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ABSTRACT

We present VHSMarker, a web-based annotation tool that enables rapid and
standardized labeling of six cardiac key points in canine thoracic radiographs.
VHSMarker reduces annotation time to 10-12 seconds per image while support-
ing real-time vertebral heart score (VHS) calculation, model-assisted prediction,
and quality control. Using this tool, we constructed the Canine Cardiac Key Point
(CCK) Dataset, a large-scale benchmark of 21,465 annotated radiographs from
12,385 dogs across 144 breeds and additional mixed breed cases, making it the
largest curated resource for canine cardiac analysis to date. To demonstrate the
utility of this dataset, we introduce MambaVHS, a baseline model that integrates
Mamba blocks for long-range sequence modeling with convolutional layers for
local spatial precision. MambaVHS achieves 91.8% test accuracy, surpassing 13
strong baselines including ConvNeXt and EfficientNetB7, and establishes state-
space modeling as a promising direction for veterinary imaging. Together, the
tool, dataset, and baseline model provide the first reproducible benchmark for
automated VHS estimation and a foundation for future research in veterinary
cardiology. The source code and dataset are available on our project website:
https://anonymousgenai.github.io/vhsmarker.

1 INTRODUCTION

Canine cardiomegaly, characterized by pathological heart enlargement, is a critical condition that
can significantly impact the health and longevity of dogs if left undiagnosed or untreated. Early and
accurate detection is essential for effective intervention, yet traditional methods for Vertebral Heart
Score (VHS) measurement from thoracic radiographs remain highly subjective, labor-intensive, and
prone to inter-observer variability (Bappah et al., [2021; Burti et al.| 2020). These manual processes
require precise anatomical landmark identification and measurement, demanding significant exper-
tise and time, which limits their scalability in clinical practice (Rungpupradit & Sutthigran, 2020;
Dumortier et al.| [2022). Recent advances in deep learning, including convolutional neural net-
works (CNNs) (He et al.|, 2016} [Huang et al., 2017)), transformer-based architectures (Dosovitskiy
et al., 2020), and state-space models such as MambaVision (Hatamizadeh & Kautz, 2024), have
demonstrated exceptional potential for medical image analysis, often outperforming conventional
rule-based methods in both accuracy and efficiency. These approaches can capture long-range de-
pendencies and complex spatial relationships, making them suitable for challenging imaging tasks.
However, their application to veterinary diagnostics remains limited due to the scarcity of large,
high-quality labeled datasets, the diversity of canine anatomies, and the need for interpretable and
clinically reliable predictions (Jeong & Sung} 2022; Zhang et al., 2021).

To address these challenges, we introduce a comprehensive framework that unifies an annotation
tool, a large-scale dataset, and a baseline model for canine cardiac assessment. Unlike prior veteri-
nary cardiology studies that relied on small datasets or isolated methods (Bappah et al., {2021} |Burti
et al.| [2020; Jeong & Sungl 2022; Zhang et al.,|2021)), our contribution establishes the first standard-
ized benchmark for automated VHS estimation, providing the community with both resources and
strong baselines.
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Our framework makes three key contributions. (i) We present a clinician-oriented web tool that
reduces annotation time from over a minute to about 1012 seconds per image, while supporting
real-time keypoint placement, automated VHS calculation, built-in quality checks, and seamless
data export, enabling scalable and accurate dataset creation with minimal user error. (ii) We in-
troduce the Canine Cardiac Keypoint (CCK) Dataset, a carefully curated collection of over 21k
radiographs annotated with six cardiac keypoints, offering a standardized benchmark that captures
diverse anatomical variations and clinical conditions for training and evaluation. (iii) We develop
MambaVHS, a hierarchical baseline model that combines Mamba blocks for efficient long-range se-
quence modeling with convolutional layers for local spatial precision, achieving robust and accurate
VHS prediction that surpasses existing baselines.

Together, the tool, dataset, and model form an end-to-end pipeline for automated cardiomegaly as-
sessment. This framework significantly reduces annotation burden, provides a reproducible bench-
mark, and demonstrates through MambaVHS that state-space modeling is a promising direction for
veterinary imaging tasks.

