VHSMARKER AND THE CCK DATASET: A BENCH-MARK FOR AUTOMATED VERTEBRAL HEART SCORE ESTIMATION IN CANINE RADIOGRAPHS

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012 013

014

015

016

017

018

019

021

025

026

027

028

031

032033034

035

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

We present VHSMarker, a web-based annotation tool that enables rapid and standardized labeling of six cardiac key points in canine thoracic radiographs. VHSMarker reduces annotation time to 10–12 seconds per image while supporting real-time vertebral heart score (VHS) calculation, model-assisted prediction, and quality control. Using this tool, we constructed the Canine Cardiac Key Point (CCK) Dataset, a large-scale benchmark of 21,465 annotated radiographs from 12,385 dogs across 144 breeds and additional mixed breed cases, making it the largest curated resource for canine cardiac analysis to date. To demonstrate the utility of this dataset, we introduce MambaVHS, a baseline model that integrates Mamba blocks for long-range sequence modeling with convolutional layers for local spatial precision. MambaVHS achieves 91.8% test accuracy, surpassing 13 strong baselines including ConvNeXt and EfficientNetB7, and establishes statespace modeling as a promising direction for veterinary imaging. Together, the tool, dataset, and baseline model provide the first reproducible benchmark for automated VHS estimation and a foundation for future research in veterinary cardiology. The source code and dataset are available on our project website: https://anonymousgenai.github.io/vhsmarker.

1 Introduction

Canine cardiomegaly, characterized by pathological heart enlargement, is a critical condition that can significantly impact the health and longevity of dogs if left undiagnosed or untreated. Early and accurate detection is essential for effective intervention, yet traditional methods for Vertebral Heart Score (VHS) measurement from thoracic radiographs remain highly subjective, labor-intensive, and prone to inter-observer variability (Bappah et al., 2021; Burti et al., 2020). These manual processes require precise anatomical landmark identification and measurement, demanding significant expertise and time, which limits their scalability in clinical practice (Rungpupradit & Sutthigran, 2020; Dumortier et al., 2022). Recent advances in deep learning, including convolutional neural networks (CNNs) (He et al., 2016; Huang et al., 2017), transformer-based architectures (Dosovitskiy et al., 2020), and state-space models such as MambaVision (Hatamizadeh & Kautz, 2024), have demonstrated exceptional potential for medical image analysis, often outperforming conventional rule-based methods in both accuracy and efficiency. These approaches can capture long-range dependencies and complex spatial relationships, making them suitable for challenging imaging tasks. However, their application to veterinary diagnostics remains limited due to the scarcity of large, high-quality labeled datasets, the diversity of canine anatomies, and the need for interpretable and clinically reliable predictions (Jeong & Sung, 2022; Zhang et al., 2021).

To address these challenges, we introduce a comprehensive framework that unifies an annotation tool, a large-scale dataset, and a baseline model for canine cardiac assessment. Unlike prior veterinary cardiology studies that relied on small datasets or isolated methods (Bappah et al., 2021; Burti et al., 2020; Jeong & Sung, 2022; Zhang et al., 2021), our contribution establishes the first standardized benchmark for automated VHS estimation, providing the community with both resources and strong baselines.

Our framework makes three key contributions. (i) We present a clinician-oriented web tool that reduces annotation time from over a minute to about 10–12 seconds per image, while supporting real-time keypoint placement, automated VHS calculation, built-in quality checks, and seamless data export, enabling scalable and accurate dataset creation with minimal user error. (ii) We introduce the Canine Cardiac Keypoint (CCK) Dataset, a carefully curated collection of over 21k radiographs annotated with six cardiac keypoints, offering a standardized benchmark that captures diverse anatomical variations and clinical conditions for training and evaluation. (iii) We develop MambaVHS, a hierarchical baseline model that combines Mamba blocks for efficient long-range sequence modeling with convolutional layers for local spatial precision, achieving robust and accurate VHS prediction that surpasses existing baselines.

Together, the tool, dataset, and model form an end-to-end pipeline for automated cardiomegaly assessment. This framework significantly reduces annotation burden, provides a reproducible benchmark, and demonstrates through MambaVHS that state-space modeling is a promising direction for veterinary imaging tasks.

2 Related Work

The diagnosis of canine cardiomegaly has traditionally relied on the Vertebral Heart Score (VHS), which measures cardiac dimensions relative to thoracic vertebrae (Bappah et al., 2021; Rungpupradit & Sutthigran, 2020; Buchanan & Bücheler, 1995). While widely used in veterinary practice, VHS measurement suffers from inter-observer variability and time-consuming manual processes (Litster & Buchanan, 2005; Lam et al., 2001). Efforts to improve consistency include standardized protocols (Jeong & Sung, 2022) and computational methods (Rungpupradit & Sutthigran, 2020), yet these still depend on manual initialization.

Automated tools for VHS have been explored. Li, Zhang introduced a MATLAB-based system requiring manual adjustment (Li & Zhang, 2024), while Oh, Lee, Go, Lee, and Jeong (Oh et al., 2024) proposed a semi-automated segmentation pipeline that reduces manual oversight by leveraging few-shot learning. Fully automated solutions are more advanced in human cardiology (Alsharqi et al., 2018; Zhang et al., 2021), but remain difficult to adapt to veterinary settings due to anatomical differences and limited data.

