
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MLE-SMITH: SCALING MLE TASKS WITH AUTO-
MATED MULTI-AGENT PIPELINE

Anonymous authors
Paper under double-blind review

ABSTRACT

While Language Models (LMs) have made significant progress in automating
machine learning engineering (MLE), the acquisition of high-quality MLE train-
ing data is significantly constrained. Current MLE benchmarks suffer from low
scalability and limited applicability because they rely on static, manually cu-
rated tasks that demand extensive time and manual effort to produce. We in-
troduce MLE-Smith, a fully automated multi-agent pipeline, to transform raw
datasets into competition-style MLE challenges through an efficient generate–
verify–execute paradigm for scaling MLE tasks with verifiable quality, real-world
usability and rich diversity. The proposed multi-agent pipeline in MLE-Smith
drives structured task design and standardized refactoring, coupled with a hy-
brid verification mechanism that enforces strict structural rules and high-level
semantic soundness. It further validates empirical solvability and real-world fi-
delity through interactive execution. We apply MLE-Smith to 224 of real-world
datasets and generates 606 tasks spanning multiple categories, objectives, and
modalities, demonstrating that MLE-Smith can work effectively across a wide
range of real-world datasets. Evaluation on generated tasks shows that the per-
formance of eight mainstream and cutting-edge LLMs on MLE-Smith tasks is
strongly correlated with their performance on carefully human-designed tasks,
highlighting the effectiveness of the MLE-Smith in scaling up MLE tasks while
maintaining task quality.

1 INTRODUCTION

Large Language Model (LLM) powered agents have demonstrated remarkable capabilities in au-
tomating complex coding and engineering domains (Chan et al., 2024; Qiang et al., 2025; Nathani
et al., 2025; Jing et al., 2024; Yang et al., 2024; Jimenez et al., 2023), with machine learning engi-
neering (MLE) emerging as a key frontier. The development of sophisticated MLE agents, which
are capable of autonomously handling tasks from data preprocessing to model tuning and deploy-
ment, promises to revolutionize scientific discovery and industrial applications. However, evaluat-
ing and developing such agents poses significant challenges, due to the inherent complexity of MLE
workflows, the need for domain-specific knowledge, and the iterative, feedback-driven nature of
real-world machine learning pipelines. Developing robust MLE agents therefore requires not only
the design and implementation of agent frameworks, but also the creation of holistic environments
and benchmarks that support end-to-end experimentation and structured evaluation under truly real-
world conditions, and encompass diverse task distributions.

Recent efforts have established valuable benchmarks and interactive environments for evaluating
and training these agents (Huang et al., 2023; Jing et al., 2024; Chan et al., 2024; Qiang et al.,
2025; Nathani et al., 2025). Existing benchmarks such as MLE-Bench (Chan et al., 2024) and
DS-Bench (Jing et al., 2024) offer only static collections of tasks, and their construction remains
heavily reliant on extensive human curation. This manual effort stems from two main sources: (1)
the competitions selected for inclusion in these benchmarks are often carefully designed by human
experts, and (2) the benchmarks require substantial engineering work to adapt these competitions
into a standardized format suitable for benchmarking. Such adaptation typically involves non-trivial
engineering efforts such as preprocessing and splitting data into train and test splits and imple-
menting evaluation scripts and establishing scoring mechanism. Gym-like interactive environments
such as MLE-Dojo (Qiang et al., 2025) and MLGym (Nathani et al., 2025) have similar limitations.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Moreover, the ambition to establish a comprehensive environment for evaluating and training MLE
agents imposes further demands on the scale and diversity of available MLE tasks. The continued
reliance on static, manually curated tasks restricts the diversity and realism of interaction scenarios,
and introduces a scalability bottleneck that impedes the rapid development and reliable assessment
of next-generation MLE agents. Overcoming this limitation necessitates an automated framework
that can continuously generate, verify, and evolve MLE tasks at scale.

However, building such a framework for scaling MLE tasks presents a formidable challenge: how
to rigorously validate the correctness and practical value of each newly generated task. Unlike con-
ventional supervised datasets, an MLE benchmark must satisfy multiple intertwined criteria: (i)
Structural integrity, ensuring that all associated components including data preprocessing scripts,
file directory hierarchies, and evaluation pipelines must execute end-to-end without manual inter-
vention, ensuring that the task is reproducible and computationally viable; (ii) Semantic soundness,
confirming that the defined learning objective must be coherent, and the input–output structure must
reflect the natural affordances and signal present in the source dataset, avoiding degenerate or triv-
ial mappings; and (iii) Empirical solvability, demonstrating that the task should be non-trivial yet
tractable—i.e., standard baseline agents must be able to achieve meaningful performance and ex-
hibit stable improvement under reasonable training protocols. A failure on any of these dimensions
undermines the utility of the task, preventing it from eliciting meaningful behavioral differences
across agents or supporting their effective training and development in interactive settings.

To address these challenges, we present MLE-Smith, a fully automated framework that transforms
raw datasets into competition-style MLE tasks through a scalable generate–verify–execute pipeline.
MLE-Smith is carefully designed to enforce structural integrity, semantic soundness, and empirical
solvability by integrating a multi-agent generation workflow, a robust hybrid verification mecha-
nism, and an execution-based validation loop, as illustrated in Figure 1, which provides an overview
of the end-to-end paradigm. The system features three specialized agents—Brainstormer, Designer,
and Refactor that generate, concretize, and standardize task proposals in a modular, auditable man-
ner. A persistent verification mechanism, combining both deterministic checks and agent-based
reviews, continuously ensures task correctness and coherence. Finally, each task is validated by
interactive execution between a validation MLE agent and MLE environments, confirming that it
supports end-to-end execution and delivers non-trivial signals on the performance of ML solutions.
This principled pipeline ensures that each generated task is format-consistent, executable, and veri-
fiable, while remaining practically meaningful for training and evaluating MLE agents.

Our main contributions are summarized as follows:
• A fully automated task generation framework. We propose MLE-Smith, the first end-

to-end system that transforms raw datasets into competition-style machine learning engi-
neering (MLE) tasks through a scalable generate–verify–execute pipeline. Unlike prior
efforts that rely on static curation, MLE-Smith enables continuous generation of realistic
and diverse MLE challenges at scale, without human intervention.

• A hybrid verification mechanism. To ensure the quality and utility of generated tasks, we
design a multi-layer verification mechanism that combines static format validation, seman-
tic alignment, and execution-based tests of empirical solvability. This hybrid stack enforces
rigorous guarantees on task integrity, ensuring that each challenge is well-structured, exe-
cutable and grounded in realistic machine learning scenarios.

• A large-scale, diverse generated task suite. We apply MLE-Smith to 224 real-world
datasets and produce 606 fully verified tasks spanning a wide spectrum of modalities (e.g.,
tabular, vision, time series), learning objectives (e.g., classification, regression, ranking),
and domains (e.g., healthcare, sports). Evaluation on a representative subset of 50 tasks
with eight cutting-edge LLMs reveals strong correlation with rankings of these LLMs
on human-curated benchmarks, demonstrating that MLE-Smith yields challenging, dis-
criminative, and generalizable tasks suitable for evaluating and eventually training next-
generation MLE agents.

2 RELATED WORKS

Agent Benchmarks and Environments. Recent efforts have introduced a diverse suite of bench-
marks and interactive environments for evaluating and developing LLM-based agents across multi-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Brainstorm

Regression on EV performance
MSE/RMSE as metric
Classification on chest X-Ray
F1/Accuracy as metric
Generation on movie reviews
BLEU / ROUGE as metric

Electric Vehicle Specs

This dataset provides a collection of 
specifications and performance 
metrics for modern electric vehicles 
(EVs). It is designed to support 
researchers, analysts, students, and 
developers working on data science...

Pneumonia Chest X-Ray

Test Agent MLE Env

Request
Info

Validate
Code Execute

Code

Metric
ScoreError

Message

Dataset
Info

File Read/Write
Shell Commands
Code Execution

Cleaned chest X-ray images from 
pediatric patients (ages 1–5) used to 
detect pneumonia (bacterial and viral) 
and differentiate from normal cases. 
The final quality review conducted by a 
senior radiologist, ensuring accuracy...

ISOT Fake News Detect

Dataset separated in two files: 1. 
Fake.csv (23502 fake news article) 2. 
True.csv (21417 true news article) 
Dataset columns: Title: title of news 
article; Text: body text of news article; 
Subject: subject of news article; Date: 
publish date of news article...

