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Abstract

Sequential recommendation predicts users’ fol-
lowing interactions by modeling dynamically
evolving preferences. Recently, diffusion-
based sequence recommenders have improved
recommendation accuracy through distribution
modeling, but they face the dual problems of
distribution alignment and semantic guidance
distortion. We propose AlignDiff, a Gradient-
Semantic Aligned Diffusion Model for Sequen-
tial Recommendation addressing these issues
via two innovations: (1) By combining a de-
noising predictor and an energy function net-
work into a siamese denoising network, this net-
work learns the gradient differences between
distributions using cross-entropy loss and gradi-
ent score-matching loss, explicitly constraining
the predicted denoising distribution to fit the
ground-truth data distribution; (2) Multi-Level
conditional guidance fusing sequence embed-
dings with attention-derived deep semantic fea-
tures, efficiently modeling user preferences and
correcting the problem of distortion in guid-
ance conditions by mining deep semantic in-
formation in user interaction sequences, which
guides the model to denoise in the direction of
the correct denoising trajectory. Experiments
demonstrate that AlignDiff significantly outper-
forms all baselines on three datasets '

1 Introduction

Sequential Recommendation (SR) models user
preferences through historical interactions to pre-
dict next-item interests. Early methods focus on
the temporal correlation of interaction sequences.
For example, traditional recurrent neural networks
(RNNs) are limited by the vanishing gradient
problem in long sequence modeling, leading to
gated architectures such as long short-term mem-
ory (LSTM) networks (Hidasi et al., 2015; Hi-
dasi and Karatzoglou, 2018). With the advent of
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Figure 1: The diffusion model’s generated prediction
(action movie preference) deviates from the ground-
truth distribution (action + comedy), revealing bias be-
tween denoised and real user preferences.

self-attention mechanisms (Lin et al., 2020; Tang
et al., 2025), dependency modeling has been com-
pletely transformed; for example, SASRec (Kang
and McAuley, 2018) (Self-Attentive Sequential
Recommendation), which employs unidirectional
self-attention to learn item transition patterns, and
BERT4Rec (Sun et al., 2019), utilizing bidirec-
tional Transformer encoders to jointly model past
and future contextual signals for improved next-
item prediction.

While conventional sequential recommendation
methods excel with static representations, their
limited capacity to model complex preference dis-
tributions drives the adoption of generative mod-
els—GANSs, VAEs, and diffusion models. Un-
like discriminative methods, these generative ap-
proaches simulate data generation through ad-
versarial training (GANs), latent regularization
(VAEs), or iterative denoising (diffusion models),
better capturing attribute distributions and prefer-
ence diversity. Diffusion models particularly sur-
pass traditional architectures: GAN-based methods
SeqGAN (Yu et al., 2017), SparseEnNet (Chen
et al., 2024), suffer gradient instability, while VAE
variants (e.g., ACVAE (Xie et al., 2021), DistVAE
(Li et al., 2023), Meta-SGCL (Hao et al., 2024))
face posterior collapse. In contrast, diffusion mod-
els like Diff4Rec (Wu et al., 2023) leverage curricu-
lum denoising and fine-grained interaction model-
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ing to iteratively recover ground-truth data distri-
butions, overcoming instability and collapse issues.
This establishes diffusion models as robust frame-
works for complex sequential dependencies.

Despite diffusion models’ success in sequential
recommendation (Wu et al., 2023; Li et al., 2024,
Yang et al., 2023), two key limitations remain: 1.
Trajectory Deviation from Global Distribution Mis-
match: Traditional diffusion models rely on re-
construction loss that optimizes single-step local
errors, failing to ensure global alignment between
predicted and ground-truth denoising trajectories.
Initial prediction misalignment and error accumu-
lation across iterative steps cause the final gener-
ated distribution to diverge from ground-truth user
preferences (e.g., concentrated action movie pre-
dictions vs. actual comedy/action preferences in
Figure 1). 2. Semantic Distortion in Conditional
Guidance: Shallow interaction sequence modeling
compresses multi-dimensional user interests into
single dominant semantics. This creates distortion
guidance signals (e.g., prioritizing action movies
while ignoring comedy/sci-fi preferences in Figure
1), derailing denoising trajectories from true seman-
tic patterns. These biases progressively widen the
gap between generated and ground-truth represen-
tations, degrading recommendation accuracy.

