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Abstract001

Sequential recommendation predicts users’ fol-002
lowing interactions by modeling dynamically003
evolving preferences. Recently, diffusion-004
based sequence recommenders have improved005
recommendation accuracy through distribution006
modeling, but they face the dual problems of007
distribution alignment and semantic guidance008
distortion. We propose AlignDiff, a Gradient-009
Semantic Aligned Diffusion Model for Sequen-010
tial Recommendation addressing these issues011
via two innovations: (1) By combining a de-012
noising predictor and an energy function net-013
work into a siamese denoising network, this net-014
work learns the gradient differences between015
distributions using cross-entropy loss and gradi-016
ent score-matching loss, explicitly constraining017
the predicted denoising distribution to fit the018
ground-truth data distribution; (2) Multi-Level019
conditional guidance fusing sequence embed-020
dings with attention-derived deep semantic fea-021
tures, efficiently modeling user preferences and022
correcting the problem of distortion in guid-023
ance conditions by mining deep semantic in-024
formation in user interaction sequences, which025
guides the model to denoise in the direction of026
the correct denoising trajectory. Experiments027
demonstrate that AlignDiff significantly outper-028
forms all baselines on three datasets 1.029

1 Introduction030

Sequential Recommendation (SR) models user031

preferences through historical interactions to pre-032

dict next-item interests. Early methods focus on033

the temporal correlation of interaction sequences.034

For example, traditional recurrent neural networks035

(RNNs) are limited by the vanishing gradient036

problem in long sequence modeling, leading to037

gated architectures such as long short-term mem-038

ory (LSTM) networks (Hidasi et al., 2015; Hi-039

dasi and Karatzoglou, 2018). With the advent of040
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Figure 1: The diffusion model’s generated prediction
(action movie preference) deviates from the ground-
truth distribution (action + comedy), revealing bias be-
tween denoised and real user preferences.

self-attention mechanisms (Lin et al., 2020; Tang 041

et al., 2025), dependency modeling has been com- 042

pletely transformed; for example, SASRec (Kang 043

and McAuley, 2018) (Self-Attentive Sequential 044

Recommendation), which employs unidirectional 045

self-attention to learn item transition patterns, and 046

BERT4Rec (Sun et al., 2019), utilizing bidirec- 047

tional Transformer encoders to jointly model past 048

and future contextual signals for improved next- 049

item prediction. 050

While conventional sequential recommendation 051

methods excel with static representations, their 052

limited capacity to model complex preference dis- 053

tributions drives the adoption of generative mod- 054

els—GANs, VAEs, and diffusion models. Un- 055

like discriminative methods, these generative ap- 056

proaches simulate data generation through ad- 057

versarial training (GANs), latent regularization 058

(VAEs), or iterative denoising (diffusion models), 059

better capturing attribute distributions and prefer- 060

ence diversity. Diffusion models particularly sur- 061

pass traditional architectures: GAN-based methods 062

SeqGAN (Yu et al., 2017), SparseEnNet (Chen 063

et al., 2024), suffer gradient instability, while VAE 064

variants (e.g., ACVAE (Xie et al., 2021), DistVAE 065

(Li et al., 2023), Meta-SGCL (Hao et al., 2024)) 066

face posterior collapse. In contrast, diffusion mod- 067

els like Diff4Rec (Wu et al., 2023) leverage curricu- 068

lum denoising and fine-grained interaction model- 069
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ing to iteratively recover ground-truth data distri-070

