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ABSTRACT

Large Vision-Language Models (VLMs) are increasingly being regarded as foun-
dation models that can be instructed to solve diverse tasks by prompting, without
task-specific training. We examine the seemingly obvious question: how to ef-
fectively prompt VLMs for semantic segmentation. To that end, we systematically
evaluate the segmentation performance of several recent models guided by either
text or visual prompts on the diverse MESS dataset collection. We introduce a
scalable prompting scheme, few-shot prompted semantic segmentation, inspired
by open-vocabulary segmentation and few-shot learning. It turns out that even the
most advanced VLMs lag far behind specialist models trained for a specific seg-
mentation task, by about 30% on average on the Intersection-over-Union metric.
Moreover, we find that text prompts and visual prompts are complementary: each
one of the two modes fails on many examples that the other one can solve. Our
analysis suggests that being able to anticipate the most effective prompt modality
can lead to a 11% improvement in performance. Motivated by our findings, we
propose PromptMatcher, a remarkably simple baseline that combines both text
and visual prompts, achieving state-of-the-art results for training-free semantic
segmentation.

1 INTRODUCTION

Large Vision-Language Models (VLMs) have established themselves as the state-of-the-art for
cross-modal reasoning that involves images and text, and even as robust backbones for purely vi-
sual tasks, benefiting from the wealth of semantic and contextual relations contributed by language
modeling. A particular strength of VLMs is the capability to condition image understanding on text
inputs, the so-called Text Prompts (TP). This enables, for instance, segmentation of a specific object
in an image (Lai et al., 2024; Rasheed et al., 2024), reasoning about relations between objects (You
et al., 2023; Peng et al., 2023), and visual question answering (Beyer et al., 2024; Xiao et al., 2023).
Some VLMs also offer conditioning on Visual Prompts (VP). Typically these are visual cues like
points (suitably embedded coordinates on the image), scribbles or bounding boxes (Lai et al., 2024;
Rasheed et al., 2024), but it has also been proposed to directly superimpose symbols in pixel space
(Yang et al., 2023a).

We observe that (prompted) VLMs have been studied mainly in two broad settings. The first one
could be called image-driven text generation, meaning that the system outputs language, while visual
information is used only on the input side. This setting includes tasks such as image captioning and
visual question answering. The second setting can be referred to as visual grounding. This setting
links language to image regions, helping to enhance the model’s spatial reasoning and understanding
of how textual descriptions correspond to visual elements in an image. Examples include phrase
grounding, where the model is asked to detect the objects mentioned in the text, constraining their
spatial relations, and referring expression comprehension, where objects have to be identified based
on a periphrasis, thus emphasising contextual relations.

In this work, we focus on the potential of prompting mechanisms to improve image-to-image tasks.
Given that large VLMs are increasingly being recognized as foundation models for vision, we ask
how to effectively prompt VLMs for semantic segmentation. In other words, our primary interest
is not how well the model can parse or generate text about images, but rather how accurately it can
delineate objects in images.
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Since the desired outputs – segmentation masks – reside in image space, it is a natural question
whether Text Prompts or Visual Prompts are more expedient, and how the two can be combined.
While text prompting has proved successful in guiding image understanding and visual reasoning,
we claim that it is not always sufficient to prompt a VLM with text, and visual prompts can in some
cases be more suitable, or complementary. Intuitively, a visual example can in certain situations con-
vey information that it much harder, or even impossible, to transmit through text. While the internal
mechanisms of large models are notoriously difficult to disentangle and interpret, there is a simple
argument in support of visual prompting: The projection of the visual world to language is lossy.
Even elaborate text descriptions are often ambiguous and can lead to vastly different predictions.

At this point we must highlight a subtle, but important difference that is sometimes overlooked:
text prompts are normally understood as generic statements that can be defined once and then ap-
plied across many images, like “segment all cats”. In contrast, visual prompts are predominantly
understood as image-specific, like for instance a scribble to denote the cat in a particular image. In
this interpretation, visual prompting requires user input for every new sample and is not scalable.
Instead, we advocate for a form of visual prompting that incurs only a constant overhead for arbi-
trarily large test sets: The user annotates instances of their desired target class on a small number
of images, then that fixed set of examples serves as the prompt for the full dataset and no further
interaction is expected. We refer to this setup as few-shot prompted semantic segmentation (FPSS).
Unlike traditional few-shot learning, which also uses a small set of annotated examples but requires
fine-tuning the model, FPSS operates through prompting rather than training. It is also related to
open-vocabulary segmentation, where a frozen model is adapted to new classes without retraining,
though typically in a zero-shot context rather than using a few-shot approach.