We propose AlignDiff, a Gradient-Semantic
Aligned Diffusion Model for Sequential Recom-
mendation, addressing distribution alignment and
semantic guidance distortion in the sequential rec-
ommendation to overcome the challenges in current
diffusion-based SR models. Specifically, for the
problem of conditional semantic distortion, a multi-
level conditional guidance module is constructed.
The module captures users’ preferences in different
semantic spaces through multi-head orthogonal at-
tention and further integrates sequence embedding
to generate semantically fidelity multi-level condi-
tional guidance. In the model’s inference stage, a
Classifier-Free Guidance strategy is adopted, which
adjusts the guidance ratio parameter and linearly
combines conditional and non-conditional predic-
tion results. To address the distribution alignment
problem, we propose a siamese denoising network
based on a Transformer denoising predictor and
an energy function. The network first iteratively
denoises the input to generate an initial prediction
distribution using the denoising predictor. Then,
the energy function network learns the gradient
information of the distribution and the gradient dis-
tribution information of the labels, constructing a

gradient score-matching loss. This loss is com-
bined with cross-entropy loss to jointly constrain
the model’s denoising path, performing single-step
gradient correction on the preliminary prediction
items to optimize the gradient difference between
the generated distribution and the ground-truth dis-
tribution. Our main contributions are as follows:

* To the best of our knowledge, this is the first
diffusion sequential recommendation model
explicitly aligning denoising gradients to con-
strain distribution shifts.

* We propose a multi-level conditional guidance
module to improve user preference modeling
and solve the semantic distortion problem in
conditional guidance.

» Extensive experiments showing state-of-the-
art performance across three real-world
datasets, with HR@K and NDCG@K im-
provements up to 20.4% and 11.3%.

2 Related Work

2.1 Sequential Recommendation

Early sequential recommendation (SR) models
evolved from first-order Markov chains (Rendle
et al., 2010) (predicting following items based
on immediate predecessors but struggling with
long-term dependencies) to deep architectures
like GRUs (GRU4Rec) (Hidasi et al., 2015) and
CNNs (Caser) (Tang and Wang, 2018) for dy-
namic pattern modeling. Attention-based models
(e.g., BERT4Rec (Sun et al., 2019), TiSASRec (Li
et al., 2020)) improved context modeling, while
SH-Rec (Ma and Gan, 2024) combined hierarchical
user intent and sequence behavior via LSTM/self-
attention layers with multi-task learning. However,
such models rely on static item embeddings, lim-
iting adaptability to dynamic user preferences or
item characteristics.

2.2 Diffusion Model in Recommendation

Diffusion models generate data by iteratively de-
noising corrupted inputs, offering stable training
compared to GANs/VAEs. While effective in con-
tinuous spaces (e.g., images), adapting them to
discrete data like text or user interactions requires
specialized techniques: Diffusion-LM (Li et al.,
2022) employs probabilistic discrete diffusion to
preserve semantic coherence in text generation. In
sequential recommendation, DiffuRec (Li et al.,
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Figure 2: The AlignDiff model integrates a multi-level
conditional guidance module (generates Semantic fi-
delity multi-level conditional signals to steer denoising)
and a siamese denoising network (removes noise from
input data and outputs final predictions).

2024) injects noise (e.g., masking) into interaction
sequences and reconstructs them via reverse dif-
fusion, augmented with contextual signals (time,
categories). Extensions like PDRec (Ma et al.,
2024) integrate time-aware decay to refine tem-
poral dynamics, while CaDi-Rec (Cui et al., 2024)
leverages bidirectional diffusion and contrastive
learning to preserve user preferences in augmented
views. However, challenges persist: (1) Denoising
trajectories often deviate from true user preferences
due to biased noise removal; (2) semantic misalign-
ment in guidance signals limits accurate modeling
of multidimensional user interests, hindering rec-
ommendation precision.

3 Method

In this section, we will introduce the details of
the proposed AlignDiff model, including an in-
depth overview and the construction of its core
components and loss functions.