butions, overcoming instability and collapse issues.071

This establishes diffusion models as robust frame-072

works for complex sequential dependencies.073

Despite diffusion models’ success in sequential074

recommendation (Wu et al., 2023; Li et al., 2024;075

Yang et al., 2023), two key limitations remain: 1.076

Trajectory Deviation from Global Distribution Mis-077

match: Traditional diffusion models rely on re-078

construction loss that optimizes single-step local079

errors, failing to ensure global alignment between080

predicted and ground-truth denoising trajectories.081

Initial prediction misalignment and error accumu-082

lation across iterative steps cause the final gener-083

ated distribution to diverge from ground-truth user084

preferences (e.g., concentrated action movie pre-085

dictions vs. actual comedy/action preferences in086

Figure 1). 2. Semantic Distortion in Conditional087

Guidance: Shallow interaction sequence modeling088

compresses multi-dimensional user interests into089

single dominant semantics. This creates distortion090

guidance signals (e.g., prioritizing action movies091

while ignoring comedy/sci-fi preferences in Figure092

1), derailing denoising trajectories from true seman-093

tic patterns. These biases progressively widen the094

gap between generated and ground-truth represen-095

tations, degrading recommendation accuracy.096

We propose AlignDiff, a Gradient-Semantic097

Aligned Diffusion Model for Sequential Recom-098

mendation, addressing distribution alignment and099

semantic guidance distortion in the sequential rec-100

ommendation to overcome the challenges in current101

diffusion-based SR models. Specifically, for the102

problem of conditional semantic distortion, a multi-103

level conditional guidance module is constructed.104

The module captures users’ preferences in different105

semantic spaces through multi-head orthogonal at-106

tention and further integrates sequence embedding107

to generate semantically fidelity multi-level condi-108

tional guidance. In the model’s inference stage, a109

Classifier-Free Guidance strategy is adopted, which110

adjusts the guidance ratio parameter and linearly111

combines conditional and non-conditional predic-112

tion results. To address the distribution alignment113

problem, we propose a siamese denoising network114

based on a Transformer denoising predictor and115

an energy function. The network first iteratively116

denoises the input to generate an initial prediction117

distribution using the denoising predictor. Then,118

the energy function network learns the gradient119

information of the distribution and the gradient dis-120

tribution information of the labels, constructing a121

gradient score-matching loss. This loss is com- 122

bined with cross-entropy loss to jointly constrain 123

the model’s denoising path, performing single-step 124

gradient correction on the preliminary prediction 125

items to optimize the gradient difference between 126

the generated distribution and the ground-truth dis- 127

tribution. Our main contributions are as follows: 128

• To the best of our knowledge, this is the first 129

diffusion sequential recommendation model 130

explicitly aligning denoising gradients to con- 131

strain distribution shifts. 132

• We propose a multi-level conditional guidance 133

module to improve user preference modeling 134

and solve the semantic distortion problem in 135

conditional guidance. 136

• Extensive experiments showing state-of-the- 137

art performance across three real-world 138

datasets, with HR@K and NDCG@K im- 139

provements up to 20.4% and 11.3%. 140

2 Related Work 141

2.1 Sequential Recommendation 142

Early sequential recommendation (SR) models 143

evolved from first-order Markov chains (Rendle 144

et al., 2010) (predicting following items based 145

on immediate predecessors but struggling with 146

long-term dependencies) to deep architectures 147

like GRUs (GRU4Rec) (Hidasi et al., 2015) and 148

CNNs (Caser) (Tang and Wang, 2018) for dy- 149

namic pattern modeling. Attention-based models 150

(e.g., BERT4Rec (Sun et al., 2019), TiSASRec (Li 151

et al., 2020)) improved context modeling, while 152

SH-Rec (Ma and Gan, 2024) combined hierarchical 153

user intent and sequence behavior via LSTM/self- 154

attention layers with multi-task learning. However, 155

such models rely on static item embeddings, lim- 156

iting adaptability to dynamic user preferences or 157

item characteristics. 158

2.2 Diffusion Model in Recommendation 159

Diffusion models generate data by iteratively de- 160

noising corrupted inputs, offering stable training 161

compared to GANs/VAEs. While effective in con- 162

tinuous spaces (e.g., images), adapting them to 163

discrete data like text or user interactions requires 164

specialized techniques: Diffusion-LM (Li et al., 165

2022) employs probabilistic discrete diffusion to 166

preserve semantic coherence in text generation. In 167

sequential recommendation, DiffuRec (Li et al., 168
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Figure 2: The AlignDiff model integrates a multi-level
conditional guidance module (generates Semantic fi-
delity multi-level conditional signals to steer denoising)
and a siamese denoising network (removes noise from
input data and outputs final predictions).

