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Abstract

Reinforcement Learning (RL) from temporal log-
ical specifications is a fundamental problem in
sequential decision-making. One of the basic
and core specification is the reachability speci-
fication that requires a target set to be eventually
visited. Despite strong empirical results for RL
from such specifications, the theoretical guaran-
tees are bleak, including the impossibility of Prob-
ably Approximately Correct (PAC) guarantee for
reachability specifications. Given the impossibil-
ity result, in this work we consider the problem
of RL from reachability specifications along with
the information of expected conditional distance
(ECD). We present (a) lower bound results which
establish the necessity of ECD information for
PAC guarantees and (b) an algorithm that estab-
lishes PAC-guarantees given the ECD informa-
tion. To the best of our knowledge, this is the
first RL from reachability specifications that does
not make any assumptions about the underlying
environment to learn policies with guarantees.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) is
a promising approach to learn policies for challenging
tasks such as walking (Collins et al., 2005) and grasp-
ing (Andrychowicz et al., 2020), control of multi-agent
systems (Inala et al., 2021; Jothimurugan et al., 2022; Lowe
et al., 2017), and control from visual inputs (Levine et al.,
2016). A key benefit of RL is that it learns optimal policies
for tasks in an unknown environment, making it ideal for
practical applications with unavailable, noisy, or hard-to-
model environments.
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Recent years have seen an emergence of RL from temporal
logical specifications (Aksaray et al., 2016; Brafman et al.,
2018; De Giacomo et al., 2019; Hasanbeig et al., 2018;
Littman et al., 2017b; Hasanbeig et al., 2019; Yuan et al.,
2019; Hahn et al., 2019; Xu & Topcu, 2019; Jiang et al.,
2020; Li et al., 2017; Icarte et al., 2018; Jothimurugan et al.,
2021). In this approach, the desired task is expressed in
the form of high-level temporal logical specifications rather
than low-level rewards. Logic specifications have found a
place in the plethora of RL algorithms because of (a) the
relative ease to express complex non-Markovian tasks com-
pared to rewards and (b) the impressive ability of RL from
logical specification algorithms to efficiently scale learning
to long-horizon tasks. Potential applications include learn-
ing policies for long-horizon tasks such as navigation and
manipulation in robotics and cyber-physical systems.

Despite potential applications, their utility in safety-critical
applications has been limited since existing theoretical guar-
antees of RL from logical specifications have been bleak.
Probably approximately correct (PAC) learning (Valiant,
1984) is a framework for formalizing guarantees of a learn-
ing algorithm: Given an approximation parameter ε > 0 and
a confidence parameter δ > 0, a learning algorithm is said to
be PAC if it returns a solution that is ε-close to optimal with
probability at least 1−δ within a finite (bounded) number of
samples. In RL, PAC learning algorithms are known to exist
for reward-based specifications (Brafman & Tennenholtz,
2002; Kakade, 2003). However, PAC guarantees from logi-
cal specifications have been proven to be impossible (Alur
et al., 2022; Yang et al., 2021). The impossibility already
appears for reachability specifications that require a target
state set in the environment to be eventually visited. The
PAC impossibility hinges on the inherent non-robustness of
infinite-horizon logical specifications due to which small
perturbations in the environment do not preserve optimal
or near-optimal policies (Littman et al., 2017a). As a re-
sult, obtaining an optimal or near-optimal policy on a close
approximation of the environment does not guarantee a near-
optimal policy in the true environment.

In light of PAC impossibility for reachability, our central
result is a PAC learning algorithm for reachability specifi-
cations using a novel parameter called the Expected Condi-
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tional Distance (ECD). For a policy, the ECD computes the
expected length of trajectories that satisfy the reachability
specification. ECD differs from the well-known Shortest
Stochastic Path (SSP) as the SSP additionally accounts for
the expected length of trajectories that do not satisfy the
reachability specification. More importantly, ECD serves
as an external parameter, meaning that assigning a value to
ECD does not impose any assumptions on the underlying
environment. This sets it apart from previous work focused
on achieving PAC guarantees through additional parameter-
ization (as discussed in Section 1.1) where the parameter is
internal to the environment, requiring additional assumption
about the underlying environment. Not only does the use of
internal parameters violate the fundamental assumption of
an unknown environment in RL, but it also limits the prac-
tical applicability of theoretical results because guarantees
only hold when the parameterization aligns with the ground
truth in the environment. Finally, our algorithm is efficient,
i.e. it is polynomial in the size of the input parameters.

Our contributions are as follows. First, we present a lower
bound that establishes the necessity of ECD to obtain PAC
guarantees on learning from reachability specifications. Sec-
ond, we present an efficient learning algorithm that estab-
lishes PAC guarantees given the ECD, i.e., the sample com-
plexity of our PAC learning algorithm is polynomial in the
input parameters of the environment |S| and |A| (number of
states and actions), the number of target states |T | PAC pa-
rameters 1

ε and 1
δ , and the ECD ℓ. Moreover, we discuss the

implications of our result for more general temporal logic
specifications (Remark 2.1). To the best of our knowledge,
our parametrization by ECD is the first PAC-possible result
that does not make any assumptions on the environment.

Outline. Section 2 introduces necessary preliminaries. Our
parameter ECD is introduced in Section 3. The necessity
of ECD in learning PAC guarantees (lower bound) is es-
tablished in Section 4. Finally, our sample efficient PAC
learning algorithm is presented in Section 5.

1.1. Related Work

Our PAC-possibility result contrasts with existing works
that obtain PAC guarantees using additional parameteriza-
tion. Our result makes no assumptions about the underlying
environment. A PAC learning algorithm for linear tempo-
ral logic (LTL) specification (Pnueli, 1977) was introduced
in (Fu & Topcu, 2014). However, this requires knowledge of
the topology of the environment, i.e., it requires to know all
transitions with non-zero probability. (Ashok et al., 2019)
improves upon this result by only requiring to know the
value of the minimum non-zero transition probability in
the environment. Most recently, (Perez et al., 2023) proves
PAC with LTL specifications given the mixing time of the
environment.

The only logical specifications for which RL is PAC-
learnable are finitary specifications which assign a bound
on the length of the trajectory. In this case, learning over
infinite-horizon tasks reduces to learning on a (fixed) finite
horizon (Yang et al., 2021). Alternately, quantitative se-
mantics for logical specifications have also been explored
to alleviate the non-robustness of logical specifications. A
recent work proves PAC guarantees for LTL specifications
under a discounted-sum semantics (Alur et al., 2023).