3.1 Overview

Sequential Recommendation. Let I/ represent
a set of users and Z denote a collection of dis-
crete items in the dataset. Each user u € U
has an interaction history truncated to the most
recent n items, forming an input sequence S =
[i%, 44, ...,3%_1,4%], which is ordered chronologi-
cally according to the user’s interactions, where
ij € 1 denotes the j-th interacted item, n de-
notes the sequence length, and the total number
of items interacted with by user w. Eachitem ¢ € 7
is associated with a learnable embedding vector
e; € R% Thus, the sequence is represented as
E" = [e}, €Y, ...,et_, er]. Sequential recommen-

dation aims to predict the next item ¢, , | by ranking
candidate items based on the user’s learned prefer-
ences from E“.

The AlignDiff method we propose is shown in
Figure 2 and mainly consists of a multi-level con-
ditional guidance module and a Siamese denoising
network. The Siamese denoising network is ap-
plied in the diffusion and inference phases. The
main objective of the diffusion phase is to construct
semantically faithful conditional signals based on
multi-level conditional guidance, which are then
used to guide the denoising process of the Siamese
network. In the inference phase, the siamese net-
work trained in the diffusion phase performs de-
noising starting from data drawn from a standard
normal distribution, with the Classifier-Free Guid-
ance method applied throughout.

3.2 Multi-Level Condition Guide Module

We propose a method based on deep interaction
sequence multi-level semantic mining to improve
the fidelity of condition signals. First, interaction
sequences are embedded into continuous vectors to
enable gradient optimization and noise injection in
the latent space, and a position encoding strategy
is adopted to preserve time dependency.

X =E(S)+P (1)

where E € RIZI¥4 js the item embedding matrix,
P < R™*9 is the learnable positional encoding,
and n is the sequence length.

Subsequently, the module uses multi-head or-
thogonal attention to achieve diversified semantic
sub-space modeling and avoid capturing redundant
features. It also uses a causal masking mechanism
to avoid contact with future data. This ensures
comprehensive and non-overlapping preference ex-
traction in the semantic sub-space.

Q K, V=XWg,XWg, XWy (2)
orthoAttention(X) = (3)

h T
U,) (KV;
E Softmax 4(Q z) ( l) + Mcausal A%
=1

Va/h

where h is the number of heads, d/h is the head
dimension, and M. is the lower-triangular
mask that prevents future leakage. The orthog-
onal projection matrix satisfies Uf U; = §;;L,



VIV, = 6,L Vi,j € [1,h]. U; and V; repre-
sent a set of orthogonal matrices, d;; is the Kro-
necker function that takes the value 1, if i=j and O
otherwise.

Then, the output of the attention mechanism Y at
the last time step is extracted as the user preference
representation. A residual connection is adopted
between the sequence embedding and the attention
output to enhance representation learning ability
and enrich feature representation. Finally, the hid-
den state at the last time step h is extracted from
the optimized output H as a multi-level conditional
signal for semantic fidelity.

H = LayerNorm (Y+ReLU(YW1 +bq )W2+b2)
“4)

3.3 Siamese Denoising Network

This module consists of a denoising predictor fy(-)
and an energy function network S(-), which work
together in the diffusion phase and inference phase
to ensure distribution alignment and semantic fi-
delity.

3.3.1 Diffusion Phase

In the diffusion phase, the model reconstructs tar-
get embedding e,, via reverse denoising guided by
sequence S. We initialize x( from e,, through a sin-
gle diffusion step ¢(xo|en) = N (xo; \/0€n, (1 —
ap)I). During the diffusion phase, we adapt an
adaptive truncation mechanism (Ho et al., 2020)
tailored for sequence recommendation to adjust the
amount of noise injected dynamically.

&)

ﬁmax
10 t>T1

Bt _ {/Bmin + %(Bmax - ﬁmin) t<rT

The adaptive noise schedule employs SByin =
0.1, Bmax = 0.9, and truncation threshold 7 =
0.87" to balance exploration and semantic con-
sistency. Early stages (¢t < 0.87): High noise
(B =~ 0.9) enables broad item space exploration.
Later stages (t > 0.87): Low noise (5; =~ 0.09)
preserves semantic coherence. During training, ¢
is uniformly sampled from 1, ..., T for stochastic
denoising learning. This linear transition ensures
smooth noise scaling while preventing distribu-
tional abruptness. Noise accumulation follows:

x; = Vauxo+ VI —age (=[] (1-5s))
(6)

The noisy item embedding x; is fused with
historical interactions to form adjusted embed-
dings Z" = |[z1,29,...,2Zy], Which are fed into
the Transformer-based denoising predictor fy(-).
The predictor employs stacked self-attention lay-
ers with residual connections, augmented by Time-
step embeddings d; to track diffusion progress
and Element-wise fusion of guidance signal h and
Gaussian sampling ); to prevent preference over-
smoothing, generates the initial denoised prediction
X0.

