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Abstract
Irregular sampling occurs in many time series
modeling applications where it presents a signif-
icant challenge to standard deep learning mod-
els. This work is motivated by the analysis of
physiological time series data in electronic health
records, which are multivariate, sparse, irregularly
sampled, and incompletely observed. In this pa-
per, we propose a new deep learning framework
for this setting that we call Multi-Time Attention
Networks, which use embeddings and attention
to produce fixed-dimensional representations of
irregularly sampled multivariate time series. We
evaluate this framework through applications to
both interpolation and classification and show that
it outperforms several recently proposed methods
while offering significantly faster training times
than current state-of-the-art approaches.

1. Introduction
In this paper we consider the problem of modeling time
series data that are multivariate, sparse, and irregularly sam-
pled. Irregular sampling generalizes missingness in sequen-
tial data to the case of univariate continuous-time time series
data. In the case of multivariate irregularly sampled time
series, it is also commonly the case that only a subset of data
dimensions are observed at any given time point. Such data
occur in applications including healthcare, climate science,
ecology, astronomy, biology and others.

It is well understood that irregular sampling poses a sig-
nificant challenge to machine learning models, which typi-
cally assume fully-observed, fixed-size feature representa-
tions (Yadav et al., 2018). While recurrent neural networks
(RNNs) have been widely used to model such data because
of their ability to handle variable length sequences, basic
RNNs do not account for irregular spacing between obser-
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vation times or a lack of alignment of the time points where
observations for different variables occur. However, both
of these problems can hold for real-world sparse and irregu-
larly observed time series. To respond to these challenges,
there has been significant progress over the last decade on
building and adapting machine learning models that can bet-
ter capture the structure of irregularly sampled multivariate
time series (Marlin et al., 2012; Li & Marlin, 2015; 2016;
Lipton et al., 2016; Futoma et al., 2017; Che et al., 2018;
Shukla & Marlin, 2019; Rubanova et al., 2019).

In this work, we introduce a new model for multivariate,
sparse and irregularly sampled time series that we refer to
as Multi-Time Attention networks or mTANs. mTANs are
fundamentally continuous-time interpolation-based mod-
els. Their primary innovations are the inclusion of a learned
continuous-time embedding mechanism coupled with a time
attention mechanism that replaces the use of a fixed simi-
larity kernel when forming representation from continuous
time inputs. This gives mTANs more representational flexi-
bility than previous interpolation-based models.

Our approach re-represents an irregularly sampled time se-
ries at a fixed set of reference points. The proposed time at-
tention mechanism uses reference time points as queries and
the observed time points as keys. We propose an encoder-
decoder framework for end-to-end learning using an mTAN
module to interface with given multivariate, sparse and ir-
regularly sampled time series inputs. The encoder takes
the irregularly sampled time series as input and produces
a fixed-length latent representation over a set of reference
points, while the decoder uses the latent representations
to produce reconstructions conditioned on the set of ob-
served time points. Learning uses methods established for
variational autoencoders (Kingma & Welling, 2014). We
evaluate the performance of the proposed framework on
interpolation and classification tasks. We compare the pro-
posed framework to several deep learning baselines built
on gated recurrent unit (GRU) models using simple interpo-
lation/imputation approaches. We also compare to current
state-of-the-art interpolation and classification methods de-
signed specifically for irregularly sampled time series. Our
approach performs better than a range of baseline and re-
cently proposed models while offering significantly faster
training times than current state-of-the-art methods.
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2. The Multi-Time Attention Module
In this section, we present the proposed Multi-Time At-
tention Module (mTAN). The role of this module is to
re-represent a sparse and irregularly sampled time series
in a fixed-dimensional space. This module uses multiple
continuous-time embeddings and attention-based interpola-
tion. We begin by presenting notation followed by the time
embedding and attention components.

Notation: In the case of a supervised learning task, we
let D = {(sn, yn)|n = 1, ..., N} represent a data set con-
taining N data cases. An individual data case consists
of a single target value yn (discrete for classification), as
well as a D-dimensional, sparse and irregularly sampled
multivariate time series sn. Different dimensions d of the
multivariate time series can have observations at different
times, as well as different total numbers of observations
Ldn. Thus, we represent time series d for data case n as
a tuple sdn = (tdn,xdn) where tdn = [t1dn, ..., tLdndn]
is the list of time points at which observations are defined
and xdn = [x1dn, ..., xLdndn] is the corresponding list of
observed values. In the case of an unsupervised task such as
interpolation, each data case consists of a multivariate time
series sn only. We drop the data case index n for brevity
when the context is clear.

