datasets cover a broad spectrum of movements, including everyday behaviors like walk-
ing or jumping, athletic activities such as swimming and karate, acrobatic skills like cartwheels, and
performance-oriented motions such as dancing.

For consistency, the raw motion clips are standardized to 20 frames per second (FPS). All data
are retargeted onto a unified skeleton and aligned so that the character initially faces the positive
Z direction. To attach natural language descriptions, annotations were collected via Amazon Me-
chanical Turk (AMT). Workers were instructed to write descriptions, and each motion was labeled
independently by almost three different annotators.

In total, HumanML3D provides 14,616 motion clips paired with 44,970 descriptions, using a vocab-
ulary of 5,371 distinct tokens. The dataset amounts to about 28.6 hours of motion, with clips ranging
from 2–10 seconds (average length 7.1s). Captions are on average 12 words long, with a median of
10. To further enrich the dataset, mirroring was applied: for instance, the sequence “A man kicks
something or someone with his left leg” was mirrored and relabeled as “A man kicks something or
someone with his right leg,” ensuring balanced left and right motion coverage.
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Table 5: Sampling Step ablation. R represents R-
Precision.

Condition Step FID ↓ R Top-1 ↑ R Top-3 ↑

2

5 0.103 0.512 0.805
7 0.069 0.529 0.820

10 0.079 0.536 0.824
20 0.096 0.530 0.820

3

5 0.164 0.471 0.775
7 0.138 0.490 0.788

10 0.137 0.487 0.790
20 0.134 0.484 0.792

4

5 0.280 0.449 0.745
7 0.292 0.460 0.757

10 0.265 0.466 0.767
20 0.271 0.461 0.754

Table 6: CFG Scale ablation.

Condition Scale FID ↓ R Top-1 ↑ R Top-3 ↑

2

3 0.054 0.534 0.823
4 0.079 0.536 0.824
5 0.092 0.517 0.712
6 0.171 0.498 0.800

3

3 0.112 0.483 0.788
4 0.137 0.487 0.790
5 0.186 0.463 0.767
6 0.223 0.465 0.769

4

3 0.335 0.466 0.745
4 0.265 0.466 0.767
5 0.368 0.464 0.757
6 0.413 0.437 0.718

Table 7: Ablation study on the architecture design (Transformer vs. Conformer).

Condition Backbone FID ↓ R Top-1 ↑ R Top-3 ↑

2 Transformer 0.080 0.453 0.736
Conformer 0.079 0.536 0.824

3 Transformer 0.187 0.402 0.700
Conformer 0.137 0.487 0.790

4 Transformer 0.533 0.373 0.670
Conformer 0.265 0.466 0.767

The KIT-ML dataset (Plappert et al., 2016) contains 3,911 motion sequences with 6,278 associated
textual annotations. The text spans a vocabulary of 1,623 words, normalized to ignore capitalization
and punctuation. Motions originate from the KIT (Plappert et al., 2016) and CMU (De la Torre
et al., 2009) motion capture datasets, but are resampled at 12.5 FPS. Each sequence is paired with
between one and four textual descriptions, averaging roughly 8 words per sentence.

A.4 FURTHER RESULTS OF ABLATION STUDY

We conducted ablation studies to determine the sampling steps and CFG scaling for our model, and
the results are summarized in Table 5 and 6, respectively. In addition, we examined whether to
adopt a Transformer or a Conformer within the ECA module, and the results are reported in Table 7.

A.5 DETAILS ON HUMANML3D-E

For reproducibility of our HumanML3D-E, we provide the prompts in Table 8 and 9. The LLM
we used is Gemini 2.5 Flash, which not only demonstrates strong performance but also offers sig-
nificantly faster speed compared to other LLMs. The HumanML3D test set contains 4,646 samples,
with 2,622 in Condition 2, 927 in Condition 3, and 260 in Condition 4. The visualization of these
statistics is shown in Figure 5a.

A.6 DETAILS OF STUDY 1: VALIDATING EVENT DECOMPOSITION

In our user study, we involved 21 participants (11 male, 10 female; µ = 26.38 years, σ = 4.60,
range = 22-44). Each participant evaluated 20 samples per condition using a 7-point Likert scale.
The average ratings were: event-aware prompt (µ = 6.08, σ = 1.03), verb-aware prompt (µ = 5.07,
σ = 1.62), and human (µ = 6.09, σ = 1.00). Because the rating data did not satisfy normality
assumptions, we adopted non-parametric methods. A Friedman test revealed a significant effect of
condition (χ2(2) = 11.16, p < .01). Pairwise Wilcoxon signed-rank tests with Holm adjustment
showed that the event-aware prompt and verb-aware prompt differed significantly (p < .01), as
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Figure 5: (a)) Number of samples in the HumanML3D test set and HumanML3D-E. (b) User study
of prompts. Error bars denote standard errors. Asterisks denote statistical significance (∗∗: p <
0.01).

did the verb-aware prompt and human (p < .01). In contrast, no reliable difference was observed
between the event-aware prompt and human (p = 0.1546). These findings suggest that the verb-
aware prompt condition was consistently rated lower compared to both the event-aware prompt
and human, while ratings for the event-aware prompt and human were statistically comparable.
Figure 5b summarizes these outcomes.

A.7 DETAILS OF STUDY 2: PERCEPTUAL VALIDATION OF EVENT-T2M

We conducted a user study with 20 participants (11 male, 9 female; µ = 27.8 years, σ = 6.25, range
= 22–46). Each participant evaluated motion outputs from six conditions—AttT2M, GraphMotion,
MoMask, Light-T2M, Event-T2M, and ground-truth—on a 7-point Likert scale.