Design

Data processing and split
Sample generation

Metric design
Script implementation

Task Objective
Target feature/labels

Refactor

Toolset

raw/ --raw dataset
private/ --test answer
public/ --data, submission
metric.py --class Metrics
prepare.py --def prepare

Assertions raw/ 
private/ 
public/
metric.py
prepare.py

LLM Review

Execution-based Verification

Files from Designer 
and Refactor

Hard format 
& structure 
validation

Soft design 
& semantic  
alignment

Hybrid Verification

Figure 1: MLE-Smith automatically generates competition-style machine learning engineering
(MLE) tasks from raw datasets through a generate–verify–execute paradigm.

ple domains, including software engineering (SWE) benchmarks (Jimenez et al., 2023; Pan et al.,
2024a; Yang et al., 2024; Zhang et al., 2025; Zan et al., 2025; Aleithan et al., 2024) that test
agents’ ability to modify large codebases and repair real-world bugs, web navigation and brows-
ing tasks (Chezelles et al., 2024; Zhou et al., 2023; Pan et al., 2024b; Levy et al., 2024; Wei et al.,
2025; Wu et al., 2025; Yao et al., 2022) that evaluate agents’ capacity to navigate complex websites
or device interfaces, deep research settings (Du et al., 2025; Bosse et al., 2025; Phan et al., 2025)
that require multi-step reasoning and information aggregation, general tool-use environments (Yao
et al., 2024; Qin et al., 2023; Mialon et al., 2023; Liu et al., 2023; Luo et al., 2025) that probe agents’
ability to orchestrate diverse tools and external resources, and studies of human–agent collaboration
in dynamic task scenarios (Shao et al., 2024). In the MLE domain, a growing body of testbeds
assesses agents on end-to-end workflows. For example, MLAGENTBENCH (Huang et al., 2023)
offers 13 curated MLE tasks with baselines and performance thresholds, MLE-BENCH (Chan et al.,
2024) standardizes 75 Kaggle competitions for structured MLE evaluation, DS BENCH (Jing et al.,
2024) includes 74 modeling tasks reflecting realistic data science processes, MLGYM (Nathani
et al., 2025) provides a Gym-style suite for AI research workflows, and MLE-DOJO (Qiang et al.,
2025) scales to over 200 fully executable MLE tasks with step-wise interaction. While these MLE
platforms advance realism and breadth, they remain limited by finite, manually curated task sets. In
contrast, MLE-Smith proposes a fully automated framework for scalable and high-quality MLE
task generation, which allows for the continual generation of novel tasks in the MLE domain.

Automated Task Generation. Automated task generation has emerged as a promising direction
for scaling agent evaluation and training. TASKCRAFT (Shi et al., 2025) creates scalable, multi-tool
agentic tasks with execution traces via compositional extensions. AUTOCODEBENCH (Chou et al.,
2025) generates high-difficulty, multilingual code problems with LLM-driven reverse synthesis and
test validation. SWE-SMITH (Yang et al., 2025) synthesizes tens of thousands of bug-inducing
software engineering tasks from real-world Python repositories. SELF-CHALLENGING (Zhou et al.,
2025) trains agents to generate and solve their own Code-as-Task problems with built-in verification,
enabling high-quality self-supervised RL. SQLM (Chen et al., 2025) frames task generation as
asymmetric self-play, where models propose and solve increasingly challenging problems without
external data. MLE-Smith serves as the first automated framework for task generation in the MLE
domain, paving the way for scalable agent evaluation and training on realistic, high-quality tasks.

3 METHODS

MLE-Smith automatically generates competition-style machine learning engineering (MLE) tasks
from raw datasets through a generate–verify–execute paradigm. The pipeline couples (i) structured
multi-agent generation that designs and generates feasible tasks in multiple directions, (ii) a hybrid

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

verification mechanism that enforces both hard structural constraints and soft semantic criteria,
and (iii) execution-based validation inside an interactive MLE environment to ensure empirical
solvability and real-world validity. This sequential architecture is designed to balance diversity of
task proposals with strong guarantees on structural correctness and downstream usability.

3.1 MULTI-AGENT GENERATION WORKFLOW

MLE-Smith employs three specialized agents that hand off artifacts in a sequential pipeline aug-
mented with controlled feedback loops to allow upstream refinement. Each agent has access to do-
main tools (file I/O, shell commands, code execution) and always generates outputs in a pre-defined,
structured format amenable to automated verification. The middle part of Figure 1 illustrates how
these agents sequentially advance the pipeline and yield the corresponding deliverables.

Brainstormer. Given a dataset overview along with the toolset for in-depth, multi-round data ex-
ploration, the Brainstormer enumerates a set of candidate task formulations rather than a single
design, recognizing that a single dataset often supports multiple plausible learning objectives and
modeling strategies. This diversity-aware generation allows the system to fully exploit the dataset’s
potential. The number of candidate tasks is adaptively determined by the Brainstormer based on the
dataset’s intrinsic properties and structural characteristics. A key principle is that all labels and fea-
tures must be accurate and grounded in the data itself, either explicitly provided or deterministically
derived, rather than synthetic or heuristically constructed. Each proposal specifies candidate pre-
diction targets (classification labels, regression variables, sequence outputs), evaluation metrics
(e.g., accuracy, macro-F1, RMSE, or domain-specific scores), data utilization (e.g., preprocessing,
feature construction, label extraction) and justifications that articulate the rationale and practical us-
ability of the proposed design. Equipped with domain tools, the Brainstormer gains comprehensive
and in-depth insights, enabling it to generate grounded and valuable task proposals. By explicitly
separating hypothesis generation from commitment, MLE-Smith preserves design optionality and
encourages diversity without sacrificing feasibility.

Designer. For each candidate task formulation, the Designer is responsible for instantiating a fully
specified machine learning engineering (MLE) task that can be executed end-to-end without manual
intervention. This includes constructing all components necessary to define, prepare, and evaluate
the task in a reproducible and verifiable manner.

Specifically, the Designer: (i) preprocesses the raw dataset and produces deterministic training and
test splits with appropriate label coverage and data integrity guarantees; (ii) defines input and output
schemas that govern the structure of model predictions and evaluation targets; (iii) specifies the eval-
uation protocol and instantiates a fair, task-specific metric that captures performance with numerical
stability; and (iv) generates the complete suite of auxiliary components, including task descrip-
tions that summarize the problem setup, data usage, and evaluation strategy; preparation scripts that
performs data preprocessing, splitting, and validation checks; structured sample submission files
with randomized and valid predictions; evaluation scripts for submission format validation and met-
ric score calculation; and testing scripts to verify the correctness and consistency of the generated
scripts. Together with the original dataset, these artifacts form a complete, self-contained MLE task
package that can be executed, evaluated, and iterated upon by agents in an interactive environment.
Generating multiple such packages in parallel allows for efficient exploration of diverse task designs
and principled comparisons across candidate formulations.

Refactor. The Refactor module standardizes all candidate task designs into a unified and well-
specified format. We present the details of this structural task format in Appendix A.3. Rather than
merely cleaning code or reorganizing files, this stage rewrites each task into a shared schema that
defines the preparation interface, input/output specifications, metric implementation, canonical file
structure, and feedback reporting mechanism. We define a set of pre-specified conventions that gov-
ern the structure and semantics of valid tasks, along with verification routines that systematically
check conformance to these standards. By enforcing these common conventions while preserving
task-specific logic, the Refactor ensures format consistency, cross-file coherence, and reliable execu-
tion. This unified representation enables downstream validation of structural correctness and allows
automated testing pipelines to verify whether each task executes end-to-end without intervention,
streamlining evaluation within interactive MLE environments.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 HYBRID VERIFICATION MECHANISM

To guarantee that every generated task is not only correct in terms of format but also semantically co-
herent and practically solvable, we implement a persistent Hybrid Verification Mechanism—a multi-
layered, multi-agent collaborative contract through the entire generate–verify–execute pipeline. This
mechanism executes across stages and comprises three complementary verification strategies: de-
terministic Assertions, model-mediated Reviews, and empirical Execution-based Validation.

Assertions (deterministic guards). Assertions encode mandatory structural constraints that are
enforced through deterministic checks. These include validation of file presence, directory layout,
and compliance with a structured schema for functions, classes, and scripts. Crucially, each assertion
stage serves as a gatekeeper to ensure that downstream modules can operate reliably without encoun-
tering missing inputs or malformed artifacts. Prior to Refactor, Assertions confirm the completeness
and structural integrity of outputs from the Designer. Specifically, they may verify that metric.py
and prepare.py scripts execute correctly, and that both a sample submission and a corresponding test
answer are successfully created, among other checks of similar nature. Post-Refactor, Assertions
enforce full conformance to the unified task schema, including function signatures, interface for-
mats, and execution scripts. For instance, they may examine whether the entire directory satisfies
the pre-defined, unified format as in Appendix A.3. These rigid checks not only eliminate syntactic
and structural defects, but also ensure that the task satisfies all requirements for automated down-
stream execution. A task that successfully passes all assertions can be regarded as a fully structured
and automation-ready MLE task, capable of running end-to-end without human intervention.