2. Preliminaries
2.1. Reachability in Markov Decision Process.

Markov Decision Process (MDP). A Markov Decision
Process (MDP) is a tupleM = (S,A, s0, P ), where S is a
finite set of states and |S| = n, s0 is the initial state,1 A is a
finite set of actions, and P : S ×A× S → [0, 1] is the tran-
sition probability function, where

∑
s′∈S P (s, a, s′) = 1

for all s ∈ S and a ∈ A. Given an MDP M we de-
note by G(M) = (S, E) the associated graph structure
with set S of states and the set of edges E = {(s, s′) |
∃a ∈ A.P (s, a, s′) > 0} consists of transitions with pos-
itive probabilities. In other words, G(M) represents the
MDP structure but not the precise probabilities.

Runs. An infinite run ζ ∈ (S × A)ω is a sequence
ζ = s0a0s1a1 . . ., where si ∈ S and ai ∈ A for all i ∈ N.
Similarly, a finite run ζ ∈ (S × A)∗ × S is a finite se-
quence ζ = s0a0s1a1 . . . at−1st. For any run ζ of length
at least j and any i ≤ j, we let ζi:j denote the subsequence
siaisi+1ai+1 . . . aj−1sj . We use Runs(M) = (S × A)ω

and Runsf (M) = (S×A)∗×S to denote the set of infinite
and finite runs, respectively.

Policies. Let D(A) = {∆ : A→ [0, 1] |
∑

a∈A ∆(a) = 1}
denote the set of all distributions over actions. A policy π :
Runsf (S,A) → D(A) maps a finite run ζ ∈ Runsf (S,A)
to a distribution π(ζ) over actions. We denote by Π(S,A)
the set of all such policies. A policy π is positional if π(ζ) =
π(ζ ′) for all ζ, ζ ′ ∈ Runsf (S,A) with last(ζ) = last(ζ ′)
where last(ζ) denotes the last state in the run ζ. A policy π
is deterministic if, for all finite runs ζ ∈ Runsf (S,A), there
is an action a ∈ A with π(ζ)(a) = 1.

Probability and expectation measures. Given a finite
run ζ = s0a0 . . . at−1st, the cylinder of ζ, denoted by
Cyl(ζ), is the set of all infinite runs starting with prefix
ζ. Given an MDP M and a policy π ∈ Π(S,A), we de-
fine the probability of the cylinder set by DM

π (Cyl(ζ)) =∏t−1
i=0 π(ζ0:i)(ai)P (si, ai, si+1). It is known that DM

π can
be uniquely extended to a probability measure over the σ-

1A distribution η over initial states can be modeled by adding a
new state s0 from which taking any action leads to a state sampled
from η.
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algebra generated by all cylinder sets. We useDM
π to denote

the distribution over infinite runs inM induced by the pol-
icy π and the associated expectation measure is denoted by
EM
π .

Formal Specifications and Reachability. Formal lan-
guages can be used to specify properties about runs of an
MDP. A language specification L ⊆ Runs is a set of desir-
able runs in an MDP.

Given a formal specification L, the value of a policy π w.r.t.
specification L is the probability of generating a sequence
in L—i.e.,

JM
L (π) = DM

π

(
{ζ ∈ Runs(S,A) | ζ ∈ L}

)
.

Let J ∗(M,L) = supπ J
M
L (π) denote the maximum value

of JM
L for all policies π ∈ Π(S,A). We let Πopt(M,L)

denote the set of all optimal policies inM w.r.t. L—i.e.,
Πopt(M,L) = {π | JM

L (π) = J ∗(M,L)}. In many
cases, it is sufficient to compute an ε-optimal policy π̃ with
JM
L (π̃) ≥ J ∗(M,L) − ε; we let Πε

opt(M,L) denote the
set of all ε-optimal policies inM w.r.t. L.

Reachability specifications comprise an important class of
formal specifications. Given a set of states T ⊆ S, let
a reachability specification L(T ) = {ζ = s0a0 · · · ∈
Runs(M) | ∃i ∈ N, si ∈ T} be the set of all runs inM that
visit a state in T . We refer to T by the target states/accepting
states.
Remark 2.1 (Significance of reachability specifications). We
discuss the significance of reachability specifications.

1. First, reachability is the most basic temporal specifica-
tion, e.g., it corresponds to the class of open sets in the
topological characterization of temporal specifications.

2. Second, if we consider general ω-regular specifications,
which subsume LTL specifications, then parity specifi-
cations provide a canonical way to express them (Safra,
1988). For MDPs with parity specifications, the opti-
mal value is computed as follows (Courcoubetis & Yan-
nakakis, 1995): (a) the set of states X where the optimal
value is 1 (almost-sure winning set) is computed; and
(b) the optimal value is the optimal reachability proba-
bility to X . The almost-sure winning set of an MDPM
only depends on the associated structure G(M) and not
the precise probabilities and can be computed efficiently
(in sub-quadratic time) with discrete graph theoretic al-
gorithms (Chatterjee & Henzinger, 2011; 2014). Thus if
the structure of an MDP is known, for all ω-regular speci-
fications, the core task is to solve the optimal reachability
problem.

3. Third, LTLf goals (De Giacomo et al., 2013) goals are
also expressed as reachability goals.

Given that reachability is the basic specification, and it is

a core problem as mentioned above, in the sequel we only
focus on reachability specifications.

2.2. Reinforcement Learning

We define a reinforcement learning task to be a pair (M, L)
whereM is an MDP and L is a specification forM. The
goal of an RL task (M,L) is to use a learning algorithm
to produce an optimal or near-optimal policy w.r.t. L in a
simulator ofM. The key components are described below.

Simulator. In reinforcement learning, the standard as-
sumption is that the set of states S, the set of actions A,
and the initial state s0 are known but the transition proba-
bility function P is unknown. The learning algorithm has
access to a simulator S which can be used to sample runs
of the system ζ ∼ DM

π using any policy π. The simulator
can also be the real system, such as a robot, thatM repre-
sents. Internally, the simulator stores the current state of the
MDP which is denoted by S.state. It makes the following
functions available to the learning algorithm.

S.reset(): This function sets S.state to the initial
state s0.

S.step(a): Given as input an action a, this function sam-
ples a state s′ ∈ S according to the transition probability
function P—i.e., the probability that a state s′ is sampled is
P (s, a, s′) where s = S.state. It then updates S.state
to the newly sampled state s′ and returns s′.

