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ABSTRACT

We present VHSMarker, a web-based annotation tool that enables rapid and
standardized labeling of six cardiac key points in canine thoracic radiographs.
VHSMarker reduces annotation time to 10–12 seconds per image while support-
ing real-time vertebral heart score (VHS) calculation, model-assisted prediction,
and quality control. Using this tool, we constructed the Canine Cardiac Key Point
(CCK) Dataset, a large-scale benchmark of 21,465 annotated radiographs from
12,385 dogs across 144 breeds and additional mixed breed cases, making it the
largest curated resource for canine cardiac analysis to date. To demonstrate the
utility of this dataset, we introduce MambaVHS, a baseline model that integrates
Mamba blocks for long-range sequence modeling with convolutional layers for
local spatial precision. MambaVHS achieves 91.8% test accuracy, surpassing 13
strong baselines including ConvNeXt and EfficientNetB7, and establishes state-
space modeling as a promising direction for veterinary imaging. Together, the
tool, dataset, and baseline model provide the first reproducible benchmark for
automated VHS estimation and a foundation for future research in veterinary
cardiology. The source code and dataset are available on our project website:
https://anonymousgenai.github.io/vhsmarker.

1 INTRODUCTION

Canine cardiomegaly, characterized by pathological heart enlargement, is a critical condition that
can significantly impact the health and longevity of dogs if left undiagnosed or untreated. Early and
accurate detection is essential for effective intervention, yet traditional methods for Vertebral Heart
Score (VHS) measurement from thoracic radiographs remain highly subjective, labor-intensive, and
prone to inter-observer variability (Bappah et al., 2021; Burti et al., 2020). These manual processes
require precise anatomical landmark identification and measurement, demanding significant exper-
tise and time, which limits their scalability in clinical practice (Rungpupradit & Sutthigran, 2020;
Dumortier et al., 2022). Recent advances in deep learning, including convolutional neural net-
works (CNNs) (He et al., 2016; Huang et al., 2017), transformer-based architectures (Dosovitskiy
et al., 2020), and state-space models such as MambaVision (Hatamizadeh & Kautz, 2024), have
demonstrated exceptional potential for medical image analysis, often outperforming conventional
rule-based methods in both accuracy and efficiency. These approaches can capture long-range de-
pendencies and complex spatial relationships, making them suitable for challenging imaging tasks.
However, their application to veterinary diagnostics remains limited due to the scarcity of large,
high-quality labeled datasets, the diversity of canine anatomies, and the need for interpretable and
clinically reliable predictions (Jeong & Sung, 2022; Zhang et al., 2021).

To address these challenges, we introduce a comprehensive framework that unifies an annotation
tool, a large-scale dataset, and a baseline model for canine cardiac assessment. Unlike prior veteri-
nary cardiology studies that relied on small datasets or isolated methods (Bappah et al., 2021; Burti
et al., 2020; Jeong & Sung, 2022; Zhang et al., 2021), our contribution establishes the first standard-
ized benchmark for automated VHS estimation, providing the community with both resources and
strong baselines.
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Our framework makes three key contributions. (i) We present a clinician-oriented web tool that
reduces annotation time from over a minute to about 10–12 seconds per image, while supporting
real-time keypoint placement, automated VHS calculation, built-in quality checks, and seamless
data export, enabling scalable and accurate dataset creation with minimal user error. (ii) We in-
troduce the Canine Cardiac Keypoint (CCK) Dataset, a carefully curated collection of over 21k
radiographs annotated with six cardiac keypoints, offering a standardized benchmark that captures
diverse anatomical variations and clinical conditions for training and evaluation. (iii) We develop
MambaVHS, a hierarchical baseline model that combines Mamba blocks for efficient long-range se-
quence modeling with convolutional layers for local spatial precision, achieving robust and accurate
VHS prediction that surpasses existing baselines.

Together, the tool, dataset, and model form an end-to-end pipeline for automated cardiomegaly as-
sessment. This framework significantly reduces annotation burden, provides a reproducible bench-
mark, and demonstrates through MambaVHS that state-space modeling is a promising direction for
veterinary imaging tasks.

2 RELATED WORK

The diagnosis of canine cardiomegaly has traditionally relied on the Vertebral Heart Score (VHS),
which measures cardiac dimensions relative to thoracic vertebrae (Bappah et al., 2021; Rungpupradit
& Sutthigran, 2020; Buchanan & Bücheler, 1995). While widely used in veterinary practice, VHS
measurement suffers from inter-observer variability and time-consuming manual processes (Litster
& Buchanan, 2005; Lam et al., 2001). Efforts to improve consistency include standardized pro-
tocols (Jeong & Sung, 2022) and computational methods (Rungpupradit & Sutthigran, 2020), yet
these still depend on manual initialization.

Automated tools for VHS have been explored. Li, Zhang introduced a MATLAB-based system
requiring manual adjustment (Li & Zhang, 2024), while Oh, Lee, Go, Lee, and Jeong (Oh et al.,
2024) proposed a semi-automated segmentation pipeline that reduces manual oversight by leverag-
ing few-shot learning. Fully automated solutions are more advanced in human cardiology (Alsharqi
et al., 2018; Zhang et al., 2021), but remain difficult to adapt to veterinary settings due to anatomical
differences and limited data.