2 RELATED WORK

The diagnosis of canine cardiomegaly has traditionally relied on the Vertebral Heart Score (VHS),
which measures cardiac dimensions relative to thoracic vertebrae (Bappah et al.,[2021; Rungpupradit
& Sutthigran, [2020; Buchanan & Biicheler, [1995). While widely used in veterinary practice, VHS
measurement suffers from inter-observer variability and time-consuming manual processes (Litster,
& Buchanan, 2005 |[Lam et al., [2001)). Efforts to improve consistency include standardized pro-
tocols (Jeong & Sung| [2022) and computational methods (Rungpupradit & Sutthigran, 2020)), yet
these still depend on manual initialization.

Automated tools for VHS have been explored. Li, Zhang introduced a MATLAB-based system
requiring manual adjustment (Li & Zhang| 2024)), while Oh, Lee, Go, Lee, and Jeong (Oh et al.,
2024])) proposed a semi-automated segmentation pipeline that reduces manual oversight by leverag-
ing few-shot learning. Fully automated solutions are more advanced in human cardiology (Alsharqi
et al., 2018 [Zhang et al.|[2021)), but remain difficult to adapt to veterinary settings due to anatomical
differences and limited data.

Deep learning has transformed medical imaging, with CNNs excelling at segmentation and disease
detection (Huang et al., 2017} |Ronneberger et al.| 2015; [Dumortier et al.,|[2022; |Wang et al.,[2017).
In veterinary applications, CNNs have been applied to canine cardiomegaly (Burti et al., |2020),
feline pulmonary disease (Dumortier et al.,[2022)), and bovine teat-end analysis (Zhang et al.,|2022),
though such studies are constrained by small datasets and lack of standardized benchmarks (Litjens
et al., 2017; Jeong & Sung, 2022). More recent advances include transformers (Dosovitskiy et al.,
2020; Liu et al.| [2022a; Wu et al.| |2021)), which capture long-range dependencies, and Mamba-based
architectures (Hatamizadeh & Kautz, [2024; /Gu & Dao, [2023)), which achieve linear-time sequence
modeling. These capabilities are especially relevant for VHS, where distant landmarks must be
jointly modeled. [Zhang et al.| (2025) further explored diffusion-based augmentation for canine
cardiomegaly, but focused on data generation rather than standardized landmark localization.

Overall, veterinary cardiology research remains limited by scarce annotated datasets, reliance on
manual or semi-automated tools (Li & Zhang| 2024} |Dumortier et al.| 2022; Zhang & Davison,
2021), and the absence of reproducible evaluation pipelines. Our work addresses these gaps by
introducing the first comprehensive benchmark: a scalable web-based annotation tool (VHSMarker),
the large-scale CCK Dataset with standardized keypoints, and MambaVHS as a strong baseline
model, enabling reproducible evaluation and exploration of state-space architectures for veterinary
imaging.

3 DATASET

We introduce the Canine Cardiac Keypoint (CCK) dataset, a benchmark for vertebral heart score
(VHS) estimation and cardiac keypoint detection in veterinary cardiology. It provides large-scale
radiographs annotated with six cardiac keypoints to support reproducible model training and evalua-
tion. Below we outline the collection process, preprocessing, demographics, and final composition.
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Table 1: Demographic statistics including sex, age, and the top 10 breeds. Complete breed distribu-
tion is in Appendix[A.3}

Sex Distribution Age Distribution (years) Top 10 Breeds

Category Count  Age Group Count  Breed Count  Breed Count

Female 7941 0-5 2961 Mixed Dog 1256  Boxer 79

Male 4395 6-11 6272  Labrador Retriever 479  Shih Tzu 77

Unknown 49 1217 2827  Golden Retriever 191  Yorkshire Terrier 77
18-30 86  German Shepherd 164  Border Collie 57
Unknown 239  Chihuahua 100  Beagle Hound 56

Total 12385 Total 12385 Top-10 breeds subtotal: 2536; Overall total: 12 385

Data and Preprocessing. We collected 36,264 canine thoracic radiographs from multiple hos-
pitals under data-sharing agreements and de-identified them. After quality control, we retained
21,465 lateral views (left/right) from 12,385 dogs, excluding dorsoventral/ventrodorsal projections
as unsuitable for VHS. Standardized preprocessing removed distorted, overexposed, incomplete, or
motion-affected scans, and annotators used VHSMarker’s validity flag to exclude clinically irrel-
evant cases. Institutional identities remain undisclosed for privacy; the final cohort spans diverse
clinical populations and contains only diagnostically sound lateral radiographs for key-point anno-
tation and VHS estimation.