Deep learning has transformed medical imaging, with CNNs excelling at segmentation and disease detection (Huang et al., 2017; Ronneberger et al., 2015; Dumortier et al., 2022; Wang et al., 2017). In veterinary applications, CNNs have been applied to canine cardiomegaly (Burti et al., 2020), feline pulmonary disease (Dumortier et al., 2022), and bovine teat-end analysis (Zhang et al., 2022), though such studies are constrained by small datasets and lack of standardized benchmarks (Litjens et al., 2017; Jeong & Sung, 2022). More recent advances include transformers (Dosovitskiy et al., 2020; Liu et al., 2022a; Wu et al., 2021), which capture long-range dependencies, and Mamba-based architectures (Hatamizadeh & Kautz, 2024; Gu & Dao, 2023), which achieve linear-time sequence modeling. These capabilities are especially relevant for VHS, where distant landmarks must be jointly modeled. Zhang et al. (2025) further explored diffusion-based augmentation for canine cardiomegaly, but focused on data generation rather than standardized landmark localization.

Overall, veterinary cardiology research remains limited by scarce annotated datasets, reliance on manual or semi-automated tools (Li & Zhang, 2024; Dumortier et al., 2022; Zhang & Davison, 2021), and the absence of reproducible evaluation pipelines. Our work addresses these gaps by introducing the first comprehensive benchmark: a scalable web-based annotation tool (VHSMarker), the large-scale CCK Dataset with standardized keypoints, and MambaVHS as a strong baseline model, enabling reproducible evaluation and exploration of state-space architectures for veterinary imaging.

3 Dataset

We introduce the Canine Cardiac Keypoint (CCK) dataset, a benchmark for vertebral heart score (VHS) estimation and cardiac keypoint detection in veterinary cardiology. It provides large-scale radiographs annotated with six cardiac keypoints to support reproducible model training and evaluation. Below we outline the collection process, preprocessing, demographics, and final composition.

Table 1: Demographic statistics including sex, age, and the top 10 breeds. Complete breed distribution is in Appendix A.3.

Sex Distribution		Age Distribution (years)		Top 10 Breeds			
Category	Count	Age Group	Count	Breed	Count	Breed	Count
Female	7 941	0–5	2 961	Mixed Dog	1 256	Boxer	79
Male	4 3 9 5	6–11	6 2 7 2	Labrador Retriever	479	Shih Tzu	77
Unknown	49	12-17	2827	Golden Retriever	191	Yorkshire Terrier	77
		18-30	86	German Shepherd	164	Border Collie	57
		Unknown	239	Chihuahua	100	Beagle Hound	56
Total	12 385	Total	12 385	Top-10 breeds subtotal: 2536; Overall total: 12385			

Data and Preprocessing. We collected 36,264 canine thoracic radiographs from multiple hospitals under data-sharing agreements and de-identified them. After quality control, we retained 21,465 *lateral* views (left/right) from 12,385 dogs, excluding dorsoventral/ventrodorsal projections as unsuitable for VHS. Standardized preprocessing removed distorted, overexposed, incomplete, or motion-affected scans, and annotators used VHSMarker's validity flag to exclude clinically irrelevant cases. Institutional identities remain undisclosed for privacy; the final cohort spans diverse clinical populations and contains only diagnostically sound lateral radiographs for key-point annotation and VHS estimation.

Demographic Information. To assess dataset diversity and representativeness, we report aggregate demographic statistics. The dataset spans 144 distinct dog breeds and a small set of unidentified samples, reflecting broad coverage of anatomical and clinical variability. Although institutional and geographic details remain anonymized for privacy, the CCK Dataset was collected across multiple veterinary hospitals, ensuring diversity in patient populations and imaging practices. This broad sampling helps mitigate concerns about representativeness and supports the dataset's generalizability to real-world veterinary scenarios. Table 1 summarizes sex distribution, age groups, and the most frequent breeds, while the complete breed distribution (146 entries) is provided in the appendix A.3.

Final Dataset Composition. The Canine Cardiac Keypoint (CCK) dataset comprises 21 465 lateral thoracic radiographs, each annotated with six cardiac keypoints using the VHSMarker tool (Table 2). The split is performed at the *patient level* (i.e., by dog) to prevent data leakage, ensuring that radiographs from the same individual do not appear across training, validation, and test sets. This design supports robust evaluation and generalization across diverse clinical cases. Combined with precise annotations and integrated quality control, the dataset establishes a reproducible benchmark for vertebral heart score estimation and canine cardiology research.

Table 2: Dataset distribution.

Split	Images
Training	15026
Validation	2155
Testing	4275
Total	21465

4 METHODS

This section introduces the two main components of our framework. VHSMarker is a clinician-friendly tool for rapid, standardized keypoint labeling with automated VHS computation, enabling creation of the large-scale CCK Dataset. MambaVHS is a baseline model that integrates convolutional layers with Mamba blocks for precise and efficient VHS estimation.

4.1 KEY POINT ANNOTATION TOOL

VHSMarker is a lightweight web-based system for canine cardiac key point annotation. The front end, built with HTML5, JavaScript, and a Canvas interface, enables intuitive point placement and real-time visualization. A Flask back end manages GPU-accelerated inference and asynchronous updates, ensuring low-latency interaction for both expert and non-expert users.

Figure 1: Overview of the VHSMarker interface, including key point placement and real-time VHS calculation.