Deep learning has transformed medical imaging, with CNNs excelling at segmentation and disease
detection (Huang et al., 2017; Ronneberger et al., 2015; Dumortier et al., 2022; Wang et al., 2017).
In veterinary applications, CNNs have been applied to canine cardiomegaly (Burti et al., 2020),
feline pulmonary disease (Dumortier et al., 2022), and bovine teat-end analysis (Zhang et al., 2022),
though such studies are constrained by small datasets and lack of standardized benchmarks (Litjens
et al., 2017; Jeong & Sung, 2022). More recent advances include transformers (Dosovitskiy et al.,
2020; Liu et al., 2022a; Wu et al., 2021), which capture long-range dependencies, and Mamba-based
architectures (Hatamizadeh & Kautz, 2024; Gu & Dao, 2023), which achieve linear-time sequence
modeling. These capabilities are especially relevant for VHS, where distant landmarks must be
jointly modeled. Zhang et al. (2025) further explored diffusion-based augmentation for canine
cardiomegaly, but focused on data generation rather than standardized landmark localization.

Overall, veterinary cardiology research remains limited by scarce annotated datasets, reliance on
manual or semi-automated tools (Li & Zhang, 2024; Dumortier et al., 2022; Zhang & Davison,
2021), and the absence of reproducible evaluation pipelines. Our work addresses these gaps by
introducing the first comprehensive benchmark: a scalable web-based annotation tool (VHSMarker),
the large-scale CCK Dataset with standardized keypoints, and MambaVHS as a strong baseline
model, enabling reproducible evaluation and exploration of state-space architectures for veterinary
imaging.

3 DATASET

We introduce the Canine Cardiac Keypoint (CCK) dataset, a benchmark for vertebral heart score
(VHS) estimation and cardiac keypoint detection in veterinary cardiology. It provides large-scale
radiographs annotated with six cardiac keypoints to support reproducible model training and evalua-
tion. Below we outline the collection process, preprocessing, demographics, and final composition.
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Table 1: Demographic statistics including sex, age, and the top 10 breeds. Complete breed distribu-
tion is in Appendix A.3.

Sex Distribution Age Distribution (years) Top 10 Breeds

Category Count Age Group Count Breed Count Breed Count

Female 7 941 0–5 2 961 Mixed Dog 1 256 Boxer 79
Male 4 395 6–11 6 272 Labrador Retriever 479 Shih Tzu 77
Unknown 49 12–17 2 827 Golden Retriever 191 Yorkshire Terrier 77

18–30 86 German Shepherd 164 Border Collie 57
Unknown 239 Chihuahua 100 Beagle Hound 56

Total 12 385 Total 12 385 Top-10 breeds subtotal: 2 536; Overall total: 12 385

Data and Preprocessing. We collected 36,264 canine thoracic radiographs from multiple hos-
pitals under data-sharing agreements and de-identified them. After quality control, we retained
21,465 lateral views (left/right) from 12,385 dogs, excluding dorsoventral/ventrodorsal projections
as unsuitable for VHS. Standardized preprocessing removed distorted, overexposed, incomplete, or
motion-affected scans, and annotators used VHSMarker’s validity flag to exclude clinically irrel-
evant cases. Institutional identities remain undisclosed for privacy; the final cohort spans diverse
clinical populations and contains only diagnostically sound lateral radiographs for key-point anno-
tation and VHS estimation.

Demographic Information. To assess dataset diversity and representativeness, we report aggre-
gate demographic statistics. The dataset spans 144 distinct dog breeds and a small set of unidentified
samples, reflecting broad coverage of anatomical and clinical variability. Although institutional and
geographic details remain anonymized for privacy, the CCK Dataset was collected across multiple
veterinary hospitals, ensuring diversity in patient populations and imaging practices. This broad
sampling helps mitigate concerns about representativeness and supports the dataset’s generalizabil-
ity to real-world veterinary scenarios. Table 1 summarizes sex distribution, age groups, and the most
frequent breeds, while the complete breed distribution (146 entries) is provided in the appendix A.3.

Final Dataset Composition. The Canine Cardiac Keypoint
(CCK) dataset comprises 21 465 lateral thoracic radiographs,
each annotated with six cardiac keypoints using the VHSMarker
tool (Table 2). The split is performed at the patient level (i.e.,
by dog) to prevent data leakage, ensuring that radiographs from
the same individual do not appear across training, validation, and
test sets. This design supports robust evaluation and generaliza-
tion across diverse clinical cases. Combined with precise anno-
tations and integrated quality control, the dataset establishes a
reproducible benchmark for vertebral heart score estimation and
canine cardiology research.

Table 2: Dataset distribution.

Split Images

Training 15026
Validation 2155
Testing 4275

Total 21465

4 METHODS

This section introduces the two main components of our framework. VHSMarker is a clinician-
friendly tool for rapid, standardized keypoint labeling with automated VHS computation, enabling
creation of the large-scale CCK Dataset. MambaVHS is a baseline model that integrates convolu-
tional layers with Mamba blocks for precise and efficient VHS estimation.

4.1 KEY POINT ANNOTATION TOOL

VHSMarker is a lightweight web-based system for canine cardiac key point annotation. The front
end, built with HTML5, JavaScript, and a Canvas interface, enables intuitive point placement and
real-time visualization. A Flask back end manages GPU-accelerated inference and asynchronous
updates, ensuring low-latency interaction for both expert and non-expert users.
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Figure 1: Overview of the VHSMarker interface, including key point placement and real-time VHS
calculation.