Demographic Information. To assess dataset diversity and representativeness, we report aggre-
gate demographic statistics. The dataset spans 144 distinct dog breeds and a small set of unidentified
samples, reflecting broad coverage of anatomical and clinical variability. Although institutional and
geographic details remain anonymized for privacy, the CCK Dataset was collected across multiple
veterinary hospitals, ensuring diversity in patient populations and imaging practices. This broad
sampling helps mitigate concerns about representativeness and supports the dataset’s generalizabil-
ity to real-world veterinary scenarios. Table[I| summarizes sex distribution, age groups, and the most
frequent breeds, while the complete breed distribution (146 entries) is provided in the appendix [A.3]

Final Dataset Composition. The Canine Cardiac Keypoint
(CCK) dataset comprises 21465 lateral thoracic radiographs,
each annotated with six cardiac keypoints using the VHSMarker

Table 2: Dataset distribution.

tool (Table [2). The split is performed at the patient level (i.e., Split Images
by dog) to prevent data leakage, ensuring that radiographs from Training 15026
the same individual do not appear across training, validation, and Validation 2155

test sets. This design supports robust evaluation and generaliza-
tion across diverse clinical cases. Combined with precise anno-
tations and integrated quality control, the dataset establishes a Total 21465
reproducible benchmark for vertebral heart score estimation and

canine cardiology research.

Testing 4275

4 METHODS

This section introduces the two main components of our framework. VHSMarker is a clinician-
friendly tool for rapid, standardized keypoint labeling with automated VHS computation, enabling
creation of the large-scale CCK Dataset. MambaVHS is a baseline model that integrates convolu-
tional layers with Mamba blocks for precise and efficient VHS estimation.

4.1 KEY POINT ANNOTATION TOOL

VHSMarker is a lightweight web-based system for canine cardiac key point annotation. The front
end, built with HTMLS, JavaScript, and a Canvas interface, enables intuitive point placement and
real-time visualization. A Flask back end manages GPU-accelerated inference and asynchronous
updates, ensuring low-latency interaction for both expert and non-expert users.
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VHSMarker
A High-Precision Annotation Tool for Canine Cardiac Keypoint Detection and VHS Estimation
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Figure 1: Overview of the VHSMarker interface, including key point placement and real-time VHS
calculation.

Annotation Features. The VHSMarker interface is designed to balance precision and usability
for annotators with varying levels of expertise. It supports zooming, panning, and window-level
adjustments (brightness and contrast) to allow close inspection of fine anatomical structures, while
undo/redo functions provide stepwise correction without disrupting the workflow. Problematic ra-
diographs can be flagged as invalid, ensuring that only diagnostically reliable samples contribute to
the dataset. All annotations, including keypoint coordinates, metadata, and validity flags, are au-
tomatically stored in .mat format for seamless downstream integration. To support flexible work-
flows, three annotation modes are provided: Ground Truth for manual labeling, Prediction for auto-
mated keypoint generation by the MambaVHS model, and Show Both for side-by-side comparison
and correction (see Appendix [A.T). This design enables efficient correction of automated outputs
while preserving transparency between human and model contributions. A video demonstration is
available on the project website to illustrate the tool’s usage in practice.

Real-Time Inference and VHS Computation. Upon image upload, the MambaVHS model gener-
ates key point predictions, which are overlaid on the canvas. Pixel coordinates (z;, y;) are normal-
ized to dimensionless form:

- T %’ - yz'%
=t =Y g

where W, H are original dimensions and W', H' the target size. The vertebral heart score (VHS) is
then computed as:

(AB +CD)

VHS =
6 X ola ,

(@)

with AB the long axis, C'D the short axis, and EF' the vertebral reference length. This ensures
consistent VHS estimation across variable-resolution images.
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Figure 2: Architecture of the MambaVHS model. It consists of a stem, four MambaStages, and a
regression head, combining residual blocks, Mamba SSMs, and SE layers for keypoint prediction.