Learning algorithm. A learning algorithm A is an it-
erative process that in each iteration (i) either resets the
simulator or takes a step inM, and (ii) outputs its current
estimate of an optimal policy π. A learning algorithm A in-
duces a random sequence of output policies {πn}∞n=1 where
πn is the policy output in the nth iteration.

A learning algorithm is Probably Approximately Correct
(PAC-MDP) (Kakade, 2003) if it is guaranteed to learn a
near-optimal policy with high confidence within a finite
number of iterations.

Definition 2.2 (PAC-MDP). A learning algorithm A is
said to be PAC-MDP for L if, there is a function h such
that for all p > 0, ε > 0, and all RL tasks (M,L) with
M = (S,A, s0, P ), taking N = h(|S|, |A|, |L|, 1

p ,
1
ε ),

with probability at least 1− p, we have∣∣∣{n | πn /∈ Πε
opt(M,L)

}∣∣∣ ≤ N.

Efficiency in PAC. We say a PAC-MDP algorithm is effi-
cient if the sample complexity function h is polynomial in
|S|, |A|, 1

p and 1
ε .
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Prior work has shown that there exists a PAC-MDP learning
algorithm for a specification L iff L is finitary (Yang et al.,
2021). A language L is said to be finitary if it can be repre-
sented in LTL (Pnueli, 1977) using the Next operator only.
All finitary languages can be expressed as a reachability
specification, but not vice versa. i.e., reachability specifica-
tions are strictly more expressive than finitary specifications.
In particular, reachability is not a finite-horizon specifica-
tion. In the sequel we focus on reachability specifications
with the target set T , and often use T to denote L(T ).

3. Expected Conditional Distance
This section introduces our parameter Expected Conditional
Distance (ECD) which we show renders PAC learnability
under reachability specifications.

We begin with some useful notation. Given an MDPM =
(S,A, s0, P ) with target states T ⊆ S, we define the LenT :
Runs→ N such that LenT (ζ) for ζ = s0a0s1 · · · be k such
that for all i < k, si /∈ T and sk ∈ T if ζ visits T , and 0
otherwise (if ζ does not visit T ).

Then, the Expected Conditional Distance (ECD) is defined
as follows:

Definition 3.1 (Expected Conditional Distance (ECD)).
Given an MDP M = (S,A, s0, P ), target states T ⊆ S,
and a policy π, the expected conditional distance (ECD),
denoted ECDM

T (π), is the expectation of LenT on all trajec-
tories produced from π inM, i.e.,

ECDM
T (π) = EM

π [LenT (ζ)]

Similarly, we have

ECDM
T = infπ∈Πopt(M,T ) ECD

M
T (π)

i.e., ECD of the MDP is the minimal ECD achieved among
all optimal policies for the reachability specifications.

Remark 3.2 (Comparison of ECD vs SSP). The ECD con-
cept is related to the well-known shortest stochastic path
(SSP) (Bertsekas & Tsitsiklis, 1991), however, there is a key
difference. ECD treats infinite trajectories that do not reach
the target with weight 0, in contrast, SSP treats them as∞.
More precisely, if SSP is finite, then ECD and SSP coincide,
otherwise SSP can be infinite, but ECD is finite.

Key intuition. The intuition behind using ECD as a parame-
ter in learning with reachability specifications is that when
learning a policy with ECD less than or equal to a given
value ℓ, a learning algorithm need not sample trajectories
much longer than ℓ that do not visit a state in the target set.
This is because, if a trajectory significantly longer than ℓ
has not reached the target state, the ECD suggests a low
probability of it reaching the target in the future. Such an

inference cannot be made when learning reachability speci-
fications without ECD.

Interpretation of ECD. Further, note that ECD is neither an
internal parameter of the MDP nor the specification. A user
attempting to learn a policy could supply a desirable ECD
value as an input without any knowledge of the underlying
environment. Another interpretation of the ECD is that it
is an external value that a user could provide when they
are keen on learning a policy that either visits a target state
within ∼ ℓ steps or does not visit the target at all.

Optimal policies Πopt(M, T, ℓ) and near-optimal policies
Πε

opt(M, T, ℓ) with ECD. We now define optimal and ε-
optimal policies among those that meet an ECD requirement.
Let Π≤ℓ,T denote the set of policies for which ECD w.r.t.
the target states T is less than or equal to ℓ, i.e., Π≤ℓ,T =

{π ∈ Π | ECDM
T (π) ≤ ℓ}. Let

J ∗(M, T, ℓ) = sup
π∈Π≤ℓ,T

JM
T (π)

denote the maximum value of JM
T (π) such that π ∈ Π≤ℓ,T .

We let Πopt(M, T, ℓ) denote the set of all optimal policies
inM w.r.t. T with ECD at most ℓ—i.e.,

Πopt(M, T, ℓ) = {π ∈ Π≤ℓ,T | JM
T (π) = J ∗(M, T, ℓ)} .

In many cases, it is sufficient to compute an ε-optimal policy
π̃ ∈ Π≤ℓ,T with JM

T (π̃) ≥ J ∗(M, T, ℓ) − ε . We let
Πε

opt(M, T, ℓ) denote the set of ε-optimal policies in M
w.r.t. T with ECD at most ℓ—i.e.,

Πε
opt(M, T, ℓ) = {π ∈ Π≤ℓ,T | JM

T (π) ≥ J ∗(M, T, ℓ)−ε} .

We now define the PAC-MDP problem with ECD.

Definition 3.3 (PAC-MDP with ECD). A learning algo-
rithm A is said to be PAC-MDP with ECD of length ℓ if
there is a function h such that for any p > 0, ε > 0, and a
reachability RL task (M,L(T )) withM = (S,A, s0, P )
and T ⊆ S, taking N = h(|S|, |A|, |T |, 1

p ,
1
ε , ℓ), with

probability at least 1− p, we have∣∣∣{n | πn /∈ Πε
opt(M, T, ℓ)

}∣∣∣ ≤ N.

Efficiency in PAC. The function h computes the sample com-
plexity of the PAC-MDP with ECD algorithm. We say a
PAC-MDP with ECD algorithm is efficient if h is polyno-
mial in |S|, |A|, |T |, 1

p , 1
ε , and ℓ.