Across the three metrics—Fidelity, Order consistency, and Naturalness—clear differences were ob-
served. Event-T2M and Ground-truth achieved the highest scores. Event-T2M showed µ = 5.29,
σ = 1.23 (Fidelity), µ = 5.41, σ = 1.25 (Order consistency), and µ = 5.03, σ = 1.40 (Natu-
ralness). Ground-truth performed similarly with µ = 5.45, σ = 1.39, µ = 5.47, σ = 1.38, and
µ = 5.20, σ = 1.63. In contrast, the other models remained in the mid-3 range: AttT2M (µ = 3.57,
σ = 1.43; µ = 3.64, σ = 1.47; µ = 3.84, σ = 1.42), GraphMotion (µ = 3.33, σ = 1.56; µ = 3.48,
σ = 1.62; µ = 3.67, σ = 1.59), Light-T2M (µ = 3.28, σ = 1.60; µ = 3.43, σ = 1.63; µ = 3.44,
σ = 1.49), and MoMask (µ = 3.48, σ = 1.52; µ = 3.61, σ = 1.58; µ = 3.77, σ = 1.54). These
results indicate that Event-T2M and Ground-truth clearly outperformed the other methods across all
evaluation dimensions.

Since normality assumptions were not met, we employed non-parametric tests. Friedman tests re-
vealed significant effects of condition for all three criteria (Fidelity: χ2(5) = 53.87, p < .01; Order
alignment: χ2(5) = 51.82, p < .01; Naturalness: χ2(5) = 47.85, p < .01). Pairwise Wilcoxon
signed-rank tests with Holm correction further indicated that Event-T2M consistently outperformed
all competing models (p < .01 across comparisons). In contrast, comparisons between Event-
T2M and ground-truth did not yield reliable differences (Fidelity: p = .0890; Order alignment:
p = .2905; Naturalness: p = .2785).

These results suggest that Event-T2M achieves ratings comparable to ground truth while signifi-
cantly surpassing existing baselines across all evaluation aspects.

A.8 FURTHER VISUALIZATION

Figure 6 compares generations for the prompt “A person steps backward, jumps up, runs forward,
then runs backward.” Event-T2M alone faithfully executes all four actions in the correct order, with
smooth transitions. In contrast, baselines either truncate the sequence, merge events, or substitute
incorrect motions.
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Event-T2M
(Ours)

AttT2M

GraphMotion

MoMask

Light-T2M

A person steps backward, jumps up, runs forward, then runs backward.

wrong event addition

wrong directionomission

wrong direction
omission wrong direction

addition

Timestep

Figure 6: Further qualitative comparison.

A.9 RESULTS OF DECOMPOSITION BY LLM PROMPTS

The quality of event decomposition is highly dependent on the instructions provided to the LLM. To
investigate this, we designed two different prompting strategies, as shown in Table 8 and 9:

Quantitative results in Figure 7 show that the event-aware prompt produces more reliable and con-
sistent decompositions. When using event-aware decomposition, Event-T2M achieves higher R-
Precision and lower FID, particularly in the ≥3 and ≥4 event subsets. By contrast, the verb-aware
prompt often over-segments or under-segments the text (e.g., splitting “walk forward while waving”
into two independent actions, or merging “run, stop, and jump” into one), which introduces noise in
the event tokens and weakens the conditioning signal. This results in degraded alignment between
generated motions and text, as reflected in both retrieval-based and distributional metrics.

These findings confirm that a carefully designed event-aware prompt is crucial for leveraging LLMs
in motion-text decomposition. Rather than naively extracting all actions, grounding the segmenta-
tion process in a principled definition of events yields more stable event tokens and stronger down-
stream performance.

A.10 LLM USAGE STATEMENT

In preparing this paper, we used an LLM solely as a writing assistance tool for grammar correction
and minor language polishing. The LLM was not involved in research ideation, methodology design,
data analysis, or result interpretation. All scientific content, experiments, and conclusions were fully
conceived and verified by the authors.
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“a person steps forward, sits down, taps feet together while rubbing hands together.”

- “a person steps forward.”
- “a person sits down.”
- “a person taps feet together 
     while rubbing hands together.”

Event-aware

- “a person steps forward.”
- “a person sits down.”
- “a person taps feet together.”
- “a person rubs hands together.”

Verb-aware

“a standing person is swaying gently back and forth 
as he holds his left hand to the left side of his head for a moment. 

he drops his arm, briefly, then raises it to look at his hand.”

- “a standing person is swaying gently back and 
   forth as he holds his left hand to the left side 
   of his head for a moment.”
- “a standing person drops his arm, briefly.”
- “a standing person then raises it to look at 
   his hand.”

Event-aware

- “a standing person is swaying gently 
   back and forth.”
- “a standing person holds his left hand 
   to the left side of his head for a moment.”
- “a standing person drops his arm, briefly.”
- “a standing person then raises it to look at 
   his hand.”

Verb-aware

“a person kicks with their right leg twice, and then once with their left.”

- “a person kicks with their right leg twice.”
- “a person then kicks once with their left.”

- “a person kicks with their right leg.”
- “a person kicks with their right leg.”
- “a person kicks once with their left.”

Event-aware Verb-aware

“a person is making rapid swinging motions with their right leg in the air, 
while holding onto something with their right hand.”

- “a person is making rapid swinging motions 
   with their right leg in the air, while holding onto 
   something with their right hand.”

Event-aware

- “a person is making rapid swinging motions 
   with their right leg in the air.”
- “a person is holding onto something 
   with their right hand.”

Verb-aware

“a person dodges things thrown at them by blocking with their left hand and then ducking.”

- “a person dodges things thrown at them 
   by blocking with their left hand.”
- “a person then ducks.”

Event-aware

- “a person dodges things thrown at them.”
- “a person blocks with their left hand.”
- “a person then ducks.”

Verb-aware

Figure 7: Overall comparison of Event-T2M.
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Table 8: Event-aware prompt: Incorporates our proposed definition of event to guide segmentation.

Event-aware Prompt
Please segment a single input sentence into multiple sentences that each represent a dis-
tinct event, following the rules below:

• A bundle of actions performed simultaneously at a specific point in time is defined as
a single “event”.

• Each segmented sentence must start with the subject used in the original sentence
(e.g., “a person”, “a man”, etc.).

• Do not remove or simplify any adverbs, adjectives, or modifiers that appear in the
original sentence — preserve them as much as possible.