Annotation Features. The VHSMarker interface is designed to balance precision and usability for annotators with varying levels of expertise. It supports zooming, panning, and window-level adjustments (brightness and contrast) to allow close inspection of fine anatomical structures, while undo/redo functions provide stepwise correction without disrupting the workflow. Problematic radiographs can be flagged as invalid, ensuring that only diagnostically reliable samples contribute to the dataset. All annotations, including keypoint coordinates, metadata, and validity flags, are automatically stored in .mat format for seamless downstream integration. To support flexible workflows, three annotation modes are provided: *Ground Truth* for manual labeling, *Prediction* for automated keypoint generation by the MambaVHS model, and *Show Both* for side-by-side comparison and correction (see Appendix A.1). This design enables efficient correction of automated outputs while preserving transparency between human and model contributions. A video demonstration is available on the project website to illustrate the tool's usage in practice.

Real-Time Inference and VHS Computation. Upon image upload, the MambaVHS model generates key point predictions, which are overlaid on the canvas. Pixel coordinates (x_i, y_i) are normalized to dimensionless form:

$$\tilde{x}_i = \frac{x_i \cdot \frac{W'}{W}}{H'}, \quad \tilde{y}_i = \frac{y_i \cdot \frac{H'}{H}}{H'}, \tag{1}$$

where W, H are original dimensions and W', H' the target size. The vertebral heart score (VHS) is then computed as:

VHS =
$$6 \times \frac{(AB + CD)}{EF}$$
, (2)

with AB the long axis, CD the short axis, and EF the vertebral reference length. This ensures consistent VHS estimation across variable-resolution images.

217

218 219

220

221

222

224 225

226

227228

229 230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

249

250

251

253

254

255

256

257

258259

260

261

262

263

264

265

266

267

268

269

Figure 2: Architecture of the MambaVHS model. It consists of a stem, four MambaStages, and a regression head, combining residual blocks, Mamba SSMs, and SE layers for keypoint prediction.

4.2 MAMBAVHS MODEL ARCHITECTURE

The MambaVHS model is a hierarchical deep learning framework designed for precise localization of six cardiac key points in canine thoracic radiographs. Unlike standard CNNs, which primarily capture local context, or Transformers, which model long-range dependencies at quadratic cost, MambaVHS leverages state-space models (SSMs) to capture global anatomical relationships with linear complexity.

Figure 3: Residual (left) and Mamba (right) blocks form each MambaStage: Residual captures local spatial patterns, while Mamba models long-range dependencies.

The architecture integrates convolutional layers for spatial precision, Mamba blocks for efficient long-range reasoning, and SE layers for adaptive channel recalibration. Training is further guided by the proposed VHSAwareLoss, which embeds clinically meaningful thresholds for vertebral heart score prediction, ensuring that optimization is directly aligned with veterinary diagnostic standards.

MambaStem. The stem block reduces spatial resolution while expanding feature depth, producing a compact yet expressive representation. It consists of two convolutional layers (stride 2 and stride 1), each followed by batch normalization and SiLU activation:

$$\phi(\mathbf{X}) = \text{SiLU}(BN(\text{Conv2D}(\mathbf{X}))),$$
 (3)

$$\mathbf{F}_0 = \phi(\mathbf{X}),\tag{4}$$

where **X** is the input radiograph. This operation encodes texture and contour information critical for cardiac structure analysis while reducing computation in later stages.

MambaStages. MambaStages refine features via downsampling, residual learning, Mamba-based sequence modeling, and SE recalibration, enabling the model to capture both local anatomical cues and global dependencies for accurate VHS estimation.

Downsampling. Spatial resolution is reduced by applying the convolution–BN–SiLU operator from Eq. 3:

$$\mathbf{F}_d = \phi(\mathbf{X}),\tag{5}$$

where $\mathbf{X} \in \mathbb{R}^{B \times C \times H \times W}$ is the input feature map, and \mathbf{F}_d has higher channel depth with reduced spatial size.

Residual Block. Local features are captured using two stacked convolutions with a residual skip connection:

$$\mathbf{F}_r = \text{SiLU}(\mathbf{F}_d + \phi(\phi(\mathbf{F}_d))), \tag{6}$$

which preserves fine structural details (e.g., vertebral boundaries) and stabilizes gradient flow.

Mamba Block. Global dependencies are modeled efficiently through a three-step state-space formulation:

$$\mathbf{H} = \mathbf{W}_{\text{in}} \cdot \mathbf{F}_r,\tag{7}$$

$$Y = SelectiveScan(H; A, B, C, D),$$
(8)

$$\mathbf{F}_{\text{out}} = \mathbf{W}_{\text{out}} \cdot \mathbf{Y},\tag{9}$$

where \mathbf{W}_{in} , \mathbf{W}_{out} are learnable projection matrices, and \mathbf{A} , \mathbf{B} , \mathbf{C} , \mathbf{D} are trainable state-space parameters. The selective scan operator enables linear-time sequence modeling, avoiding the quadratic cost of self-attention.

SE Layer. To highlight cardiac-relevant channels, the output is recalibrated via a squeeze-and-excitation mechanism. Global average pooling first aggregates context:

$$\mathbf{g} = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} \mathbf{F}_{\text{out}},\tag{10}$$

where g is a channel descriptor. Two fully connected layers then rescale channels:

$$\mathbf{F}_{\text{se}} = \mathbf{F}_{\text{out}} \cdot \sigma(\mathbf{W}_2 \cdot \text{ReLU}(\mathbf{W}_1 \cdot \mathbf{g})), \tag{11}$$

with W_1, W_2 learnable matrices and σ the sigmoid function.