Annotation Features. The VHSMarker interface is designed to balance precision and usability
for annotators with varying levels of expertise. It supports zooming, panning, and window-level
adjustments (brightness and contrast) to allow close inspection of fine anatomical structures, while
undo/redo functions provide stepwise correction without disrupting the workflow. Problematic ra-
diographs can be flagged as invalid, ensuring that only diagnostically reliable samples contribute to
the dataset. All annotations, including keypoint coordinates, metadata, and validity flags, are au-
tomatically stored in .mat format for seamless downstream integration. To support flexible work-
flows, three annotation modes are provided: Ground Truth for manual labeling, Prediction for auto-
mated keypoint generation by the MambaVHS model, and Show Both for side-by-side comparison
and correction (see Appendix A.1). This design enables efficient correction of automated outputs
while preserving transparency between human and model contributions. A video demonstration is
available on the project website to illustrate the tool’s usage in practice.

Real-Time Inference and VHS Computation. Upon image upload, the MambaVHS model gener-
ates key point predictions, which are overlaid on the canvas. Pixel coordinates (xi, yi) are normal-
ized to dimensionless form:

x̃i =
xi · W

′

W

H ′ , ỹi =
yi · H

′

H

H ′ , (1)

where W,H are original dimensions and W ′, H ′ the target size. The vertebral heart score (VHS) is
then computed as:

VHS = 6× (AB + CD)

EF
, (2)

with AB the long axis, CD the short axis, and EF the vertebral reference length. This ensures
consistent VHS estimation across variable-resolution images.
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Figure 2: Architecture of the MambaVHS model. It consists of a stem, four MambaStages, and a
regression head, combining residual blocks, Mamba SSMs, and SE layers for keypoint prediction.

4.2 MAMBAVHS MODEL ARCHITECTURE

The MambaVHS model is a hierarchical deep learning framework designed for precise localization
of six cardiac key points in canine thoracic radiographs. Unlike standard CNNs, which primarily
capture local context, or Transformers, which model long-range dependencies at quadratic cost,
MambaVHS leverages state-space models (SSMs) to capture global anatomical relationships with
linear complexity.

Figure 3: Residual (left) and Mamba (right)
blocks form each MambaStage: Residual captures
local spatial patterns, while Mamba models long-
range dependencies.

The architecture integrates convolutional
layers for spatial precision, Mamba blocks
for efficient long-range reasoning, and SE
layers for adaptive channel recalibration.
Training is further guided by the proposed
VHSAwareLoss, which embeds clinically
meaningful thresholds for vertebral heart
score prediction, ensuring that optimization
is directly aligned with veterinary diagnostic
standards.

MambaStem. The stem block reduces spa-
tial resolution while expanding feature depth,
producing a compact yet expressive repre-
sentation. It consists of two convolutional
layers (stride 2 and stride 1), each followed
by batch normalization and SiLU activation:

ϕ(X) = SiLU(BN(Conv2D(X))), (3)

F0 = ϕ(X), (4)
where X is the input radiograph. This opera-
tion encodes texture and contour information
critical for cardiac structure analysis while
reducing computation in later stages.

MambaStages. MambaStages refine features via downsampling, residual learning, Mamba-based
sequence modeling, and SE recalibration, enabling the model to capture both local anatomical cues
and global dependencies for accurate VHS estimation.
Downsampling. Spatial resolution is reduced by applying the convolution–BN–SiLU operator from
Eq. 3:

Fd = ϕ(X), (5)
where X ∈ RB×C×H×W is the input feature map, and Fd has higher channel depth with reduced
spatial size.

Residual Block. Local features are captured using two stacked convolutions with a residual skip
connection:

Fr = SiLU
(
Fd + ϕ(ϕ(Fd))

)
, (6)

5
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which preserves fine structural details (e.g., vertebral boundaries) and stabilizes gradient flow.

Mamba Block. Global dependencies are modeled efficiently through a three-step state-space formu-
lation:

H = Win · Fr, (7)
Y = SelectiveScan(H;A,B,C,D), (8)

Fout = Wout ·Y, (9)
where Win,Wout are learnable projection matrices, and A,B,C,D are trainable state-space pa-
rameters. The selective scan operator enables linear-time sequence modeling, avoiding the quadratic
cost of self-attention.

SE Layer. To highlight cardiac-relevant channels, the output is recalibrated via a squeeze-and-
excitation mechanism. Global average pooling first aggregates context:

g = 1
H×W

H∑
i=1

W∑
j=1

Fout, (10)

where g is a channel descriptor. Two fully connected layers then rescale channels:
Fse = Fout · σ(W2 · ReLU(W1 · g)), (11)

with W1,W2 learnable matrices and σ the sigmoid function.

Regression Head. The outputs of the four MambaStages (channels 64, 128, 256, 640) are processed
sequentially, and the final-stage output is used via global average pooling and passed through a two-
layer MLP with ReLU and a final linear layer to regress six cardiac key point coordinates. This
head links hierarchical backbone features to precise anatomical localization, enabling reliable VHS
computation. Together with the stem and MambaStages, it forms the full MambaVHS architecture,
trained with the task-specific VHSAwareLoss to enhance accuracy and clinical consistency.