When evaluating under the FPSS protocol, we find that VLMs are not behaving (yet) as foundational.
They still trail domain-specific segmentation models by about 30% on average in Intersection-over-
Union (IoU) score on the dataset used in this work. Furthermore, we find that text prompts perform
better on average, but that visual prompts are able to address tasks that are exceptionally difficult for
text prompted models. Unsurprisingly, the two prompting modes are to some degree complemen-
tary: in hard scenarios, e.g. medical imaging, VP can solve many instances that TP cannot, and vice
versa.

Motivated by these findings, we construct a simple baseline for combined text and visual guidance,
while still maintaining a training-free, prompting-only setup. Prompting with both text and vision
indeed improves the performance by a significant 2.5% compared to only text (respectively, 3.5%
compared to only vision).

Summarizing our contributions:

• We design a novel benchmarking task to probe the performance of VLMs as semantic
segmentation engines.

• We show that even the latest models remain far below custom models trained for a specific
task and data domain. In other words, we are still far from foundational VLMs.

• We show that text and visual prompting complement each other, and that being able to an-
ticipate the most effective prompt modality can lead to a 11% improvement in performance.

• We propose a simple training-free framework to capitalize on the complementary strengths
of text and visual prompts and achieve state-of-the-art on the MESS dataset collection
Blumenstiel et al. (2023).

2 TASK FORMULATION

The goal of our paper is to evaluate to which extent (training-free) prompting of generalist VLMs
can replace specialist models for semantic segmentation. It is obvious that some form of prompt
is always required to let a VLM know what to segment, but it is much less obvious what the most
suitable prompt is. Here, we limit ourselves to the two most popular ones, text and visual prompts.

As an example, let us assume we want to segment airplanes. A natural way to instruct the model
is with one or a few text prompts, like “segment all airplanes”. Note that, due to the compositional
nature of language, there is no clear definition on how many prompts we are effectively using, since
two or more prompts can be merged into one, as in “segment airplanes and similar flying machines”.
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In normal text prompting, the same prompt is then applied to all input images. FPSS translates that
one-off prompting scenario to the visual domain: the user supplies the system with at most K
reference images of airplanes, along with their segmentation masks or other annotations (e.g., a set
of points within the mask). Based on that input, the system shall segment airplanes in any number
of unseen target images. Note that this mode of interaction makes it possible to communicate about
visual concepts whose category name is not known to the model, just like a child can say “I want
this” before learning the word “chocolate”.

Beyond the research questions on how the two prompting modes compare and when one or the other
is more successful, prompting in the FPSS setting is relevant in several real application scenarios as
digitalization and AI permeate society. For instance, an engineer may have to instruct an inspection
system to examine a new item, or a biologist may want to screen a legacy image collection for a
newly discovered species; In both scenarios, users may prefer to provide only a few text or visual
prompts to the system, expecting the task to be automatically applied to the entire dataset.

3 ANALYSIS

In this section, we outline the evaluation framework, specifying the models considered within FPSS,
specifically under the one-shot regime. In particular, we select a range of key text prompted and vi-
sual prompted models and assess their effectiveness in performing segmentation when provided with
the corresponding prompt modality. We then present and discuss the results, providing a detailed
analysis of the performance differences across modalities, highlighting strengths and limitations.

3.1 EVALUATION PROTOCOL

There are many models capable of performing segmentation guided by text prompts, mainly falling
into two categories: open-vocabulary segmentation models (Cho et al., 2024) and vision-language
models (VLMs) (Lai et al., 2024; Beyer et al., 2024). Both types of models leverage textual input
to guide segmentation, with open-vocabulary models focusing specifically on identifying objects
beyond a fixed set of categories, while VLMs, with their broader multi-modal capabilities, can also
be adapted for segmentation tasks. Similarly, we identify two categories of models that can be
prompted visually: models specifically trained with visual prompts (Li et al., 2023a; Zou et al.,
2023) and training-free frameworks leveraging existing segmentation models along with matching
algorithms (Liu et al., 2024b; Frick et al., 2024). In contrast, very few models have been presented
that can be guided with both text and visual prompts (Zou et al., 2023)

For open-vocabulary segmentation models, we consider CAT-Seg (Cho et al., 2024), the state-of-
the-art on the MESS dataset. In particular, we use CAT-Seg with the CLIP ViT-L/14 backbone. We
also include SEEM (Zou et al., 2023), specifically the SEEM Davit-Large implementation. This is
the only available model to accept TPs and VPs simultaneously, although in this section we only use
them separately. Combined prompting with SEEM is discussed in Section 5.