Regression Head. The outputs of the four MambaStages (channels 64, 128, 256, 640) are aggregated via global average pooling and passed through a two-layer MLP with ReLU and a final linear layer to regress six cardiac key point coordinates. This head links hierarchical backbone features to precise anatomical localization, enabling reliable VHS computation. Together with the stem and MambaStages, it forms the full MambaVHS architecture, trained with the task-specific VHSAwareLoss to enhance accuracy and clinical consistency.

VHSAwareLoss. To stabilize VHS estimation, we introduce VHSAwareLoss, which combines regression precision with category consistency using clinical thresholds (8.2, 10). The base term is an L1 regression loss:

$$\mathcal{L}_{\text{reg}} = \left\| \widehat{VHS} - VHS \right\|_{1}, \tag{12}$$

augmented by a classification penalty

$$\mathcal{L}_{cls} = \mathbf{1}(\widehat{y} \neq y),\tag{13}$$

and a soft margin to reduce boundary instability:

$$\mathcal{L}_{\text{margin}} = \begin{cases} \text{ReLU}(\widehat{VHS} - (8.2 + \delta)), & y = 0, \\ \text{ReLU}(8.2 - \widehat{VHS}) + \text{ReLU}(\widehat{VHS} - (10 + \frac{\delta}{m})), & y = 1, \\ \text{ReLU}((10 - \delta) - \widehat{VHS}), & y = 2. \end{cases}$$
(14)

The final loss is:

$$\mathcal{L}_{\text{VHS}} = \mathcal{L}_{\text{reg}} + w_c (\mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{margin}}). \tag{15}$$

5 EXPERIMENTS AND RESULTS

We evaluate MambaVHS on the CCK dataset through a series of experiments designed to measure both predictive accuracy and annotation reliability. First, we describe the training setup and compare MambaVHS against state-of-the-art baselines. We then analyze performance under L1 loss and conduct ablation studies to assess the contribution of individual components. Finally, we evaluate the VHSMarker annotation tool using Fleiss' Kappa to quantify inter-observer agreement.

5.1 Mambavhs Model

Training Setup. MambaVHS was trained with a joint objective of key point regression and classification to balance spatial accuracy and clinical relevance. We used the AdamW optimizer (learning rate 3×10^{-4} , weight decay 1×10^{-6}) with cosine annealing (minimum learning rate 1×10^{-6}). Gradient accumulation was applied to reduce memory cost, and checkpoints were selected by lowest validation loss. Training ran on a single NVIDIA A100 GPU with batch size 16, completing 150 epochs in about 22 hours. By comparison, other state-of-the-art models required \sim 90 hours, highlighting the computational efficiency and rapid convergence of MambaVHS.

Table 3: Performance comparison of models trained with VHSAwareLoss on the CCK Dataset (test set). Accuracy, MSE, and MAE are reported, with MAE shown as mean \pm standard deviation across multiple runs.

Model	Accuracy (%)	MSE	MAE
GoogleNet (Szegedy et al., 2015)	78.75	0.37410	0.45921 ± 0.41582
VGG16 (Simonyan & Zisserman, 2014)	78.00	0.35287	0.44912 ± 0.37328
ResNet50 (He et al., 2016)	78.25	0.31645	0.43682 ± 0.36417
DenseNet201 (Huang et al., 2017)	79.25	0.34122	0.42890 ± 0.38674
Inceptionv3 (Szegedy et al., 2016)	81.50	0.26359	0.37983 ± 0.33921
Xception (Chollet, 2017)	79.25	0.31144	0.41870 ± 0.32964
Vision Transformer (Dosovitskiy et al., 2020)	75.00	0.39785	0.47419 ± 0.42367
ConvNeXt (Liu et al., 2022b)	85.25	0.19102	0.34697 ± 0.29911
EfficientNetB7 (Tan & Le, 2019)	81.50	0.28407	0.38914 ± 0.34795
CDA (Zhang et al., 2025)	86.40	0.21215	0.35582 ± 0.30763
MambaVision (Gu & Dao, 2023)	87.60	0.20238	0.33695 ± 0.29318
MambaVHS (Ours)	91.80	0.14380	0.212 ± 0.1856

Model Evaluation. This section presents the experimental evaluation of VHSMarker for vertebral heart score (VHS) estimation from canine thoracic radiographs. The primary evaluation metric is test accuracy, defined across three clinically meaningful categories: normal heart size (< 8.2), borderline cardiomegaly ($8.2 \le \text{VHS} \le 10$), and severe cardiomegaly (> 10).

Table 3 reports the performance of state-of-the-art baselines on the Canine Cardiac Keypoint (CCK) Dataset. In addition to accuracy, we also report mean squared error (MSE) and mean absolute error (MAE) to provide a more complete regression-based evaluation of keypoint localization and VHS estimation. The proposed MambaVHS model achieves the highest test accuracy of 91.8%, while also delivering the lowest MSE (0.1438) and MAE (0.212 \pm 0.186). These results highlight its strong capability in precise keypoint localization and clinically reliable VHS estimation. The margin of improvement over competitive baselines such as ConvNeXt (85.25%), EfficientNetB7 (81.50%), and CDA (86.4%) underscores the advantage of state-space modeling in capturing complex canine cardiac structures. Importantly, the CCK Dataset itself presents a challenging benchmark, as even advanced CNN and Transformer architectures plateau below 90% accuracy.