%o = fo(Z") = Transformer([zo, 21, ..., Z))

Z; :)\Z‘Q(Xt—f—dt)-l-(l-f—h)@ei

(7N
where e; denotes the item embedding, d; repre-
sents the diffusion step embedding at timestep ¢,
and h serves as the multi-level conditional guid-
ance signal. The stochastic weighting factor \; ~
N(6,0) introduces controlled randomness while
preserving semantic coherence through element-
wise product ©.

After obtaining the initial prediction item repre-
sentation Xg, in order to further constrain the data
distribution of X fit the ground-truth data distri-
bution. When applying noise to the target item
en, we apply a small noise perturbation ﬁ; =0
to the target item, where ~ is used to control the
noise ratio. Here, to avoid confusion, we use y to
denote the target project embedded representation.
Similarly, going from e, to yq is the same process
as going from e,, to xg. Therefore, the target item
after adding noise is as follows:

a(yisly) = [T a(yolys-1)
s=1 3

Q(yslys—1) = N(ysn/1 = BLys, B])

where @, = [['_,(1 — £.). Similarly, to be
able to obtain samples of y,, at any step size, let
oy =1— 8., a, =[[;_, «; Then, we get:

q(yslyo) = N(ys; \/ @0, (1 — a,)T) ©)
Ys = \/@}’O +v1 - dseyaey NN(Ovl)

The energy function S(-) refines the denoising
process by learning gradient corrections between
the noise-perturbed target y s and initial prediction
Xg. To preserve gradient integrity from the pre-
denoised inputs, Sy4(-) employs simplified activa-
tion functions and constructs an implicit gradient



field via score-matching loss. This aligns the pre-
dicted distribution with the ground-truth by mini-
mizing the fllowing:

Czo = S¢(X0) = W, - Dropout

(GELU(Ly,_1(- - - GELU(L1 (%0)) - - ))) + by,
(10)

The energy function S (-) employs an MLP ar-
chitecture (vs. Transformer) with three key de-
sign principles: (1) GELU activation for stable
second-order optimization, (2) bottleneck structure
(d — 2d — 1) to prevent overfitting while preserv-
ing preference signals, and (3) Dropout (rate=0.1)
for generalization. This simplified design aligns
with its core objective: learning first-order gradi-
ent differences between generated and ground-truth
distributions rather than modeling high-order inter-
actions.

3.3.2 Inference Phase

In the inference phase, the model starts from a stan-
dard normal distribution and undergoes 7" iterations
of denoising to reconstruct the target project repre-
sentation e,,. In this phase, the denoising predictor
first undergoes T iterations of denoising to generate
a preliminary prediction of the project representa-
tion Xy. However, this distribution deviates from
the ground-truth distribution. The energy function
is refined through gradient correction to generate
the final prediction representation Xg. In addition,
ClassFier-Free Guidance is used to achieve a bal-
ance between personalization and generalization
capabilities.

X = f@(zxt) = (1 + w)fﬁ(zxt) - wf9(zxt)

X1 = (X, Xo) + Be
(11
During inference, the denoising process gener-
ates x;_1 using the formula fi;(x¢, X ), which com-
bines the refined estimate X and the current noisy
state x;, along with noise scaling f3; and Gaussian
noise ¢ . This iterative refinement repeats until Xq
is obtained. A hyperparameter w modulates the
multilevel guidance signal h: larger w prioritizes
personalized denoising (via h) over generalization
(represented by ¢) but risks degrading output qual-
ity. The energy function S4(-) then performs a
single-step gradient correction on Xy, removing
residual noise to yield the ground-truth target repre-
sentation Xg = X — Sy (Xo). Finally, X¢ is mapped
to discrete recommendations by computing inner-
product similarity scores with all candidate items,

with the highest-scoring item e; selected as the
user’s recommendation.