Time Embedding: Time attention module is based on
embedding continuous time points into a vector space. We
generalize the notion of a positional encoding used in
transformer-based models to continuous time. Time at-
tention networks simultaneously leverage H embedding
functions φh(t), each outputting a representation of size dr.
Dimension i of embedding h is defined as follows:

φh(t)[i] =

{
ω0h · t+ α0h, if i = 0

sin(ωih · t+ αih), if 0 < i < dr
(1)

where the ωih’s and αih’s are learnable parameters. The
periodic terms capture the periodicity in the time series. In
this case, ωih and αih represent the frequency and phase
of the sine function. The linear term, on the other hand,
can capture non-periodic patterns dependent on the progres-
sion of time. For a given difference ∆, φh(t + ∆) can be
represented as a linear function of φh(t).

Learning the periodic time embedding functions is equiva-
lent to using a one-layer fully connected network with a sine
function non-linearity to map the time values into a higher
dimensional space. By contrast, positional encoding used
in transformer models is defined only for discrete positions.
We note that our time embedding functions can subsume
positional encodings when evaluated at discrete positions.

Multi-Time Attention: The time embedding component
described above takes a continuous time point and embeds

it into H different dr-dimensional spaces. In this section,
we describe how we leverage time embeddings to produce a
continuous-time embedding module for sparse and irregu-
larly sampled time series. This multi-time attention embed-
ding module mTAN(t, s) takes as input a query time point
t and a set of keys and values in form of D-dimensional
multivariate sparse and irregularly sampled time series s
(as defined in the notation section above), and returns a J
dimensional embedding at time t. This process leverages a
continuous-time attention mechanism applied to the H time
embeddings. The complete computation is described below.

mTAN(t, s)[j] =

H∑
h=1

D∑
d=1

x̂hd(t, s) · Uhdj (2)

x̂hd(t, s) =

Ld∑
i=1

κh(t, tid)xid (3)

κh(t, tid) =
exp

(
φh(t)WV Tφh(tid)T /

√
dk
)∑Ld

i′=1 exp
(
φh(t)wvTφh(ti′d)T /

√
dk
) (4)

As shown in Equation 2, dimension j of the mTAN em-
bedding mTAN(t, s)[j] is given by a linear combination of
intermediate univariate continuous-time functions x̂hd(t, s).
There is one such function defined for each input data di-
mension d and each time embedding h. The parameters
Uhdj are learnable linear combination weights.

As shown in Equation 3, the structure of the intermediate
continuous-time function x̂hd(t, s) is essentially a kernel
smoother applied to the dth dimension of the time series.
However, the interpolation weights κh(t, tid) are defined
based on a time attention mechanism that leverages time em-
beddings, as shown in Equation 4. As we can see, the same
time embedding function φh(t) is applied for all data dimen-
sions. The form of the attention mechanism is a softmax
function over the observed time points tid for dimension d.
The activation within the softmax is a scaled inner product
between the time embedding φh(t) of the query time point t
and the time embedding φh(tid) of the observed time point,
the key. The parametersW and V are each dr×dk matrices
where dk ≤ dr. We use a scaling factor 1√

dk
to normalize

the dot product to counteract the growth in the dot product
magnitude with increase in the dimension dk.

Learning the time embeddings provides our model with flex-
ibility to learn complex temporal kernel functions κh(t, t′).
The use of multiple simultaneous time embeddings φh(t)
and a final linear combination across time embedding di-
mensions and data dimensions means that the final output
representation function mTAN(t, s) is extremely flexible.
Different input dimensions can leverage different time em-
beddings via learned sparsity patterns in the parameter ten-
sor U . Information from different data dimensions can also
be mixed together to create compact reduced dimensional
representations. We note that all of the required computa-
tions can be parallelized using masking variables to deal
with unobserved dimensions.
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Discretization: Since the mTAN module defines a multi-
variate function of a continuous time input t, mTAN(t, s),
it can not be directly incorporated into neural network archi-
tectures that expect inputs in the form of fixed-dimensional
vectors or discrete sequences. However, the mTAN module
can easily be adapted to produce such an output represen-
tation by materializing its output at a set of reference time
points r = [r1, ..., rT ]. In some cases, we may have a fixed
set of such points. In other cases, the set of reference time
points may need to depend on s itself. In particular, we
define the auxiliary function ρ(s) to return the set of time
points where there is an observation on any dimension of s.