2024) injects noise (e.g., masking) into interaction169

sequences and reconstructs them via reverse dif-170

fusion, augmented with contextual signals (time,171

categories). Extensions like PDRec (Ma et al.,172

2024) integrate time-aware decay to refine tem-173

poral dynamics, while CaDi-Rec (Cui et al., 2024)174

leverages bidirectional diffusion and contrastive175

learning to preserve user preferences in augmented176

views. However, challenges persist: (1) Denoising177

trajectories often deviate from true user preferences178

due to biased noise removal; (2) semantic misalign-179

ment in guidance signals limits accurate modeling180

of multidimensional user interests, hindering rec-181

ommendation precision.182

3 Method183

In this section, we will introduce the details of184

the proposed AlignDiff model, including an in-185

depth overview and the construction of its core186

components and loss functions.187

3.1 Overview188

Sequential Recommendation. Let U represent189

a set of users and I denote a collection of dis-190

crete items in the dataset. Each user u ∈ U191

has an interaction history truncated to the most192

recent n items, forming an input sequence S =193

[iu1 , i
u
2 , ..., i

u
n−1, i

u
n], which is ordered chronologi-194

cally according to the user’s interactions, where195

iuj ∈ I denotes the j-th interacted item, n de-196

notes the sequence length, and the total number197

of items interacted with by user u. Each item i ∈ I198

is associated with a learnable embedding vector199

ei ∈ Rd. Thus, the sequence is represented as200

Eu = [eu1 , e
u
2 , ..., e

u
n−1, e

u
n]. Sequential recommen-201

dation aims to predict the next item iun+1 by ranking 202

candidate items based on the user’s learned prefer- 203

ences from Eu. 204

The AlignDiff method we propose is shown in 205

Figure 2 and mainly consists of a multi-level con- 206

ditional guidance module and a Siamese denoising 207

network. The Siamese denoising network is ap- 208

plied in the diffusion and inference phases. The 209

main objective of the diffusion phase is to construct 210

semantically faithful conditional signals based on 211

multi-level conditional guidance, which are then 212

used to guide the denoising process of the Siamese 213

network. In the inference phase, the siamese net- 214

work trained in the diffusion phase performs de- 215

noising starting from data drawn from a standard 216

normal distribution, with the Classifier-Free Guid- 217

ance method applied throughout. 218

3.2 Multi-Level Condition Guide Module 219

We propose a method based on deep interaction 220

sequence multi-level semantic mining to improve 221

the fidelity of condition signals. First, interaction 222

sequences are embedded into continuous vectors to 223

enable gradient optimization and noise injection in 224

the latent space, and a position encoding strategy 225

is adopted to preserve time dependency. 226

X = E(S) +P (1) 227

228

where E ∈ R|I|×d is the item embedding matrix, 229

P ∈ Rn×d is the learnable positional encoding, 230

and n is the sequence length. 231

Subsequently, the module uses multi-head or- 232

thogonal attention to achieve diversified semantic 233

sub-space modeling and avoid capturing redundant 234

features. It also uses a causal masking mechanism 235

to avoid contact with future data. This ensures 236

comprehensive and non-overlapping preference ex- 237

traction in the semantic sub-space. 238

Q,K,V = XWQ,XWK ,XWV (2) 239

orthoAttention(X) = (3) 240

h∑
i=1

Softmax

(
(QUi) (KVi)

T√
d/h

+Mcausal

)
V 241

242

where h is the number of heads, d/h is the head 243

dimension, and Mcausal is the lower-triangular 244

mask that prevents future leakage. The orthog- 245

onal projection matrix satisfies UT
i Uj = δijI, 246
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VT
i Vj = δijI, ∀i, j ∈ [1, h]. Ui and Vj repre-247

sent a set of orthogonal matrices, δij is the Kro-248

necker function that takes the value 1, if i=j and 0249

otherwise.250

Then, the output of the attention mechanism Y at251

the last time step is extracted as the user preference252

representation. A residual connection is adopted253

between the sequence embedding and the attention254

output to enhance representation learning ability255

and enrich feature representation. Finally, the hid-256

den state at the last time step h is extracted from257

the optimized output H as a multi-level conditional258

signal for semantic fidelity.259

H = LayerNorm
(
Y+ReLU(YW1+b1)W2+b2

)
(4)260

3.3 Siamese Denoising Network261

This module consists of a denoising predictor fθ(·)262

and an energy function network Sϕ(·), which work263

together in the diffusion phase and inference phase264

to ensure distribution alignment and semantic fi-265

delity.266

3.3.1 Diffusion Phase267

In the diffusion phase, the model reconstructs tar-268

get embedding en via reverse denoising guided by269

sequence S . We initialize x0 from en through a sin-270

gle diffusion step q(x0|en) = N (x0;
√
α0en, (1−271

α0)I). During the diffusion phase, we adapt an272

adaptive truncation mechanism (Ho et al., 2020)273

tailored for sequence recommendation to adjust the274

amount of noise injected dynamically.275

βt =

{
βmin +

t
T (βmax − βmin) t ≤ τ

βmax
10 t > τ

(5)276

277

The adaptive noise schedule employs βmin =278

0.1, βmax = 0.9, and truncation threshold τ =279

0.8T to balance exploration and semantic con-280

sistency. Early stages (t ≤ 0.8T ): High noise281

(βt ≈ 0.9) enables broad item space exploration.282

Later stages (t > 0.8T ): Low noise (βt ≈ 0.09)283

preserves semantic coherence. During training, t284

is uniformly sampled from 1, ...,T for stochastic285

denoising learning. This linear transition ensures286

smooth noise scaling while preventing distribu-287

tional abruptness. Noise accumulation follows:288

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (ᾱt =

∏t
s=1(1− βs))