4.2 MAMBAVHS MODEL ARCHITECTURE

The MambaVHS model is a hierarchical deep learning framework designed for precise localization
of six cardiac key points in canine thoracic radiographs. Unlike standard CNNs, which primarily
capture local context, or Transformers, which model long-range dependencies at quadratic cost,
MambaVHS leverages state-space models (SSMs) to capture global anatomical relationships with
linear complexity.

The architecture integrates convolutional
layers for spatial precision, Mamba blocks
for efficient long-range reasoning, and SE
layers for adaptive channel recalibration.
Training is further guided by the proposed
VHSAwareLoss, which embeds clinically
meaningful thresholds for vertebral heart
score prediction, ensuring that optimization

[
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layers (stride 2 and stride 1), each followed
by batch normalization and SiL.U activation:

#(X) = SiLU(BN(Conv2D(X))),  (3)

Fo = ¢(X), “
where X is the input radiograph. This opera-
tion encodes texture and contour information
critical for cardiac structure analysis while
reducing computation in later stages.

Linear Projection

Activation @) Non Linearity (Activation or Multiplication)

Figure 3: Residual (left) and Mamba (right)
blocks form each MambaStage: Residual captures
local spatial patterns, while Mamba models long-
range dependencies.

MambaStages. MambaStages refine features via downsampling, residual learning, Mamba-based
sequence modeling, and SE recalibration, enabling the model to capture both local anatomical cues
and global dependencies for accurate VHS estimation.
Downsampling. Spatial resolution is reduced by applying the convolution—-BN-SiL.U operator from
Eq.3t

Fa = ¢(X), 4)
where X € REXCXHXW g the input feature map, and F; has higher channel depth with reduced
spatial size.

Residual Block. Local features are captured using two stacked convolutions with a residual skip
connection:

F, = SiLU(Fq + ¢(6(Fa))), ©)
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which preserves fine structural details (e.g., vertebral boundaries) and stabilizes gradient flow.

Mamba Block. Global dependencies are modeled efficiently through a three-step state-space formu-
lation:

H=W,; F,, (7
Y = SelectiveScan(H; A, B, C, D), (8)
Fout = Woul ' Ya (9)

where Wi,, W, are learnable projection matrices, and A, B, C, D are trainable state-space pa-
rameters. The selective scan operator enables linear-time sequence modeling, avoiding the quadratic
cost of self-attention.

SE Layer. To highlight cardiac-relevant channels, the output is recalibrated via a squeeze-and-
excitation mechanism. Global average pooling first aggregates context:

H W
g= 72w >, > Fou (10)

i=1 j=1

where g is a channel descriptor. Two fully connected layers then rescale channels:
Fi. = Fou - 0(W2 - ReLU(W] - g)), (11)

with W1, Wy, learnable matrices and o the sigmoid function.

Regression Head. The outputs of the four MambaStages (channels 64, 128, 256, 640) are ag-
gregated via global average pooling and passed through a two-layer MLP with ReL.U and a final
linear layer to regress six cardiac key point coordinates. This head links hierarchical backbone
features to precise anatomical localization, enabling reliable VHS computation. Together with the
stem and MambaStages, it forms the full MambaVHS architecture, trained with the task-specific
VHS AwareLoss to enhance accuracy and clinical consistency.

VHSAwareLoss. To stabilize VHS estimation, we introduce VHSAwareLoss, which combines
regression precision with category consistency using clinical thresholds (8.2, 10). The base term is
an L1 regression loss:

Log = |VHS - VHS| . (12)
augmented by a classification penalty
Las =1y # y), (13)
and a soft margin to reduce boundary instability:
ReLU(VHS — (8.2 +0)), y =0,
Linargin = { ReLU(8.2 — VHS) + ReLU(VHS — (10 + 2)), y=1, (14)
ReLU((10 — 6) — VHS), y=2.
The final loss is:
Lvus = Ereg + wc(ﬁcls + Emargin)' (15)