Remark 3.4 (Connection of Definition 2.2 and Defini-
tion 3.3). Given an MDPM with target set T , if the input
parameter ℓ satisfies that ℓ ≥ ECDM

T , then every policy
in Πε

opt(M, T, ℓ) is also in Πε
opt(M, T ) (i.e., this is an ε-

optimal policy in M). Hence in this case Definition 3.3
coincides with Definition 2.2.
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s0 s1 s2 sT
p p

1− p
1− p 1− p

Figure 1: An MDP with reachability for T = {sT }, where
ECD is p−|S|+1.

4. Lower Bound for PAC-MDP with ECD
In this section, we present a lower bound that establishes that
the sample complexity to learn a reachability specification
must be proportional to the ECD.

Key ideas. The key idea for the lower bound is as follows:
We first show that there exists an MDPM and target states
T such that the ECD is exponential in the smallest non-zero
transition probability inM. This construction shows that
ECD can be large even for simple MDP. We use the construc-
tion to create MDPM where we show the impossibility of
learning in fewer steps than ECD.

Lemma 4.1. There existsM with target set T such that for
every π we have

ECDM
T (π) ≥ p−|S|+1 ,

where p is the smallest transition probability.

Figure 1 shows the structure of M, for proof, see Ap-
pendix A.

Theorem 4.2 (Lower bound for PAC-MDP with ECD).
There exists an MDP M = (S,A, s0, P ) with reach-
ability RL task (M,L(T )) for T ⊆ S, where for all
π ∈ Πopt(M, T ) we have ECDM

T (π) ≥ ℓ, then for all
p < 1

2 , ε < 1
2 , and all learning algorithms A with probabil-

ity at least p we have∣∣∣{n | πn /∈ Πε
opt(M, T )

}∣∣∣ ≥ 1

2
(1− 2p)(ℓ− 2) .

This result holds even when the structure G(M) of the MDP
is known and the MDP has only one state with two actions
and all other states have a single action.

Proof. We construct the MDPM, the sketch is on Figure 2.
The starting state is s0, and every state has only a single
action, except state sD which has two actions. The structure
from s0 to sD is not important, states create a Markov Chain
that in ℓ − 1 steps in expectation reaches sD. Moreover,
the state s0 is the furthest away from sD. From the deci-
sion state sD, there are two actions a1 and a2 (assigned
randomly), one leads to the target sT and the other leads
to a state s⊥ that cannot be escaped. The objective of the
learning algorithm is to determine whether a1 or a2 leads to
sT .

s0 sD

sT

s⊥

a1

a2

ℓ− 1

Figure 2: Structure of an MDP with one state with two
actions where PAC-MDP is not efficient.

When sD is visited, the learning algorithm plays one action
and from the result, it knows which action leads to sT . We
show that with probability 2p in (1 − 2p)(ℓ − 2) steps,
the state sD is not reached. For the sake of contradiction,
suppose that with probability 1− 2p, the path to sD takes at
most (1− 2p)(ℓ− 2) steps. We compute the upper bound
on the expected length E. With probability 1− 2p, the path
length is at most (1 − 2p)(ℓ − 2), otherwise, at worst the
process starts from s0 again. We obtain upper bound on E
as follows

E ≤ (1− 2p)(1− 2p)(ℓ− 2) + 2p(E + (1− 2p)(ℓ− 2)) ,

which gives E ≤ ℓ− 2, a contradiction for the construction
of the Markov Chain.

Now, we know that with probability at least 2p, the algo-
rithm A needs at least (1 − 2p)(ℓ − 2) steps to reach sD.
Before sD is reachedA has to choose a policy blindly. Since
ε < 1

2 , at least one action (a1 or a2) needs to be selected
with probability at least 1 − ε, otherwise the policy is not
optimal trivially. That means A needs to commit to one
action (that is to choose the action with probability at least
1 − ε). However, in (1 − 2p)(ℓ − 2) steps, any learning
algorithm needs to commit to one of the two actions at least
1
2 (1− 2p)(ℓ− 2) times, with probability 1

2 this is the wrong
action.

That means with probability 2p, the correct action is not
learned within (1− p)(ℓ− 2) steps and with probability 1

2 ,
at least half of the steps the learning algorithm outputted a
wrong policy.

Remark 4.3 (Impossibility of PAC-MDP without ECD). The
above lower bound for PAC-MDP with ECD has the follow-
ing significance of PAC-MDP: it shows the impossibility
for efficient PAC-MDP if ECDM

T is bigger than polynomial
in the input parameters of Definition 2.2, and Lemma 4.1
shows that indeed ECDM

T can be exponential. In general
efficient PAC-MDP is impossible without ECD information.

5. Algorithm for PAC-MDP with ECD
This section presents our PAC-MDP with ECD algorithm
for reachability specifications. The section is organized as
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follows: Section 5.1 presents an algorithm to learn an ap-
proximation of an unknown MDP. Section 5.2 presents an al-
gorithm to find a near-optimal policy w.r.t reachability goals
with bounded ECD in a known MDP. Finally, Section 5.3
combines the above two results to yield our PAC-MDP al-
gorithm for reachability goals with ECD.

5.1. Learning an MDP approximation

We introduce ApproximateMDP (Algorithm 1) which con-
structs an approximation of the MDP such that the transition
probabilities of all states reachable within some number of
steps from the s0 by any policy. We say that some states
with a good approximation of the transition probabilities
are explored. The algorithm returns MDPM′ which is the
approximation ofM on these explored states.

Algorithm overview. The inputs to algorithm
ApproximateMDP are a simulator S ofM = (S,A, s0, P )
with set of states S, ECD ℓ, and parameters ε and p for
error and confidence, respectively. The goal is to build an
estimated MDPM′ = (S,A, s0, P

′) such that with high
probability (i.e. with probability at least 1 − p), M′ is a
good approximation of M, i.e., the difference between
corresponding transitions between the explored states
E ⊆ S in the two MDPs is bounded w.r.t. parameters ℓ and
ε. The algorithm returns the estimated modelM′ and the
set of explored states E.

The algorithm estimates the MDPM′ by calling subroutine
Explore on states of the MDP in order to estimate the transi-
tion probabilities of all actions from these states. Since the
original MDPM is unknown, ApproximateMDP creates
M′ by sampling states using the simulator S ofM. Initially,
all states inM′ are unexplored and all transition probability
distributions are unknown. The algorithm begins by call-
ing Explore on the initial state s0. While exploring a state,
Explore samples each action for sufficiently many number
of times and records the estimated transition probability dis-
tribution for each state-action pair. It continues to explore
states until all the unexplored states are far from s0, by the
notion of distance defined below.