Given a collection of reference time points r, we de-
fine the discretized mTAN module mTAND(r, s) as
mTAND(s)[i] = mTAN(ri, s). This module takes as in-
put the set of reference time points r and the time series s
and outputs a sequence of mTAN embeddings of length |r|,
each of dimension J . The mTAND module can be used to
interface sparse and irregularly sampled multivariate time
series data with any deep neural network layer type includ-
ing fully-connected, recurrent, and convolutional layers. In
the next section, we describe the construction of a tempo-
ral encoder-decoder architecture leveraging the mTAND
module, which can be applied to both classification and
interpolation tasks.

3. Encoder-Decoder Framework
As described in the last section, we leverage the discretized
mTAN module in an encoder-decoder framework as our pri-
mary model in this paper, which we refer to as an mTAN net-
work. We develop the encoder-decoder framework within
the variational autoencoder (VAE) framework.

Model Architecture: As we are modeling time series
data, we begin by defining a sequence of latent states zi.
Each of these latent states are iid-distributed according to
a standard multivariate normal distribution p(zi). We let
the set of latent states be z = [z1, ..., zK ] defined at K
reference time points.

We define a three-stage decoder. First, the latent states are
processed through an RNN decoder module to induce tem-
poral dependencies, resulting in a first set of deterministic
latent variables hdecRNN = [hdec1,RNN , ...,h

dec
K,RNN ]. Second,

the output of the RNN decoder stage and the K time points
hdecRNN are provided to the mTAND module along with a
set of T query time points t. The mTAND module outputs
a sequence of embeddings hdecTAN = [hdec1,TAN , ...,h

dec
T,TAN ]

of length |t|. Third, the mTAN embeddings are indepen-
dently decoded using a fully connected decoder fdec() and
the result is used to parameterize an output distribution. In
this work, we use a diagonal covariance Gaussian distribu-
tion with mean given by the final decoded representation.

The final generated time series is given by s = (t,x) with
all data dimensions observed. The full generative process
is shown below. We let pθ(x|z, t) define the probability
distribution over the values of the time series x given the
time points t and the latent variables z. θ represents the
parameters of all components of the decoder.

zk ∼ p(zk) (5)

hdecRNN = RNNdec(z) (6)

hdecTAN = mTANDdec(t,hdecRNN ) (7)

xid ∼ p(xid|fdec(hdeci,TAN )[d]) (8)

For an encoder, we simply invert the structure of the genera-
tive process. We begin by mapping the input time series s
through the mTAND module along with a collection of K
reference time points r. We apply an RNN encoder to the
mTAND model that outputs hencTAN to encode longer-range
temporal structure. Finally, we construct a distribution over
latent variables at each reference time point using a diago-
nal Gaussian distribution with mean and variance output by
fully connected layers applied to the RNN outputs hencRNN .
The complete encoder architecture is described below. We
define qγ(z|r, s) to be the distribution over the latent vari-
ables induced by the input time series s and the reference
time points r. γ represents all of the parameters in all of the
encoder components.

hencTAN = mTANDenc(r, s) (9)
hencRNN = RNNenc(hencTAN ) (10)

zk ∼ q(zk|µk,σ2
k) (11)

µk = fencµ (henck,RNN ), σ2
k = exp(fencσ (henck,RNN )) (12)

Unsupervised Learning: To learn the parameters of our
encoder-decoder model given a data set of sparse and irreg-
ularly sampled time series, we follow a slightly modified
VAE training approach and maximize a normalized varia-
tional lower bound on the log marginal likelihood based on
the evidence lower bound or ELBO. The learning objective
is defined below where pθ(xjdn|z, tn) and qγ(z|r, sn) are
defined in the previous section.