5 EXPERIMENTS AND RESULTS

We evaluate MambaVHS on the CCK dataset through a series of experiments designed to measure
both predictive accuracy and annotation reliability. First, we describe the training setup and compare
MambaVHS against state-of-the-art baselines. We then analyze performance under L1 loss and
conduct ablation studies to assess the contribution of individual components. Finally, we evaluate
the VHSMarker annotation tool using Fleiss’ Kappa to quantify inter-observer agreement.
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5.1 MAMBAVHS MODEL

Training Setup. MambaVHS was trained with a joint objective of key point regression and classi-
fication to balance spatial accuracy and clinical relevance. We used the AdamW optimizer (learning
rate 3 x 10~%, weight decay 1 x 10~°) with cosine annealing (minimum learning rate 1 x 107%).
Gradient accumulation was applied to reduce memory cost, and checkpoints were selected by low-
est validation loss. Training ran on a single NVIDIA A100 GPU with batch size 16, completing
150 epochs in about 22 hours. By comparison, other state-of-the-art models required ~90 hours,
highlighting the computational efficiency and rapid convergence of MambaVHS.

Table 3: Performance comparison of models trained with VHSAwareLoss on the CCK Dataset (test
set). Accuracy, MSE, and MAE are reported, with MAE shown as mean =+ standard deviation across
multiple runs.

Model Accuracy (%) MSE MAE
GoogleNet (Szegedy et al.,|2015) 78.75 0.37410 0.45921 £ 0.41582
VGG16 (Simonyan & Zisserman, 2014) 78.00 0.35287 0.44912 4+ 0.37328
ResNet50 (He et al.,|2016) 78.25 0.31645 0.43682 + 0.36417
DenseNet201 (Huang et al.| 2017) 79.25 0.34122 0.42890 + 0.38674
Inceptionv3 (Szegedy et al.,[2016) 81.50 0.26359  0.37983 + 0.33921
Xception (Chollet, 2017) 79.25 0.31144 0.41870 £ 0.32964
Vision Transformer (Dosovitskiy et al., [2020) 75.00 0.39785 0.47419 £ 0.42367
ConvNeXt (Liu et al.,[2022b) 85.25 0.19102 0.34697 + 0.29911
EfficientNetB7 (Tan & Lel[2019) 81.50 0.28407 0.38914 £ 0.34795
CDA (Zhang et al.,[2025) 86.40 0.21215 0.35582 + 0.30763
MambaVision (Gu & Daol, 2023 87.60 0.20238 0.33695 + 0.29318
MambaVHS (Ours) 91.80 0.14380 0.212 + 0.1856

Model Evaluation. This section presents the experimental evaluation of VHSMarker for vertebral
heart score (VHS) estimation from canine thoracic radiographs. The primary evaluation metric
is test accuracy, defined across three clinically meaningful categories: normal heart size (< 8.2),
borderline cardiomegaly (8.2 < VHS < 10), and severe cardiomegaly (> 10).

Table [3|reports the performance of state-of-the-art baselines on the Canine Cardiac Keypoint (CCK)
Dataset. In addition to accuracy, we also report mean squared error (MSE) and mean absolute error
(MAE) to provide a more complete regression-based evaluation of keypoint localization and VHS
estimation. The proposed MambaVHS model achieves the highest test accuracy of 91.8%, while also
delivering the lowest MSE (0.1438) and MAE (0.212 £ 0.186). These results highlight its strong
capability in precise keypoint localization and clinically reliable VHS estimation. The margin of
improvement over competitive baselines such as ConvNeXt (85.25%), EfficientNetB7 (81.50%),
and CDA (86.4%) underscores the advantage of state-space modeling in capturing complex canine
cardiac structures. Importantly, the CCK Dataset itself presents a challenging benchmark, as even
advanced CNN and Transformer architectures plateau below 90% accuracy.

MambaVHS Model Prediction Analysis. Figure [ compares VHS predictions from different
models, including MambaVHS, ConvNeXt(Liu et al., [2022b)), EfficientNetB7(Tan & Le| [2019),
and CDA(Zhang et al.l [2025)), on canine thoracic radiographs. MambaVHS consistently generates
predictions closer to the actual VHS, particularly for less common cases with irregular thoracic
structures and unusual imaging angles. This highlights its superior ability to capture long and short
axes accurately, outperforming other models in challenging scenarios, making it a reliable choice
for real-world veterinary diagnostics.