• Parts separated by the # symbol must be included in each segmented sentence.
• Do not add any new sentences — only break down the given text as instructed.
• Do not include your thinking process or output reasoning. Only output the segmented

sentences following the format.
• If the sentence cannot be further segmented into multiple events, leave it as is and

output the original sentence without any changes.
• Even if there are grammatical errors in the sentence, proceed with the processing.
• If the input sentence contains multiple actions, the output must contain the same num-

ber of actions as the input sentence.

Good Example 1 - Input

a man lifts something on his left and places it down on his right.
#a/DET man/NOUN lift/VERB something/PRON on/ADP his/DET left/NOUN
and/CCONJ place/VERB it/PRON down/ADP on/ADP his/DET right/NOUN#0.0#0.0

Good Example 1 - Output

a man lifts something on his left.#a/DET man/NOUN lift/VERB something/PRON
on/ADP his/DET left/NOUN#0.0#0.0
a man places it down on his right.#a/DET man/NOUN place/VERB it/PRON
down/ADP on/ADP his/DET right/NOUN#0.0#0.0

Good Example 2 - Input

a man kicks something with his left leg.#a/DET man/NOUN kick/VERB some-
thing/PRON with/ADP his/DET left/ADJ leg/NOUN#0.0#0.0

Good Example 2 - Output

a man kicks something with his left leg.#a/DET man/NOUN kick/VERB some-
thing/PRON with/ADP his/DET left/ADJ leg/NOUN#0.0#0.0
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Good Example 3 - Input

A person waves their hand while stepping sideways, then jumps up and spins, and
finally lands and bows. #A/DET person/NOUN wave/VERB their/DET hand/NOUN
while/SCONJ step/VERB sideways/ADV then/ADV jump/VERB up/ADV and/CCONJ
spin/VERB and/CCONJ finally/ADV land/VERB and/CCONJ bow/VERB#0.0#0.0

Good Example 3 - Output

A person waves their hand while stepping sideways.#A/DET person/NOUN wave/VERB
their/DET hand/NOUN while/SCONJ step/VERB sideways/ADV#0.0#0.0
A person jumps up and spins.#A/DET person/NOUN jump/VERB up/ADV and/CCONJ
spin/VERB#0.0#0.0
A person lands and bows.#A/DET person/NOUN land/VERB and/ CCONJ
bow/VERB#0.0#0.0

Bad Example 1 - Input

someone is sprinting side to side#someone/PRON is/AUX sprint/VERB side/NOUN
to/PART side/VERB#0.0#0.0

Bad Example 1 - Output

The input sentence cannot be segmented as requested because “side to side” is a single adver-
bial phrase modifying the verb “sprinting,” and “side” is used as a noun and a prepositional
phrase. The sentence only contains one action (sprinting).

Bad Example 2 - Input

A person claps their hands while sitting on the ground. #A/DET person/NOUN clap/VERB
their/DET hands/NOUN while/SCONJ sit/VERB on/ADP the/DET ground/NOUN#0.0#0.0

Bad Example 2 - Output

A person claps their hands. #A/DET person/NOUN clap/VERB their/DET
hands/NOUN#0.0#0.0 A person sits on the ground. #A/DET person/NOUN sit/VERB
on/ADP the/DET ground/NOUN#0.0#0.0

Bad Example 3 - Input

A person bends their knees and raises both arms at the same time. #A/DET person/NOUN
bend/VERB their/DET knees/NOUN and/CCONJ raise/VERB both/DET arms/NOUN
at/ADP the/DET same/ADJ time/NOUN#0.0#0.0

Bad Example 3 - Output

A person bends their knees.#A/DET person/NOUN bend/VERB their/DET
knees/NOUN#0.0#0.0
A person raises both arms.#A/DET person/NOUN raise/VERB both/DET
arms/NOUN#0.0#0.0
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Table 9: Verb-aware prompt: Segments sentences based only on individual actions without an event-
level definition.

Verb-aware Prompt
Please segment a single input sentence into multiple sentences that each represent a distinct
event, following the rules below:

• Each segmented sentence must start with the subject used in the original sentence (e.g., “a
person”, “a man”, etc.).

• Do not remove or simplify any adverbs, adjectives, or modifiers that appear in the original
sentence — preserve them as much as possible.

• Parts separated by the # symbol must be included in each segmented sentence.
• Do not add any new sentences — only break down the given text as instructed.
• Do not include your thinking process or output reasoning. Only output the segmented

sentences following the format.
• Even if there are grammatical errors in the sentence, proceed with the processing.
• If the input sentence contains multiple actions, the output must contain same number of

actions as the input sentence.

Good Example 1 - Input

a man lifts something on his left and places it down on his right.#a/DET man/NOUN
lift/VERB something/PRON on/ADP his/DET left/NOUN and/CCONJ place/VERB
it/PRON down/ADP on/ADP his/DET right/NOUN#0.0#0.0

Good Example 1 - Output

a man lifts something on his left.#a/DET man/NOUN lift/VERB something/PRON on/ADP
his/DET left/NOUN#0.0#0.0 a man places it down on his right.#a/DET man/NOUN
place/VERB it/PRON down/ADP on/ADP his/DET right/NOUN#0.0#0.0

Good Example 2 - Input

a man kicks something with his left leg.#a/DET man/NOUN kick/VERB something/PRON
with/ADP his/DET left/ADJ leg/NOUN#0.0#0.0

Good Example 2 - Output

a man kicks something with his left leg.#a/DET man/NOUN kick/VERB something/PRON
with/ADP his/DET left/ADJ leg/NOUN#0.0#0.0
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Good Example 3 - Input

A man picks up a heavy box and carries it across the room.#A/DET man/NOUN pick/VERB
up/ADP a/DET heavy/ADJ box/NOUN and/CCONJ carry/VERB it/PRON across/ADP
the/DET room/NOUN#0.0#0.0

Good Example 3 - Output

A man picks up a heavy box.#A/DET man/NOUN pick/VERB up/ADP a/DET heavy/ADJ
box/NOUN#0.0#0.0 A man carries it across the room.#A/DET man/NOUN carry/VERB
it/PRON across/ADP the/DET room/NOUN#0.0#0.0

Bad Example 1 - Input

someone is sprinting side to side#someone/PRON is/AUX sprint/VERB side/NOUN
to/PART side/VERB#0.0#0.0

Bad Example 1 - Output

The input sentence cannot be segmented as requested because “side to side” is a single adver-
bial phrase modifying the verb “sprinting,” and “side” is used as a noun and a prepositional
phrase. The sentence only contains one action (sprinting).