As VLM baselines, we include the decoder-free Florence-2 (Xiao et al., 2023), specifically the
segmentation branch of the large, fine-tuned model, where we clip the generated sequence length
to 1024 for computational reasons; and PALI-Gemma (Beyer et al., 2024), a small but effective
architecture using a VQVAE decoder van den Oord et al. (2018). Regarding PALI-Gemma, we make
use of the standard 224-mix implementation. We also evaluate the recent LISA (Lai et al., 2024),
in particular the LISA-13B-llama2-v1 version, which features a dedicated decoder (from the SAM
foundation model). To keep the evaluation focused, and taking computational resource limitations
into account, we regard LISA as proxy for its follow-up works: GLAMM (Rasheed et al., 2024)
and SESAME (Wu et al., 2023), which might offer marginal improvements. Our choice of VLMs is
primarily informed by their referring segmentation performance on the RefCOCO, RefCOCO+, and
RefCOCOg datasets (Kazemzadeh et al., 2014; Mao et al., 2016), a task which is closely related to
our FPSS task. In all cases, we opt for greedy LLM decoding.

When considering models which are specifically trained with visual prompts, we once more pick
SEEM (Zou et al., 2023), using the same implementation as described for the text prompting setting,
as well as DINOv (Li et al., 2023a), using its Swin-L variant. Regarding visually prompted training-
free frameworks, we choose Matcher (Liu et al., 2024b) motivated by its performance on COCO-20i,
and its follow-up work SoftMatcher (Frick et al., 2024) mainly for its computational efficiency, both
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of which leverage pre-trained foundation models, namely Segment Anything (SAM, Kirillov et al.,
2023) and DINOv2 Oquab et al. (2024), in combination with traditional matching algorithms to pro-
vide image-prompted segmentation capabilities. Furthermore, we modify the Matcher/SoftMatcher
framework to obtain an improved version, which we call SoftMatcher+. It utilizes AM-RADIO
(Ranzinger et al., 2024) as its backbone instead of DINOv2, leveraging the excellent abilities of
AM-RADIO features (distilled from several large models including CLIP, DINOv2 and SAM) in
terms of matching, pixel-level localization, and vision-language connections. For all these training-
free methods we make use of the ViT-L versions of the models (DINOv2, SAM, AM-RADIO), and
tune their hyper-parameters on COCO-20i.

Regarding text prompts, we proceed as follows: for open-vocabulary segmentation models that
accept only a class name as input, we use class names based on the dataset specifications. For
VLMs with advanced language abilities, we embed the class name in the sentence “Segment all the
instances of class class name in the image”. As visual prompts, we sample one single image of
the target class from the dataset itself, together with its ground truth segmentation mask. Considering
a prompt consisting of a single image is proportionate with our elementary text prompts. Picking
that image from the same dataset corresponds to the realistic scenario where the user creates the
prompt on images acquired in their application setting, with similar imaging conditions and class
definitions as the test data. To minimise biases due to the choice of prompt image, we sample a
different prompt image for each prediction.

We point out that both text prompts and visual prompts can be refined by prompt engineering.
This field explores various techniques, ranging from single prompt optimization (Zhou et al., 2023),
prompt ensembling (Wang et al., 2023c), to multi-step reasoning (Wei et al., 2023; Yao et al., 2023;
Zhang et al., 2024b). While prompt engineering can make a substantial difference, it has become
an art in itself, and in fact an entry barrier for inexperienced users. It goes beyond the scope of the
present work, but may be an interesting avenue for future research.

We also consciously refrain from any fine-tuning. Often, even large models are fine-tuned for spe-
cific tasks, which can significantly improve their performance. However, in our view, this approach
seems misaligned with the definition and purpose of a ”foundation model”, which should ideally
be usable with minimal intervention. Once the hardware, data, and expertise for fine-tuning are re-
quired, there is arguably little qualitative difference from the well-established practice of training a
dedicated model starting from pre-trained weights (e.g., from ImageNet).