Algorithm Details. We say that a state-action pair (s, a)
is explored if action a has been sampled in state s (i.e.
S.step(a) is called from state s ) Θ

(
n4 ℓ2

ε4 log
n2|A|

p

)
times. A state s is said to be explored if for all actions
a ∈ A, the state-action pair (s, a) has been explored. A
state is said to be unexplored otherwise.

Let MDPM′ be an estimate of MDPM = (S, s0, A, P )
s.t. E ⊆ S is the set of explored states inM′. Let s0 be
the initial state in both. The path probability of state s from
s0 inM′, denoted pM′(s0, s, d), is the highest probability
with which any policy can reach s from s0 within d steps.

Algorithm 1 ApproximateMDP(S, S, ℓ, ε, p)
Approximates the MDPM on E ⊆ S.

Explore(s0)
E ← {s0}
while ∃s ∈ S \ E : pM′(s0, s, 6ℓ/ε) ≥ ε

7n do
Explore(s)
E ← E ∪ {s}

end while
ReturnM′, E

The subroutine Explore(s) operates on an unexplored state
s as follows: It ensures, with high probability, that for all ac-
tions a ∈ A, the pair (s, a) is sampled Θ

(
n4 ℓ2

ε4 log
n2|A|

p

)
times and uses these to estimate the transition probability
distribution on (s, a). To do so, Explore computes a policy π
to reach state s from s0 inM′ with high probability in 6ℓ/ε
steps, then samples trajectories inM using π. Appendix B
shows that, with high probability, sampling several such
trajectories ensures that each state-action pair (s, a) can be
sampled Θ

(
n4 ℓ2

ε4 log
n2|A|

p

)
times.

Theoretical Guarantees. We say that an MDPM′ with
explored states E is a good approximation of an MDPM
w.r.t. error parameter ε > 0 and ECD ℓ > 0 if for all states
s ∈ E, actions a ∈ A, and states s′ ∈ S, we have

|P (s, a, s′)− P ′(s, a, s′)| < 1

n

ε2

72nℓ

where n = |S| is the number of states inM. i.e., for all
outgoing transitions from explored states, the difference be-
tween the transition probabilities inM andM′ is bounded.

We prove that Algorithm 1 generates a good approximation
of the input MDP with high probability:

Lemma 5.1 (Good Approximation). Given MDP M =
(S,A, s0, P ) with simulator S, let M′ and E be the esti-
mated MDP and set of explored states, respectively, ob-
tained by running ApproximateMDP on S with ECD ℓ, er-
ror ε > 0, and confidence p > 0. Then, with probability at
least 1− p/2,M′ is a good approximation ofM.

Proof. Algorithm 1 constructsM′ by estimating outgoing
transition probabilities for all explored states by sampling
each state-action pair in these states Θ

(
n4 ℓ2

ε4 log
n2|A|

p

)
times. We use Chernoff bounds to establish that these many
samples are sufficient to ensure thatM′ is a good approxi-
mation with high probability.

Let s ∈ E be an explored state and a ∈ A be an action.
We are interested in bounding the error on the estimated
transition probability P ′(s, a, s′) for state s′ ∈ S. When
s is explored, state-action pair (s, a) has to be sampled

6
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Θ
(
n4 ℓ2

ε4 log
n2|A|

p

)
times. Let Xi be the random variable

that sampling action a in state s results in visiting state s′ in
the i-th sample. Clearly, all Xis are independent.

Then, let random variable X be the sum of all Xis. Then,
let µ = E[X] = P ′(s, a, s′) · T where T is the number of
samples. Then, from Chernoff bounds, we get that for all
0 < δ < 1,

Pr (|X − µ| ≥ δµ) ≤ 2e−
δ2µ
3 .

Let p′ = P (s, a, s′). Since (s, a) is sam-
pled Θ

(
n4 ℓ2

ε4 log
n2|A|

p

)
times, we have µ =

Θ
(
p′n4 ℓ2

ε4 log
n2|A|

p

)
. Then, by setting δ = 1

np′
ε2

72nℓ , we
get

Pr

(
|X − µ| ≥ 1

np′
ε2

72nℓ
· µ

)
≤ e

−Θ

(
1
p′ log

n2|A|
p

)

≤ p

2n2|A|
.

In other words, |P (s, a, s′) − P ′(s, a, s′)| ≥ 1
n

ε2

72nℓ with
probability at most p

2n2|A| . Alternately, |P (s, a, s′) −
P ′(s, a, s′)| < 1

n
ε2

72nℓ with probability at least 1− p
n2|A| .

We are interested in computing the probability that the er-
ror on all transition probabilities from explored states is
bounded. The above shows that for each (s, a, s′), the prob-
ability that the error is unbounded is at most p

2n2|A| . Since
there are n2|A| such tuples, by union bound, the probabil-
ity that the error in at least one tuple is unbounded is p/2.
Therefore, the probability that the error is bounded across
all (s, a, s′) tuples is at least 1− p/2.

An immediate corollary is that for all s ∈ E and a ∈ A, we
have

||P (s, a)− P ′(s, a)||1 ≤
ε2

72nℓ

with probability at least 1− p/2. This is obtained by simply
applying union-bound to the error margins.

In the following lemma, we show that if a policy has a high
chance of reaching T after leaving E, ECD of the policy is
above ℓ.

Lemma 5.2. Let M′, E be the output of running Algo-
rithm 1 on MDPM with ECD ℓ. LetM′ be a good approx-
imation ofM. Let T ⊆ S be the target states. Let policy π
inM′ be such that π leaves E and then reach target T with
probability at least ε/3, then ECDT

M(π) > ℓ.

Proof. For the sake of contradiction, let us assume that
there exists π that leaves E and then reaches the target
with probability at least ε/3, and ECDT

M(π) ≤ ℓ. Let us

Algorithm 2 Algorithm to find π ∈ Πε
opt(M, T, ℓ).