(6)289

The noisy item embedding xt is fused with 290

historical interactions to form adjusted embed- 291

dings Zu = [z1, z2, ..., zn], which are fed into 292

the Transformer-based denoising predictor fθ(·). 293

The predictor employs stacked self-attention lay- 294

ers with residual connections, augmented by Time- 295

step embeddings dt to track diffusion progress 296

and Element-wise fusion of guidance signal h and 297

Gaussian sampling λi to prevent preference over- 298

smoothing, generates the initial denoised prediction 299

x̃0. 300

x̃0 = fθ(Z
u) = Transformer([z0, z1, ..., zn])

zi = λi ⊙ (xt + dt) + (1 + h)⊙ ei
(7) 301

where ei denotes the item embedding, dt repre- 302

sents the diffusion step embedding at timestep t, 303

and h serves as the multi-level conditional guid- 304

ance signal. The stochastic weighting factor λi ∼ 305

N (δ, δ) introduces controlled randomness while 306

preserving semantic coherence through element- 307

wise product ⊙. 308

After obtaining the initial prediction item repre- 309

sentation x̃0, in order to further constrain the data 310

distribution of x̃0 fit the ground-truth data distri- 311

bution. When applying noise to the target item 312

en, we apply a small noise perturbation β
′
s = γβs 313

to the target item, where γ is used to control the 314

noise ratio. Here, to avoid confusion, we use y to 315

denote the target project embedded representation. 316

Similarly, going from en to y0 is the same process 317

as going from en to x0. Therefore, the target item 318

after adding noise is as follows: 319

q(y1:s|y) =
s∏

s=1

q(ys|ys−1)

q(ys|ys−1) = N (ys;
√

1− β′
sys, β

′
sI)

(8) 320

321

where ᾱ
′
s =

∏t
s=1(1 − β

′
s). Similarly, to be 322

able to obtain samples of yn at any step size, let 323

α
′
s = 1− β

′
s, ᾱ

′
s =

∏s
i=1 α

′
i. Then, we get: 324

q(ys|y0) = N (ys;
√
ᾱ′
sy0, (1− ᾱ

′
s)I)

ys =
√
ᾱsy0 +

√
1− ᾱsϵy, ϵy ∼ N (0, I)

(9) 325

The energy function Sϕ(·) refines the denoising 326

process by learning gradient corrections between 327

the noise-perturbed target ys and initial prediction 328

x̃0. To preserve gradient integrity from the pre- 329

denoised inputs, Sϕ(·) employs simplified activa- 330

tion functions and constructs an implicit gradient 331
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field via score-matching loss. This aligns the pre-332

dicted distribution with the ground-truth by mini-333

mizing the fllowing:334

ζx̃0 = Sϕ(x̃0) = Wn · Dropout

(GELU(Ln−1(· · ·GELU(L1(x̃0)) · · · ))) + bn

(10)335

336

The energy function Sϕ(·) employs an MLP ar-337

chitecture (vs. Transformer) with three key de-338

sign principles: (1) GELU activation for stable339

second-order optimization, (2) bottleneck structure340

(d → 2d → 1) to prevent overfitting while preserv-341

ing preference signals, and (3) Dropout (rate=0.1)342

for generalization. This simplified design aligns343

with its core objective: learning first-order gradi-344

ent differences between generated and ground-truth345

distributions rather than modeling high-order inter-346

actions.347

3.3.2 Inference Phase348

In the inference phase, the model starts from a stan-349

dard normal distribution and undergoes T iterations350

of denoising to reconstruct the target project repre-351

sentation en. In this phase, the denoising predictor352

first undergoes T iterations of denoising to generate353

a preliminary prediction of the project representa-354

tion x̃0. However, this distribution deviates from355

the ground-truth distribution. The energy function356

is refined through gradient correction to generate357

the final prediction representation x̂0. In addition,358

ClassFier-Free Guidance is used to achieve a bal-359

ance between personalization and generalization360

capabilities.361

x̃0 = fθ(Zxt) = (1 + w)fθ(Zxt)− wfθ(Zxt)