Bad Example 2 - Input

A person jumps high and lands softly.#A/DET person/NOUN jump/VERB high/ADV
and/CCONJ land/VERB softly/ADV#0.0#0.0

Bad Example 2 - Output

A person jumps high and lands softly.#A/DET person/NOUN jump/VERB high/ADV
and/CCONJ land/VERB softly/ADV#0.0#0.0

Bad Example 3 - Input

a man runs quickly and turns left.#a/DET man/NOUN run/VERB quickly/ADV and/CCONJ
turn/VERB left/ADV#0.0#0.0

Bad Example 3 - Output

a man runs quickly.#a/DET man/NOUN run/VERB quickly/ADV#0.0#0.0

A.11 VALIDATING THE ACCURACY OF LLM-GENERATED EVENT LABELS.

To directly measure the reliability of the LLM-based event decomposition, we perform a human eval-
uation on 300 randomly sampled HumanML3D-E prompts. Three trained annotators independently
assess whether each LLM-generated segment (1) is grammatically well-formed and (2) matches our
event definition as a minimal, semantically self-contained action. A segmentation is accepted only
when both criteria are satisfied. Under this protocol, the LLM achieves a 93.3% correctness rate,
indicating that the event splits are sufficiently accurate for benchmark construction.
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Table 10: Comparative results on KIT-ML-E and Motion-X-E against baselines. “Condition 2/3/4”
denotes prompts with at least 2, 3, and 4 events, respectively.

Datasets Condition Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

KIT-ML-E

2

AttT2M (Zhong et al., 2023) 0.320±.011 0.514±.010 0.640±.012 0.636±.067 3.568±.046 2.097±.072

MoMask (Guo et al., 2024) 0.393±.009 0.586±.010 0.708±.010 0.380±.026 3.054±.037 1.268±.038

Light-T2M (Zeng et al., 2025) 0.417±.012 0.614±.011 0.734±.011 0.392±.018 2.907±.028 1.337±.050

MoGenTS (Yuan et al., 2024) 0.353±.008 0.581±.009 0.721±.008 0.424±.025 3.100±.035 0.720±.034

Event-T2M (Ours) 0.368±.010 0.575±.008 0.707±.009 0.378±.016 3.020±.026 0.794±.045

3

AttT2M (Zhong et al., 2023) 0.176±.010 0.299±.008 0.405±.010 1.795±.174 3.524±.054 2.053±.052

MoMask (Guo et al., 2024) 0.242±.012 0.374±.016 0.476±.020 0.991±.117 3.126±.076 1.201±.050

Light-T2M (Zeng et al., 2025) 0.287±.019 0.448±.019 0.554±.019 0.700±.044 2.785±.075 1.265±.039

MoGenTS (Yuan et al., 2024) 0.197±.014 0.346±.013 0.470±.011 0.855±.060 3.058±.054 0.712±.026

Event-T2M (Ours) 0.241±.013 0.406±.012 0.520±.010 0.678±.020 2.672±.040 0.769±.023

4

AttT2M (Zhong et al., 2023) 0.316±.032 0.528±.032 0.688±.034 9.190±1.051 3.956±.191 2.527±.131

MoMask (Guo et al., 2024) 0.434±.027 0.653±.036 0.713±.032 4.565±.507 3.801±.214 1.292±.061

Light-T2M (Zeng et al., 2025) 0.416±.025 0.653±.051 0.734±.046 3.639±.507 3.459±.103 1.568±.072

MoGenTS (Yuan et al., 2024) 0.338±.016 0.597±.029 0.697±.032 3.894±.278 3.357±.051 0.866±.047

Event-T2M (Ours) 0.350±.018 0.641±.030 0.716±.025 3.429±.276 3.661±.072 0.990±.030

Motion-X-E

2

AttT2M (Zhong et al., 2023) 0.425±.005 0.628±.006 0.741±.005 0.350±.021 3.728±.027 2.289±.062

MoMask (Guo et al., 2024) 0.429±.006 0.633±.004 0.746±.003 0.362±.017 3.698±.014 1.492±.044

Light-T2M (Zeng et al., 2025) 0.441±.003 0.643±.003 0.749±.003 0.174±.010 3.674±.010 1.657±.053

MoGenTS (Yuan et al., 2024) 0.432±.005 0.645±.003 0.757±.004 0.116±.008 3.693±.017 0.833±.030

Event-T2M (Ours) 0.524±.008 0.728±.006 0.825±.004 0.111±.003 2.984±.011 0.902±.048

3

AttT2M (Zhong et al., 2023) 0.347±.006 0.541±.006 0.658±.005 0.750±.042 4.071±.023 2.512±.076

MoMask (Guo et al., 2024) 0.359±.008 0.559±.006 0.681±.004 0.695±.027 3.867±.020 1.620±.052

Light-T2M (Zeng et al., 2025) 0.369±.006 0.558±.008 0.672±.006 0.364±.021 3.991±.019 1.736±.057

MoGenTS (Yuan et al., 2024) 0.366±.006 0.557±.006 0.672±.006 0.169±.012 3.896±.015 0.843±.025

Event-T2M (Ours) 0.530±.007 0.729±.006 0.825±.005 0.140±.012 2.981±.025 0.949±.058

4

AttT2M (Zhong et al., 2023) 0.311±.010 0.493±.014 0.610±.016 1.456±.131 4.224±.076 2.782±.078

MoMask (Guo et al., 2024) 0.300±.011 0.504±.016 0.625±.017 1.224±.095 4.066±.054 1.770±.046

Light-T2M (Zeng et al., 2025) 0.310±.012 0.495±.011 0.616±.013 1.082±.064 4.224±.056 1.915±.068

MoGenTS (Yuan et al., 2024) 0.323±.012 0.516±.012 0.629±.009 0.744±.058 4.118±.039 0.953±.034

Event-T2M (Ours) 0.362±.008 0.567±.009 0.697±.006 0.431±.005 3.959±.017 0.953±.049

A.12 EVALUATION ON MORE DATASETS

We constructed event-level benchmarks for KIT-ML and Motion-X and evaluated all baseline mod-
els under identical conditions (Table 10 and 11). Because KIT-ML consists largely of simpler
motions, the number of samples containing ≥ 4 events is extremely limited; thus, we used a batch
size of 16 for evaluation under that specific condition. Across both benchmarks, Event-T2M demon-
strated consistent and competitive performance, indicating that its effectiveness is not restricted to
any particular dataset or benchmark setting.