MambaVHS Model Prediction Analysis. Figure 4 compares VHS predictions from different models, including MambaVHS, ConvNeXt(Liu et al., 2022b), EfficientNetB7(Tan & Le, 2019), and CDA(Zhang et al., 2025), on canine thoracic radiographs. MambaVHS consistently generates predictions closer to the actual VHS, particularly for less common cases with irregular thoracic structures and unusual imaging angles. This highlights its superior ability to capture long and short axes accurately, outperforming other models in challenging scenarios, making it a reliable choice for real-world veterinary diagnostics.

Ablation Study. To assess the impact of architectural components and training strategies in MambaVHS, we performed a series of ablation experiments. These experiments systematically remove or replace specific modules to evaluate their contribution to overall performance.

Figure 4: Comparison of VHS predictions for different deep learning models on canine thoracic radiographs. The ground truth is shown in Red, while predictions are shown in Yellow.

Table 4: Performance comparison of models trained

(a) With Component Ablations.

(b) With L1 loss.

Model Variant	Val Acc (%)	Test Acc (%)	
Without SE Layers With Attention +	88.0 80.1	88.5 84.7	
MLP Without Residual	82.0	84.5	
Blocks Full Model	89.5	91.8	

Model	Val Acc (%)	Test Acc
MambaVision (Gu & Dao, 2023)	86.55	87.60
Swin Transformer (Liu et al., 2021)	78.90	79.20
ConvNeXt (Liu et al., 2022b)	87.30	87.50
CDA (Zhang et al., 2025)	83.40	85.70
EfficientNetB7 (Tan & Le, 2019)	86.11	87.45
MambaOut (Gu & Dao, 2023)	83.45	85.78
MambaVHS (Ours)	88.40	89.70

Table 4a isolates the effect of individual design choices in MambaVHS: removing SE layers, removing residual blocks, or replacing the Mamba block with Attention+MLP consistently degrades performance, indicating each component is necessary for full accuracy. Moreover, under a fairness control where *all* models are trained with the same L1 regression loss (Table 4b), MambaVHS remains superior (88.40% / 89.70%), demonstrating that the gains stem from architecture rather than task-specific loss design.

Agreement (Bland–Altman). To further validate model reliability, we evaluate method–expert agreement on continuous VHS values using the Bland–Altman difference analysis (Bland & Altman, 1986; Giavarina, 2015). For each sample, the difference is defined as $d_i = \text{VHS}_i^{\text{model}} - \text{VHS}_i^{\text{expert}}$ and the mean as $m_i = (\text{VHS}_i^{\text{model}} + \text{VHS}_i^{\text{expert}})/2$. On the test set, the mean bias is $\bar{d} = +0.08\,\text{VU}$ with $\text{SD}_d = 0.28\,\text{VU}$, producing 95% limits of agreement of $\bar{d} \pm 1.96\,\text{SD}_d = [-0.47,\,0.63]\,\text{VU}$. This narrow interval suggests that, across the clinical spectrum of cardiomegaly, MambaVHS predictions are consistently close to expert assessments, with deviations well within acceptable diagnostic tolerance reported in veterinary practice (Buchanan & Bücheler, 2000; Bélanger et al., 2014). These results indicate negligible systematic error and bounded dispersion, providing strong evidence that the model can serve as a reproducible adjunct to expert evaluation. Confidence intervals are omitted here for brevity but can be provided in an extended version.

5.2 VHSMARKER ANNOTATION TOOL

The VHSMarker tool was developed for efficient and accurate key point placement in canine thoracic radiographs. Its effectiveness is evaluated in terms of efficiency, usability, and annotation reliability. We also report the performance of the MambaVHS model trained on the CCK Dataset, which accurately predicts cardiac landmarks and estimates VHS in a fully automated manner. VHSMarker reduces annotation time to 10–12 seconds per image (vs. ≥ 1 min with MATLAB tools such as Li & Zhang (2024)); annotating 21,465 images required about 75 hours compared to 357 hours, a $4.8\times$ speedup.

Table 5: Fleiss' κ by expert (n=9)

Expert	Score	Expert	Score	Expert	Score	Expert	Score	Expert	Score
E1 E6	0.81 0.90	E2 E7	0.81 0.91	E3 E8	0.85 0.93	E4 E9	0.86 0.94	E5	0.89
								Avg.	0.88

Inter-observer Study. To assess annotation consistency, we conducted an inter-observer study on 300 randomly sampled radiographs annotated independently by nine multidisciplinary experts. As shown in Table 5, Fleiss' κ (Fleiss, 1971; McHugh, 2012) values ranged from 0.81 to 0.94, with an average of 0.88. According to the Landis–Koch scale (Landis & Koch, 1977), this corresponds to "almost perfect" agreement ($\kappa \geq 0.81$), confirming that VHSMarker enables efficient and highly reliable annotations across observers.

6 DISCUSSION

The VHSMarker framework reduces annotation time to 10–12 seconds per image through real-time feedback, responsive scaling, and intuitive interactions, lowering cognitive load and minimizing errors. The resulting CCK Dataset provides standardized annotations across diverse body sizes, anatomical variations, and clinical conditions, improving the reliability of downstream models such as MambaVHS. Together, the tool, dataset, and model form a scalable and precise pipeline for automated cardiomegaly assessment.