xt−1 = µ̃t(xt, x̂0) + β̃tϵ
′

(11)362

During inference, the denoising process gener-363

ates xt−1 using the formula µ̃t(xt, x̂0), which com-364

bines the refined estimate x̂0 and the current noisy365

state xt, along with noise scaling β̃t and Gaussian366

noise ϵ
′
. This iterative refinement repeats until x̃0367

is obtained. A hyperparameter w modulates the368

multilevel guidance signal h: larger w prioritizes369

personalized denoising (via h) over generalization370

(represented by ϕ) but risks degrading output qual-371

ity. The energy function Sϕ(·) then performs a372

single-step gradient correction on x̃0, removing373

residual noise to yield the ground-truth target repre-374

sentation x̂0 = x̃0−Sϕ(x̃0). Finally, x̂0 is mapped375

to discrete recommendations by computing inner-376

product similarity scores with all candidate items,377

with the highest-scoring item ei selected as the 378

user’s recommendation. 379

3.4 Loss Function 380

In the diffusion process, we first sample diffusion 381

steps t uniformly from [1, T ] (where T is the total 382

steps), then perform reverse denoising by decre- 383

menting the step-index from t to 1, feeding step 384

embeddings, sequence item distributions, and con- 385

ditional guidance into the predictor fθ(·) for infer- 386

ence. While standard diffusion models use mean 387

squared error (MSE) loss, we adopt cross-entropy 388

loss instead, as MSE is ill-suited for sequential rec- 389

ommendation tasks where target item embeddings 390

are discrete, and similarity is typically measured 391

via dot-product correlations. 392

ŷ =
exp(x̃0 · en+1)∑
i∈I exp(x̃0 · ei)

LCE =
1

|U|
∑
i∈U

−logŷi

(12) 393

Here, x̃0 is reconstructed by the Transformer- 394

based predictor fθ(·), while · represents the inner 395

product operation used to measure the correlation 396

between vectors. 397

Traditional diffusion models optimize single- 398

step denoising via reconstruction losses (e.g., cross- 399

entropy) but fail to ensure global consistency 400

across multi-step denoising trajectories. To ad- 401

dress this, we introduce fractional score-matching 402

loss (LDSM ), which aligns the gradient field of the 403

predicted distribution (x̃0) with that of the ground- 404

truth distribution (ys), correcting deviations caused 405

by error accumulation. This loss is defined as: 406

LDSM = Eys,σs

[
1

2

∥∥∥∥Sϕ(x̃0)− (
Sϕ(ys)− Sϕ(x̃0)

σ2
s

+ Sϕ(x̃0) · σ2
s)

∥∥∥∥2
]

(13) 407

where the energy function Sϕ(·) learns an implicit 408

gradient field to steer x̃0 toward the true data man- 409

ifold (ys), reducing prediction noise and enhanc- 410

ing generalization. The total loss combines cross- 411

entropy (LCE) and score-matching loss: 412

Lall = LCE + ηLDSM (14) 413

Here, η balances the two objectives, controlling 414

how strictly the generated distribution aligns with 415

ground-truth data. 416
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4 Experiment417

In this section, we answer the following research418

questions to evaluate our propose method system-419

atically:420

RQ1. How does AlignDiff compare to state-of-421

the-art models on standard metrics?422

RQ2. How do individual components of Align-423

Diff affect its performance?424

RQ3. How do key hyperparameters influence425

AlignDiff’s performance?426

RQ4. Does AlignDiff generate data closer to the427

ground-truth distribution than baselines?428

RQ5. Can the energy function effectively learn429

gradient information?430

RQ6. How does our gradient optimization431

method compare to prior approaches?432

4.1 Experimental Protocol433

Datasets. Amazon Beauty & Toys 2: Two Ama-434

zon product category datasets spanning 18 years435

of user behavior (ratings, reviews, purchase se-436

quences), with product metadata (ASIN codes, cat-437

egories, features) and user profiles capturing be-438

havioral imbalance. MovieLens-1M 3: A cleaned439

dataset of 1 million explicit movie ratings (1-5440

stars) from 6,040 users on 3,952 movies, including441

timestamped interactions for modeling user interest442

evolution.443

Dataset #Sequence #items #Actions Avg_len Sparsity
Beauty 22363 12101 198502 8.53 99.93%
Toys 19412 11924 167597 8.63 99.93%
Movielens-1M 6040 3416 999611 165.50 95.16%