3.4 Loss Function

In the diffusion process, we first sample diffusion
steps t uniformly from [1, 7] (where T is the total
steps), then perform reverse denoising by decre-
menting the step-index from ¢ to 1, feeding step
embeddings, sequence item distributions, and con-
ditional guidance into the predictor fy(-) for infer-
ence. While standard diffusion models use mean
squared error (MSE) loss, we adopt cross-entropy
loss instead, as MSE is ill-suited for sequential rec-
ommendation tasks where target item embeddings
are discrete, and similarity is typically measured
via dot-product correlations.

exp(Xo - €n41)
> icr exp(Xo - €;)

1 .
Lop =Y  —logii
zp3

g =
(12)

Here, Xg is reconstructed by the Transformer-
based predictor fy(-), while - represents the inner
product operation used to measure the correlation
between vectors.

Traditional diffusion models optimize single-
step denoising via reconstruction losses (e.g., cross-
entropy) but fail to ensure global consistency
across multi-step denoising trajectories. To ad-
dress this, we introduce fractional score-matching
loss (Lpsar), which aligns the gradient field of the
predicted distribution (X() with that of the ground-
truth distribution (ys), correcting deviations caused
by error accumulation. This loss is defined as:

Se(ys) — Ss(Xo0)
o3

1. -
Lpsm = Ey, 0, 2HS¢(X0) —(

2
+ S4(Xo) - 73)

(13)
where the energy function S (-) learns an implicit
gradient field to steer Xy toward the true data man-
ifold (ys), reducing prediction noise and enhanc-
ing generalization. The total loss combines cross-
entropy (Lcg) and score-matching loss:

Ly = Lce +nLpsm (14)

Here, n balances the two objectives, controlling
how strictly the generated distribution aligns with
ground-truth data.



4 Experiment

In this section, we answer the following research
questions to evaluate our propose method system-
atically:

RQ1. How does AlignDiff compare to state-of-
the-art models on standard metrics?

RQ2. How do individual components of Align-
Diff affect its performance?

RQ3. How do key hyperparameters influence
AlignDiff’s performance?

RQ4. Does AlignDiff generate data closer to the
ground-truth distribution than baselines?

RQS5. Can the energy function effectively learn
gradient information?

RQ6. How does our gradient optimization
method compare to prior approaches?

4.1 Experimental Protocol

Datasets. Amazon Beauty & Toys >: Two Ama-
zon product category datasets spanning 18 years
of user behavior (ratings, reviews, purchase se-
quences), with product metadata (ASIN codes, cat-
egories, features) and user profiles capturing be-
havioral imbalance. MovieLens-1M *: A cleaned
dataset of 1 million explicit movie ratings (1-5
stars) from 6,040 users on 3,952 movies, including
timestamped interactions for modeling user interest
evolution.

Dataset #Sequence #items #Actions Avg len Sparsity
Beauty 22363 12101 198502  8.53 99.93%
Toys 19412 11924 167597  8.63 99.93%
Movielens-1IM 6040 3416 999611 165.50  95.16%

Table 1: Statistical information after preprocessing of
the three datasets

Baselines. We evaluate our AlignDiff method
by comparing three categories of representative
sequential recommendation methods, that is, dis-
criminative, generative and diffusion-based sequen-
tial recommendation models. Discriminative Se-
quential Recommendation Models: GRU4Rec
(Hidasi and Karatzoglou, 2018), Caser (Tang
and Wang, 2018), SASRec (Kang and McAuley,
2018), BERT4Rec (Sun et al., 2019), ComiRec
(Cen et al., 2020), STOSA (Fan et al., 2022).
Generative sequential recommendation Mod-
els: SVAE (Sachdeva et al., 2019), ACVAE (Xie

2https://cseweb.ucsd.edu/~jmcau1ey/datasets/
amazon_v2

3http://files.grouplens.or‘g/datasets/
movielens/ml-1m.zip

et al., 2021), Diffusion-based sequential recom-
mendation Models: CadiRec (Cui et al., 2024),
DiffuRec (Li et al., 2024). Our experiments on
GeForce RTX 3090 GPUs employ 4-layer Trans-
formers (128D embeddings, batch size 512) trained
with Adam (n=0.001), using energy-guided diffu-
sion (€2 €0.1,1, v €[0.05,0.5]) and dropout regu-
larization (0.1-0.3).