Reviews (semantic validation). Where assertions enforce formal correctness, Reviews evaluate
the semantic quality and intent alignment of each task. Leveraging an LLM-based agent as the
reviewer, this stage assesses the clarity of task descriptions, the appropriateness of metrics, and
whether the setup encourages meaningful agent behavior over shortcut solutions. For example,
Reviews may flag task descriptions that omit necessary information, or ones that leak ground truths,
which would pass assertions but compromise semantic validity. Though non-deterministic, Reviews
serve as a soft but crucial layer that guides refinement when rigid rules are insufficient.

Execution-based validation (empirical tractability). Beyond structural and semantic checks, a
well-posed MLE task must also demonstrate empirical viability: it should admit learnable patterns,
enable meaningful performance differentials, and support full-pipeline execution under realistic
agentic interactions. To verify this, we introduce execution-based validation stage that runs the
entire task within an interactive MLE environment. This stage leverages a coding agent with action
budgets to simulate a typical MLE agent interaction process. The environment, based on MLE-
Dojo (Qiang et al., 2025), exposes APIs for retrieving task metadata, validating code, executing
scripts, and evaluating submissions. This controlled interface enables transparent observation of
step-wise agent behavior and provides fine-grained feedback on execution results and performance.

The environment monitors two key aspects of empirical validation: (i) realistic pipeline valida-
tion, which ensures that the full pipeline, including data preparation, model training, evaluation and
scoring, executes successfully without human assistance; and (ii) performance validation, which
verifies that test agents achieve non-trivial predictive performance and that the evaluation metric
exhibits sensitivity to method quality. Failures along either dimensions are logged as structured de-
fects and routed back into the verification mechanism, triggering either targeted refinement by the
Refactor or Designer module or a re-execution of the corresponding stage. Positioned at the end of
the generation pipeline, execution-based validation ensures empirical solvability by running the full
task pipeline and measuring non-trivial agent performance. It captures failure modes that escape
earlier static or semantic checks, serving as the ultimate safeguard for real-world usability.

Collectively, the three verification layers offer distinct but complementary guarantees: Assertions
ensure structural correctness, Reviews ensure semantic alignment, and Execution ensures real-world
solvability and usability. Only tasks that satisfy all three criteria are retained as verified, high-quality
MLE challenges suitable for automated benchmarking and agent development.

4 AUTOMATED TASK GENERATION

MLE-Smith is able to operate seamlessly across datasets of diverse modalities, formats, and do-
mains. To comprehensively evaluate the performance and capabilities of MLE-Smith, we collect

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

43%

22%

12%

10%

9%

Tabular (43.5%)
Natural Language (21.7%)
Vision-Image (11.8%)
Audio (9.6%)
Time Series (9.5%)
Vision-Video (2.2%)
Others (1.7%)

58% 27%

Classification (57.9%)
Regression (27.4%)
Ranking (4.8%)
Multi-label Classification (4.8%)
Structured Prediction (3.1%)
Generation (1.0%)
Others (1.0%)

36%

21%
11%

10%

10%

7%
5%

Others (36.0%)
Entertainment / Media / Arts (21.3%)
Healthcare / Medicine (10.6%)
Retail / E-commerce (10.2%)
Social Media / Web (9.7%)
Finance / Economics (6.7%)
Transportation / Mobility (5.4%)

25%

18%

17%

16%

15%

F1 / Precision / Recall (24.7%)
AUC / ROC (18.3%)
RMSE / MAE / MSE (17.3%)
Custom Domain Metric (16.2%)
Others (15.2%)
Accuracy (4.7%)
NDCG / MAP (3.6%)

Figure 2: Domain, Modality, and Formulation Distribution of MLE-Smith generated tasks. From
left to right, the panels show the distributions of modality, objective, domain, and metric, respec-
tively. ”Others” category aggregates all types whose individual proportions are relatively minor.

datasets from Kaggle, the most large-scale platform that hosts diverse, real-world machine-learning
competitions and data resources. We sample 300 datasets from those with high usability scores as
the experimental corpus and generated 807 tasks from these 300 source datasets. We reserve a sub-
set of 50 generated tasks to evaluate the quality of MLE-Smith, by the performance alignments of
mainstream LLMs to MLE-Dojo leaderboard.

4.1 AGENT AND ENVIRONMENT SETUPS

We consider GPT-5 (OpenAI, 2025a) to serve as backbone models for all the agents in MLE-Smith.
We use a default temperature of 1.0 for GPT-5. We emphasize the proposed multi-agent pipeline is
compatible with any LLMs. For each dataset, the Brainstormer is allowed up to 30 step tool-call
actions. For each source dataset, the Brainstormer is allowed to brainstorm at most 3 candidate task
formulations. For each candidate, both Designer and Refactor have at most 3 retry times to pass
all assertions. For every proposed task formulation, the Designer and Refactor are each allocated a
separate budget of up to 30 steps to complete their respective processes. For execution-based valida-
tion stage, we adapt MLE-Dojo and set up an interactive MLE environment with request info
and execute code interfaces which respectively support retrieving task-related information and
evaluating submissions. The environment provides step-wise, structured feedback to agents. We
implement a ReAct-style MLE Agent (Yao et al., 2023; Sun et al., 2023) with up to 10 step budgets
to generate and debug codes and execute submissions to get valid metric scores.

4.2 STATISTICS OF GENERATED TASKS

Scale and Cost. MLE-Smith produced a total of 606 fully verified tasks across 224 distinct
source datasets, demonstrating both scalability and efficiency. On average, each dataset yielded 2.71
competition-style tasks, and the end-to-end preparation time per task averaged 419.98 seconds and
per dataset averaged 1136.20 seconds. These figures exclude the execution-based verification stage,
whose runtime we measure separately. Because this stage depends heavily on dataset/task character-
istics, hardware configuration (GPU & CPU), and the diversity of agent-generated code, its runtime
exhibits large variance; nevertheless, the per-task execution time is typically below 600 seconds.
The overall pipeline incurred an average cost of $0.78 per task and $2.11 per dataset, including all
the generation workflow and verfication stages. The time required for automatic task generation is
substantially lower than that of human experts manually authoring competition-style tasks, and also
significantly less than the engineering effort needed to localize and standardize Kaggle competitions
into benchmark-ready formats. Moreover, the execution-based verification stage is negligible when
compared to the time it would take for human practitioners to solve a task and achieve a meaningful
score. This considerable efficiency in time strongly underscores the scalability of MLE-Smith for
large-scale machine learning engineering (MLE) task generation.

Domain, Modality, and Formulation Diversity. The generated tasks span a broad spectrum of
real-world data modalities, target objectives, task domains and evaluation metrics. Figure 2 illus-
trates the detailed distributions of generated tasks in these four aspects. Specifically, the task modal-
ities of MLE-Smith generated tasks includes Tabular, Image, Video, Audio, Natural Language,
Time Series and other structured sources. Due to the characteristics of the source datasets, tabular

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Elo ratings of eight LLMs across different categories on the Dojo set, Smith set, and
Combined set. For all columns, higher scores indicate better performance. The highest score in
each category is highlighted in bold, and odd-numbered rows are shaded for visual clarity.