Table 1: Statistical information after preprocessing of
the three datasets

Baselines. We evaluate our AlignDiff method444

by comparing three categories of representative445

sequential recommendation methods, that is, dis-446

criminative, generative and diffusion-based sequen-447

tial recommendation models. Discriminative Se-448

quential Recommendation Models: GRU4Rec449

(Hidasi and Karatzoglou, 2018), Caser (Tang450

and Wang, 2018), SASRec (Kang and McAuley,451

2018), BERT4Rec (Sun et al., 2019), ComiRec452

(Cen et al., 2020), STOSA (Fan et al., 2022).453

Generative sequential recommendation Mod-454

els: SVAE (Sachdeva et al., 2019), ACVAE (Xie455

2https://cseweb.ucsd.edu/~jmcauley/datasets/
amazon_v2

3http://files.grouplens.org/datasets/
movielens/ml-1m.zip

et al., 2021), Diffusion-based sequential recom- 456

mendation Models: CadiRec (Cui et al., 2024), 457

DiffuRec (Li et al., 2024). Our experiments on 458

GeForce RTX 3090 GPUs employ 4-layer Trans- 459

formers (128D embeddings, batch size 512) trained 460

with Adam (η=0.001), using energy-guided diffu- 461

sion (Ω ∈0.1,1, ν ∈[0.05,0.5]) and dropout regu- 462

larization (0.1-0.3). 463

4.2 Overall Comparision(RQ1) 464

As shown in table 2, AlignDiff outperforms 465

all baselines across datasets, achieving signifi- 466

cant gains (e.g., +20.4% HR@20 and +11.3% 467

NDCG@20 vs. DiffuRec on Amazon-Toys) by 468

aligning denoising paths via gradient differences 469

(energy function + score-matching loss) and multi- 470

level conditional guidance. Traditional sequen- 471

tial models (GRU4Rec/Caser) underperform due 472

to limited long-term dependency modeling, while 473

self-attention-based SASRec and BERT4Rec ex- 474

cel in sequence representation. Among generative 475

models, SVAE struggles with preference model- 476

ing, ACVAE improves via adversarial contrastive 477

learning for global distribution alignment, and Dif- 478

fuRec (prior SOTA) leverages dynamic uncertainty 479

injection. AlignDiff surpasses these by integrat- 480

ing gradient alignment (matching denoised outputs 481

to ground-truth distributions) and multi-level se- 482

mantic guidance, demonstrating diffusion models’ 483

superiority in iterative distribution learning through 484

robust denoising trajectory optimization. 485

4.3 Ablation Study(RQ2) 486

We evaluate AlignDiff on three datasets by com- 487

paring two variants, with results in Table 3. Ab- 488

lation Analysis (Table 3) confirms the critical 489

roles of AlignDiff’s components: Removing multi- 490

level conditional guidance (ML)—which provides 491

semantic-rich embeddings to align latent user pref- 492

erences—causes significant performance degrada- 493

tion, as basic interaction sequences fail to capture 494

nuanced preferences. Disabling the energy func- 495

tion (EN)—responsible for gradient alignment be- 496

tween denoised predictions and ground-truth distri- 497

butions via score-matching loss—disrupts distribu- 498

tion fidelity, leading to suboptimal denoising paths. 499

Both components are indispensable: ML ensures 500

semantically consistent guidance signals, while 501

EN enforces gradient-driven alignment, jointly en- 502

abling robust uncertainty handling and generaliza- 503

tion. This synergy validates the framework’s design 504

superiority in balancing preference modeling and 505
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Dataset Metric GRU4Rec Caser SASRec BERT4Rec ComiRec SVAE ACVAE STOSA CaDiRec DiffuRec AlignDiff ↑%
Beauty HR@5 1.0112 1.6118 3.2688 2.1326 2.0495 0.9943 2.4672 3.5457 5.1608 5.5758 5.8675 5.2%

HR@10 1.9370 2.8166 6.2648 3.7160 4.4545 1.9745 3.8832 6.2048 7.2829 7.9068 8.126 2.8%
HR@20 3.8531 4.4048 8.9791 5.7922 7.6968 3.1552 6.1224 9.5939 10.5140 11.1098 11.3729 2.4%
NDCG@5 0.6084 0.9758 2.3989 1.3207 1.0503 0.6702 1.6858 2.5554 3.4473 4.0047 4.2023 4.9%
NDCG@10 0.9029 1.3602 3.2305 1.8219 1.8306 0.9863 2.1389 3.2085 4.2764 4.7494 4.9261 3.7%
NDCG@20 1.3804 1.7595 3.6563 2.3541 2.6451 1.2867 2.7020 3.7609 4.7148 5.5566 5.6730 2.1%

Toys HR@5 1.1009 0.9622 4.5333 1.9260 2.3026 0.9109 2.1897 4.2236 4.9158 5.5650 6.3244 13.6%
HR@10 1.8553 1.8317 6.5496 2.9312 4.2901 1.3683 3.0749 6.9393 7.1549 7.4587 8.7229 16.9%
HR@20 3.1827 2.9500 9.2263 4.5889 6.9357 1.9239 4.4061 9.5096 9.6011 9.8417 11.8493 20.4%
NDCG@5 0.6983 0.5707 3.0105 1.1630 1.1571 0.5580 1.5604 3.1017 3.8417 4.1667 4.4175 6.0%
NDCG@10 0.9396 0.8510 3.7533 1.4870 1.7953 0.7063 1.8452 3.8806 4.4957 4.7724 5.1904 8.8%
NDCG@20 1.2724 1.1293 4.3323 1.9038 2.4631 0.8446 2.1814 4.3789 4.8143 5.3684 5.9726 11.3%