4.2 Overall Comparision(RQ1)

As shown in table 2, AlignDiff outperforms
all baselines across datasets, achieving signifi-
cant gains (e.g., +20.4% HR@20 and +11.3%
NDCG@20 vs. DiffuRec on Amazon-Toys) by
aligning denoising paths via gradient differences
(energy function + score-matching loss) and multi-
level conditional guidance. Traditional sequen-
tial models (GRU4Rec/Caser) underperform due
to limited long-term dependency modeling, while
self-attention-based SASRec and BERT4Rec ex-
cel in sequence representation. Among generative
models, SVAE struggles with preference model-
ing, ACVAE improves via adversarial contrastive
learning for global distribution alignment, and Dif-
fuRec (prior SOTA) leverages dynamic uncertainty
injection. AlignDiff surpasses these by integrat-
ing gradient alignment (matching denoised outputs
to ground-truth distributions) and multi-level se-
mantic guidance, demonstrating diffusion models’
superiority in iterative distribution learning through
robust denoising trajectory optimization.

4.3 Ablation Study(RQ?2)

We evaluate AlignDiff on three datasets by com-
paring two variants, with results in Table 3. Ab-
lation Analysis (Table 3) confirms the critical
roles of AlignDiff’s components: Removing multi-
level conditional guidance (ML)—which provides
semantic-rich embeddings to align latent user pref-
erences—causes significant performance degrada-
tion, as basic interaction sequences fail to capture
nuanced preferences. Disabling the energy func-
tion (EN)—responsible for gradient alignment be-
tween denoised predictions and ground-truth distri-
butions via score-matching loss—disrupts distribu-
tion fidelity, leading to suboptimal denoising paths.
Both components are indispensable: ML ensures
semantically consistent guidance signals, while
EN enforces gradient-driven alignment, jointly en-
abling robust uncertainty handling and generaliza-
tion. This synergy validates the framework’s design
superiority in balancing preference modeling and
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Dataset | Metric GRU4Rec Caser SASRec BERT4Rec ComiRec | SVAE ACVAE STOSA | CaDiRec DiffuRec AlignDiff | 1%
Beauty | HR@5 1.0112 16118 32688 2.1326 20495 | 0.9943 24672 35457 | 5.1608  5.5758  5.8675 52%
HR@10 1.9370 28166 62648  3.7160 44545 | 19745 3.8832 62048 | 7.2829  7.9068  8.126 2.8%
HR@20 3.8531 44048 89791  5.7922 7.6968 | 3.1552 6.1224 95939 | 105140 11.1098 113729 | 2.4%
NDCG@5 | 0.6084 0.9758 23989 13207 1.0503 | 0.6702 1.6858  2.5554 | 3.4473  4.0047  4.2023 4.9%
NDCG@10 | 0.9029 13602 32305  1.8219 1.8306 | 0.9863 2.1389 32085 |4.2764  4.7494  4.9261 3.7%
NDCG@20 | 1.3804 17595  3.6563 23541 2.6451 12867 27020 3.7609 | 47148 55566  5.6730 2.1%
Toys HR@5 1.1009 09622 45333 1.9260 23026 | 09109 2.1897 42236 | 49158  5.5650  6.3244 13.6%
HR@10 1.8553 1.8317  6.5496 29312 4.2901 13683 3.0749 69393 | 7.1549 74587  8.7229 16.9%
HR@20 3.1827 29500 9.2263  4.5889 6.9357 | 1.9239 4.4061 95096 |9.6011  9.8417  11.8493 | 20.4%
NDCG@5 | 0.6983 05707  3.0105  1.1630 11571 | 05580 1.5604 3.1017 | 3.8417  4.1667  4.4175 6.0%
NDCG@10 | 0.9396 0.8510  3.7533  1.4870 1.7953 | 0.7063 1.8452 3.8806 | 44957  4.7724  5.1904 8.8%
NDCG@20 | 1.2724 1.1293 43323 1.9038 24631 | 0.8446 2.1814 43789 | 4.8143 53684  5.9726 11.3%
ML-IM | HR@5 5.1139 7.1401 93812  13.6393 6.1073 | 14869 127167 7.0495 | 15.1846 17.9659 18.2658 | 1.7%
HR@10 10.1664  13.3792  16.8941  20.5675 12.0406 | 27189 19.9313 143941 | 22.5497 262647 273419 | 4.1%
HR@20 18.6995  22.5507 28318  29.9479 21.0094 | 5.0326 289722 249871 | 314655 367870 37.7156 | 2.5%
NDCG@5 | 3.0529 4.1550 53165  8.8922 3.5214 | 0.9587 82287 3.7174 | 10.5842 12.1150 12.5781 | 3.8%
NDCG@10 | 4.6754 6.1400 77277  11.1251 54076 | 1.2302 10.5417 6.0771 | 11.7544 147909 154907 | 4.7%
NDCG@20 | 6.8228 84304  10.5946 13.4763 7.6502 | 1.8251 12.8210 8.7241 | 159640 17.4386 18.1183 | 3.9%
Table 2: Results (%) across three datasets: best in bold, second-best underlined; last column shows AlignDiff’s