Input:M, T, ε, ℓ
Output: v0,0,ℓ
δ ← ε2

nℓ

vi,j,k = 0 for i ∈ [|S|], j ∈ [4ℓ/ε], k ∈ δ[ 4ℓεδ ]
{Index k goes from 0 to 4ℓ/ε in increments of δ.}
vi,j,k = 1 for si ∈ T
for j = 4ℓ/ε− 1; j ≥ 0; j = j − 1 do

for i = 0; i < |S|; i = i+ 1 do
for t = 0; t < |A|; t = t+ 1 do
Si,j+1,t =

∑
si′∈S pi,t,i′vi′,j+1

{Si,j+1,t is a vector and sum performed by Algo-
rithm 3.}

end for
vi,j = Shift(

∑
t∈A Si,j+1,t)

{vi,j is a vector and sum is performed by Algo-
rithm 4.}

end for
end for

look only at trajectories that leave E and reach T , then the
expected length of these trajectories is at most 3ℓ

ε , otherwise
we have ECDT

M(π) > ℓ trivially from the definition of ECD.
Still looking at trajectories that leave E and reach T , from
Markov’s inequality, we have that after 6ℓ

ε steps, at least
half of them had to reach the target already. This means,
following π for 6ℓ/ε steps, with probability at least ε/6, we
need to leave E (and also reach T ).

Now, let us look atM′ and follow π there. SinceM′ is
a good approximation ofM, all estimated transition prob-
abilities are close to the real transition probability. The
distribution after one step in M′ differs by at most ε2

72nℓ
from the distribution inM. From union bound, we have
that the distribution distribution changes by at most t ε2

72nℓ
after t steps. Setting t = 6ℓ/ε, we get the change at most
ε

12n . Since the reachability probability was at least ε
6 before,

now it it at least ε
7 (for n ≥ 4).

Therefore, following π inM′ for 6ℓ/ε steps reaches a state
outside E with probability at least ε/7. There are at most n
states outside E, which means, from Dirichlet’s principle,
one state s′ is reached with probability at least ε

7n . How-
ever, from path probability, we have that any state with
pM′(s0, s

′, 6ℓ/ε) ≥ ε
7n was explored, which is a contradic-

tion.

5.2. Approximation algorithm for ECD

We describe a parametrized algorithm to find the ε-
approximation to the optimal policy in Π≤ℓ,T in a known
MDP. We suppose the policy can terminate at any time, thus
contributing 0 to the ECD.

7
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Algorithm Description. Algorithm 2 computes the values
vi,j,k, defined as the reachability probability from state si
after j steps with ECD at most k. The algorithm can also
recover the policy by remembering optimal decisions lead-
ing to the value. These values are computed for the policy
that ends after 4ℓ/ε steps. After initialization of the target
states to 1, the algorithm computes vi,j,k from j = 4ℓ/ε− 1
down to j = 0 for all i (si ∈ S) and for all k that is the
discretization of the actual ECD. The algorithm uses three
subroutines described in Appendix C. Algorithm 3 computes
the (discretized) function Si,j+1,t that tracks the expected
reachability after choosing action at in state si in the j-th
step. Algorithm 4 computes the function vi,j that tracks
the expected reachability after selecting optimal weights of
possible actions (combination of Si,j+1,t). Algorithm Shift
takes into account that one step was taken.
Lemma 5.3 (Key lemma for approximation). Given a
known MDP M, target set T , parameter ε, and length
ℓ, in time O(n4|A|ℓ7ε−10) Algorithm 2 finds a policy π s.t.

π ∈ Πε
opt(M, T, ℓ) .

Proof sketch. For the detailed proof, see Appendix C. Here,
we describe the main ideas for the proof and algorithm. First,
we consider paths that reach the target within 4ℓ/ε steps,
this decreases the reachability probability by at most ε/4.

We define a function vi,j(k) that tracks the reachability
probability for state si after j steps where the ECD from
this position is at most k. We initialize vi,j(k) = 0 if
j + k > 4ℓ/ε and vi,j(k) = 1 for all si ∈ T . We can
express vi,j(k) as recursive maximization over two sets
a = {a1, a2, . . . , a|A|} and K = {kt,i′ | t ∈ A; si′ ∈ S}
as follows:

vi,j(k) = max
a,K

∑
t∈A

at
∑
s′i∈S

pi,t,i′vi′,j+1(kt,i′) ,

where the set a is a distribution over actions (so
∑|A|

i=1 ai =
1) and the set K is the set of examined lengths, and the
following holds:

∑|A|−2
t=0 at

(
1 +

∑
si′∈S pi,t,i′kt,i′

)
≤ k,

where the last action is the one that ends the process without
reaching. This gives us the values of the optimal policy.

We compute the optimal values using Algorithm 2 that dis-
cretizes the the functions vi,j to increments of δ = ε2

nℓ . Then,
since all the functions are concave, we can compute good
approximation of the values.

5.3. Final Algorithm

We finally describe a learning algorithm that is PAC-MDP
with ECD.

Algorithm Description. Our final algorithm is described
as follows: Given inputs S, S, ℓ, ε, p, T , first run Algorithm 1

on inputs (S, S, ℓ, ε, p) to obtain an approximateM′ with
states E. Next, run Algorithm 2 on inputs M′, T, ε/3, ℓ.
Let its output be π. Then the following holds:

Theorem 5.4. Given S, S, ℓ, ε, p, T , let π be the output of
the above algorithm. Then with probability at least 1− p,

π ∈ Πε
opt(M, T, ℓ) .

Moreover, the expected sample complexity of the algorithm
is O

(
n6|A|ℓ3ε−6 log n2|A|

p log n|A|ℓ
εp

)
.

Proof. We show that π is ε-optimal by modifying some
optimal policy πopt ∈ Πopt(M, T, ℓ) in the following way:
(a) We restrict the policy to the set of explored states E ⊆ S.
(b) We consider an approximation of the MDPM′ instead
of the original MDPM. (c) We compute an approximation
of the optimal policy inM′. (d) We show that an approxi-
mation of the optimal policy inM′ is also an approximation
of the optimal policy inM.

With probability at least 1 − p the MDP M′ is good ap-
proximation ofM and Explore did not fail (see Lemma 5.1
and Lemma B.1). In the rest of the proof, we suppose that
all pairs (s, a) for s ∈ E and a ∈ A the following holds:
||P (s, a)− P ′(s, a)||1 ≤ ε2

72nℓ .

Given πopt ∈ Πopt(M, T, ℓ), we can create a policy π′ such
that if the policy leaves E (the set of explored states), it
is considered that the condition is not satisfied. Since π′

sometimes ends which decreases the reachability probability,
we have ECD(π′) ≤ ECD(πopt). Since ECDT

M(πopt) ≤ ℓ,
we know from Lemma 5.2 that with probability less than
ε/3 the policy πopt leaves E and then reaches the target,
therefore JM

T (π′) ≥ JM
T (πopt)− ε/3.