Ablation Study. To assess the impact of architectural components and training strategies in Mam-
baVHS, we performed a series of ablation experiments. These experiments systematically remove
or replace specific modules to evaluate their contribution to overall performance.
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MambaVHS ConvNeXt EfficientNetB7 CDA
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MambaVHS ConvNeXt EfficientNetB7 CDA
Actual: 8.35 | Pred: 8.35 Actual: 8.35 | Pred: 8.36 Actual: 8.35 | Pred: 8.16 Actual: 8.35 | Pred: 7.56

MambaVHS ConvNeXt EfficientNetB7 CDA
Actual: 6.91 | Pred: 6.83 Actual: 6.91 | Pred: 7.49 Actual: 6.91 | Pred: 7.24 Actual: 6.91 | Pred: 5.85

Figure 4: Comparison of VHS predictions for different deep learning models on canine thoracic
radiographs. The ground truth is shown in Red, while predictions are shown in Yellow.

Table 4: Performance comparison of models trained

(a) With Component Ablations. (b) With L1 loss.
Model Variant Val  Test Model Val Acc  Test Acc
Acc  Acc (%) (%)
(%) (%) MambaVision (Gu & Dao) 8655  87.60
Without SE Layers 88.0 88.5 Swin Transformer (Liu et al.[ |20 78.90 79.20
With Attention + 80.1 84.7 ConvNeXt (Liu et al.|[2022b 87.30 87.50
MLP CDA (Zhang et al.;[2025) 83.40 85.70
Without Residual 820 845  EfficientNetB7 (lan & Lel 86.11 87.45
Blocks MambaOut (Gu & Dao; 2023 83.45 85.78
Full Model 895 918 MambaVH 88.40 89.70

Table [a] isolates the effect of individual design choices in MambaVHS: removing SE layers, re-
moving residual blocks, or replacing the Mamba block with Attention+MLP consistently degrades
performance, indicating each component is necessary for full accuracy. Moreover, under a fairness
control where all models are trained with the same L1 regression loss (Table @), MambaVHS re-
mains superior (88.40% / 89.70%), demonstrating that the gains stem from architecture rather than
task-specific loss design.

Agreement (Bland-Altman). To further validate model reliability, we evaluate method—expert

agreement on continuous VHS values using the Bland—Altman difference analysis
|1986L |GiavarinaJ, |2015|}. For each sample, the difference is defined as d; = VHS'ZE’“Ode - VHS?Xpert
and the mean as m; = (VHS! 1+ VHSSP"™) /2. On the test set, the mean bias is d = +0.08 VU
with SDy = 0.28 VU, producing 95% limits of agreement of d + 1.96 SD,; = [—0.47, 0.63] VU.
This narrow interval suggests that, across the clinical spectrum of cardiomegaly, MambaVHS predic-
tions are consistently close to expert assessments, with deviations well within acceptable diagnostic
tolerance reported in veterinary practice (Buchanan & Biicheler,[2000; [Bélanger et al., 2014)). These
results indicate negligible systematic error and bounded dispersion, providing strong evidence that
the model can serve as a reproducible adjunct to expert evaluation. Confidence intervals are omitted
here for brevity but can be provided in an extended version.
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5.2  VHSMARKER ANNOTATION TOOL

The VHSMarker tool was developed for efficient and accurate key point placement in canine thoracic
radiographs. Its effectiveness is evaluated in terms of efficiency, usability, and annotation reliabil-
ity. We also report the performance of the MambaVHS model trained on the CCK Dataset, which
accurately predicts cardiac landmarks and estimates VHS in a fully automated manner. VHSMarker
reduces annotation time to 10-12 seconds per image (vs. >1 min with MATLAB tools such as |Li &
Zhang| (2024))); annotating 21,465 images required about 75 hours compared to 357 hours, a 4.8 %
speedup.

Table 5: Fleiss’ « by expert (n=9)

Expert Score Expert Score Expert Score Expert Score Expert Score

El 0.81 E2 0.81 E3 0.85 E4 0.86 E5 0.89
E6 0.90 E7 0.91 E8 0.93 E9 0.94

Avg. 0.88

Inter-observer Study. To assess annotation consistency, we conducted an inter-observer study on
300 randomly sampled radiographs annotated independently by nine multidisciplinary experts. As
shown in Table E], Fleiss’ k (Fleiss, [1971; McHugh, |2012)) values ranged from 0.81 to 0.94, with an
average of 0.88. According to the Landis—Koch scale (Landis & Koch, [1977), this corresponds to
“almost perfect” agreement (x > 0.81), confirming that VHSMarker enables efficient and highly
reliable annotations across observers.