LNVAE(θ, γ) =

N∑
n=1

1∑
d Ldn

(
Eqγ(z|r,sn)[log pθ(xn|z, tn)]

−DKL(qγ(z|r, sn)||p(z))
)

(13)

DKL(qγ(z|r, sn)||p(z)) =

T∑
i=1

DKL(qγ(zi|r, sn)||p(zi))

log pθ(xn|z, tn) =
D∑
d=1

Ldn∑
j=1

log pθ(xjdn|z, tjdn) (14)

Since irregularly sampled time series can have different
numbers of observations across different dimensions as well
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as across different data cases, it can be helpful to normal-
ize the terms in the standard ELBO objective to avoid the
model focusing on sequences that are longer at the expense
of shorter sequences. The objective above normalizes the
contribution of each data case by the total number of ob-
servations it contains. The fact that all data dimensions are
not observed at all time points is accounted for in Equa-
tion 14. In practice, we use k samples from the variational
distribution qγ(z|r, sn) to compute the learning objective.

Supervised Learning: We can also augment the encoder-
decoder model with a supervised learning component that
leverages the latent states as a feature extractor. We define
this component to be of the form pδ(yn|z) where δ are the
model parameters. This leads to an augmented learning
objective as shown in equation below where the λ term
trades off the supervised and unsupervised terms.

Lsup(θ, γ, δ) = LNVAE(θ, γ) + λEqγ(z|r,sn) log pδ(yn|z)

In this work, we focus on classification as an illustrative
supervised learning problem. For the classification model
pδ(yn|z), we use a GRU followed by a 2-layer fully con-
nected network. We use a small number of samples to
approximate the required intractable expectations during
both learning and prediction. Predictions are computed by
marginalizing over the latent variable as shown below.

y∗ = arg max
y∈Y

Eqγ(z|r,s)[log pδ(y|z)] (15)

4. Experiments
In this section, we present interpolation and classification
experiments on the Physionet Challenge 2012 dataset. De-
tails about the data set and experimental protocols are de-
scribed in Appendix A.1 and A.2. We compare the per-
formance of the proposed encoder-decoder model based
on the discretized multi-time attention module (mTAND-
Full) and an ablated model based only on the mTAND
encoder (mTAND-Enc) to several GRU based interpola-
tion/imputation approaches as well as current state-of-the-
art methods (L-ODE-ODE (Rubanova et al., 2019), IP-Nets
(Shukla & Marlin, 2019)). Baseline methods are described
in detail in Appendix A.3.

Table 1 compares the performance of all methods on the
interpolation task defined in Rubanova et al. (2019). As
we can see, the proposed method (mTAND-Full) substan-
tially outperforms all of the previous approaches. Table 2
compares predictive performance on the PhysioNet mor-
tality prediction task. The full multi-time attention net-
work model (mTAND-Full) and the classifier based only
on the multi-time attention network encoder (mTAND-Enc)
achieve significantly improved performance relative to the
current state-of-the-art methods (ODE-RNN and L-ODE-
ODE) and other baseline methods. We also report the time

Table 1. PhysioNet: Interpolation

Model MSE (×10−3)

RNN-Impute 3.243± 0.275
RNN-∆t 3.520± 0.276
RNN-Decay 3.215± 0.276
RNN GRU-D 3.384± 0.274
RNN-VAE 5.390± 0.249
ODE-RNN 2.361± 0.086
L-ODE (RNN) 3.907± 0.252
L-ODE (ODE) 2.118± 0.271

mTAND-Full 0.424± 0.018

Table 2. PhysioNet: Classification
Model AUC Score time

RNN-Impute 0.764± 0.016 0.5
RNN-∆t 0.787± 0.014 0.5
RNN-Decay 0.807± 0.003 0.7
RNN GRU-D 0.818± 0.008 0.7
RNN-VAE 0.515± 0.040 2.0
ODE-RNN 0.833± 0.009 16.5
L-ODE-RNN 0.781± 0.018 6.7
L-ODE-ODE 0.829± 0.004 22.0
IP-Nets 0.819± 0.006 1.3

mTAND-Enc 0.854± 0.001 0.08
mTAND-Full 0.858± 0.004 0.19

per training epoch in minutes. We note that the ODE-based
models require substantially more run time than other meth-
ods due to the required use of an ODE solver (Chen et al.,
2018; Rubanova et al., 2019). As we can see, the proposed
full multi-time attention network (mTAND-Full) is over 85
times faster than ODE-RNN and over 100 times faster than
L-ODE-ODE, the best-performing ODE-based models.

5. Discussion and Conclusions
In this paper, we have presented the multi-time attention
(mTAN) module for learning from sparse and irregularly
sampled data along with a VAE-based encoder-decoder
model leveraging this module. Our results show that the
resulting model performs as well or better than a range of
baseline and state-of-the-art models on both the interpola-
tion and classification tasks, while offering training times
that are one to two orders of magnitude faster than previous
state of the art methods.