InM the policy π′ achieves reachability JM
T (π′). We exam-

ine JM′

T (π′), the payoff of policy π′ on the approximated
MDP M′. We can group all runs with Len(ζ) = i and
denote pi their probability mass. We have ECDM(π′) =∑∞

i=0 i ·pi ≤ ℓ. After one step, the distribution of outcomes
differs by at most ε2

72nℓ which is the maximal error in one
step. From union bound, after i steps, the error is at most
i · ε2

72nℓ . In other words, the error that we get from all runs
for which Len(ζ) = i is at most pi · i ε2

72nℓ , now we bound
the error

∞∑
i=0

i
ε2

72nℓ
· pi <

ε2

72n
.

By using M′, instead of M restricted on E, the reach-
ability probability decreases by at most ε2

72n . We know
the MDPM′ and from Lemma 5.3, we can find a policy
π ∈ Π

ε/3
opt (M′, T, ℓ) in polynomial time.

Finally, we need to examine how π performs onM. Again,
M′ is a good approximation, so by the same argument as

8
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going fromM toM′ we get an error at most
∑∞

i=0 i
ε2

72nℓ ·
pi < ε2

72n . Here, π can have a higher ECD, where the
mistake might be instead of decreasing reachability, it is
delayed, but we can treat these paths also as not reaching T .

This means that policy π is by at most ε2

72n worse onM than
onM′ where it is by at most ε/3 worse than the optimal
policyM′, which is by at most ε2

72n worse than the optimal
policy onM restricted on E, which is by at most ε/3 worse
than the optimal policy on M. This gives the difference
JT
M(πopt)− ε < JT

M(π).

Every state-action pair for state in E is examined by
Explore at least n4 ℓ2

ε4 log
n2|A|

p . Moreover, every state
needs to be reached. Lemma B.1 gives the upper bound
on the number of calls on the simulator, O

(
nℓ
ε2 log nℓ|A|

εp

)
.

The product gives the final expected sample complexity
O
(
n6|A|ℓ3ε−6 log n2|A|

p log n|A|ℓ
εp

)
.

The algorithm is in polynomial time. Algorithm 1 repeatedly
explores and needs to compute the path probability, which
can be computed by Algorithm 2. Lemma 5.3 shows that
the approximate policy can be computed by Algorithm 2 in
polynomial time.

Corollary 5.5. Reachability specifications are efficient PAC-
MDP learnable with ECD.

Remark 5.6 (Significance). The above result along with
Remark 3.4 shows that with the ECD information efficient
PAC-MDP is possible. Along with our impossibility result
(Remark 4.3), our results present a tight characterization
of efficient PAC-MDP wrt to the ECD information. More
precisely, our results show that ECD information provides a
necessary and sufficient parametrization for efficient PAC-
MDP problem.

6. Concluding remarks
This work presents the first PAC-possible result in RL
from reachability specifications that is purely environment-
agnostic. The additional parameter used to obtain the guar-
antee, the expected conditional distance (ECD), is user-
defined external parameter. In contrast, the additional pa-
rameterization in prior PAC possibility results is an internal
parameter of the environment, hence requiring additional
knowledge of the environment to obtain the PAC guarantee.
Remark 5.6 from above further elaborates on the necessity
and sufficiency of the ECD to obtain efficient PAC guarantee
under reachability objectives.

This work opens up several future directions, including (a).
examination of ECD parameterization under richer classes
of qualitative specifications such as ω-regular objectives,
safety objectives, LTL, etc, (b). model-free PAC algorithms
with ECD, and (c). empirical evaluations to improve the

practical feasibility of these approaches.

Impact Statement

This paper presents work whose goal is to advance the trust-
worthy Machine Learning, in particular the theory of RL
under qualitative specifications. The contributions of this
work are primarily theoretical and do not warrant any imme-
diate societal consequence, to the best of our knowledge.
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Algorithm 3 Sum of v and v′ with given weights.
Input: v, v′, p, p′

Output: S
for k = 4ℓ/(δε); k ≥ 0; k = k − 1 do

for k′ = 4ℓ/(δε); k′ ≥ 0; k′ = k′ − 1 do
t← 1

δ · ⌈δ(p · k + p′ · k′)⌉
St = max(St, p · vk + p′ · v′k′)

end for
end for

A. Proof of Lemma 4.1
Lemma A.1. There existsM and L(T ) such for every π holds

ECDM
T (π) ≥ p−|S|+1 ,

where p is the smallest transition probability.

Proof. The set of states ofM is denoted s0, s1, . . . , sn−1. The set of actions |A| = 1 holds, which means there is only one
policy. For i < n− 1 holds P (si, a, s0) = 1− p and P (si, a, si+1) = p. The specification L(T ) is simple reachability with
T = {sn−1}. Figure 1 shows the structure ofM.

Let ti be the ECD starting from si. We have tn−1 = 0, t0 = 1 + pt1 + (1 − p)t0, and ti = 1 + pti+1 + (1 − p)t0. The
solution of the system of equations is t0 =

∑n−1
i=1 p−i ≥ p−n+1, which proves the statement.

B. Technical details of Explore
The function Explore(s) uses a policy π that within 6ℓ/ε steps reaches s with the highest probability. It follows π for 6ℓ/ε
steps and either s is reached or restarts and begins from s0 again. If s is not reached within Θ(nε log nℓ|A|

εp ) trials, Explore
fails and the algorithm ends. This happens with a very small probability.

Lemma B.1. One call on Explore(s) requires Θ(ℓ/ε · nε log nℓ|A|
εp ) calls on the simulator and Explore fails with probability

at most p/2.

Proof. We know from the proof of Lemma 5.2 that the probability onM′ that is a good approximation ofM changes
only by a ε

12n within in 6ℓ/ε steps. That means policy π on M reaches s within 6ℓ/ε steps with probability at least
ε
7n −

ε
12n > ε

20n .

That means after t trials (runs of length 6ℓ/ε), the state s ∈ S \ E is not reached with probability at least(
1− ε

20n

)t

.

Setting t = Θ(nε log nℓ|A|
εp ) gives the failure probability of not reaching s below p/2 for all reachabilities that need to be

satisfied by Explore.

C. Approximation of optimal policy with ECD
In this section, we prove in detail Lemma 5.3. We also present Algorithm 3 and Algorithm 4.

We suppose that the MDP has a special state s⊥ and action a⊥ from every state, such that P (s, a⊥, s⊥) = 1 this state is not
in the target set and it allows the policy to give up at any time and shorten its ECD.