6 DISCUSSION

The VHSMarker framework reduces annotation time to 10—12 seconds per image through real-time
feedback, responsive scaling, and intuitive interactions, lowering cognitive load and minimizing
errors. The resulting CCK Dataset provides standardized annotations across diverse body sizes,
anatomical variations, and clinical conditions, improving the reliability of downstream models such
as MambaVHS. Together, the tool, dataset, and model form a scalable and precise pipeline for
automated cardiomegaly assessment.

The CCK Dataset is currently limited to lateral thoracic views, has not yet been extended to other
animal species, and shows an imbalanced breed distribution dominated by “Unknown” and mixed
cases. This reflects real-world clinical records and does not directly affect VHS prediction, though
stratified sampling could be explored in future work. While MambaVHS may face challenges with
highly irregular anatomies or noisy images, such degraded radiographs are rarely used in clinical
practice. Importantly, VHSMarker is designed for adaptability: small adjustments allow it to handle
variations from different institutions or imaging devices, and species-specific VHS rules could be
readily incorporated to extend the system beyond dogs. Future enhancements may further integrate
self-supervised or active learning to reduce manual effort, or reinforcement learning to refine anno-
tation efficiency and robustness. These directions highlight the flexibility of the framework and its
potential as a foundation for scalable, clinically reliable Al systems.

7 CONCLUSION

In this work, we introduced VHSMarker, a fast and clinician-friendly annotation tool for canine tho-
racic radiographs, and used it to construct the large-scale CCK Dataset with over 21k standardized
examples. Building on this resource, we proposed MambaVHS, a state-space based baseline model
that achieves 91.8% test accuracy, outperforming strong CNN and Transformer counterparts. To-
gether, these contributions establish the first unified benchmark for automated vertebral heart score
estimation, reducing annotation time to under 10 seconds per image while improving predictive re-
liability. Beyond veterinary cardiology, this framework illustrates how efficient annotation pipelines
combined with state-space architectures can enable scalable and clinically reliable Al systems, of-
fering a foundation for broader applications in both animal and human healthcare.
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USE OF LARGE LANGUAGE MODELS

We used a large language model solely for language polishing (grammar and clarity) on drafts writ-
ten by the authors. The LLM did not generate technical content, equations, code, analyses, figures,
or results, and it was not used for ideation, literature search, data labeling, or experiments. All
scientific claims and evaluations were produced and validated by the authors.
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A APPENDIX

A.1 VHSMARKER ANNOTATION MODES

© Ground Truth Prediction Show Both Ground Truth @ Prediction Show Both Ground Truth Prediction @ Show Both

Figure 5: VHSMarker annotation modes: Ground Truth, Prediction, and Show Both, enabling pre-
cise adjustment and model comparison.

The three annotation modes are:

* Ground Truth: for manual labeling of cardiac key points.
* Prediction: for automated visualization of MambaVHS predictions.

* Show Both: for side-by-side comparison and adjustment.

These options streamline annotation, error correction, and model evaluation during large-scale
dataset creation.

A.2 VHS AwWARE LOSS

Algorithm 1 VHSAwareLoss Calculation

Inputs: Predicted VHS vPred True VHS 0™, thresholds 71 =8.2, 75,=10, margin ¢, middle mul-
tiplier m, class weight w,
Output: Lyys
1. Derive classes from thresholds
0 ifo™e <7y

y+—<1 ifm <o <7y
2 if o > 7y
0 ifoPred < 7y

g+ <1 ifr <oed <y
2 ifoPed > g

2. Base regression term (L1)
Lreg — |,Upred _ ,Utrue|
3. Class mismatch penalty

[fcls — “4[?9 7é y]
4. Margin-aware boundary penalty
max(0, vP* — (7 +6)), y=0
Lonargin < § max(0, 71 — vP®) + max (0, vP® — (o + 2)), y=1
max(0, (1o — §) — vPed), y=2

5. Final loss
Lvus Ereg + we (Ecls + £margin)
return Lyys
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A.3 BREED INFORMATION

For completeness, Table [6] lists the full breed distribution of the CCK dataset, complementing the
summary presented in Section 3]

Table 6: Complete breed distribution.