The CCK Dataset is currently limited to lateral thoracic views, has not yet been extended to other animal species, and shows an imbalanced breed distribution dominated by "Unknown" and mixed cases. This reflects real-world clinical records and does not directly affect VHS prediction, though stratified sampling could be explored in future work. While MambaVHS may face challenges with highly irregular anatomies or noisy images, such degraded radiographs are rarely used in clinical practice. Importantly, VHSMarker is designed for adaptability: small adjustments allow it to handle variations from different institutions or imaging devices, and species-specific VHS rules could be readily incorporated to extend the system beyond dogs. Future enhancements may further integrate self-supervised or active learning to reduce manual effort, or reinforcement learning to refine annotation efficiency and robustness. These directions highlight the flexibility of the framework and its potential as a foundation for scalable, clinically reliable AI systems.

7 CONCLUSION

In this work, we introduced VHSMarker, a fast and clinician-friendly annotation tool for canine thoracic radiographs, and used it to construct the large-scale CCK Dataset with over 21k standardized examples. Building on this resource, we proposed MambaVHS, a state-space based baseline model that achieves 91.8% test accuracy, outperforming strong CNN and Transformer counterparts. Together, these contributions establish the first unified benchmark for automated vertebral heart score estimation, reducing annotation time to under 10 seconds per image while improving predictive reliability. Beyond veterinary cardiology, this framework illustrates how efficient annotation pipelines combined with state-space architectures can enable scalable and clinically reliable AI systems, offering a foundation for broader applications in both animal and human healthcare.

USE OF LARGE LANGUAGE MODELS

We used a large language model solely for language polishing (grammar and clarity) on drafts written by the authors. The LLM did not generate technical content, equations, code, analyses, figures, or results, and it was not used for ideation, literature search, data labeling, or experiments. All scientific claims and evaluations were produced and validated by the authors.

REFERENCES

- Mohammed Alsharqi, William J. Woodward, Junaid A. Mumith, David C. Markham, Richard Upton, and Paul Leeson. Artificial intelligence and echocardiography. *Echo Research and Practice*, 5(4):R115–R125, 2018. doi: 10.1530/ERP-18-0056. URL https://doi.org/10.1530/ERP-18-0056.
- Mu'azu Nuhu Bappah, Nuhu Donga Chom, Maruf Lawal, Abdullaziz Abdullahi Bada, and Saidu Tanko Muhammad. Evaluation of vertebral heart score and cardiac sphericity in apparently normal dogs. *Iranian Journal of Veterinary Surgery*, 16(1):1–4, 2021.
- Marie-Claire Bélanger, Nico Hümmer, and Sonya Wesselowski. Interobserver variability of vertebral heart score measurements in dogs with and without cardiac disease. *Journal of Veterinary Cardiology*, 16(3):201–209, 2014. doi: 10.1016/j.jvc.2014.05.004.
- J Martin Bland and Douglas G Altman. Statistical methods for assessing agreement between two methods of clinical measurement. *The Lancet*, 327(8476):307–310, 1986. doi: 10.1016/S0140-6736(86)90837-8.
- James W Buchanan and Jochen Bücheler. Vertebral scale system to measure canine heart size in radiographs. *Journal of the American Veterinary Medical Association*, 216(2):210–214, 2000. doi: 10.2460/javma.2000.216.210.
- James W Buchanan and Jörg Bücheler. Vertebral scale system to measure canine heart size in radiographs. *Journal of the American Veterinary Medical Association*, 206(2):194–199, 1995.
- Silvia Burti, V Longhin Osti, Alessandro Zotti, and Tommaso Banzato. Use of deep learning to detect cardiomegaly on thoracic radiographs in dogs. *The Veterinary Journal*, 262:105505, 2020.
- François Chollet. Xception: Deep learning with depthwise separable convolutions. In *Proceedings* of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1251–1258, 2017.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020.
- Léo Dumortier, Florent Guépin, Marie-Laure Delignette-Muller, Caroline Boulocher, and Thomas Grenier. Deep learning in veterinary medicine, an approach based on cnn to detect pulmonary abnormalities from lateral thoracic radiographs in cats. *Scientific reports*, 12(1):11418, 2022.
- Joseph L. Fleiss. Measuring nominal scale agreement among many raters. *Psychological Bulletin*, 76(5):378–382, 1971.
- Davide Giavarina. Understanding bland altman analysis. *Biochemia Medica*, 25(2):141–151, 2015. doi: 10.11613/BM.2015.015.
- Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv* preprint arXiv:2312.00752, 2023.
- Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone. *arXiv preprint arXiv:2407.08083*, 2024.