A.13 COMPARISON WITH RETRIEVAL-BASED MOTION SYNTHESIS

We additionally compare Event-T2M with a representative retrieval-augmented baseline, ReMoD-
iffuse (Zhang et al., 2023b), which improves motion quality by retrieving motion conditioned on
the input text and refining them with a diffusion model. Quantitative results on HumanML3D-E are
reported in Table 12. Across all conditions, Event-T2M achieves better text–motion alignment and
lower FID than ReMoDiffuse, and the margin becomes larger as the number of events in the prompt
increases (Conditions 2, 3, and 4).

We attribute this trend to a fundamental limitation of retrieval-based pipelines under compositional
complexity. ReMoDiffuse relies on matching the prompt to existing motions, which is effective
when the description corresponds to a single, relatively simple action, but does not provide an ex-
plicit mechanism to align multiple ordered semantic units to distinct temporal segments. As a result,
for long multi-event prompts, the retrieved motions often cover only part of the description or fail to
respect the full temporal structure.

In contrast, Event-T2M explicitly introduces event boundaries in the text domain and conditions the
denoising process on event tokens that are intended to control temporally extended motion segments.
This event-level conditioning allows the model to synthesize novel combinations of sub-actions
rather than relying solely on recombining existing trajectories. Empirically, this design leads to
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Table 11: Comparative results on HumanML3D-E, KIT-ML-E and Motion-X-E against MARDM
baselines. “Condition 2/3/4” denotes prompts with at least 2, 3, and 4 events, respectively.

Datasets Condition Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

HumanML3D-E

2
MARDM-DDPM (Meng et al., 2024) 0.464±.005 0.658±.004 0.762±.003 0.157±.007 3.465±.015 2.331±.079 0.621±.001

MARDM-SiT (Meng et al., 2024) 0.479±.004 0.671±.004 0.771±.003 0.171±.009 3.404±.011 2.296±.093 0.632±.001

Event-T2M (Ours) 0.535±.003 0.683±.002 0.782±.001 0.116±.002 3.013±.005 1.034±.039 0.663±.001

3
MARDM-DDPM (Meng et al., 2024) 0.433±.005 0.621±.004 0.731±.004 0.301±.015 3.590±.019 2.461±.069 0.616±.002

MARDM-SiT (Meng et al., 2024) 0.440±.006 0.632±.003 0.733±.004 0.327±.018 3.544±.017 2.466±.079 0.625±.002

Event-T2M (Ours) 0.508±.004 0.708±.003 0.806±.004 0.131±.004 3.045±.008 1.082±.028 0.663±.001

4
MARDM-DDPM (Meng et al., 2024) 0.397±.013 0.585±.011 0.698±.011 0.643±0.063 3.697±.052 2.507±.068 0.613±.004

MARDM-SiT (Meng et al., 2024) 0.420±.010 0.608±.011 0.707±.013 0.719±.056 3.676±.050 2.506±.072 0.621±.004

Event-T2M (Ours) 0.463±.006 0.663±.007 0.781±.003 0.259±.012 3.281±.015 1.137±.085 0.659±.003

KIT-ML-E

2
MARDM-DDPM (Meng et al., 2024) 0.390±.012 0.578±.012 0.685±.010 0.670±.049 3.729±.049 2.494±.068 0.611±.004

MARDM-SiT (Meng et al., 2024) 0.332±.010 0.546±.009 0.688±.010 0.442±.034 3.555±.033 1.595±.075 0.674±.002

Event-T2M (Ours) 0.346±.010 0.568±.009 0.621±.036 0.621±.036 3.434±.036 0.963±.038 0.671±.002

3
MARDM-DDPM (Meng et al., 2024) 0.202±.013 0.345±.015 0.443±.015 3.547±.722 3.987±.135 2.297±.096 0.598±.009

MARDM-SiT (Meng et al., 2024) 0.205±.012 0.352±.014 0.454±.013 1.529±.294 3.561±.069 1.693±.063 0.650±.007

Event-T2M (Ours) 0.241±.013 0.405±.013 0.530±.010 1.457±.120 3.075±.045 1.122±.035 0.681±.002

4
MARDM-DDPM (Meng et al., 2024) 0.341±.025 0.575±.024 0.669±.025 10.378±0.891 4.880±.193 2.038±.103 0.567±.018

MARDM-SiT (Meng et al., 2024) 0.359±.023 0.584±.030 0.700±.025 7.942±.806 4.819±.202 2.285±.146 0.515±.017

Event-T2M (Ours) 0.346±.023 0.571±.023 0.687±.021 3.102±.580 3.733±.151 1.051±.038 0.637±.006

Motion-X-E

2
MARDM-DDPM (Meng et al., 2024) 0.383±.005 0.583±.004 0.703±.004 0.184±.009 3.926±.014 2.189±.052 0.623±.001

MARDM-SiT (Meng et al., 2024) 0.397±.004 0.598±.003 0.715±.004 0.171±.009 3.844±.013 2.130±.052 0.633±.001

Event-T2M (Ours) 0.538±.002 0.735±.002 0.826±.001 0.112±.003 3.009±.006 1.047±.054 0.664±.001

3
MARDM-DDPM (Meng et al., 2024) 0.349±.006 0.540±.008 0.660±.007 0.302±.015 3.824±.025 2.176±.061 0.603±.003

MARDM-SiT (Meng et al., 2024) 0.356±.005 0.551±.007 0.674±.006 0.266±.017 3.727±.017 2.157±.051 0.617±.002

Event-T2M (Ours) 0.507±.006 0.705±.004 0.803±.003 0.124±.006 3.052±.008 1.061±.047 0.663±.001

4
MARDM-DDPM (Meng et al., 2024) 0.322±.015 0.534±.011 0.680±.014 0.925±.079 3.672±.060 2.154±.066 0.556±.004

MARDM-SiT (Meng et al., 2024) 0.360±.014 0.555±.015 0.687±.011 0.972±.088 3.640±.045 2.150±.060 0.571±.005

Event-T2M (Ours) 0.452±.007 0.660±.006 0.776±.007 0.250±.009 3.292±.017 1.106±.029 0.659±.001

Table 12: Comparative results on HumanML3D-E against retrieval-based baselines. “Condition
2/3/4” denotes prompts with at least 2, 3, and 4 events, respectively.