Model MLE-Dojo MLE-Smith MLE-All

MLE-Lite Tabular NLP Vision Overall Vision NLP/Tab. Audio Video Overall Combined

Gemini-2.5-Pro 1272.0 1187.8 1303.6 1320.7 1254.6 1346.9 1000.7 1318.7 1484.1 1179.7 1214.3
Gemini-2.5-Flash 1189.7 1004.3 1254.5 1194.8 1146.7 1202.5 1009.1 1142.3 963.5 1079.3 1111.3
o4-mini 1019.9 1013.8 1173.2 1194.8 1068.0 1075.6 1083.5 1168.0 1114.6 1097.6 1082.9
DeepSeek-Reasoner 1095.6 1101.0 915.7 1122.5 1064.8 1243.8 1028.9 1030.6 963.5 1059.1 1061.8
o3-mini 1017.3 1004.3 1004.6 1043.6 1011.9 1007.1 1017.6 984.7 936.7 1003.3 1007.6
DeepSeek-Chat 975.4 976.0 1024.7 1037.4 990.7 956.2 1066.0 1055.3 999.5 1030.2 1011.2
GPT-4o 770.9 877.9 761.4 555.7 776.5 618.4 932.3 681.3 806.5 808.8 794.1
GPT-4o-mini 659.3 834.9 562.2 530.5 686.7 549.5 861.9 619.0 731.5 742.0 716.8

and natural language modalities appear more frequently. However, other modalities also consti-
tute a substantial portion of the generated tasks. The benchmark covers a variety of formulations:
while classification and regression are relatively common, it also includes ranking, multi-label clas-
sification, structured prediction, and generation tasks, offering diverse challenges for MLE agents.
Compared to modality and objective, metric design tends to exhibit greater flexibility, as it is not
necessarily tied to the intrinsic properties of the dataset. MLE-Smith naturally reflects this flexi-
bility. The benchmark employs a wide range of evaluation metrics, with F1, precision, and recall
collectively accounting for 24.7%, followed by AUC/ROC (18.3%), RMSE/MAE/MSE (17.3%),
and a notable portion of custom domain-specific metrics (16.2%). Other metrics such as ranking-
based measures like NDCG and MAP (3.6%) further contribute to the overall diversity, highlighting
the pipeline’s ability to support nuanced evaluation tailored to different task types.

Agent-Wise Performance. For each candidate formulation proposed by the Brainstormer, both
the Designer and Refactor components are allowed up to three retries, with a maximum step limit
imposed for each attempt. For different datasets and formulations, the number of retries and steps
used by the Designer and Refactor components are summarized by the following statistics. In over
99% of cases, the Designer succeeds on the first attempt and passes all assertion checks. Approxi-
mately 92% of the time, it completes the task in no more than 15 steps, with the shortest successful
case requiring only 8 steps, and none exceeding 26 steps. In contrast, the Refactor component re-
quires more retries and tends to take more steps: around 6% of tasks are only completed successfully
on the second attempt, and about 1% require a third. Across all tasks and formulations, Refactor
consistently uses more than 13 steps, with the majority densely concentrated in the 15–22 step range.
These results align with the intended roles and design of the agents: the Refactor typically requires
more actions than the Designer, as it must read the provided examples, analyze how to standardize
the code and file structure to meet the required specifications, and ultimately ensure all tests pass.

5 EXPERIMENTS: TASK EVALUATION

We evaluate whether generated tasks by MLE-Smith faithfully reflect the difficulty and discrim-
inative structure of real, human-designed tasks. We conduct a comprehensive evaluation of eight
cutting-edge large language models (LLMs) on a curated benchmark of 100 machine learning en-
gineering (MLE) tasks, which we refer to as the Combined set. This evaluation suite comprises
50 tasks from the original MLE-Dojo evaluation set Dojo set and 50 tasks automatically generated
by MLE-Smith Smith set. Both subsets are designed to span a diverse range of data modalities,
application domains, and task formulations, providing a sufficiently diverse MLE testbed.

5.1 EXPERIMENT SETUPS

LLMs for Evaluation. We consider eight cutting-edge LLMs in the evaluation and improve-
ment of LLMs as MLE Agents on Combined set. Specifically, we consider gpt-4o-mini
(2024-07-18) (Hurst et al., 2024), gpt-4o (2024-11-20) (Hurst et al., 2024), o3-mini
(2025-01-31) (OpenAI, 2025b) and o4-mini (2025-04-16) (OpenAI, 2025c) from Ope-
nAI, Gemini-2.5-Flash (Comanici et al., 2025) and Gemini-2.5-Pro (Comanici et al.,
2025) from Google, and DeepSeek-V3.1-Chat (2025-03-24) (DeepSeek, 2025) and
DeepSeek-V3.1-Reasoner (DeepSeek, 2025) from DeepSeek as evaluation backbone LLMs.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

18.5 7.0 4.0 6.0 2.5 5.5 4.5

31.5 10.5 5.5 7.5 3.0 10.5 8.5

43.0 39.5 19.5 15.0 11.0 23.5 26.0

46.0 44.5 30.5 15.5 12.0 24.5 31.0

44.0 42.5 35.0 34.5 15.5 30.5 38.0

47.5 47.0 39.0 38.0 34.5 36.0 41.5

44.5 39.5 26.5 25.5 19.5 14.0 33.0

45.5 41.5 24.0 19.0 12.0 8.5 17.0

MLE-Dojo

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

20.0 5.0 5.0 11.0 6.0 6.0 7.0

30.0 10.5 6.0 11.5 7.5 11.0 8.0

45.0 39.5 16.5 17.0 13.0 19.0 24.0

45.0 44.0 33.5 27.0 17.0 24.0 30.5

39.0 38.5 33.0 23.0 18.5 30.0 30.0

44.0 42.5 37.0 33.0 31.5 36.0 35.0

44.0 39.0 31.0 26.0 20.0 14.0 28.0

43.0 42.0 26.0 19.5 20.0 15.0 22.0

MLE-Smith

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

38.5 12.0 9.0 17.0 8.5 11.5 11.5

61.5 21.0 11.5 19.0 10.5 21.5 16.5

88.0 79.0 36.0 32.0 24.0 42.5 50.0

91.0 88.5 64.0 42.5 29.0 48.5 61.5

83.0 81.0 68.0 57.5 34.0 60.5 68.0

91.5 89.5 76.0 71.0 66.0 72.0 76.5

88.5 78.5 57.5 51.5 39.5 28.0 61.0

88.5 83.5 50.0 38.5 32.0 23.5 39.0

Combined

0

20

40

60

80

W
in

s

1. GPT-4o-mini
2. GPT-4o

3. o3-mini
4. o4-mini

5. Gemini-2.5-flash
6. Gemini-2.5-pro

7. Deepseek-Reason
8. Deepseek-Chat

Figure 3: Pairwise win–loss matrices of eight models on the Dojo, Smith, and Combined sets. Each
cell (i, j) records the number of tasks on which model i outperforms model j, and the aggregated
score is computed by awarding 1 point for a win, 0.5 point for a tie, and 0 points for a loss.

For non-reasoning models, we set temperature=0.0 and top-p = 1.0. For reasoning models, we use
default model settings. We take the best performance of two runs per task per model.

Agent and Environment Design. We implement the MLE Agent following the MLE-Dojo frame-
work, which utilizes native actions and interacts with the MLE environment through a straightfor-
ward logic. For each task and each run, the agent is allowed up to 15 action steps and a maximum
of 12 hours of execution time. Context length or maximum output length are determined by the
properties of the underlying model without further constrains.

Evaluation Metrics. Each task is associated with a specific evaluation metric, which is used to
compute the raw performance score for that task. To ensure comprehensive evaluation and enable
fair comparison across different models, we adopt Elo ranking (Chiang et al., 2024) as the primary
comparative indicator. We follow Chatbot Arena (Chiang et al., 2024) and estimate Elo scores
by fitting a Bradley–Terry-style logistic model via maximum likelihood, using sample-weighted
pairwise outcomes (wins/losses with ties treated as symmetric half-wins). We adopt a base-10 log-
odds parameterization scaled to the Elo convention (scale = 400, base = 10, offset = 1000).

5.2 MAIN RESULTS

We compute modality-level Elo ratings on three disjoint sets: Dojo set (50 real tasks in MLE-
Dojo), Smith set (50 MLE-Smith generated tasks) and Combined set (all 100 tasks). Table 1
presents ELO scores for all eight LLMs across different categories and task sets. Across all subsets,
Gemini-2.5-Pro establishes a clear performance frontier, maintaining top rankings in almost
every modality and transfering its advantage seamlessly from real to generated benchmarks. A
second tier emerges with DeepSeek-V3.1-Reasoner and o4-mini, which show competi-
tive balance across modalities: o4-mini is particularly strong on language-oriented tasks, while
DeepSeek-V3.1-Reasoner delivers more robust vision performance. In contrast, the GPT-4o
family consistently lags behind, especially on vision inputs, underscoring persistent challenges in
multimodal generalization. Overall, we observe a consistent ranking trend across real and synthetic
tasks, validating the use of generated benchmarks for model differentiation. The Elo distribution
also highlights the diversity of task difficulty and model specialization across input modalities.