VHSAwareLoss. To stabilize VHS estimation, we introduce VHSAwareLoss, which combines
regression, classification, and margin-based penalties with clinical thresholds (8.2, 10.0 VU). The
loss consists of an L1 regression term, a classification penalty, and a soft margin term that reduces
instability near decision boundaries. The δ term controls the boundary tolerance near the decision
thresholds, while the middle multiplier m adjusts the margin for cases near the 8.2-10.0 range,
making the loss function more sensitive in this critical region. For further details, including full loss
equations and derivations, please refer to Appendix A.2.

The base term is an L1 regression loss:

Lreg =
∥∥∥V̂ HS − V HS

∥∥∥
1
, (12)

augmented by a classification penalty
Lcls = 1(ŷ ̸= y), (13)

and a soft margin to reduce boundary instability:

Lmargin =


ReLU(V̂ HS − (8.2 + δ)), y = 0,

ReLU(8.2− V̂ HS) + ReLU(V̂ HS − (10 + δ
m )), y = 1,

ReLU((10− δ)− V̂ HS), y = 2.

(14)

The final loss is:
LVHS = Lreg + wc(Lcls + Lmargin). (15)

5 EXPERIMENTS AND RESULTS

We evaluate MambaVHS on the CCK dataset through a series of experiments designed to measure
both predictive accuracy and annotation reliability. First, we describe the training setup and compare
MambaVHS against state-of-the-art baselines. We then analyze performance under L1 loss and
conduct ablation studies to assess the contribution of individual components. Finally, we evaluate
the VHSMarker annotation tool using Fleiss’ Kappa to quantify inter-observer agreement.
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5.1 MAMBAVHS MODEL

Training Setup. MambaVHS was trained with a joint objective of key point regression and classi-
fication to balance spatial accuracy and clinical relevance. We used the AdamW optimizer (learning
rate 3 × 10−4, weight decay 1 × 10−6) with cosine annealing (minimum learning rate 1 × 10−6).
Gradient accumulation was applied to reduce memory cost, and checkpoints were selected by low-
est validation loss. Training ran on a single NVIDIA A100 GPU with batch size 16, completing
150 epochs in about 22 hours. By comparison, other state-of-the-art models required ∼90 hours,
highlighting the computational efficiency and rapid convergence of MambaVHS.

Table 3: Performance comparison of models trained with VHSAwareLoss on the CCK Dataset (test
set). Accuracy, MSE, and MAE are reported, with MAE shown as mean± standard deviation across
multiple runs.

Model Accuracy (%) MSE MAE
GoogleNet 78.75 ± 0.30 0.3741 ± 0.015 0.45921 ± 0.41582
VGG16 78.00 ± 0.28 0.35287 ± 0.014 0.44912 ± 0.37328
ResNet50 78.25 ± 0.25 0.31645 ± 0.012 0.43682 ± 0.36417
DenseNet201 79.25 ± 0.22 0.34122 ± 0.012 0.42890 ± 0.38674
InceptionV3 81.50 ± 0.27 0.26359 ± 0.010 0.37983 ± 0.33921
Xception 79.25 ± 0.24 0.31144 ± 0.013 0.41870 ± 0.32964
Vision Transformer 75.00 ± 0.35 0.47935 ± 0.018 0.47419 ± 0.42367
ConvNeXt 85.25 ± 0.20 0.19102 ± 0.008 0.34697 ± 0.29911
EfficientNetB7 85.50 ± 0.22 0.28407 ± 0.012 0.38914 ± 0.34973
CDA (Zhang et al., 2025) 86.40 ± 0.25 0.21215 ± 0.009 0.35582 ± 0.30763
MambaVision 87.60 ± 0.23 0.20238 ± 0.009 0.33695 ± 0.32479

MambaVHS (Ours) 91.80 ± 0.39 0.14380 ± 0.015 0.212 ± 0.1856
∗ p < 0.05 compared with all baselines (paired t-test, n = 4 runs).

Model Evaluation. This section presents the experimental evaluation of VHSMarker for vertebral
heart score (VHS) estimation from canine thoracic radiographs. The primary evaluation metric
is test accuracy, defined across three clinically meaningful categories: normal heart size (< 8.2),
borderline cardiomegaly (8.2 ≤ VHS ≤ 10), and severe cardiomegaly (> 10).

Table 3 reports the performance of state-of-the-art baselines on the Canine Cardiac Keypoint (CCK)
Dataset. In addition to accuracy, we also report mean squared error (MSE) and mean absolute error
(MAE) to provide a more complete regression-based evaluation of keypoint localization and VHS
estimation. The proposed MambaVHS model achieves the highest test accuracy of 91.8% (±0.39),
while also delivering the lowest MSE (0.1438 ± 0.015) and MAE (0.212 ± 0.186). These results
highlight its strong capability in precise keypoint localization and clinically reliable VHS estima-
tion. The margin of improvement over competitive baselines such as ConvNeXt (85.25%), Efficient-
NetB7 (81.50%), and CDA (86.4%) underscores the advantage of state-space modeling in captur-
ing complex canine cardiac structures. Importantly, the CCK Dataset itself presents a challenging
benchmark, as even advanced CNN and Transformer architectures plateau below 90% accuracy.