improvement over the top baseline. All experiments were performed five times and the average value was taken.

Dataset Ablation HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 Dataset | Metric 1-Layer MLP  3-Layer MLP 6-Layer MLP Transformer-nased
Beauty  w/o ML 5.8369 7.8229  10.3678 4.1279 4.7627 5.3951 Beauty | HR@5 5.6580 5.8675 5.7245 5.7769
w/o EN 5.7707 7.9518  10.7033 4.1684 4.8699 5.5596 HR@10 7.9652 8.1260 8.0219 7.8453
AlignDiff  5.8675  8.1260  11.0729 4.2023 4.9261 5.6730 HR@20 10.5314 11.0729 10.7256 10.6381
Toys w/o ML 6.1585  8.6638  11.6357 4.3922 5.0992 5.8229 NDCG@5 4.0945 4.2023 4.1429 4.1156
w/o EN 56382  7.4221 9.8330 4.2255 4.8007 5.4072 NDCG@10 4.7549 4.9261 4.8126 4.7741
AlignDiff  6.3244  8.7229  11.8493 4.4175 5.1904 5.9726 NDCG@20 5.4826 5.6730 5.5016 5.4822
MI-IM  w/o ML 16.1037 24.8246  36.2756 10.5078 13.5789 16.2743
w/o EN 158171 24.5478 35.6394 10.3501 13.1469 15.9432 . . .
AlignDiff 163178 254160 367156 110781 138907 16.6183 Table 4: The impact of different architectural energy

Table 3: Ablation experiments on three datasets
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distributional accuracy.

4.4 Parameter Sensitive Analysis(RQ3)

Hyperparameter analysis (Figures 3) demonstrates
AlignDift’s adaptability and stability: Guidance
weight w adjusts conditional guidance strength,
with sparse Amazon datasets (Beauty/Toys) favor-
ing w = 0.3 to compensate for limited interactions,
while dense MovieLens-1M performs best at w
= 0.1 to avoid over-constraining rich behavioral
patterns. Noise scale v is unified (v 0.05)
across datasets, balancing robustness to perturba-
tions without distorting underlying distributions,

functions on model performance on the Amazon-Beauty
dataset.

proving effective regardless of data sparsity. Loss
balance n = 0.01 optimally weights cross-entropy
(accuracy) and score-matching (distribution align-
ment) losses, avoiding underalignment or over-
constraint extremes. Energy scale €2 = 0.01 stabi-
lizes gradient-driven denoising across all datasets,
preventing overshooting from excessive adjust-
ments.

4.5 Data Distribution Comparison
Analysis(RQ4)

Visual (t-SNE/PCA) and quantitative (MMD) anal-
yses confirm that AlignDiff’s generated distribution
aligns closer to ground-truth data than DiffuRec.
As shown in figure 4, PCA shows tighter clustering
and preserved structural relationships, attributed
to multi-level conditional guidance and gradient
alignment via score-matching loss, which refine
denoising paths beyond cross-entropy optimization.
Lower MMD values (Table 5) and broader low-
dimensional overlap with the ground-truth distri-
bution quantitatively validate reduced discrepancy,
demonstrating the effectiveness of gradient-driven
constraints in enhancing distributional fidelity.