5.3 STEP-WISE PERFORMANCE DYNAMICS

We study step-wise performance dynamics across different models to reveal consistent improve-
ment patterns that reflect desirable properties of the automatically generated tasks. We exclude
information-requesting steps of agents and denote the remaining steps as u ∈ {1, . . . , 10}. Since re-
alistic leaderboards and human performances are not available for generated tasks, we implement a
normalization mechanism to model step-wise improvement. For each (task t, model m), raw scores
are extracted from execution feedback of execute code actions and normalized in a metric-aware
manner depending on whether higher or lower values indicate better performance. Detailed formulas
are provided in Appendix A.4. After normalization, missing entries are imputed and we construct
a best-so-far trajectory via a prefix maximum, yielding a nondecreasing length-10 curve per (task,
model). Category-level and overall curves in Figure 4 are obtained by averaging across task tra-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GPT-4o-mini
GPT-4o

Gemini-2.5-Flash
DeepSeek-V3.1-Chat

o4-mini
o3-mini

DeepSeek-V3.1-Reasoner
Gemini-2.5-Pro

1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00
Overall

1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00
Vision

1 2 3 4 5 6 7 8 9 10
Step

0.00

0.25

0.50

0.75

1.00
Audio

1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00
NLP/Tabular

1 2 3 4 5 6 7 8 9 10
0.00

0.25

0.50

0.75

1.00
Video

Figure 4: Step-wise Performance Dynamics of normalized raw scores. Curves are obtained by point-
wise averaging over tasks in corresponding categories. Information-requesting steps are excluded.

jectories. Across all categories, models exhibit consistent upward trajectories, indicating that agent
performance reliably improves with steps. This trend suggests that MLE-Smith-generated tasks are
learnable, provide sufficient resolution to differentiate between modeling approaches, and support
iterative refinement and methodical exploration. These observations provide empirical justification
for using MLE-Smith-generated tasks in the evaluation and development of MLE agents.

5.4 REALISM AND QUALITY OF GENERATED TASKS

To evaluate the realism and discriminative fidelity of tasks generated by MLE-Smith, we ana-
lyze the statistical alignment between model-level Elo scores computed on Dojo set, Smith set, and
Combined set. Specifically, we adopt complementary statistics that capture distinct notions of agree-
ment: (i) linear correlation (Pearson (Pearson, 1895)) to quantify similarity in absolute Elo mag-
nitudes, (ii) rank agreement (Spearman (Spearman, 1961), Kendall (Kendall, 1938)) and head-of-
leaderboard overlap (Top-k) to assess stability of model ordering, (iii) scale and bias agreement
(Lin’s Concordance Correlation Coefficient (Lawrence & Lin, 1989), CCC, and Bland–Altman anal-
ysis (Bland & Altman, 1986)), and (iv) multi-rater reliability (Cronbach’s α (Cronbach, 1951),
ICC (Shrout & Fleiss, 1979)) to test whether different Elo sets function as interchangeable evalua-
tors over the same population. We include the details of these measurements in Appendix A.6.

Table 2: Elo agreement with complementary statistics. CCC denotes Lin’s concordance correlation
coefficient; Kendall τb accounts for ties.

Pair Pearson r R2 Spearman ρ Kendall τb CCC Top-3 / Top-5

Dojo–Smith 0.982 0.964 0.952 0.857 0.958 1.0 / 0.8
Dojo–Combined 0.996 0.992 0.976 0.929 0.989 1.0 / 0.8
Smith–Combined 0.995 0.990 0.976 0.929 0.989 1.0 / 1.0

Across all pairs, linear relationships remain near-perfect: Dojo–Smith r = 0.982, Dojo–Combined
r = 0.996, and Smith–Combined r = 0.995 (R2 = {0.964, 0.992, 0.990}). Rank order is like-
wise stable with Spearman ρ = {0.952, 0.976, 0.976} and Kendall τb = {0.857, 0.929, 0.929}; top
rankings nearly coincide (Top-3 overlap = 1.0 for all, Top-5 = {0.8, 0.8, 1.0}). Beyond correla-
tion, numerical agreement is strong: CCC {0.958, 0.989, 0.989}, negligible Bland–Altman bias, and
limits of agreement of roughly ±96, ±51, and ±45 Elo. Treating the three sets as interchangeable
evaluators yields α = 0.993 and ICC(2, 1) = 0.981, indicating excellent inter-set reliability. These
statistics consistently indicate that the Elo distributions induced by MLE-Smith are statistically
indistinguishable from those of human–designed benchmarks, demonstrating that MLE-Smith ef-
fectively generates tasks with realistic difficulty and practical usability, faithfully mirroring the dis-
criminative structure of real MLE competitions and supporting MLE agent development at scale.

6 CONCLUSION

We introduce MLE-Smith, a fully automated multi-agent pipeline for transforming raw datasets
into competition-style machine learning engineering tasks. Through a principled generate–verify–
execute paradigm, MLE-Smith scales task generation while ensuring structural integrity, semantic
soundness, and empirical solvability. Applied to hundreds of real-world datasets, it produces a large
and diverse suite of high-quality tasks that strongly correlate with human-designed benchmarks,
demonstrating that generated tasks can match real competitions in realism and discriminative power.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study does not involve human subjects, person-
ally identifiable information, or any proprietary data. All datasets originate from publicly available
resources that permit academic research use, and we release only derived tasks that preserve the orig-
inal license conditions. The automated generation pipeline is designed to avoid creation of harmful
or privacy-sensitive content and to prevent leakage of confidential information. All authors have
read and agree to comply with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We make every effort to ensure full reproducibility of our results. Methods section details the multi-
agent generation pipeline, verification mechanisms, and execution environment. Experiments sec-
tion describes the evaluation protocol and model settings. Appendix lists all benchmark tasks and
contains the exact agent prompts. An anonymized repository with source code and configuration
files is provided in the supplementary materials to facilitate verification of all experiments.

REFERENCES

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song
Wang. Swe-bench+: Enhanced coding benchmark for llms. arXiv preprint arXiv:2410.06992,
2024.

J Martin Bland and DouglasG Altman. Statistical methods for assessing agreement between two
methods of clinical measurement. The lancet, 327(8476):307–310, 1986.

Nikos I Bosse, Jon Evans, Robert G Gambee, Daniel Hnyk, Peter Mühlbacher, Lawrence Phillips,
Dan Schwarz, Jack Wildman, et al. Deep research bench: Evaluating ai web research agents.
arXiv preprint arXiv:2506.06287, 2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-questioning
language models. arXiv preprint arXiv:2508.03682, 2025.

De Chezelles, Thibault Le Sellier, Sahar Omidi Shayegan, Lawrence Keunho Jang, Xing Han Lù,
Ori Yoran, Dehan Kong, Frank F Xu, Siva Reddy, Quentin Cappart, et al. The browsergym
ecosystem for web agent research. arXiv preprint arXiv:2412.05467, 2024.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
arena: An open platform for evaluating llms by human preference. In Forty-first International
Conference on Machine Learning, 2024.

Jason Chou, Ao Liu, Yuchi Deng, Zhiying Zeng, Tao Zhang, Haotian Zhu, Jianwei Cai, Yue Mao,
Chenchen Zhang, Lingyun Tan, et al. Autocodebench: Large language models are automatic code
benchmark generators. arXiv preprint arXiv:2508.09101, 2025.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Lee J Cronbach. Coefficient alpha and the internal structure of tests. psychometrika, 16(3):297–334,
1951.

DeepSeek. Deepseek-v3.1 release. DeepSeek News, 2025. URL https://api-docs.
deepseek.com/news/news250821.

10

https://api-docs.deepseek.com/news/news250821
https://api-docs.deepseek.com/news/news250821


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench:
A comprehensive benchmark for deep research agents. arXiv preprint arXiv:2506.11763, 2025.

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents from becoming data
science experts? arXiv preprint arXiv:2409.07703, 2024.

Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1-2):81–93, 1938.

I Lawrence and Kuei Lin. A concordance correlation coefficient to evaluate reproducibility. Bio-
metrics, pp. 255–268, 1989.

Ido Levy, Ben Wiesel, Sami Marreed, Alon Oved, Avi Yaeli, and Segev Shlomov. St-
webagentbench: A benchmark for evaluating safety and trustworthiness in web agents. arXiv
preprint arXiv:2410.06703, 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Ziyang Luo, Zhiqi Shen, Wenzhuo Yang, Zirui Zhao, Prathyusha Jwalapuram, Amrita Saha, Doyen
Sahoo, Silvio Savarese, Caiming Xiong, and Junnan Li. Mcp-universe: Benchmarking large lan-
guage models with real-world model context protocol servers. arXiv preprint arXiv:2508.14704,
2025.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vin-
cent Moens, Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia,
Dieuwke Hupkes, Ricardo Silveira Cabral, Tatiana Shavrina, Jakob Foerster, Yoram Bachrach,
William Yang Wang, and Roberta Raileanu. Mlgym: A new framework and benchmark for ad-
vancing ai research agents, 2025. URL https://arxiv.org/abs/2502.14499.