As a testbed for our experiments we use the MESS dataset collection (Blumenstiel et al., 2023).
It consists of 22 different segmentation datasets that span a wide variety of application domains
and image characteristics. The datasets are grouped into five broad domains, General (6 datasets),
Earth (5), Medical (4), Engineering (4) and Agriculture (3) as detailed in Table 5. The MESS
collection is deliberately designed as a challenging benchmark for foundation models and open-
vocabulary models, because its constituent datasets span a wide range of target categories and image
characteristics, many of which differ significantly from the dominant conditions of scraped internet
data used to train most VLMs. Moreover, MESS comes with strong baselines generated with per-
dataset, domain-specific semantic segmentation models. For clarity of presentation, we always show
average numbers for the five broad domains covered by MESS. The detailed dataset composition is
provided in Appendix A.

The evaluations were run on a single A100 with 40GB of memory, which takes ⇡14 hours for one
complete run with the largest model (LISA-13B). Open-vocabulary segmentation models are faster,
completing one evaluation cycle in 9 hours, while Florence-2 is the slowest, taking almost 24 hours.
Visually prompted models are substantially lighter (up to 1.2B parameters) than their text prompted
counterparts (up to 13B parameters), and while Matcher is very slow (22 hours), SoftMatcher+ takes
around 5 hours for an evaluation cycle.

3.2 RESULTS

Table 1 showcases the results under the FPSS evaluation scenario on the MESS dataset. Notably,
we see that all the evaluated promptable models still trail domain-specific segmentation models by
about 30% IoU on average.
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General Earth Medical Engineering Agriculture Average

SEEM text 35.9 36.8 28.9 13.9 44.5 32.0
CAT-Seg 33.9 36.9 45.7 48.4 24.5 37.9
Florence 14.0 13.9 13.1 07.3 07.6 11.2
PALI-Gemma 35.3 29.1 28.4 07.2 40.0 28.0
LISA 57.0 47.6 31.6 12.7 63.9 42.6

SEEM Vision 09.6 16.8 20.5 06.9 21.7 15.1
DINOv 37.4 28.0 24.2 08.3 59.1 31.4
Matcher 43.2 31.2 26.0 12.4 54.9 33.5
SoftMatcher 48.0 34.0 31.5 18.8 59.8 38.4
SoftMatcher+ 54.1 35.2 33.4 25.6 59.8 41.6

Supervised 55.2 71.4 82.6 89.4 62.8 72.3

Table 1: Evaluation results on the MESS dataset. The table presents performance metrics for visual-
prompted models (first block), text-prompted models (second block), and supervised baselines (last
row).

In the second block of Table 1, we see that among text prompted models, CAT-Seg and SEEM
remain competitive baselines when compared to the VLM approaches. In fact, with the exception
of LISA, the LLM-based methods underperform relative to these baselines. We hypothesise that
this performance is attributed to mainly two factors. First, the detokenization procedure employed
by these models could lack the granularity required for dense tasks. Second, the training data for
these models encompasses a broad range of image reasoning tasks beyond segmentation, including
visual question answering, object detection, and visual grounding. This diversity in training, while
beneficial for general-purpose applications, may dilute the models’ effectiveness on segmentation
tasks.

Moreover, LISA emerges as the front-runner, with an average IoU of 42.6%, around 4.5 IoU points
higher than the second best performing model CAT-Seg. This is likely due to LISA’s specialized
foundation model decoder and to its extensive training regimen on the large segmentation dataset
SA-1B (Kirillov et al., 2023), which is then further aligned with segmentation-specific datasets such
as RefCOCO or ADE20K (Zhou et al., 2018). More interestingly, comparing LISA with domain-
specific models trained on individual datasets yields an important finding: we find that in some cases,
LISA outperforms the baseline on generalist tasks, surpassing specialized segmentation models op-
timized for in-domain performance. However, it is also crucial to note that LISA’s performance
significantly decreases in more technical domains, such as engineering and medical applications.
In these specialized areas, it is surpassed by the open-vocabulary segmentation models, particularly
CAT-SEG, and by domain-specific models. This performance gap in technical domains suggests
potential for improvement.

The second block of Table 1 presents the results of the visual prompted models. We see that these
models underperform on average compared to their text prompted counterparts. For instance, the
performance of SEEM Vision is significantly inferior to SEEM Text. And while SoftMatcher nar-
rows this performance gap, SoftMatcher+ demonstrates even better results, nearly reaching LISA’s
performance level. In particular, we highlight that SoftMatcher+ shows superior performance com-
pared to LISA on the technical domains. We attribute this improvement to the nature of image
examples, which more precisely and effectively capture the user’s interests with better precision and
varying levels of detail.