While we have focused on a VAE-based encoder-decoder
architecture, the proposed mTAN module can be used to
provide an interface between sparse and irregularly sampled
time series and many different types of deep neural network
architectures including GAN-based models. Composing the
mTAN module with convolutional networks instead of recur-
rent architectures may also provide further computational
enhancements due to improved parallelism.
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A. Appendix
A.1. Dataset Description

The PhysioNet Challenge 2012 dataset (Silva et al., 2012)
consists of multivariate time series data with 37 variables ex-
tracted from intensive care unit (ICU) records.1 Each record
contains sparse and irregularly spaced measurements from
the first 48 hours after admission to ICU. We follow the pro-
cedures of Rubanova et al. (2019) and round the observation
times to the nearest minute. This leads to 2880 possible
measurement times per time series. The data set includes
4000 labeled instances and 4000 unlabeled instances. We
use all 8000 instances for interpolation experiments and the
4000 labeled instances for classification experiments. We fo-
cus on predicting in-hospital mortality. 13.8% of examples
are in the positive class.

A.2. Experimental Protocols

We conduct interpolation experiments using the 8000 data
cases in the PhysioNet data set. We randomly divide the
data set into a training set containing 80% of the instances,
and a test set containing the remaining 20% of instances.
We use 20% of the training data for validation. During
training, we condition on all observed time points. For all
baseline models, we follow the same testing procedure used
in Rubanova et al. (2019). The values at all time points
in a test instance are conditioned on and each model is
used to reconstruct them. We repeat each experiment five
times using different random seeds to initialize the model
parameters. We assess interpolation performance using
mean squared error (MSE).

We use the labeled data to conduct classification experiment.
We focus on whole time series classification. We randomly
divide each data set into a training set containing 80% of the
time series, and a test set containing the remaining 20% of
instances. We use 20% of the training set for validation. We
repeat each experiment five times using different random
seeds to initialize the model parameters. Due to class im-
balance in the PhysioNet data set, we assess classification
performance using area under the ROC curve (the AUC
score).

For both interpolation and classification tasks, we select
hyper-parameters on the held-out validation set using grid
search, and then apply the best trained model to the test set.

A.3. Models

The model we focus on is the encoder-decoder architec-
ture based on the discretized multi-time attention module
(mTAND-Full). In the classification experiments, the hid-

1https://physionet.org/content/
challenge-2012/

den state at the last observed point is passed to a two-layer
binary classification module for all models. For each data
set, the structure of this classifier is the same for all models.
For the proposed model, the sequence of latent states is
first passed through a GRU and then the final hidden state
is passed through the same classification module. For the
classification task only, we consider an ablation of the full
model that uses the proposed mTAND encoder, which con-
sists of our mTAND module followed by a GRU to extract
a final hidden state, which is then passed to the classifica-
tion module (mTAND-Enc). We compare to several deep
learning models that expand on recurrent networks to ac-
commodate irregular sampling. We also compare to several
encoder-decoder approaches. The full list of model variants
is briefly described below. We use a Gated Recurrent Unit
(GRU (Chung et al., 2014)) module as the recurrent network
throughout.

• RNN-Impute: Missing observations replaced with
weighted average of last observed measurement within
that time series and global mean of the variable across
the training examples (Che et al., 2018).

• RNN-∆t: Input is concatenated with masking variable
and time interval ∆t indicating how long the particular
variable is missing.

• RNN-Decay: RNN with exponential decay on hidden
states (Mozer et al., 2017; Che et al., 2018).

• GRU-D: combining hidden state decay with input de-
cay (Che et al., 2018).

• IP-Nets: Interpolation prediction networks, which use
several semi-parametric RBF interpolation layers, fol-
lowed by a GRU (Shukla & Marlin, 2019).

• ODE-RNN: Uses neural ODEs to model hidden state
dynamics and an RNN to update the hidden state in
presence of a new observation (Rubanova et al., 2019).

• RNN-VAE: A VAE-based model where the encoder
and decoder are standard RNN models.

• L-ODE-RNN: Latent ODE where the encoder is an
RNN and decoder is a neural ODE (Chen et al., 2018).

• L-ODE-ODE: Latent ODE where the encoder is an
ODE-RNN and decoder is a neural ODE (Rubanova
et al., 2019).
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