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.
 - Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4700–4708, 2017.
 - Yeojin Jeong and Joohon Sung. An automated deep learning method and novel cardiac index to detect canine cardiomegaly from simple radiography. *Scientific Reports*, 12(1):14494, 2022.
 - Christopher Lam, Brad J. Gavaghan, and Fiona E. Meyers. Radiographic quantification of left atrial size in dogs with myxomatous mitral valve disease. *Journal of Veterinary Internal Medicine*, 35 (2):747–754, 2001.
 - J. Richard Landis and Gary G. Koch. The measurement of observer agreement for categorical data. *Biometrics*, 33(1):159–174, 1977. doi: 10.2307/2529310. URL https://doi.org/10.2307/2529310.
 - Jialu Li and Youshan Zhang. Regressive vision transformer for dog cardiomegaly assessment. *Scientific Reports*, 14(1):1539, 2024.
 - Geert Litjens, Thijs Kooi, Babak E. Bejnordi, Arnaud A. A. Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A. W. M. van der Laak, Bram van Ginneken, and Clara I. Sánchez. A survey on deep learning in medical image analysis. *Medical Image Analysis*, 42:60–88, 2017.
 - Ann Litster and James W. Buchanan. Comparison of vertebral heart size in retired racing greyhounds with cardiac and noncardiac diseases. *Veterinary Radiology & Ultrasound*, 46(5):405–410, 2005. doi: 10.1111/j.1740-8261.2005.00075.x. URL https://pubmed.ncbi.nlm.nih.gov/16250399/.
 - Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 10012–10022, 2021.
 - Ze Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11976–11986, 2022a.
 - Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s. *arXiv preprint arXiv:2201.03545*, 2022b.
 - Mary L. McHugh. Interrater reliability: The kappa statistic. *Biochemia Medica*, 22(3):276–282, 2012.
 - Jong-Ye Oh, In-Gyu Lee, Yu-Mi Go, Eunhye Lee, and Jong-Ho Jeong. Toward robust canine cardiac diagnosis: Deep prototype alignment network-based few-shot segmentation in veterinary medicine. arXiv preprint arXiv:2403.06471, 2024. URL https://arxiv.org/abs/2403.06471.
 - Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.
 - Jetsada Rungpupradit and Somchin Sutthigran. Comparison between conventional and applied vertebral heart score (vhs) methods to evaluate heart size in healthy thai domestic shorthair cats. *The Thai Journal of Veterinary Medicine*, 50(4):459–465, 2020.
 - Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*, 2014.
- Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1–9, 2015.

- Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. *arXiv preprint arXiv:1512.00567*, 2016.
 - Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *Proceedings of the International Conference on Machine Learning (ICML)*, pp. 6105–6114. PMLR, 2019.
 - Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadali Bagheri, and Ronald M. Summers. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2097–2106, 2017.
 - Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing convolutions to vision transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 22–31, 2021.
 - Mengni Zhang, Kai Zhang, Deying Yu, Qianru Xie, Binlong Liu, Dacan Chen, Dongxing Xv, Zhiwei Li, and Chaofei Liu. Computerized assisted evaluation system for canine cardiomegaly via key points detection with deep learning. *Preventive Veterinary Medicine*, 193:105399, 2021.
 - Shiman Zhang, Lakshmikar Polamreddy, and Youshan Zhang. Confident pseudo-labeled diffusion augmentation for canine cardiomegaly detection. In *Proceedings of the Winter Conference on Applications of Computer Vision*, pp. 269–278, 2025.
 - Youshan Zhang and Brian D. Davison. Weighted pseudo labeling refinement for plant identification. In *Conference and Labs of the Evaluation Forum (CLEF)*, 2021. URL https://api.semanticscholar.org/CorpusID:244460484.
 - Youshan Zhang, Ian R. Porter, Matthias Wieland, and Parminder S. Basran. Separable confident transductive learning for dairy cows teat-end condition classification. *Animals*, 12(7):886, 2022.

A APPENDIX

A.1 VHSMARKER ANNOTATION MODES

Figure 5: VHSMarker annotation modes: Ground Truth, Prediction, and Show Both, enabling precise adjustment and model comparison.

The three annotation modes are:

- Ground Truth: for manual labeling of cardiac key points.
- Prediction: for automated visualization of MambaVHS predictions.
- Show Both: for side-by-side comparison and adjustment.

These options streamline annotation, error correction, and model evaluation during large-scale dataset creation.

A.2 VHS AWARE LOSS

Algorithm 1 VHSAwareLoss Calculation

Inputs: Predicted VHS $v^{\rm pred}$, True VHS $v^{\rm true}$, thresholds τ_1 =8.2, τ_2 =10, margin δ , middle multiplier m, class weight w_c

Output: \mathcal{L}_{VHS}

1. Derive classes from thresholds

$$y \leftarrow \begin{cases} 0 & \text{if } v^{\text{true}} < \tau_1 \\ 1 & \text{if } \tau_1 \leq v^{\text{true}} < \tau_2 \\ 2 & \text{if } v^{\text{true}} \geq \tau_2 \end{cases}$$
$$\hat{y} \leftarrow \begin{cases} 0 & \text{if } v^{\text{pred}} < \tau_1 \\ 1 & \text{if } \tau_1 \leq v^{\text{pred}} < \tau_2 \\ 2 & \text{if } v^{\text{pred}} \geq \tau_2 \end{cases}$$

2. Base regression term (L1)

$$\mathcal{L}_{\text{reg}} \leftarrow |v^{\text{pred}} - v^{\text{true}}|$$

3. Class mismatch penalty

 $\mathcal{L}_{\text{cls}} \leftarrow \mathbb{1}[\hat{y} \neq y]$

4. Margin-aware boundary penalty

$$\mathcal{L}_{\text{margin}} \leftarrow \begin{cases} \max(0, \, v^{\text{pred}} - (\tau_1 + \delta)), & y = 0 \\ \max(0, \, \tau_1 - v^{\text{pred}}) + \max\left(0, \, v^{\text{pred}} - (\tau_2 + \frac{\delta}{m})\right), & y = 1 \\ \max(0, \, (\tau_2 - \delta) - v^{\text{pred}}), & y = 2 \end{cases}$$

5. Final loss

$$\mathcal{L}_{ ext{VHS}} \leftarrow \mathcal{L}_{ ext{reg}} + w_c \left(\mathcal{L}_{ ext{cls}} + \mathcal{L}_{ ext{margin}} \right)$$
return $\mathcal{L}_{ ext{VHS}}$

A.3 Breed Information

For completeness, Table 6 lists the full breed distribution of the CCK dataset, complementing the summary presented in Section 3.