MambaVHS Model Prediction Analysis. Figure 4 compares VHS predictions from different
models, including MambaVHS, ConvNeXt(Liu et al., 2022b), EfficientNetB7(Tan & Le, 2019),
and CDA(Zhang et al., 2025), on canine thoracic radiographs. MambaVHS consistently generates
predictions closer to the actual VHS, particularly for less common cases with irregular thoracic
structures and unusual imaging angles. This highlights its superior ability to capture long and short
axes accurately, outperforming other models in challenging scenarios, making it a reliable choice
for real-world veterinary diagnostics.

Ablation Study. To assess the impact of architectural components and training strategies in Mam-
baVHS, we performed a series of ablation experiments. These experiments systematically remove
or replace specific modules to evaluate their contribution to overall performance.

7
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Figure 4: Comparison of VHS predictions for different deep learning models on canine thoracic
radiographs. The ground truth is shown in Red, while predictions are shown in Yellow.

Table 4: Performance comparison of models trained

(a) With Component Ablations.

Model Variant Val
Acc
(%)

Test
Acc
(%)

Without SE Layers 88.0 88.5
With Attention +
MLP

80.1 84.7

Without Residual
Blocks

82.0 84.5

Full Model 89.5 91.8

(b) With L1 loss.

Model Val Acc
(%)

Test Acc
(%)

MambaVision (Gu & Dao, 2023) 86.55 87.60
Swin Transformer (Liu et al., 2021) 78.90 79.20
ConvNeXt (Liu et al., 2022b) 87.30 87.50
CDA (Zhang et al., 2025) 83.40 85.70
EfficientNetB7 (Tan & Le, 2019) 86.11 87.45
MambaOut (Gu & Dao, 2023) 83.45 85.78
MambaVHS (Ours) 88.40 89.70

Table 4a isolates the effect of individual design choices in MambaVHS: removing SE layers, re-
moving residual blocks, or replacing the Mamba block with Attention+MLP consistently degrades
performance, indicating each component is necessary for full accuracy. Moreover, under a fairness
control where all models are trained with the same L1 regression loss (Table 4b), MambaVHS re-
mains superior (88.40% / 89.70%), demonstrating that the gains stem from architecture rather than
task-specific loss design.

Agreement (Bland–Altman). To further validate model reliability, we evaluate method–expert
agreement on continuous VHS values using the Bland–Altman difference analysis (Bland & Altman,
1986; Giavarina, 2015). For each sample, the difference is defined as di = VHSmodel

i −VHSexperti

and the mean as mi = (VHSmodel
i +VHSexperti )/2. On the test set, the mean bias is d̄ = +0.08VU

with SDd = 0.28VU, producing 95% limits of agreement of d̄ ± 1.96 SDd = [−0.47, 0.63]VU.
This narrow interval suggests that, across the clinical spectrum of cardiomegaly, MambaVHS
predictions are consistently close to expert assessments, with deviations well within accept-
able diagnostic tolerance reported in veterinary practice (Buchanan & Bücheler, 2000; Bélanger
et al., 2014). These results indicate negligible systematic error and bounded dispersion, pro-
viding strong evidence that the model can serve as a reproducible adjunct to expert evaluation.

8
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Confidence intervals are omitted here for brevity but can be provided in an extended version.

External Validation with Task Specific Baseline
Comparison. To strengthen the generalization
analysis, we evaluate MambaVHS on an exter-
nal dataset of 2,000 canine thoracic radiographs
collected independently by Shanghai Aichong Pet
Hospital Li & Zhang (2024). No fine-tuning or
hyperparameter changes are applied.
As summarized in Table 5, MambaVHS achieves
89.5% validation accuracy, 90.1% test accuracy,
and an MAE of 0.23 VU, outperforming all previ-
ously reported CNN and Transformer baselines on
this dataset. These results indicate strong cross-
hospital transfer and anatomically grounded fea-
ture learning. The model maintains high reliabil-
ity despite differences in equipment, acquisition
protocols, and breed distributions, further sup-
porting its robustness for multi-institution evalu-
ation.

Table 5: External dataset performance.

Model Val Acc (%) Test Acc (%)

GoogleNet 78.0 75.8
VGG16 79.0 75.5
ResNet50 80.5 78.0
DenseNet201 77.5 81.8
InceptionV3 79.5 80.5
Xception 79.0 75.8
InceptionResNetV2 78.0 79.5
NasnetLarge 79.5 83.8
EfficientNetB7 82.5 85.5
ViT 79.5 79.5
CONVT 82.5 87.5
Beit-Large 71.5 75.0
RVT 85.0 87.5
MambaVHS 89.5 90.1

Interpretability and Uncertainty. We assess whether MambaVHS relies on anatomically mean-
ingful cues using five saliency methods: Grad-CAM Selvaraju et al. (2017), Grad-CAM++ Chat-
topadhyay et al. (2018), Score-CAM Wang et al. (2020), Layer-CAM Jiang et al. (2021), and their
ensemble. All methods consistently highlight cardiac borders and vertebral edges—the anatomical
structures defining VHS (Fig. 5). To quantify stability, we compute inter-CAM agreement. Across
4,275 images, agreement is 0.83± 0.05, and the highest-uncertainty 10% of cases (low agreement)
align with borderline VHS ranges where expert disagreement is also highest. These results indi-
cate both anatomical plausibility and predictable uncertainty behavior. More details are provided in
Appendix A.4.