4 SHOW OR TELL?

Our findings in Section 3.2 suggest that visual prompting and text prompting behave differently
when it comes to different target domains. To gain deeper insights into this performance disparity,
we conduct a more thorough examination of the top-performing models from each category. This
comparative analysis helps us elucidate the factors underlying the performance differences between
visual and text-based prompting.

5
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General Earth Medical Engineering Agriculture Average

SoftMatcher+ 53.0 36.2 30.4 28.7 60.7 41.8
LISA 57.0 47.7 31.7 12.8 64.0 42.6
Oracle Ensemble 60.9 47.8 40.4 28.7 65.4 48.6
Oracle Ensemble+ 67.3 51.8 46.2 32.5 71.4 53.8

Supervised 55.3 71.4 82.6 89.5 62.8 72.3

Table 2: Oracle ensemble methods compared to the best performing text and visual prompt models,
and to the supervised baseline.

Class name IoU TP IoU VP IoU Difference

Worm-eating Warbler 01.4 82.2 80.8
Rape 19.2 80.0 60.8
Fjord 24.1 81.2 57.0
Date 00.1 52.0 51.9
Hair 18.8 62.1 43.2
Upper clothes 16.0 58.2 42.2
Tea 29.9 70.5 40.6
Soy 37.2 77.2 40.0
Cashew 27.7 66.9 39.1
Kiwi 37.3 76.3 39.0

Table 3: Top 10 classes with the highest IoU difference between the text and visual prompt models.

4.1 ORACLE ENSEMBLING OF TEXT AND VISUAL PROMPTS

A natural starting point for characterizing the differences between visual and text prompting is to
determine by how much the segmentation performance improves by choosing the best prompting
modality within each target domain. Regarding the MESS datasets, this can be easily quantified
by taking the maximum across VP and TP performance for each dataset, obtaining what we call an
Oracle Ensemble. Table 2 shows that being able to choose optimally between using visual or text
prompts brings a boost to the overall performance by 6% compared to LISA.

Motivated by this, we add more granularity to this analysis and investigate the performance upper
bound that we could reach by selecting the best prompting on a per-image basis, as opposed to per-
dataset ( Oracle Ensemble). We denote the resulting optimal selection with Oracle Ensemble+ and
note in Table 2 its remarkable performance of 53.8%, corresponding to an 11% jump over pure text
prompting with LISA.

The simple baselines given by these Oracle Ensembles show the potential advantages of using visual
prompts in conjunction with conventional text prompts. In addition, given their simplicity, they
highlight the possibility that more advanced models, with access to both modalities, could achieve
even greater performance when coupled with a smart integration of both sources. This motivates us
to seek ways to leverage visual prompting in text prompted VLMs.

To optimally leverage visual prompts we first investigate the source of its relative advantage over text
prompts. Looking at IoU differences on a per-class basis and ranking them based on the absolute
difference as shown in Table 3, we uncover a striking trend. The top 10 values all favor VP, with
some classes showing a remarkable performance advantage of up to 80%. This substantial disparity
underscores the significant superiority of visual prompting over text prompting for certain classes,
suggesting that visual cues provide a more effective means of guiding the model’s segmentation
process in these instances.

This analysis across different class names suggests that the shortcomings of text prompted models
are not primarily due to an inability to segment specific objects, but rather stem from the nature of
the prompts themselves. The classes where LISA performs poorly fall into two main categories:
ambiguous descriptions such as Upper clothes and highly specific, uncommon class names such
as Worm-eating warbler or Fjord. These findings suggest that the model’s difficulties arise from
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Figure 1: Qualitative analysis of the results of LISA and SoftMatcher+ compared to ground truth.
The first four columns display images selected according to biggest difference of IoU between VP
and TP as per Table 3. The last column displays the Tool class.

interpreting vague or extremely niche text prompts, rather than from fundamental limitations of its
latent image encoding.