Figure 4: Differences between the original data distri-
bution, the distribution generated by the SOTA model
and the data distribution generated by AlignDiff on
the Amazon-Beauty dataset using the PCA and T-SNE
method.

Dataset Metric SOTA( td)  AlignDiff( td) Improve % p value
Beauty MMD(x107) 0.37+0.05 0.33+0.03 10.8% 0.001
Toys MMD(x10~) 0.42+0.04 0.35+0.05 16.7% 0.001
ML-IM  MMD(x107) 0.34+0.05 0.31+0.02 8.8% 0.001

Table 5: MMD significance test on three datasets (p-
value < 0.001)

4.6 The Impact of the Energy Function
Architecture(RQ5)

Experiments (Table 4) show that a 3-layer MLP-
based energy function optimizes performance,
balancing gradient alignment, and noise robust-
ness. Overly complex architectures (e.g., 6-layer
MLP/Transformer) capture high-frequency noise,
causing gradient oscillation, while simplistic 1-
layer MLPs fail to decouple noise signals. The
energy function’s role—modeling gradient differ-
ences between generated and ground-truth distribu-
tions—requires balancing expressiveness and sta-
bility. Single-step correction (Table 6) outperforms
multi-step methods, as iterative adjustments risk
overcorrection (forcing predictions toward training
data’s local density peaks), highlighting the need
for restrained gradient constraints to preserve gen-
eralization while aligning distributions.

4.7 Gradient Optimization Method
Comparison(RQ6)

Compared to gradient-enhanced variants (GAD-GP
with gradient penalty, GAD-Adv with adversarial
training), as shown in table 7. AlignDiff’s joint

Steps Beauty-HR@10 Beauty-NDCG@10 Toys-HR@10 Toys-NDCG @10
1 8.1260 4.9261 8.7229 5.1904
2 7.9524 4.6058 8.5219 5.0257
4 7.4428 4.3281 8.2907 4.7528
8 7.1625 4.0817 7.9056 4.4325

Table 6: The proposed model’s effect on the model
performance at different correction steps.

Method HR@5 HR@10 NDCG@5 NDCG@10
GAD-GP  5.6416  7.8243 3.9424 4.6308
GAD-Adv 52649  7.1526 3.6451 4.2107
AlignDiff 5.8675  8.1260 4.2023 4.9261

Table 7: Gradient Method Comparison on Beauty
Dataset

optimization strategy—combining cross-entropy
loss (task accuracy) and energy-based score match-
ing (distribution alignment)—achieves superior per-
formance. Unlike fixed-gradient methods (e.g.,
WGAN-GP), AlignDiff dynamically adjusts gradi-
ent alignment strength through learnable energy pa-
rameters ({2), enabling an adaptive balance between
recommendation fidelity and distribution shifts.
Multi-level conditional guidance further refines
gradient alignment across item embeddings and
sequence semantics, outperforming single-scale ap-
proaches. Results show significant gains on sparse
datasets (e.g., +20.4% HR @20 on Amazon-Toys
vs. +2.5% on MovieLens-1M), confirming that ex-
plicit gradient difference learning via the energy
function effectively mitigates recommendation bias
caused by data sparsity, while traditional meth-
ods struggle with distributional discrepancies in
interaction-scarce scenarios.

5 Conclusion

This study addresses two key limitations of dif-
fusion models in sequential recommendation: 1)
semantic distortion guidance representation (failing
to capture user behavior patterns) and 2) gradient
misalignment between generated and ground-truth
data distributions. We propose AlignDiff, which
resolves these issues through gradient field align-
ment and an adaptive guidance mechanism integrat-
ing Transformer encoders with multi-level signals
(e.g., interaction sequences). Experiments on three
benchmark datasets validate the model’s effective-
ness, with ablation studies confirming component
synergies. The work establishes a novel "gradient
alignment + multi-level guidance" paradigm for
diffusion-based recommendation.

6 Limitations

AlignDiff currently has two limitations: 1) It only
uses ID-based interactions and ignores multimodal
features to achieve content-aware recommenda-
tions. 2) It is difficult to model dynamic changes
in user interests.
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