OpenAI. Gpt-5 release. OpenAI blog, 2025a. URL https://openai.com/gpt-5/.

OpenAI. Openai o3-mini: Pushing the frontier of cost-effective reasoning. OpenAI Blog, 2025b.
URL https://openai.com/index/openai-o3-mini/.

OpenAI. Introducing openai o3 and o4-mini. OpenAI Blog, 2025c. URL https://openai.
com/index/introducing-o3-and-o4-mini/.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym. arXiv preprint
arXiv:2412.21139, 2024a.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi Shang,
Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online environ-
ments. arXiv preprint arXiv:2406.12373, 2024b.

Karl Pearson. Vii. note on regression and inheritance in the case of two parents. proceedings of the
royal society of London, 58(347-352):240–242, 1895.

11

https://arxiv.org/abs/2502.14499
https://openai.com/gpt-5/
https://openai.com/index/openai-o3-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Rushi Qiang, Yuchen Zhuang, Yinghao Li, Rongzhi Zhang, Changhao Li, Ian Shu-Hei Wong, Sherry
Yang, Percy Liang, Chao Zhang, Bo Dai, et al. Mle-dojo: Interactive environments for empower-
ing llm agents in machine learning engineering. arXiv preprint arXiv:2505.07782, 2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Yijia Shao, Vinay Samuel, Yucheng Jiang, John Yang, and Diyi Yang. Collaborative gym: A frame-
work for enabling and evaluating human-agent collaboration. arXiv preprint arXiv:2412.15701,
2024.

Dingfeng Shi, Jingyi Cao, Qianben Chen, Weichen Sun, Weizhen Li, Hongxuan Lu, Fangchen Dong,
Tianrui Qin, King Zhu, Minghao Liu, et al. Taskcraft: Automated generation of agentic tasks.
arXiv preprint arXiv:2506.10055, 2025.

Patrick E Shrout and Joseph L Fleiss. Intraclass correlations: uses in assessing rater reliability.
Psychological bulletin, 86(2):420, 1979.

Charles Spearman. The proof and measurement of association between two things. 1961.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive plan-
ning from feedback with language models. Advances in neural information processing systems,
36:58202–58245, 2023.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal.
arXiv preprint arXiv:2501.07572, 2025.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
Advances in Neural Information Processing Systems, 37:50528–50652, 2024.

John Yang, Kilian Lieret, Carlos E Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
engineering agents. arXiv preprint arXiv:2504.21798, 2025.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. tau-bench: A benchmark for
tool-agent-user interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Daoguang Zan, Zhirong Huang, Wei Liu, Hanwu Chen, Linhao Zhang, Shulin Xin, Lu Chen, Qi Liu,
Xiaojian Zhong, Aoyan Li, et al. Multi-swe-bench: A multilingual benchmark for issue resolving.
arXiv preprint arXiv:2504.02605, 2025.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! arXiv preprint
arXiv:2505.23419, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Yifei Zhou, Sergey Levine, Jason Weston, Xian Li, and Sainbayar Sukhbaatar. Self-challenging
language model agents. arXiv preprint arXiv:2506.01716, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models are used to assist with English proofreading and minor wording improve-
ments. All research ideas, experiments, and conclusions were conceived and validated by authors.

A.2 FULL LIST OF EVALUATION TASKS

Figure 3 presents the raw dataset information of Smith set in dataset names, sizes and tags. The
data sizes are relatively large to cover across different domains, modalities and formulations.

Table 3: Summary of Kaggle Competition Datasets

Dataset Name Size Tags

Vision–General

veeralakrishna/200-bird-species-
with-11788-images

1.1 GB universities and colleges, biology, online commu-
nities

sadhliroomyprime/cattle-
weight-detection-model-dataset-
12k

44.1 GB animals, business, agriculture, artificial intelli-
gence, computer vision, pre-trained model

muhammetzahitaydn/hardhat-
vest-dataset-v3

4.2 GB intermediate, deep learning, public safety, yolo,
object detection

balraj98/modelnet40-princeton-
3d-object-dataset

1.9 GB earth and nature, science and technology

sunilthite/ovarian-cancer-
classification-dataset

3.3 GB cancer, pre-trained model

iamtapendu/rsna-pneumonia-
processed-dataset

10.9 GB healthcare, computer vision, image, image classi-
fication, image segmentation

pranavchandane/scut-fbp5500-
v2-facial-beauty-scores

1.1 GB people, computer vision, cnn, image, regression

majdouline20/shapenetpart-
dataset

1.0 GB computer science, classification, segmentation

thedatasith/sku110k-annotations 13.2 GB retail and shopping
tapakah68/supervisely-filtered-
segmentation-person-dataset

4.3 GB arts and entertainment, people, computer vision,
image

aletbm/urban-segmentation-
isprs

6.4 GB earth and nature, data visualization, classification,
image classification, image segmentation

hendrichscullen/vehide-dataset-
automatic-vehicle-damage-
detection

2.1 GB image, multiclass classification, insurance, object
detection, segmentation

victorcallejasf/multimodal-hate-
speech

6.0 GB nlp, image, multiclass classification, online com-
munities, social networks

Audio

yashdogra/speech-commands 2.3 GB tensorflow, automatic speech recognition, speech
synthesis, speech-to-text

daviddkarnowski/amateur-
radio-transmissions-2-meter-fm-
simplex

34.0 GB mobile and wireless, electronics, signal process-
ing, audio, audio classification

soumendraprasad/sound-of-114-
species-of-birds-till-2022

2.1 GB arts and entertainment, earth and nature, beginner,
intermediate, advanced, audio

mathurinache/the-lj-speech-
dataset

3.0 GB artificial intelligence, advanced, signal process-
ing, text, audio

chrisfilo/urbansound8k 5.6 GB arts and entertainment, music, classification, mul-
ticlass classification, audio

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Competition Name Size Tags

vjcalling/speaker-recognition-
audio-dataset

7.3 GB arts and entertainment, music, classification, deep
learning, audio

ikrbasak/sep-28k 2.2 GB healthcare, health, audio, numpy, scipy
abdelrahmanahmed110/quran-
audio-dataset

3.0 GB music, religion and belief systems, audio

raajanwankhade/oep-dataset 11.0 GB universities and colleges, computer vision, audio
event classification, object detection, video classi-
fication

aryashah2k/noise-reduced-
uaspeech-dysarthria-dataset

8.0 GB music, computer science, software, deep learning,
audio synthesis, automatic speech recognition, au-
dio classification, speech synthesis

jesusrequena/mlend-spoken-
numerals

1.1 GB culture and humanities, languages, signal process-
ing, audio

victorling/librispeech-clean 28.1 GB audio
imsparsh/deam-mediaeval-
dataset-emotional-analysis-in-
music

1.8 GB music, intermediate, advanced, multiclass classi-
fication, audio

vinayshanbhag/bird-song-data-
set

2.1 GB music, audio

NLP / Tabular

devdope/900k-spotify 1.0 GB arts and entertainment, music, education, text gen-
eration

fayaznoor10/movie-transcripts-
59k

860.4 MB arts and entertainment, movies and tv shows, nlp,
text mining, multilabel classification

gowrishankarp/newspaper-text-
summarization-cnn-dailymail

503.3 MB literature, nlp, text, news, transformers

nadyinky/sephora-products-and-
skincare-reviews

146.8 MB computer science, nlp, recommender systems, re-
tail and shopping, ratings and reviews

arshkon/linkedin-job-postings 158.8 MB employment, income, business, economics, nlp,
jobs and career

sobhanmoosavi/us-traffic-
congestions-2016-2022

2.3 GB united states, categorical, transportation, tabular,
urban planning

kgmuchiri/world-athletics-all-
time-dataset

52.9 MB running, sports, data visualization, data analytics,
tabular

edwardgaibor/pfaf-medical-
plants-use-dataset

13.9 MB biology, agriculture, beginner, tabular, text

imoore/60k-stack-overflow-
questions-with-quality-rate

21.0 MB music, nlp, text mining, text

spsayakpaul/arxiv-paper-
abstracts

44.6 MB education, nlp, multilabel classification

arushchillar/disneyland-reviews 11.1 MB business, nlp, data visualization, tabular, ratings
and reviews