Condition Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

2 ReMoDiffuse (Zhang et al., 2023b) 0.475±.003 0.657±.004 0.755±.003 0.151±.009 3.127±.016 2.937±.067

Event-T2M (Ours) 0.536±.002 0.732±.002 0.824±.002 0.079±.003 2.836±.006 0.976±.043

3 ReMoDiffuse (Zhang et al., 2023b) 0.444±.005 0.630±.004 0.732±.004 0.292±.016 3.174±.024 2.851±.087

Event-T2M (Ours) 0.487±.005 0.687±.004 0.790±.004 0.137±.003 2.928±.010 1.010±.029

4 ReMoDiffuse (Zhang et al., 2023b) 0.392±.011 0.572±.009 0.674±.009 0.583±.039 3.244±.046 3.106±.116

Event-T2M (Ours) 0.466±.008 0.660±.008 0.767±.007 0.265±.007 3.063±.015 1.039±.028

better preservation of event ordering and fewer omissions on HumanML3D-E, particularly in the
high-complexity regime where retrieval-based approaches struggle.

A.14 VERB-AWARE VS. EVENT-AWARE CONDITIONING

To directly assess whether event-aware conditioning offers advantages over verb-aware or hybrid
(verb + event) formulations, we conducted additional experiments using the verb-aware prompts
introduced in Table 9 of the supplementary material. Based on these prompts, we re-preprocessed
HumanML3D-E and retrained (i) a verb-aware variant that conditions solely on verb-level units, (ii)
a hybrid variant that combines verb-level units with global text features, and (iii) our event-aware
model built from the event-aware prompts in Table 8. Quantitative results across different event-
count subsets are reported in Table 13.

As summarized in Table 13, the event-aware model consistently achieves higher R-Precision and
exhibits more stable FID than both the verb-aware and hybrid variants across all complexity lev-
els. Verb-aware conditioning treats individual verbs as the primary semantic units, which captures
instantaneous actions but does not encode how they unfold as temporally coherent segments. In
contrast, event-aware conditioning operates on clauses that bundle the action together with its ar-
guments, affected body parts, and temporal scope, providing a more suitable alignment target for
motion segments.
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Table 13: Comparative results on HumanML3D-E against verb-aware and event-aware conditioning.
“Condition 2/3/4” denotes prompts with at least 2, 3, and 4 events, respectively.

Condition Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

baseline Verb-aware conditioning 0.548±.002 0.738±.002 0.830±.001 0.085±.004 2.772±.008 1.164±.042

Event-aware coditioning 0.562±.002 0.754±.003 0.842±.002 0.056±.002 2.711±.005 0.949±.026

2 Verb-aware conditioning 0.518±.002 0.712±.003 0.810±.002 0.128±.003 2.913±.006 1.309±.039

Event-aware coditioning 0.536±.002 0.732±.002 0.824±.002 0.079±.003 2.836±.006 0.976±.043

3 Verb-aware conditioning 0.479±.005 0.681±.006 0.780±.005 0.193±.006 2.990±.011 1.292±.044

Event-aware coditioning 0.487±.005 0.687±.004 0.790±.004 0.137±.003 2.928±.010 1.010±.029

4 Verb-aware conditioning 0.466±.009 0.654±.010 0.748±.008 0.347±.011 3.102±.026 1.364±.044

Event-aware coditioning 0.466±.008 0.660±.008 0.767±.007 0.265±.007 3.063±.015 1.039±.028

Table 14: Comparative results on HumanML3D-E (≥ 4 events) with human-annotated, LLM-free
test set.

Annotator Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

Human 1
AttT2M (Zhong et al., 2023) 0.410±.012 0.584±.015 0.687±.010 1.054±.004 3.464±.043 1.273±.506

MoMask (Guo et al., 2024) 0.443±.013 0.631±.013 0.733±.011 0.413±.030 3.205±.041 1.337±.045

Event-T2M (Ours) 0.459±.009 0.650±.009 0.762±.008 0.297±.008 3.036±.022 1.040±.029

Human 2
AttT2M (Zhong et al., 2023) 0.408±.019 0.595±.024 0.696±.020 1.052±.169 3.495±.070 1.656±.918

MoMask (Guo et al., 2024) 0.435±.012 0.625±.013 0.729±.012 0.420±.025 3.238±.046 1.349±.042

Event-T2M (Ours) 0.457±.010 0.667±.010 0.766±.009 0.281±.007 3.044±.021 1.061±.031

Human 3
AttT2M (Zhong et al., 2023) 0.393±.012 0.674±.013 0.679±.014 1.078±.087 3.513±.057 1.431±.354

MoMask (Guo et al., 2024) 0.441±.011 0.639±.011 0.746±.011 0.437±.029 3.187±.036 1.389±.036

Event-T2M (Ours) 0.494±.007 0.685±.007 0.781±.008 0.276±.008 3.005±.017 1.048±.040

LLM
AttT2M (Zhong et al., 2023) 0.407±.013 0.581±.010 0.688±.010 1.077±.104 3.455±.041 2.049±.099

MoMask (Guo et al., 2024) 0.441±.013 0.633±.014 0.734±.013 0.418±.030 3.205±.042 1.334±.046

Event-T2M (Ours) 0.466±.008 0.660±.008 0.767±.007 0.265±.007 3.063±.015 1.039±.028

These differences become most pronounced in the 4-event setting, where long-range sequential de-
pendencies are strongest. In this regime, the verb-aware model frequently merges or reorders sub-
actions, and the hybrid model only partially alleviates these issues by mixing verb-level information
with global context, but still lacks explicit temporal boundaries. The event-aware model, on the
other hand, benefits from conditioning on temporally extended event tokens that map more directly
to contiguous motion segments, which leads to better preservation of event ordering and fewer omis-
sions on complex multi-event prompts. Overall, these findings suggest that the gains of event-aware
conditioning come not from additional supervision, but from providing the diffusion model with
semantically and temporally grounded units that better match the structure of human motion.