To better understand the performance discrepancies, we visually inspect samples from the first four
categories, i.e. samples representing the most divergent IoU scores per class. The qualitative results
can be seen in the first four columns of the Figure 1. On the first sample of class Worm-eating
warbler, the model clearly struggles to interpret the user’s request, failing to connect the specific
subclass to the broader bird category, despite the relative segmentation-friendly image content. On
the second sample, the model produces only noise at the top of the image, demonstrating a complete
failure to identify the requested class of Rape (referring to the Rapeseed plant). The third sample
reveals the model’s confusion between segmenting the mountain portion of the fjord and the fjord
itself, resulting in an inaccurate segmentation of the mountain. In the fourth example, LISA exhibits
hallucination, segmenting an unrelated object when asked to segment the class Date.

4.2 AMBIGUITY OF TEXT PROMPTING

The visual inspection of the top samples in terms of performance difference between TP and VP
suggests that the discrepancies can be attributed to two main linguistic challenges: ambiguity from
polysemous or homonymous words and the use of highly specialized or uncommon terms.

These issues are closely related to the inherent complexities of language, which complicate the
ability of text prompted systems to accurately interpret visual tasks. The interplay between ambi-
guity and specificity in language is inherent on how it was formed (Riemer, 1949) and it is widely
known to be an issue in the computational semantics literature, hindering the algorithmic perfor-
mance (Church & Patil, 1982; Manning & Schutze, 1999). The trade-off between the usage of
ambiguous words and ones that are specific, unusual, or difficult to pronounce serves a crucial role
in our ability to convey complex thoughts and adapt to diverse communicative contexts (Wasow,
2015).

Our hypothesis that language ambiguity can be a considerable weakness for visual prompting is
supported by further experiments on the MESS FoodSeg103 dataset. Here we see a significant
performance gap of 13% of IoU between Oracle Ensembling (which in this case refers to LISA)
and Oracle Ensembling+. This can be attributed to the linguistic challenges previously discussed.
FoodSeg103 encompasses a diverse set of food categories, many of which are either ambiguous or
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Figure 2: PromptMatcher framework: The left section illustrates the mask generation process using
visual and text prompts, while the right section shows the verification module which discards inac-
curate predictions.

highly specific, making them challenging to distinguish through text description. On the other hand,
these foods often appear visually similar. Additional examples are provided in Appendix B.

Similarly, the Kvasir-Inst. dataset shows a notable discrepancy, particularly for the class tool, which
is the sole category within this dataset. Examining the last column of Figure 1, we observe that the
model’s performance is compromised by both the non-specific nature of the word tool and out-of-
domain nature of the image. The generality of the term tool sometimes leads to misinterpretation,
with the model confusing it with elements of the camera interface itself. This ambiguity helps
explaining the substantial 35% performance gap observed in this dataset.

Humans typically bridge this semantic gap by providing additional context (Pimentel et al., 2024).
However, in our experimental setup, this approach can be prohibitively expensive or unfeasible, as
shown by the Worm-eating Warbler case. While using the prompt “bird” could disambiguate this
specific image, such generic prompts fail when working with datasets that include different bird
species. Visual Prompting offers a solution to this challenge by providing a simpler, less ambiguous
method to fill this semantic gap, eliminating the need for elaborate textual descriptions or context-
dependent prompts.

Our considerations indicate that visual and text prompting are inherently complementary, and that
visual prompting offers a natural and readily available strategy to make up for the weaknesses of
text prompting due the identified ambiguities.

5 PROMPTMATCHER: COMBINING TEXT AND VISUAL PROMPTS

Motivated by the complementary nature of text and visual prompts, we propose a framework that
effectively integrates both, closing the gap between the baselines presented in Section 3 and the
Oracle Ensemble+. Furthermore, drawing inspiration from LLM-Modulo frameworks outlined in
(Kambhampati et al., 2024), particularly from the concept of employing critics/verifiers to enhance
generative models’ reasoning capabilities, in our context we propose to use SoftMatcher+ as an
effective critic/verifier for LISA’s predictions. This verification module would be able to mitigate
LISA’s hallucinations, thereby enhancing overall accuracy.