5.2 VHSMARKER ANNOTATION TOOL

The VHSMarker tool was developed for efficient and accurate key point placement in canine thoracic
radiographs. Its effectiveness is evaluated in terms of efficiency, usability, and annotation reliabil-
ity. We also report the performance of the MambaVHS model trained on the CCK Dataset, which
accurately predicts cardiac landmarks and estimates VHS in a fully automated manner. VHSMarker
reduces annotation time to 10–12 seconds per image (vs.≥1 min with MATLAB tools such as Li &
Zhang (2024)); annotating 21,465 images required about 75 hours compared to 357 hours, a 4.8×
speedup.

Table 6: Fleiss’ κ by expert (n=9)

Expert Score Expert Score Expert Score Expert Score Expert Score

E1 0.81 E2 0.81 E3 0.85 E4 0.86 E5 0.89
E6 0.90 E7 0.91 E8 0.93 E9 0.94

Avg. 0.88

Inter-observer Study. To assess annotation consistency, we conducted an inter-observer study
on 300 randomly sampled radiographs annotated independently by nine multidisciplinary experts.
As shown in Table 6, Fleiss’ κ (Fleiss, 1971; McHugh, 2012) values ranged from 0.81 to 0.94,
with an average of 0.88. According to the Landis–Koch scale (Landis & Koch, 1977), this corre-
sponds to ”almost perfect” agreement (κ ≥ 0.81), confirming that VHSMarker enables efficient and
highly reliable annotations across observers. A detailed comparison of annotation modes (Manual
vs. Model-assisted vs. Hybrid) is provided in Appendix A.6, demonstrating that model-assisted
workflows significantly reduce annotation time while maintaining annotation quality.

9
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Figure 5: Representative CAM visualizations. All methods focus on cardiac borders and vertebral
landmarks used in VHS measurement.

6 DISCUSSION

The VHSMarker framework reduces annotation time to 10–12 seconds per image through real-time
feedback, responsive scaling, and intuitive interactions, lowering cognitive load and minimizing
errors. The resulting CCK Dataset provides standardized annotations across diverse body sizes,
anatomical variations, and clinical conditions, improving the reliability of downstream models such
as MambaVHS. Together, the tool, dataset, and model form a scalable and precise pipeline for
automated cardiomegaly assessment.

The CCK Dataset is currently limited to lateral thoracic views, has not yet been extended to other
animal species, and shows an imbalanced breed distribution dominated by “Unknown” and mixed
cases. This reflects real-world clinical records and does not directly affect VHS prediction, though
stratified sampling could be explored in future work. While MambaVHS may face challenges with
highly irregular anatomies or noisy images, such degraded radiographs are rarely used in clinical
practice. Importantly, VHSMarker is designed for adaptability: small adjustments allow it to handle
variations from different institutions or imaging devices, and species-specific VHS rules could be
readily incorporated to extend the system beyond dogs. We plan to expand the tool to support collab-
orative annotation, including side-by-side comparison, exporting in standard formats (e.g., majority
voting, STAPLE), and computing real-time inter-annotator agreement metrics. Future enhancements
may further integrate self-supervised or active learning to reduce manual effort, or reinforcement
learning to refine annotation efficiency and robustness. These directions highlight the flexibility of
the framework and its potential as a foundation for scalable, clinically reliable AI systems.

7 CONCLUSION

In this work, we introduced VHSMarker, a fast and clinician-friendly annotation tool for canine tho-
racic radiographs, and used it to construct the large-scale CCK Dataset with over 21k standardized
examples. Building on this resource, we proposed MambaVHS, a state-space based baseline model
that achieves 91.8% test accuracy, outperforming strong CNN and Transformer counterparts. To-
gether, these contributions establish the first unified benchmark for automated vertebral heart score
estimation, reducing annotation time to under 10 seconds per image while improving predictive re-
liability. Beyond veterinary cardiology, this framework illustrates how efficient annotation pipelines
combined with state-space architectures can enable scalable and clinically reliable AI systems, of-
fering a foundation for broader applications in both animal and human healthcare.

10
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USE OF LARGE LANGUAGE MODELS

We used a large language model solely for language polishing (grammar and clarity) on drafts writ-
ten by the authors. The LLM did not generate technical content, equations, code, analyses, figures,
or results, and it was not used for ideation, literature search, data labeling, or experiments. All
scientific claims and evaluations were produced and validated by the authors.
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James W Buchanan and Jochen Bücheler. Vertebral scale system to measure canine heart size in
radiographs. Journal of the American Veterinary Medical Association, 216(2):210–214, 2000.
doi: 10.2460/javma.2000.216.210.
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A APPENDIX

A.1 VHSMARKER ANNOTATION MODES

Figure 6: VHSMarker annotation modes: Ground Truth, Prediction, and Show Both, enabling pre-
cise adjustment and model comparison.

The three annotation modes are:

• Ground Truth: for manual labeling of cardiac key points.

• Prediction: for automated visualization of MambaVHS predictions.

• Show Both: for side-by-side comparison and adjustment.

These options streamline annotation, error correction, and model evaluation during large-scale
dataset creation.