Lemma C.1 (Key lemma for approximation). Given MDPM, target set T , parameter ε, and length ℓ, Algorithm 2 in time
O(n4|A|ℓ7ε−10) finds policy π s.t.

π ∈ Πε
opt(M, T, ℓ) .

12
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Algorithm 4 Weighted sum of two functions v and v′.
Input: v, v′
Output: S
for k = 4ℓ/(δε); k ≥ 0; k = k − 1 do

for k′ = 4ℓ/(δε); k′ ≥ 0; k′ = k′ − 1 do
for t = max(k, k′); t ≥ min(k, k′); t = t− 1 do
a← t−k

k−k′

St = max(St, a · vk + (1− a) · v′k′)
end for

end for
end for

Proof. We first argue why we can look only at the finite horizon. Then we describe how to express optimal policy for the
finite horizon. Finally, we show that Algorithm 2 finds the correct value of ε-optimal policy, which means we can recover
the policy.

Suppose that for policy π holds ECD(π) ≤ ℓ. The total probability that π reaches the target after 4ℓ/ε steps is at most
ε
4 , otherwise, the ECD is above ℓ. That means we can focus only on the first 4ℓ/ε steps. This decreases the reachability
probability by at most ε/4 and does not increase ECD. We consider optimal policy π (not necessarily positional) with
ECD at most ℓ and that ends in 4ℓ/ε steps. We define a function vi,j(k) that tracks the reachability probability for state si
after j steps where the ECD from this position is at most k. We are looking for v0,0(ℓ). Moreover, since the policy needs
to finish after 4ℓ/ε steps, we have vi,j(k) = 0 if j + k ≥ 4ℓ/ε. For state si ∈ T holds si,j(k) = 1 for all j and k. The
policy π is not necessarily positional onM, but it can consider only the length of the policy, so knowing, the current state
and length, it is positional. We can express vi,j(k) as recursive maximization over two sets α = {a1, a2, . . . , a|A|} and
K = {kt,i′ | t ∈ A; si′ ∈ S} as follows:

vi,j(k) = max
α,K

∑
t∈A

at
∑
s′i∈S

pi,t,i′vi′,j+1(kt,i′) ,

where the set α is a distribution over actions (so
∑|A|

i=1 ai = 1) and the set K is the set of examined lengths, and the
following holds:

|A|−2∑
t=0

at

1 +
∑
si′∈S

pi,t,i′kt,i′

 ≤ k ,

where the last action is the one that ends the process without reaching.

We prove the recursive equation by induction by j (number of steps already performed). Reachability from the target is 1 in
0 steps, and if the policy ends after 4ℓ/ε steps, the variables representing reachability after more steps are 0. That means the
initialization was correct. Then, computing vi,j(k) while knowing values of vi,j′(k) for all i, k and j′ > j is optimal. We
consider all policies from si and look at all possible combinations of how long we continue. That means vi,j(k) is also
optimal.

Now, to compute approximation of vi,j(k), we discretize k to increments of δ. For all parameters of i, j we have 4ℓ
εδ variables

vi,j,k (k is multiple of δ). As in the exact case, we want a similar recursive equation. Now, vi,j,∗ is a vector, but we can treat
it also as a function.

First, observe that vi,j,k ≥ vi,j,k′ iff k ≥ k′. Moreover, if we view vi,j as a function of k, it is concave since for any two
points vi,j,k+x and vi,j,k we can create a policy that ends with probability k+x

k , otherwise continues with a policy that
guarantees vi,j,k+x. From that, also |vi,j,k+δ − vi,j,k| ≤ δ.

The recursive equation looks similar

vi,j,k = max
α,K

∑
t∈A

at
∑
s′i∈S

pi,t,i′vi′,j+1,kt,i′ ,

with a change that elements of K are multiples of δ.

13
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Algorithm 5 PAC-MDP with ECD Learning Algorithm
1: Input: S, S, ℓ, ε, p, T
2: Output: π
3: M′, E ← Algorithm 1(S, S, ℓ, ε, p)
4: π ← Algorithm 2(M′, T, ε/3, ℓ)
5: Return π

Let us describe how to compute the sum
∑

si′∈S pi,t,i′vi′,j+1,kt,i′ for all kt,i′ . Algorithm 3 describes how to sum two
functions. To sum up more functions, we apply the function iteratively. We have a function S∗ initialized to 0 that stores the
results. Given two functions v∗ and v′∗ with p and p′, we compute for all pairs of k, k′ the following: p · vk + p′ · v′k′ and
if the sum is bigger than the current value, we store it into S∗, under index 1

δ · ⌈δ(p · k + p′ · k′)⌉, which is p · k + p′ · k′
rounded up to the nearest multiple of δ. Summing two functions requires O(δ−2ℓ2ε−2) steps and every sum is at most O(δ)
approximation of the perfect convolution. To sum up all possible n results of one action, we require time O(δ−2ℓ2ε−2n)
and the error is at most O(nδ). We denote the convolution of

∑
s′i∈S pi,t,i′vi′,j+1,kt,i′ as Si,t,j+1,∗. Again, this function is

concave.

Now, we need to maximize
vi,j,k = max

α,K

∑
t∈A

atSt,j+1,kt
.

Again, we show how to compute the sum of two functions, v and v′, to obtain S. Algorithm 4 shows the sum. The functions
v and v′ are concave. To obtain function S, we again consider v and v′ for all indices k and k′. Then, for all lengths t (it
makes sense to consider only min(k, k′) ≤ t ≤ max(k, k′)), and a such that ak + (1− a)k′ = t, we have that St can be
updated by a · vk + (1− a) · v′k′ . This gives us function S which is the optimal mix of v and v′ in every point. Therefore,
we can evaluate maxα,K

∑
t∈A atSt,j+1,kt exactly and in time O(δ−3ℓ3ε−3 · |A|).

That means after computing vi,j,k for all j, we get the error at most O(nδℓ/ε). The time of computing everything is
O( ℓεn(δ

−3ℓ3ε−3 · |A|+ δ−2ℓ2ε−2 · n)). Setting δ = O( ε
2

nℓ ), we get error at most ε/2 and time O(n4|A|ℓ7ε−10).

The described algorithm computes the reachability probability, to retrieve policy π, we remember the maximum of every
decision.

D. Algorithm 5
In this section, we present Algorithm 5 for completeness.

14