simaanjali/emotion-analysis-
based-on-text

31.9 MB earth and nature, nlp

jaidityachopra/esg-
sustainability-reports-of-s-
and-p-500-companies

23.8 MB nlp, investing, feature extraction, text pre-
processing

smagnan/1-million-reddit-
comments-from-40-subreddits

71.2 MB arts and entertainment, categorical, nlp, binary
classification, online communities, social net-
works

salah1992/arabic-nli-pairs-
multilingual-nli-26lang-2mil7

23.7 MB earth and nature, linguistics, nlp, text, transform-
ers, arabic

thedevastator/pubmed-article-
summarization-dataset

654.3 MB bayesian statistics, earth and nature, nlp, text min-
ing

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Competition Name Size Tags

shivamb/legal-citation-text-
classification

14.9 MB australia, government, law, nlp, text

Vision–Video

zaber666/meld-dataset 11.0 GB signal processing, text mining, text, audio, pre-
trained model

rohanmallick/kinetics-train-5per 33.3 GB earth and nature, computer vision, deep learning,
video, audio

matthewjansen/ucf101-action-
recognition

6.5 GB computer vision, deep learning, video, transfer
learning, video classification

rohitsuresh15/radroad-anomaly-
detection

7.3 GB law, automobiles and vehicles, image, video, eyes
and vision, urban planning

elin75/localized-audio-visual-
deepfake-dataset-lav-df

23.1 GB advanced, video, audio

saberghaderi/-dfl-bundesliga-
460-mp4-videos-in-30sec-csv

10.1 GB football, sports, science and technology, video,
simulations

A.3 UNIFIED TASK STRUCTURE

The Refactor should deliver each task as a unified task format, specifically following the be-
low directory structure. The assertions will ensure the existence of essential files and directo-
ries such as prepare.py, metric.py, description.txt, sample submission.csv,
test answer.csv, raw/, public/ and private/. Furthermore, assertions will ensure that
the implementations of prepare.py and metric.py strictly follow the required format. Specifi-
cally, prepare.py must exactly implement a def prepare function whose input arguments include
raw/, public/, and private/ directories. Likewise, metric.py must exactly implement a Metric
class that inherits from the designated base class and provides the corresponding methods for task-
aware submission validation and metric evaluation.

competition/
data/

raw/
private/

test answer.csv
public/

(train/test data)
description.txt
sample submission.csv
data structure.txt (Optional)

prepare.py
metric.py
description.txt

Figure 5: Unified directory structure that Refactor should deliver.

A.4 NORMALIZATION DETAILS

For each task t and model m, let rt,m,u denote the raw score from execution feedback at step
u ∈ {1, . . . , 10}. We define Dt ∈ {+1,−1} as the metric direction of task t, where Dt = +1
indicates that higher metric values are better, and Dt = −1 indicates that lower values are better.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The normalized score is computed as:

r̃t,m,u =


rt,m,u −minu rt,m,u

maxu rt,m,u −minu rt,m,u
, Dt = +1,

maxu rt,m,u − rt,m,u

maxu rt,m,u −minu rt,m,u
, Dt = −1.

If max rt,m = min rt,m, observed entries are set to 1 and missing ones to 0. We then forward-fill
missing indices and compute a best-so-far trajectory via a prefix maximum:

yt,m,u = max
(
yt,m,u−1, r̃t,m,u

)
.

This procedure yields a nondecreasing curve of length 10 per (task, model), which is then averaged
pointwise across tasks to obtain category-level and overall trajectories.

A.5 PROMPTS FOR MLE-SMITH AGENTS

We provide detailed prompts for MLE-Smith Agents in this section.

Brainstormer Instruction
You are an expert Kaggle competition designer. Your task is to
brainstorm diverse design choices for challenging, high-quality and
reasonable Kaggle competitions based on an existing dataset.

You are provided with detailed information about the dataset.
The dataset is already downloaded to the working directory with unzip.

You have access to tools for reading/writing files, listing directory
structure, and executing bash commands.

Always use function calls when you need to perform actions.
You can only call one function at a time.

Your work directory is {working_directory}, all actions and files
should be performed in this directory.

Use tools to explore the dataset to get insights.

Then based on insights from the dataset, brainstorm design choices for
challenging, high-quality and reasonable Kaggle competitions.

The design choice should include the following aspects,
be concise and informative:
- Concise problem overview: background, problem statement, and goal.
- Data utilization: for the given dataset,
what data to use, what data to ignore.

- Data processing: how to process the data
- Metric: what metric to use, why it’s fair and precise.
- Justification of the design choices: why the designed competitiion
would be high-quality, challenging and solvable by ML techniques.

- Details of the ignored data: why the ignored data is not used,
what information is missing.

- Difficulty level: how difficult the competition is,
where the difficulty comes from.

- Tags: what tags the competition should be tagged with.

Principles:
- Only split the data into train and test sets.
- Ensure that only precise, reliable labels are used; no uncertain,
ambiguous, or model-generated labels should be introduced.

- You must brainstorm and write at least one and
at most {count} results. Determine the number of brainstorming outputs
according to the intrinsic nature and properties of the dataset.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

- Some datasets are open-ended and naturally admit a wide range of
tasks, while others are more specific and concentrated.
- Aim to explore as many meaningful possibilities as the
data genuinely supports, but do not force artificial variety|
respect the dataset’s natural boundaries.

Write your brainstorming results in "brainstorming\_i.md" file to
the working directory {working_directory},
is the index of the brainstorming result, from 1 to at most {count}.

## DATASET INFORMATION ##
{dataset_information}

Designer Instruction

You are an expert Kaggle competition designer. Your task is to create a
challenging, high-quality Kaggle competition based on existing dataset.

You are provided with detailed information about the dataset. And the
dataset is already downloaded to the working directory with unzip.

You have access to tools for reading/writing files, listing directory
structure, and executing bash commands.

Always use function calls when you need to perform actions.
You can only call one function at a time.

Your work directory is {working_directory},
all actions and files should be performed in this directory.

Now there is "brainstorming.md" file in the working directory,
pointing out the design direction for the competition.

## REQUIREMENTS ##
- Refer to "brainstorming.md" file for the design direction.
But follow the requirements and instructions below.

- Make the competition challenging while maintaining a high quality
standard.

- Participant should utilize ML techniques to solve the problem,
including but not limited to:

- Data Processing
- Feature Engineering
- Model Training
- Model Evaluation
...

- Design the metric to be reasonable, fair and precise.
- Make good use of the data as possible, don’t waste any good resources.
Keep the scale rather than using subsets.
No need to care about the runtime.

- Split the data into train/test sets appropriately.
- Always specify exactly the absolute path as arguments.
- All actions and files should be performed in the working directory.
- The competition should be challenging, but solvable by ML techniques.
- Make everything perfect rather than just trying to pass the tests.

A general pipeline for reference:

1. Utilize list_directory_structure tool to explore data structure.
2. Explore data files using the read_file tool;

further extract files with bash commands if needed.
3. Design a concise and informative problem description

and write it to "description.txt" in the working directory:
- Include the problem statement,data description,evaluation metric,

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

and any other relevant information.
- Specify the final train/test data files for the competition,
while don’t specify the path of the data files.

- Ignore timeline/prize/etc, they are not needed.
4. Write a "prepare.py" file:

- Include complete train/test split process and
sample_submission.csv generation

- sample_submission.csv better has random but valid labels
(same category as in test_answer.csv) rather than null values

- Test_answer and test_data (without the predicted labels) should be
separated into two files, use "test_answer.csv" as the name

- Consider the correspondence between the test_answer and test_data
- Include detailed and comprehensive assert checks for the
correctness of the split

- Specify the final train/test data files for the competition,
align with the description.txt

- Validation set isn’t needed, but keep it if it’s already split
- The image, audio, and other related files should also be split
together with the CSV files into train/test sets/folders.

- Rename files with names that might reveal their labels to
avoid label leakage.

- Don’t include data paths in csv files
- Set deterministic behavior for the split process.
- For classification tasks, all test labels should occur in
training set at least once

5. Write a "metric.py" file, include functions to validate the format
correctness of the submission and calculate the metric.
Deal with numerical values carefully to avoid nan/inf/etc.
6. Write a "test.py" script to test the correctness of the prepare.py
and metric.py, run it to check the correctness until totally correct.
7. Optimize description.txt:

- No need to mention the original data files, only the final data
files should be mentioned

- Take the view of a participant to review it
(which means test_answer or irrelevant files shouldn’t
be mentioned) and make it perfect

- Make sure the competition is challenging, meaningful and solvable
by ML techniques, and the metric is fair and precise.