A.2 VHS AWARE LOSS

Algorithm 1 VHSAwareLoss Calculation

Inputs: Predicted VHS vpred, True VHS vtrue, thresholds τ1=8.2, τ2=10, margin δ, middle mul-
tiplier m, class weight wc

Output: LVHS
1. Derive classes from thresholds

y ←


0 if vtrue < τ1
1 if τ1 ≤ vtrue < τ2
2 if vtrue ≥ τ2

ŷ ←


0 if vpred < τ1
1 if τ1 ≤ vpred < τ2
2 if vpred ≥ τ2

2. Base regression term (L1)
Lreg ← |vpred − vtrue|
3. Class mismatch penalty
Lcls ← ⊮[ŷ ̸= y]
4. Margin-aware boundary penalty

Lmargin ←


max(0, vpred − (τ1 + δ)), y = 0

max(0, τ1 − vpred) + max
(
0, vpred − (τ2 +

δ
m )

)
, y = 1

max(0, (τ2 − δ)− vpred), y = 2
5. Final loss
LVHS ← Lreg + wc

(
Lcls + Lmargin

)
return LVHS

The algorithm above defines the VHSAwareLoss calculation used for training the model in a task
where VHS (Vertebral Heart Score) estimation is important. It takes as input the predicted VHS
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vpred, the true VHS vtrue, predefined thresholds τ1 and τ2, a margin δ, a middle multiplier m, and a
class weight wc. First, it determines the classes for both the true and predicted VHS values based
on the thresholds: class 0 for values below τ1, class 1 for values between τ1 and τ2, and class 2
for values above τ2. The loss function consists of three components: (1) a base regression term
(L1 loss), which penalizes the absolute difference between predicted and true VHS values, (2) a
class mismatch penalty, which adds a loss when the predicted class does not match the true class,
and (3) a margin-aware boundary penalty, which adjusts the loss based on the margin δ around
the class boundaries. The final VHS loss is a weighted sum of these three terms, incorporating
the class weight wc to balance the importance of class mismatch and margin penalties. This loss
function encourages the model to predict VHS values that are not only close to the true value but
also correctly classified within the specified boundaries.

A.3 BREED INFORMATION

For completeness, Table 7 lists the full breed distribution of the CCK dataset, complementing the
summary presented in Section 3.

Table 7: Complete breed distribution.

# Breed Count

1 Mixed Dog 1256
2 Labrador Retriever 479
3 Golden Retriever 191
4 German Shepherd 164
5 Chihuahua 100
6 Boxer 79
7 Shih Tzu 77
8 Yorkshire Terrier 77
9 French Bulldog 76

10 English Bulldog 72
11 Canine, NOS 67
12 Miniature Poodle 62
13 Siberian Husky 61
14 Border Collie 57
15 Beagle Hound 56
16 Pomeranian 52
17 Cavalier King Charles Spaniel 51
18 Pug 48
19 Boston Terrier 44
20 Jack Russell Terrier 44
21 Maltese 44
22 Australian Shepherd 42
23 Shetland Sheepdog 42
24 Rottweiler 41
25 English Cocker Spaniel 35
26 Great Dane 34
27 Bernese Mountain Dog 32
28 Miniature Schnauzer 32
29 Cock-A-Poo 31
30 Standard Poodle 31
31 Havanese 30
32 Dachshund, NOS 28
33 Doberman Pinscher 26
34 Labradoodle 26
35 Great Pyrenees 24
36 Smooth Miniature Dachshund 23
37 English Setter 21
38 Australian Cattle Dog 20
39 Toy Poodle 20
40 Chinese Sharpei 20
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# Breed Count

41 Bichon Frise 19
42 American Bulldog 18
43 Pembroke Welsh Corgi 18
44 West Highland Terrier 18
45 Rhodesian Ridgeback 18
46 English Springer Spaniel 17
47 American Staffordshire 17
48 Miniature Pinscher 16
49 Brittany Spaniel 16
50 Long-Haired Std Dachshund 14
51 German Short-Haired Pointer 14
52 Terrier, NOS 14
53 Basset Hound 13
54 Newfoundland 13
55 Bull Mastiff 12
56 Long-Haired Mini Dachshund 12
57 Bulldog, NOS 12
58 Belgian Malinois 12
59 Lhasa Apso 11
60 Greyhound 11
61 Bull Terrier 10
62 Irish Setter 10
63 Catahula Leopard Dog 9
64 Saint Bernard 9
65 Cocker Spaniel, NOS 9
66 Cairn Terrier 9
67 Rat Terrier 9
68 Irish Wolfhound 9
69 Collie, NOS 9
70 Cane Corso 8
71 Red Bone Hound 8
72 Samoyed 7
73 Chesapeake Bay Retriever 7
74 Vizsla 7
75 Smooth Standard Dachshund 7
76 American Pit Bull Terrier 7
77 Whippet 7
78 Akita 6
79 Leonberger 6
80 Schipperke 6
81 American Eskimo Dog 6
82 Mexican Hairless 6
83 Coonhound 5
84 English Mastiff 5
85 Silky Terrier 5
86 German Wire-Haired Pointer 5
87 Weimaraner 5
88 Papillon 5
89 Scottish Terrier 5
90 Staffordshire Bull Terrier 5
91 Mastiff, NOS 5
92 Hound, NOS 5
93 Keeshond 5
94 Giant Schnauzer 4
95 Airedale Terrier 4
96 Coton De Tulear 4
97 Swiss Mountain Dog 4
98 English Shepherd 4
99 Nova Scotia Duck Tolling Retriever 4