Table 6: Complete breed distribution.

#	Breed	Count
1	Mixed Dog	1256
2	Labrador Retriever	479
3	Golden Retriever	191
4	German Shepherd	164
5	Chihuahua	100
6	Boxer	79
7	Shih Tzu	77
8	Yorkshire Terrier	77
9	French Bulldog	76
10	English Bulldog	72
11	Canine, NOS	67
12	Miniature Poodle	62
13	Siberian Husky	61
14	Border Collie	57
15	Beagle Hound	56
16	Pomeranian	52
17	Cavalier King Charles Spaniel	51
18	Pug	48
19	Boston Terrier	44
20	Jack Russell Terrier	44
21	Maltese	44
22	Australian Shepherd	42
23	Shetland Sheepdog	42
24	Rottweiler	41
25	English Cocker Spaniel	35
26	Great Dane	34
27	Bernese Mountain Dog	32
28	Miniature Schnauzer	32
29	Cock-A-Poo	31
30	Standard Poodle	31
31	Havanese	30
32	Dachshund, NOS	28
33	Doberman Pinscher	26
34	Labradoodle	26
35	Great Pyrenees	24
36	Smooth Miniature Dachshund	23
30 37	English Setter	23 21
38	<u> </u>	
39	Australian Cattle Dog	20
	Toy Poodle	20
40	Chinese Sharpei	20
41	Bichon Frise	19
42	American Bulldog	18
43	Pembroke Welsh Corgi	18
44	West Highland Terrier	18
45	Rhodesian Ridgeback	18
46	English Springer Spaniel	17
47	American Staffordshire	17
48	Miniature Pinscher	16
49	Brittany Spaniel	16
50	Long-Haired Std Dachshund	14
51	German Short-Haired Pointer	14
52	Terrier, NOS	14

756		D 1	
757	#	Breed	Count
758	53	Basset Hound	13
759	54	Newfoundland	13
760	55	Bull Mastiff	12
761	56 57	Long-Haired Mini Dachshund Bulldog, NOS	12 12
762	58	Belgian Malinois	12
763	59	Lhasa Apso	11
764	60	Greyhound	11
765	61	Bull Terrier	10
766	62	Irish Setter	10
767	63	Catahula Leopard Dog	9
768	64	Saint Bernard	9
769	65 66	Cocker Spaniel, NOS Cairn Terrier	9
770	67	Rat Terrier	9
771	68	Irish Wolfhound	9
772	69	Collie, NOS	9
773	70	Cane Corso	8
774	71	Red Bone Hound	8
775	72	Samoyed	7
776	73	Chesapeake Bay Retriever	7
777	74 75	Vizsla Smooth Standard Dachshund	7 7
778	75 76	American Pit Bull Terrier	7
779	77	Whippet	7
780	78	Akita	6
781	79	Leonberger	6
	80	Schipperke	6
782	81	American Eskimo Dog	6
783	82	Mexican Hairless	6
784	83 84	Coonhound English Magriff	5 5
785	85	English Mastiff Silky Terrier	5
786	86	German Wire-Haired Pointer	5
787	87	Weimaraner	5
788	88	Papillon	5
789	89	Scottish Terrier	5
790	90	Staffordshire Bull Terrier	5
791	91	Mastiff, NOS	5
792	92 93	Hound, NOS Keeshond	5
793	93 94	Giant Schnauzer	4
794	95	Airedale Terrier	4
795	96	Coton De Tulear	4
796	97	Swiss Mountain Dog	4
797	98	English Shepherd	4
798	99	Nova Scotia Duck Tolling Retriever	4
799	100	Saluki	4
800	101 102	Italian Greyhound Flat-Coated Retriever	4 4
801	102	Shiba Inu	4
802	103	Treeing Walker Coonhound	4
803	105	Bloodhound	3
804	106	Chinese Crested	3
805	107	American Foxhound	3
806	108	Tibetan Terrier	3
807	109	Neapolitan Mastiff	3
808	110	Australian Heeler	2
809	111 112	Spinone Italiano Briard	2 2
	114	טוומוע	2

810 811	#	Breed	Count
812	113	Old English Sheepdog	2
813	114	Borzoi	2
	115	Alaskan Malamute	2
814	116	Norwegian Elkhound	2
815	117	German Long-Haired Pointer	2
816	118	Affenpinscher	2
817	119	Peke-A-Poo	2
818	120	Anatolian Shepherd	2
819	121	Wirehaired Pointing Griffon	2
820	122	Toy Manchester Terrier	2
821	123	Clumber Spaniel	2
	124	Standard Schnauzer	2
822	125	Irish Water Spaniel	1
823	126	Shiloh Shepherd	1
824	127	Cardigan Welsh Corgi	1
825	128	American Bully	1
826	129	Japanese Chin	1
827	130	English Coonhound	1
828	131	Border Terrier	1
829	132	Setter, NOS	1
	133	Tibetan Spaniel	1
830	134	American Cocker Spaniel	1
831	135	Australian Terrier	1
832	136	Welsh Terrier	1
833	137	Norfolk Terrier	1
834	138	Dalmatian	1
835	139	Pharaoh Hound	1
836	140	Springer Spaniel	1
837	141	Silken Windsprite	1
	142	Wirehaired Standard Dachshund	1
838	143	Retriever, NOS	1
839	144	Soft-Coated Wheaten Terrier	1
840	145	Maremma Sheepdog	1
841	146	Unknown	8039
842		Total	12385
843			