A.15 EVALUATION ON A HUMAN-ANNOTATED, LLM-FREE EVENT TEST SET

To test Event-T2M independently of the LLM-based event decomposition, we constructed an ad-
ditional complex-motion test subset with fully human-segmented events. Three trained annotators
manually segmented all prompts with 4 events according to our event definition. For these long
and structured descriptions, annotators produced highly consistent segmentations, and the resulting
subsets substantially overlapped with the prompts selected by the LLM. We then evaluated Event-
T2M and all baselines on each of the three human-segmented splits. As reported in Table 14,
the performance trends closely match those observed on the original LLM-based HumanML3D-E
split: Event-T2M maintains a clear advantage over all baselines across annotators in terms of both
text–motion alignment and FID.

To directly address the concern that the baselines’ poorer performance might be an artifact of the
LLM pipeline, we further analyzed AttT2M and MoMask on the same three human-annotated sub-
sets. For each method, we compare results on (i) the original LLM-based split and (ii) the three
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Table 15: Comparative results on HumanML3D-E against baselines with TMR encoder setting.
“Condition 2/3/4” denotes prompts with at least 2, 3, and 4 events, respectively.

Condition Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

baseline

AttT2M (Zhong et al., 2023) 0.518±.006 0.707±.005 0.799±.006 0.146±.015 2.957±.029 1.594±.171

MoMask (Guo et al., 2024) 0.487±.002 0.684±.002 0.783±.003 0.284±.007 3.116±.008 1.158±.040

MoMask (Guo et al., 2024) (k/v) 0.494±.003 0.683±.002 0.781±.002 0.240±.008 3.113±.008 1.214±.045

Light-T2M (Zeng et al., 2025) 0.554±.003 0.746±.002 0.836±.002 0.053±.002 2.750±.008 0.970±.049

Event-T2M (ours) 0.562±.002 0.754±.003 0.842±.002 0.056±.002 2.711±.005 0.949±.026

2

AttT2M (Zhong et al., 2023) 0.500±.014 0.681±.004 0.777±.005 0.199±.008 3.089±.015 1.698±.082

MoMask (Guo et al., 2024) 0.470±.002 0.665±.002 0.769±.003 0.385±.011 3.194±.011 1.174±.041

MoMask (Guo et al., 2024) (k/v) 0.479±.004 0.668±.003 0.766±.002 0.291±.010 3.196±.010 1.217±.048

Light-T2M (Zeng et al., 2025) 0.527±.003 0.722±.003 0.815±.002 0.087±.002 2.885±.006 0.984±.032

Event-T2M (ours) 0.536±.002 0.732±.002 0.824±.002 0.079±.003 2.836±.006 0.976±.043

3

AttT2M (Zhong et al., 2023) 0.445±.017 0.631±.011 0.732±.011 0.474±.053 3.251±.024 1.798±.117

MoMask (Guo et al., 2024) 0.430±.006 0.622±.007 0.733±.006 0.544±.017 3.289±.020 1.190±.038

MoMask (Guo et al., 2024) (k/v) 0.445±.004 0.629±.006 0.731±.004 0.364±.017 3.297±.020 1.228±.045

Light-T2M (Zeng et al., 2025) 0.487±.006 0.680±.006 0.780±.004 0.139±.004 2.987±.010 1.005±.033

Event-T2M (ours) 0.487±.005 0.687±.004 0.790±.004 0.137±.003 2.928±.010 1.010±.029

4

AttT2M (Zhong et al., 2023) 0.424±.017 0.598±.025 0.701±.018 0.789±.046 3.335±.107 1.647±.409

MoMask (Guo et al., 2024) 0.417±.012 0.601±.008 0.708±.010 0.821±.056 3.392±.037 1.230±.040

MoMask (Guo et al., 2024) (k/v) 0.413±.011 0.590±.011 0.703±.011 0.682±.054 3.479±.042 1.251±.051

Light-T2M (Zeng et al., 2025) 0.436±.009 0.609±.008 0.711±.007 0.361±.009 3.319±.017 1.029±.028

Event-T2M (ours) 0.466±.008 0.660±.008 0.767±.007 0.265±.007 3.063±.015 1.039±.028

human-segmented splits (Table 14). Across all metrics, the differences between the LLM-based and
human-annotated results are very small. For AttT2M, Top-k R-Precision and FID on the human-
segmented splits remain within a narrow margin of the LLM-based scores, without any consistent
upward shift. MoMask exhibits the same pattern: Top-k retrieval, FID, MM-Dist, and multimodal-
ity on the human-annotated subsets fluctuate only slightly around the LLM-based values, sometimes
marginally higher and sometimes marginally lower.

These observations do not support the hypothesis that the baselines’ weaker performance on
HumanML3D-E is caused by a mismatch with the LLM-based segmentation pipeline. Instead, they
indicate that AttT2M and MoMask behave similarly on both LLM-segmented and human-segmented
complex prompts, while Event-T2M retains a consistent advantage in all cases (Table 14).

A.16 EVALUATION IN MODEL CONFIGURATIONS EMPLOYING THE TMR ENCODER

To ensure a fair comparison, we conducted additional experiments by replacing the CLIP text en-
coder with TMR in baseline models. Especially, we conducted an experiment on MoMask that uses
TMR’s word-level tokens as key/value in cross-attention (indicated as MoMask (k/v)).