We refer to our training-free framework as PromptMatcher. As depicted in Figure 2, it employs Soft-
Matcher+ as both a critic and segmentation model, generating predictions using LISA for the text
prompt branch and SoftMatcher+ for the visual prompt branch. First, at the mask generation step, the
text prompt is processed by LISA’s multi-modal LLaVA model, producing an output sequence with
a specialized [SEG] token, which is then decoded into a segmentation mask by LISA’s aligned SAM
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General Earth Medical Engineering Agriculture Average

SEEM 09.7 17.0 20.5 07.3 22.5 15.4
LISA 57.0 47.7 31.7 12.8 64.0 42.6
SoftMatcher+ 53.0 36.2 30.4 28.7 60.7 41.8
PromptMatcher 58.7 39.7 35.1 30.4 62.4 45.3

Oracle Ensemble+ 67.3 51.8 46.2 32.5 71.4 53.8
Supervised 55.3 71.4 82.6 89.5 62.8 72.3

Table 4: Comparison of PromptMatcher’s performance with i) SEEM using both visual and text
prompts simultaneously ii) the top-performing text and visual prompt models, and iii) the Oracle
Ensemble+ and the supervised baselines.

model. Simultaneously, SoftMatcher+’s matching pipeline processes the visual prompt, generating
multiple sets of point prompts representing potential object locations. The SAM mask-decoder uses
these prompts to create unique output masks for each set. Subsequently, in the verification step, we
apply SoftMatcher+’s mask rejection pipeline on masks produced by both branches to verify their
consistency with the reference image. This only allows plausible masks to pass, therefore playing the
crucial role of a critic, reducing hallucinations originating from either branch. Finally, the verified
masks are combined by taking their union to form a single, comprehensive semantic segmentation
output.

We present our results in Table 4, and refer to Table 9 in the Appendix C for per-dataset results.
Our combination of visual and text prompts significantly outperforms the vision-language SEEM
baseline, which performs nearly the same as its vision-only version. We see that with our straight-
forward, training-free approach, it is possible to go beyond text-only or visual-only prompting and
start to bridge the gap towards the Oracle Ensemble+. Notably, PromptMatcher surpasses Oracle
Ensemble+ on two MESS datasets (DeepCrack and MHP v1), indicating synergies beyond simply
selecting the better of two prompts. This superior performance can be attributed to the unique nature
of the proposed framework. As our approach leverages the complementary strengths of LISA and
SoftMatcher+ to generate a more diverse set of predictions, when the outputs from the two models
diverge, taking their union allows merging segments from different instances. This enables the mod-
els to combine their predicted masks rather than being limited to choose the output from one or the
other, which is advantageous compared to an oracle-based selection. Moreover, applying the mask
rejection procedure from SoftMatcher+ to LISA masks helps to mitigate potential hallucinations
from LISA by rejecting results that do not match with the reference mask. The rejection of LISA
masks capitalizes on the inherent text-vision knowledge distilled into the AM-RADIO representa-
tions, improving over vision-only backbones.

Our remarkably simple integration of TPs and VPs demonstrates the immediate benefit of combining
the two modalities. We are convinced that there is untapped potential in such modular, training-
free frameworks. We leave the exploration of more elaborate framework designs to future work,
encouraging the research community’s involvement in this effort.

6 RELATED WORK

Open-Vocabulary Segmentation Models are able to perform segmentation across unlimited classes
without relying on a fixed set of categories defined during training. These models often rely on
CLIP-like text encoders to associate visual data with text descriptions. Specialized models like L-
SEG Li et al. (2022) and CAT-Seg Cho et al. (2024) are designed specifically to solve this task, while
multi-modal models such as X-Decoder Zou et al. (2022) and SEEM Zou et al. (2023) expand this
capability by handling a different range of visual prompts.