- Make sure the description is informative, concise and accurate.
8. Optimize until all requirements are met with high quality
(The test must pass).

## DATASET INFORMATION ##
{dataset_information}

Refactor Instruction
You are an expert Python developer. Your task is to refactor several
Python files to meet some requirements.

You have access to tools for reading/writing files, listing directory
structure, and executing bash commands.

You are provided with the working directory: {working_directory}, all
actions and files should be performed in this directory.

All files you need are in the working directory. raw/ is where the data
is downloaded and unzipped once.

samples/ directory is a good example, you can refer to it first to
learn good practices and refactor the files to meet the requirements.

You may need to check the data files for details if needed.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

## REQUIREMENTS ##
- You should finally refact metric.py and prepare.py to meet the
requirements.
- metric.py should inherit from samples/base_metric.py and implement
the abstract methods, give it a related name that ends with "Metrics",
refer to samples/sample_metric.py for the implementation details.
- "evaluate" and "validate_submission" should be implemented and

aligned with "sample_submission.csv" and "test_answer.csv"
- In addition to "self", "__init__" should have two arguments:

"value" and "higher_is_better" (Determine the default);
"evaluate" should have two arguments: "y_true" and "y_pred";
"validate_submission" should have two arguments:
"submission" and "ground_truth"

- prepare.py should implement exactly "def prepare(raw: Path,
public: Path, private: Path)"
- This function is a complete preparation process
- Refer to samples/sample_prepare.py for the implementation details
- Set deterministic behavior for the split process.
- test_answer (participants shouldn’t see) should be placed exactly

in "private/" directory, other files (sample_submission, test/train
data/images/audio/video/text/other, etc.) should be placed exactly
in "public/" directory

- Write a comprehensive "test.py" script to test the correctness of
the prepare.py and metric.py, and run it to check the correctness.
Test "evaluate" and "validate_submission" of the metric.py with
"test_answer.csv" and "sample_submission.csv".
- Make sure the test.py is correct and comprehensive,
and the execution of test.py is correct.
- Don’t include "main" function in metric.py and prepare.py
- Always specify exactly the absolute path as arguments.
- All actions and files should be performed in the working directory.
- Finally, there should be "private/", "public/", "samples/", "raw/"
directories, and "description.txt", "metric.py", "prepare.py",
"test.py" files in the working directory.
- "raw/" directory should contain the original data files
- "private/" directory should contain the test_answer.csv file
- "public/" directory should contain the sample_submission.csv and

all train/test data/images/audio/video/text/other files
and description.txt. There should always be "test.csv"
and "train.csv" in the "public/" directory if applicable.

- Don’t include or leak anything related to answers/golden labels
in "public/" directory.

- File directories in "description.txt" should be the same as the
exact file directories in "public/" directory. Don’t mention
"private/" in the description.txt, only include files in "public/"
directory.

- "description.txt" is open to participants, so make it concise and
informative, only include "public/" directory in the description.txt.

- Make everything perfect rather than just trying to pass the tests.
Optimize until all requirements are met with high quality
(The test must pass).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A.6 DETAILS OF STATISTICAL MEASURES FOR ELO SET AGREEMENT

This section provides formal definitions, interpretation, and common use cases for all agreement
statistics used to compare model-level Elo scores across different task sets.

A.6.1 PEARSON LINEAR CORRELATION (r)

Definition. Given paired observations {(xi, yi)}ni=1,

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√√√√ n∑
i=1

(xi − x̄)2

√√√√ n∑
i=1

(yi − ȳ)2

.

Meaning. Measures the strength of linear association between two sets of scores. r = 1 indicates
perfect positive linearity, r = 0 no linear association.

Use. Commonly used to assess whether two measurement methods produce proportionally similar
values (e.g., Elo magnitudes across task sets).

A.6.2 COEFFICIENT OF DETERMINATION (R2)

Definition. For a simple linear regression yi = a+ bxi + εi,

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
= r2 (for simple correlation).

Meaning. Represents the proportion of variance in y explained by x. Higher R2 indicates stronger
predictive power of one set of scores for the other.

Use. Provides an intuitive measure of how much of the variability in Elo scores is shared between
two task sets.

A.6.3 SPEARMAN RANK CORRELATION (ρ)

Definition. Let R(xi) and R(yi) be the ranks of xi and yi.

ρ =

∑
i

(R(xi)−R(x))(R(yi)−R(y))√∑
i

(R(xi)−R(x))2
√∑

i

(R(yi)−R(y))2
.

Meaning. Assesses whether the ordering of models is preserved, independent of absolute score
scales.

Use. Robust to monotonic but nonlinear relationships, ideal for leaderboard stability checks.

A.6.4 KENDALL RANK CORRELATION (τb)

Definition. Let C be the number of concordant pairs and D the number of discordant pairs. Let
Tx and Ty be the numbers of tied pairs in x or y.

τb =
C −D√

(C +D + Tx) (C +D + Ty)
.

Meaning. Quantifies pairwise ranking agreement while properly handling ties.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Use. Often preferred when ties occur (common in Elo ratings), providing a probabilistic interpre-
tation: τb is the difference between the probability of concordance and discordance.

A.6.5 TOP-k OVERLAP

Definition. For a given k, let Sk
x and Sk

y be the sets of top-k ranked items:

Overlapk =
|Sk

x ∩ Sk
y |

k
.

Meaning. Measures how consistently the leaders (top models) coincide.

Use. Highlights agreement in the most competitive region of leaderboards, which is often of pri-
mary interest.

A.6.6 LIN’S CONCORDANCE CORRELATION COEFFICIENT (CCC)

Definition. Let µx, µy be means, σ2
x, σ

2
y variances, and ρ the Pearson correlation:

CCC =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
.

Meaning. Assesses both precision (correlation) and accuracy (closeness to the 45◦ identity line).
A value of 1 indicates perfect agreement in both scale and location.

Use. Preferred when we need to verify numerical interchangeability beyond simple linear associ-
ation.

A.6.7 BLAND–ALTMAN ANALYSIS

Definition. For each pair (xi, yi) compute

Difference di = xi − yi, Mean mi =
xi + yi

2
.

The plot of di versus mi reveals systematic bias. The limits of agreement (LoA) are

d± 1.96 sd,

where d is the mean difference and sd its standard deviation.

Meaning. Visualizes bias and scale discrepancies even when correlation is high.

Use. Widely used in clinical and experimental settings to test whether two measurement methods
can be used interchangeably.

A.6.8 CRONBACH’S α

Definition. Suppose k parallel measurements of the same quantity. Let σ2
t be the variance of the

total score and σ2
j the variance of each measurement:

α =
k

k − 1

[
1−

∑k
j=1 σ

2
j

σ2
t

]
.

Meaning. Estimates internal consistency across multiple raters or measurement methods.

Use. Values above 0.9 indicate excellent reliability, supporting the claim that different Elo sets can
be treated as interchangeable “raters” of model performance.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.6.9 INTRACLASS CORRELATION COEFFICIENT (ICC)

Definition. For the two-way random, absolute-agreement, single-measure model (denoted
ICC(2, 1)):

ICC(2, 1) =
MSB −MSE

MSB + (k − 1)MSE + k
n (MSR −MSE)

,

where MSB is the between-target mean square, MSR the between-rater mean square, MSE the
residual mean square, k the number of raters (here Elo sets), and n the number of targets (models).

Meaning. Captures both correlation and absolute agreement among multiple raters.

Use. A high ICC confirms that Elo scores from different sets can be used interchangeably in down-
stream evaluations.

Summary. Together, these measures provide a comprehensive assessment of agreement, covering
linear association, rank stability, numerical accuracy, and multi-rater reliability.

23


	Introduction
	Related Works
	Methods
	Multi-Agent Generation Workflow
	Hybrid Verification Mechanism

	Automated Task Generation
	Agent and Environment Setups
	Statistics of Generated Tasks

	Experiments: Task Evaluation
	Experiment Setups
	Main Results
	Step-wise Performance Dynamics
	Realism and Quality of Generated Tasks

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Full List of Evaluation Tasks
	Unified Task Structure
	Normalization Details
	Prompts for MLE-Smith Agents
	Details of Statistical Measures for Elo Set Agreement
	Pearson Linear Correlation (r)
	Coefficient of Determination (R2)
	Spearman Rank Correlation ()
	Kendall Rank Correlation (b)
	Top-k Overlap
	Lin’s Concordance Correlation Coefficient (CCC)
	Bland–Altman Analysis
	Cronbach’s 
	Intraclass Correlation Coefficient (ICC)