ML-1M HR@5 5.1139 7.1401 9.3812 13.6393 6.1073 1.4869 12.7167 7.0495 15.1846 17.9659 18.2658 1.7%
HR@10 10.1664 13.3792 16.8941 20.5675 12.0406 2.7189 19.9313 14.3941 22.5497 26.2647 27.3419 4.1%
HR@20 18.6995 22.5507 28.318 29.9479 21.0094 5.0326 28.9722 24.9871 31.4655 36.7870 37.7156 2.5%
NDCG@5 3.0529 4.1550 5.3165 8.8922 3.5214 0.9587 8.2287 3.7174 10.5842 12.1150 12.5781 3.8%
NDCG@10 4.6754 6.1400 7.7277 11.1251 5.4076 1.2302 10.5417 6.0771 11.7544 14.7909 15.4907 4.7%
NDCG@20 6.8228 8.4304 10.5946 13.4763 7.6502 1.8251 12.8210 8.7241 15.9640 17.4386 18.1183 3.9%

Table 2: Results (%) across three datasets: best in bold, second-best underlined; last column shows AlignDiff’s
improvement over the top baseline. All experiments were performed five times and the average value was taken.

Dataset Ablation HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20
Beauty w/o ML 5.8369 7.8229 10.3678 4.1279 4.7627 5.3951

w/o EN 5.7707 7.9518 10.7033 4.1684 4.8699 5.5596
AlignDiff 5.8675 8.1260 11.0729 4.2023 4.9261 5.6730

Toys w/o ML 6.1585 8.6638 11.6357 4.3922 5.0992 5.8229
w/o EN 5.6382 7.4221 9.8330 4.2255 4.8007 5.4072
AlignDiff 6.3244 8.7229 11.8493 4.4175 5.1904 5.9726

Ml-1M w/o ML 16.1037 24.8246 36.2756 10.5078 13.5789 16.2743
w/o EN 15.8171 24.5478 35.6394 10.3501 13.1469 15.9432
AlignDiff 16.3178 25.4160 36.7156 11.0781 13.8907 16.6183

Table 3: Ablation experiments on three datasets

Figure 3: Parameter sensitivity of different Ω, w, ν, η.

distributional accuracy.506

4.4 Parameter Sensitive Analysis(RQ3)507

Hyperparameter analysis (Figures 3) demonstrates508

AlignDiff’s adaptability and stability: Guidance509

weight w adjusts conditional guidance strength,510

with sparse Amazon datasets (Beauty/Toys) favor-511

ing w = 0.3 to compensate for limited interactions,512

while dense MovieLens-1M performs best at w513

= 0.1 to avoid over-constraining rich behavioral514

patterns. Noise scale ν is unified (ν = 0.05)515

across datasets, balancing robustness to perturba-516

tions without distorting underlying distributions,517

Dataset Metric 1-Layer MLP 3-Layer MLP 6-Layer MLP Transformer-nased
Beauty HR@5 5.6580 5.8675 5.7245 5.7769

HR@10 7.9652 8.1260 8.0219 7.8453
HR@20 10.5314 11.0729 10.7256 10.6381
NDCG@5 4.0945 4.2023 4.1429 4.1156
NDCG@10 4.7549 4.9261 4.8126 4.7741
NDCG@20 5.4826 5.6730 5.5016 5.4822

Table 4: The impact of different architectural energy
functions on model performance on the Amazon-Beauty
dataset.

proving effective regardless of data sparsity. Loss 518

balance η = 0.01 optimally weights cross-entropy 519

(accuracy) and score-matching (distribution align- 520

ment) losses, avoiding underalignment or over- 521

constraint extremes. Energy scale Ω = 0.01 stabi- 522

lizes gradient-driven denoising across all datasets, 523

preventing overshooting from excessive adjust- 524

ments. 525

4.5 Data Distribution Comparison 526

Analysis(RQ4) 527

Visual (t-SNE/PCA) and quantitative (MMD) anal- 528

yses confirm that AlignDiff’s generated distribution 529

aligns closer to ground-truth data than DiffuRec. 530

As shown in figure 4, PCA shows tighter clustering 531

and preserved structural relationships, attributed 532

to multi-level conditional guidance and gradient 533

alignment via score-matching loss, which refine 534

denoising paths beyond cross-entropy optimization. 535

Lower MMD values (Table 5) and broader low- 536

dimensional overlap with the ground-truth distri- 537

bution quantitatively validate reduced discrepancy, 538

demonstrating the effectiveness of gradient-driven 539

constraints in enhancing distributional fidelity. 540
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Figure 4: Differences between the original data distri-
bution, the distribution generated by the SOTA model
and the data distribution generated by AlignDiff on
the Amazon-Beauty dataset using the PCA and T-SNE
method.