100 Saluki 4
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# Breed Count

101 Italian Greyhound 4
102 Flat-Coated Retriever 4
103 Shiba Inu 4
104 Treeing Walker Coonhound 4
105 Bloodhound 3
106 Chinese Crested 3
107 American Foxhound 3
108 Tibetan Terrier 3
109 Neapolitan Mastiff 3
110 Australian Heeler 2
111 Spinone Italiano 2
112 Briard 2
113 Old English Sheepdog 2
114 Borzoi 2
115 Alaskan Malamute 2
116 Norwegian Elkhound 2
117 German Long-Haired Pointer 2
118 Affenpinscher 2
119 Peke-A-Poo 2
120 Anatolian Shepherd 2
121 Wirehaired Pointing Griffon 2
122 Toy Manchester Terrier 2
123 Clumber Spaniel 2
124 Standard Schnauzer 2
125 Irish Water Spaniel 1
126 Shiloh Shepherd 1
127 Cardigan Welsh Corgi 1
128 American Bully 1
129 Japanese Chin 1
130 English Coonhound 1
131 Border Terrier 1
132 Setter, NOS 1
133 Tibetan Spaniel 1
134 American Cocker Spaniel 1
135 Australian Terrier 1
136 Welsh Terrier 1
137 Norfolk Terrier 1
138 Dalmatian 1
139 Pharaoh Hound 1
140 Springer Spaniel 1
141 Silken Windsprite 1
142 Wirehaired Standard Dachshund 1
143 Retriever, NOS 1
144 Soft-Coated Wheaten Terrier 1
145 Maremma Sheepdog 1
146 Unknown 8039

Total 12385

A.4 AGREEMENT ANALYSIS AND UNCERTAINTY ESTIMATION

We assess model–expert agreement using a Bland–Altman analysis. The mean bias between model and expert
VHS is +0.08VU, with 95% limits of agreement [−0.47, 0.63]VU, fully within accepted clinical variabil-
ity (Buchanan & Bücheler, 2000; Bélanger et al., 2014).

Uncertainty is quantified by measuring consistency across CAM methods (Fig. 5). Let the five normalized
CAM maps be {Mt(x)}5t=1, each flattened to mt(x) ∈ RHW . The agreement score is

A(x) =
2

T (T − 1)

∑
s<t

m⊤
s mt,
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and the uncertainty is defined as U(x) = 1 − A(x). Cases above the 90th percentile of U(x) are flagged for
clinician review.

Table 8: CAM Ensemble Agreement Statistics (N=4,275)

Metric Mean Std Dev

Agreement Score A(x) 0.83 0.05
Uncertainty U(x) 0.17 0.05
Flagged Cases (U > τ90) 428 (10%)

A high agreement score (0.83 ± 0.05) indicates stable attention patterns across different interpretability meth-
ods, and a 10% flag rate provides a practical balance between automation and clinical oversight.

A.5 CLINICAL WORKFLOW

The clinician-in-the-loop workflow integrates CAMs and uncertainty into the prediction pipeline:

• The model outputs keypoints, VHS, CAM visualizations, and an uncertainty score for each radio-
graph;

• High-confidence cases (U(x) ≤ τ ) may be auto-reported;
• Low-confidence cases (U(x) > τ ) are routed to clinicians, together with CAMs and keypoint over-

lays for rapid verification.

This process adds negligible computational cost and preserves the interpretability of the system.

The combination of CAM explanations, high inter-method consistency, and explicit uncertainty scoring pro-
vides transparent model behavior suitable for safe deployment.

A.5.1 CLINICAL DEPLOYMENT CONSIDERATIONS

Model accuracy aligns with clinical expectations. Our MAE of 0.21 ± 0.19 VU is smaller than typi-
cal inter-expert variability (±0.3–0.5 VU) (Bélanger et al., 2014). The Bland–Altman limits of agreement
([−0.47, 0.63]VU) fall within the widely accepted ±0.5 VU tolerance (Buchanan & Bücheler, 2000). Per-
formance is strongest in clearly normal or clearly enlarged hearts, with higher uncertainty only near clinical
boundaries where expert disagreement is also common.

Proposed deployment workflow:

• High-confidence cases (∼70%): automated VHS reporting,
• Borderline / uncertain cases (∼30%): clinician verification,
• Estimated workload reduction: ∼90% (10–12s vs. 60+s per image).

This workflow facilitates consistent measurement, reduces reader fatigue, and improves prioritization of urgent
cases for clinical review.

A.6 HUMAN-IN-THE-LOOP ANNOTATION WORKFLOW

The table below summarizes the performance of different annotation modes used in the CCK dataset. The Fully
Manual mode represents traditional annotation, while the Model-Assisted mode involves initial predictions
from the model, with experts refining the predictions. The Hybrid (Show Both) mode allows experts to view
both model predictions and ground-truth annotations for refinement. We report the time per image, the

Table 9: Human-in-the-loop Annotation Mode Comparison

Annotation Mode Time (s) Corrections Needed Final Agreement (κ) VHS MAE
Fully Manual 62 ± 5 N/A 0.88 0.21
Model-Assisted 15 ± 3 2.1 ± 1.2 pts 0.89 0.20
Hybrid (Show Both) 12 ± 2 1.3 ± 0.8 pts 0.90 0.19

number of corrections needed (in points), final agreement (κ), and the mean absolute error (MAE) for VHS
estimates across each mode. These results show that Hybrid mode significantly reduces annotation time while
maintaining or improving accuracy and agreement.
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