Vision-Language Models bridge the gap between visual perception and natural language under-
standing, excelling in tasks that require a combination of both, such as perception-language tasks
and grounding tasks. These models are built using large language models (LLMs) integrated with
vision encoders. With respect to perception-language tasks, VLMs perform tasks like image caption-
ing, visual question answering, and region-level annotations. The LLaVA series Liu et al. (2023b;a;
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2024a) has set benchmarks in this area by combining vision encoders like CLIP Radford et al. (2021)
with LLMs, such as LLaMA Touvron et al. (2023); et al. (2023) or Vicuna Chiang et al. (2023). In-
structBLIP Dai et al. (2023) builds on the BLIP-2 Li et al. (2023b) model with instruct tuning, and
MM1 McKinzie et al. (2024) provides insights into crafting effective multimodal models. GPT-4V
OpenAI (2024) currently sets the highest standard in these perception-language tasks Yang et al.
(2023b). In grounding tasks, VLMs are able to handle phrase grounding and referring expression
comprehension, detection, and segmentation. These tasks require identifying specific objects or re-
gions based on text descriptions. Models like Florence-2 Xiao et al. (2023) predict segmentation
coordinates in the form of text, while PALI-Gemma Beyer et al. (2024) uses a next-token predic-
tion method encoding outputs to a fixed token dictionary, which is then decoded using a VQVAE
van den Oord et al. (2018). Other significant contributions include Kosmos-2 Peng et al. (2023),
which integrates coordinate tokens into the vocabulary for object detection, Ferret You et al. (2023),
which incorporates dense visual prompts, and Osprey Yuan et al. (2024), which adds further granu-
larity to input prompts. While GPT-4V has shown impressive capabilities in many visual-language
tasks, it has notable limitations in performing segmentation. Some VLMs incorporate specialized
segmentation decoders, such as LISA Lai et al. (2024), which extends the LLaVA architecture in-
corporating SAM Kirillov et al. (2023) to convert predicted tokens into segmentation masks. This
hybrid approach has been refined by models like GLAMM Rasheed et al. (2024), which includes
pixel-level visual prompting and supports multi-round conversations, and GSVA Xia et al. (2024),
which enhances resilience to adversarial attacks. PixelLM Ren et al. (2024) introduces a lightweight
segmentation decoder, while SESAME Wu et al. (2023) focuses on mitigating hallucination in seg-
mentation tasks.

Visual Prompting involves providing visual cues to guide the model’s understanding and segmen-
tation of images. Early works such as Bar et al. (2022), focused on solving few-shot vision tasks
by reconstructing the target via image inpainting of a grid-like input prompt. This concept was fur-
ther developed in models like Painter Wang et al. (2023a) and SegGPT Wang et al. (2023b), which
demonstrated the possibility of solving tasks like segmentation more effectively. A significant leap
forward came with the introduction of the Segment Anything Model (SAM) Kirillov et al. (2023) and
its follow-up Ravi et al. (2024), showing remarkable zero-shot capabilities in image segmentation
tasks. These models, along with works like OMG-LLaVA Zhang et al. (2024a), focused on using
visual prompts within the target image itself, rather than relying on separate example images. Other
notable works include DINOv Li et al. (2023a), which expands visual prompting from SEEM, and
Matcher Liu et al. (2024b) which brings a unique approach that enables zero-shot models like SAM
to be prompted one-shot through feature matching. SoftMatcher Frick et al. (2024) further expands
on this concept by enhancing both simplicity and computation performance of the approach. Addi-
tionally, there has been growing research on optimizing information extraction from target images
using pixel-level deformations. A seminal work in this direction is SoM Yang et al. (2023a), which
posited that providing visual clues to a VLM can significantly enhance its performance. This has
sparked numerous follow-up studies, including ViP-LLaVA Cai et al. (2024) that applies these con-
cepts to models like LLaVA. The practical implications of these approaches are also being explored,
such by the work He et al. (2024) in the context of web-based applications.

7 CONCLUSION

In this work, we introduced a benchmarking task designed to evaluate the performance of Vision-
Language Models (VLMs) as semantic segmentation engines. Our results demonstrate that, despite
the advancements, the latest VLMs still fall significantly short compared to custom models trained
specifically on a given domain. This finding suggests that there is still room for progress in devel-
oping VLMs. We also showed that text prompting and visual prompting are complementary. By
anticipating and selecting the most effective prompting modality, it is possible to achieve a notable
11% IoU performance improvement. Building on this insight, we introduced a straightforward,
training-free framework that leverages the complementary strengths of both text and visual prompt-
ing, with a key verification component responsible for rejecting incorrect segmentation masks. This
framework sets a new state-of-the-art benchmark on the MESS dataset collection, achieving 45.5%
average IoU. Our findings highlight the potential of using multiple prompt modalities to enhance the
performance of VLMs without the need for additional training, bringing us closer to true foundation
VLMs.
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Matko Bošnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic,
Joan Puigcerver, Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, Radu Soricut, Jeremiah Harm-
sen, and Xiaohua Zhai. Paligemma: A versatile 3b vlm for transfer, 2024. URL https:
//arxiv.org/abs/2407.07726.

Eric Bianchi and Matthew Hebdon. Corrosion Condition State Semantic Segmentation Dataset,
10 2021. URL https://data.lib.vt.edu/articles/dataset/Corrosion_
Condition_State_Semantic_Segmentation_Dataset/16624663.

Benedikt Blumenstiel, Johannes Jakubik, Hilde Kühne, and Michael Vössing. What a mess: Multi-
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