Dataset Metric SOTA(mean±std) AlignDiff(mean±std) Improve % p value
Beauty MMD(×10-3) 0.37±0.05 0.33±0.03 10.8% 0.001
Toys MMD(×10-3) 0.42±0.04 0.35±0.05 16.7% 0.001
ML-1M MMD(×10-3) 0.34±0.05 0.31±0.02 8.8% 0.001

Table 5: MMD significance test on three datasets (p-
value < 0.001)

4.6 The Impact of the Energy Function541

Architecture(RQ5)542

Experiments (Table 4) show that a 3-layer MLP-543

based energy function optimizes performance,544

balancing gradient alignment, and noise robust-545

ness. Overly complex architectures (e.g., 6-layer546

MLP/Transformer) capture high-frequency noise,547

causing gradient oscillation, while simplistic 1-548

layer MLPs fail to decouple noise signals. The549

energy function’s role—modeling gradient differ-550

ences between generated and ground-truth distribu-551

tions—requires balancing expressiveness and sta-552

bility. Single-step correction (Table 6) outperforms553

multi-step methods, as iterative adjustments risk554

overcorrection (forcing predictions toward training555

data’s local density peaks), highlighting the need556

for restrained gradient constraints to preserve gen-557

eralization while aligning distributions.558

4.7 Gradient Optimization Method559

Comparison(RQ6)560

Compared to gradient-enhanced variants (GAD-GP561

with gradient penalty, GAD-Adv with adversarial562

training), as shown in table 7. AlignDiff’s joint563

Steps Beauty-HR@10 Beauty-NDCG@10 Toys-HR@10 Toys-NDCG@10
1 8.1260 4.9261 8.7229 5.1904
2 7.9524 4.6058 8.5219 5.0257
4 7.4428 4.3281 8.2907 4.7528
8 7.1625 4.0817 7.9056 4.4325

Table 6: The proposed model’s effect on the model
performance at different correction steps.

Method HR@5 HR@10 NDCG@5 NDCG@10
GAD-GP 5.6416 7.8243 3.9424 4.6308
GAD-Adv 5.2649 7.1526 3.6451 4.2107
AlignDiff 5.8675 8.1260 4.2023 4.9261

Table 7: Gradient Method Comparison on Beauty
Dataset

optimization strategy—combining cross-entropy 564

loss (task accuracy) and energy-based score match- 565

ing (distribution alignment)—achieves superior per- 566

formance. Unlike fixed-gradient methods (e.g., 567

WGAN-GP), AlignDiff dynamically adjusts gradi- 568

ent alignment strength through learnable energy pa- 569

rameters (Ω), enabling an adaptive balance between 570

recommendation fidelity and distribution shifts. 571

Multi-level conditional guidance further refines 572

gradient alignment across item embeddings and 573

sequence semantics, outperforming single-scale ap- 574

proaches. Results show significant gains on sparse 575

datasets (e.g., +20.4% HR@20 on Amazon-Toys 576

vs. +2.5% on MovieLens-1M), confirming that ex- 577

plicit gradient difference learning via the energy 578

function effectively mitigates recommendation bias 579

caused by data sparsity, while traditional meth- 580

ods struggle with distributional discrepancies in 581

interaction-scarce scenarios. 582

5 Conclusion 583

This study addresses two key limitations of dif- 584

fusion models in sequential recommendation: 1) 585

semantic distortion guidance representation (failing 586

to capture user behavior patterns) and 2) gradient 587

misalignment between generated and ground-truth 588

data distributions. We propose AlignDiff, which 589

resolves these issues through gradient field align- 590

ment and an adaptive guidance mechanism integrat- 591

ing Transformer encoders with multi-level signals 592

(e.g., interaction sequences). Experiments on three 593

benchmark datasets validate the model’s effective- 594

ness, with ablation studies confirming component 595

synergies. The work establishes a novel "gradient 596

alignment + multi-level guidance" paradigm for 597

diffusion-based recommendation. 598

6 Limitations 599

AlignDiff currently has two limitations: 1) It only 600

uses ID-based interactions and ignores multimodal 601

features to achieve content-aware recommenda- 602

tions. 2) It is difficult to model dynamic changes 603

in user interests. 604
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