Table 15 shows that replacing CLIP with TMR does not act as a uniformly strong boost across all
baselines. For AttT2M, using TMR tends to slightly improve text–motion alignment metrics, but at
the same time leads to less favorable behavior in terms of distributional quality (FID) and motion
diversity (MModality). MoMask is an even more extreme case: with CLIP it is very strong on
distributional metrics, but when we drop in TMR with the same architecture, both alignment and FID
move in a clearly worse direction. In contrast, Light-T2M benefits more consistently from TMR:
alignment improves across the board and, especially on subsets with a larger number of events, FID
also becomes better. In other words, we observe a heterogeneous pattern where gains and losses
coexist and depend strongly on the underlying architecture.

The MoMask (k/v) experiment was designed to test whether injecting TMR word-level tokens more
directly as key/value would change this picture. We find that in some conditions this variant outper-
forms the plain TMR version of MoMask in terms of alignment or FID, but compared to CLIP-based
MoMask the overall distributional quality is still worse, and on the most event-complex subsets the
performance gap is not fully closed. Thus, neither switching the encoder to TMR nor directly
feeding TMR tokens into K/V makes MoMask adopt TMR as a clearly and consistently superior
configuration over CLIP on HumanML3D-E.
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Table 16: Ablations for LIMM and ATII. “Condition 2/3/4” denotes prompts with at least 2, 3, and
4 events, respectively.

Condition Methods R-Precision ↑ FID ↓ MM-Dist ↓ MModality ↑
Top-1 ↑ Top-2 ↑ Top-3 ↑

baseline

w/o LIMM, ATII 0.514±.003 0.703±.002 0.797±.002 0.302±.006 3.104±.009 1.386±.068

w/o LIMM 0.535±.002 0.730±.003 0.824±.002 0.255±.005 2.841±.008 1.035±.032

w/o ATII 0.519±.002 0.709±.001 0.802±.001 0.052±.002 2.945±.005 1.255±.033

Event-T2M (ours) 0.562±.002 0.754±.003 0.842±.002 0.056±.002 2.711±.005 0.949±.026

2

w/o LIMM, ATII 0.498±.002 0.693±.002 0.792±.003 0.347±.007 3.263±.008 1.555±.057

w/o LIMM 0.519±.003 0.716±.002 0.814±.002 0.227±.005 2.908±.005 1.056±.037

w/o ATII 0.490±.003 0.676±.002 0.772±.002 0.076±.003 3.098±.008 1.385±.043

Event-T2M (ours) 0.536±.002 0.732±.002 0.824±.002 0.079±.003 2.836±.006 0.976±.043

3

w/o LIMM, ATII 0.445±.004 0.644±.005 0.754±.004 0.536±.012 3.453±.011 1.639±.052

w/o LIMM 0.470±.005 0.669±.003 0.773±.003 0.349±.009 3.021±.009 1.120±.031

w/o ATII 0.426±.004 0.616±.004 0.719±.004 0.207±.009 3.284±.011 1.521±.041

Event-T2M (Ours) 0.487±.005 0.687±.004 0.790±.004 0.137±.003 2.928±.010 1.010±.029

4

w/o LIMM, ATII 0.366±.008 0.547±.009 0.664±.009 0.813±.042 3.629±.023 1.853±.046

w/o LIMM 0.436±.007 0.652±.006 0.753±.006 0.520±.015 3.226±.014 1.118±.027

w/o ATII 0.402±.004 0.599±.008 0.707±.010 0.368±.022 3.406±.016 1.606±.044

Event-T2M (Ours) 0.466±.008 0.660±.008 0.767±.007 0.265±.007 3.063±.015 1.039±.028

Methods MARDM-SiT MARDM-DDPM MoGenTS MoMask Light-T2M AttT2M Event-T2M (+ LLM execution time)
AIT (s) 13.177 3.038 0.973 0.103 0.142 3.853 0.167 (+1.430)

Table 17: Average inference time (AIT) comparison.

A.17 EXTENDED ABLATIONS AND ROLE OF EACH MODULE

To more thoroughly analyze the contribution of the newly introduced components beyond our main
architecture, we conducted additional ablations on LIMM and ATII. Starting from the full Event-
T2M model, we removed each module individually and retrained under identical settings. The
results are summarized in Table 16. In both cases, we observe consistent degradation in motion
quality and text–motion alignment: FID becomes worse and R-Precision drops across all event-
count subsets on HumanML3D-E, with the largest declines appearing on prompts with higher event
complexity. This indicates that neither LIMM nor ATII is a superficial add-on; both play a mean-
ingful role in stabilizing and aligning event-conditioned generation.

Conceptually, our goal is not to introduce entirely new low-level architectural primitives, but to de-
sign an event-centric pipeline whose components are tailored to the structure induced by event-level
conditioning. LIMM is used to regularize local temporal dynamics and smooth transitions within
and between event segments, preventing abrupt changes when strong event-level signals are injected.
ATII adaptively injects global textual information in a way that depends on the current motion con-
text, helping the model decide when to rely more on event-local cues and when to fall back on global
semantics. The ablation results in Table 16 show that removing either LIMM or ATII consistently
harms both distributional quality and alignment, supporting our claim that these modules are integral
parts of the event-aware design rather than generic, easily replaceable components.

A.18 COMPUTATIONAL COST AND LLM OVERHEAD

We evaluated the computational cost of Event-T2M on an NVIDIA A5000 GPU using an Average
Inference Time (AIT) analysis that explicitly includes the latency introduced by the LLM-based
event decomposition stage. To estimate the model-side inference cost, we randomly sampled 100
test captions and measured the time required to generate motions, obtaining an AIT of 0.1667 sec-
onds per sample. We then separately measured the LLM latency by applying our event decomposi-
tion procedure to another set of 100 randomly selected test captions, which resulted in an average
execution time of 1.4299 seconds per caption.
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Combining these two components yields a total average cost of 1.5966 seconds per caption–motion
pair. This analysis shows that, while Event-T2M does introduce an additional LLM preprocessing
step, the resulting overhead is moderate relative to the overall inference pipeline and can be clearly
quantified. The detailed comparison with existing methods is summarized in Table 17.
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