# Breed Count

1  Mixed Dog 1256

2 Labrador Retriever 479

3 Golden Retriever 191

4  German Shepherd 164

5  Chihuahua 100

6  Boxer 79

7  Shih Tzu 77

8  Yorkshire Terrier 77

9  French Bulldog 76
10  English Bulldog 72
11  Canine, NOS 67
12 Miniature Poodle 62
13 Siberian Husky 61
14 Border Collie 57
15 Beagle Hound 56
16 Pomeranian 52
17  Cavalier King Charles Spaniel 51
18  Pug 48
19  Boston Terrier 44
20  Jack Russell Terrier 44
21  Maltese 44
22 Australian Shepherd 42
23 Shetland Sheepdog 42
24 Rottweiler 41
25  English Cocker Spaniel 35
26  Great Dane 34
27  Bernese Mountain Dog 32
28  Miniature Schnauzer 32
29  Cock-A-Poo 31
30 Standard Poodle 31
31 Havanese 30
32 Dachshund, NOS 28
33  Doberman Pinscher 26
34  Labradoodle 26
35  Great Pyrenees 24
36  Smooth Miniature Dachshund 23
37  English Setter 21
38  Australian Cattle Dog 20
39  Toy Poodle 20
40  Chinese Sharpei 20
41  Bichon Frise 19
42 American Bulldog 18
43 Pembroke Welsh Corgi 18
44 West Highland Terrier 18
45 Rhodesian Ridgeback 18
46  English Springer Spaniel 17
47  American Staffordshire 17
48  Miniature Pinscher 16
49  Brittany Spaniel 16
50 Long-Haired Std Dachshund 14
51  German Short-Haired Pointer 14
52  Terrier, NOS 14
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# Breed Count
53 Basset Hound 13
54  Newfoundland 13
55  Bull Mastiff 12
56 Long-Haired Mini Dachshund 12
57 Bulldog, NOS 12
58  Belgian Malinois 12
59  Lhasa Apso 11
60  Greyhound 11
61  Bull Terrier 10
62  Irish Setter 10
63  Catahula Leopard Dog 9
64  Saint Bernard 9
65  Cocker Spaniel, NOS 9
66  Cairn Terrier 9
67  Rat Terrier 9
68  Irish Wolfhound 9
69  Collie, NOS 9
70  Cane Corso 8
71  Red Bone Hound 8
72 Samoyed 7
73  Chesapeake Bay Retriever 7
74 Vizsla 7
75  Smooth Standard Dachshund 7
76  American Pit Bull Terrier 7
77  Whippet 7
78  Akita 6
79  Leonberger 6
80  Schipperke 6
81  American Eskimo Dog 6
82  Mexican Hairless 6
83  Coonhound 5
84  English Mastiff 5
85  Silky Terrier 5
86  German Wire-Haired Pointer 5
87  Weimaraner 5
88  Papillon 5
89  Scottish Terrier 5
90  Staffordshire Bull Terrier 5
91 Mastiff, NOS 5
92  Hound, NOS 5
93  Keeshond 5
94  Giant Schnauzer 4
95  Airedale Terrier 4
96 Coton De Tulear 4
97  Swiss Mountain Dog 4
98  English Shepherd 4
99  Nova Scotia Duck Tolling Retriever 4

100  Saluki 4
101  TItalian Greyhound 4
102  Flat-Coated Retriever 4
103 Shiba Inu 4
104  Treeing Walker Coonhound 4
105 Bloodhound 3
106  Chinese Crested 3
107  American Foxhound 3
108  Tibetan Terrier 3
109  Neapolitan Mastift 3
110 Australian Heeler 2
111 Spinone Italiano 2
112 Briard 2
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# Breed Count
113 Old English Sheepdog 2
114 Borzoi 2
115  Alaskan Malamute 2
116  Norwegian Elkhound 2
117  German Long-Haired Pointer 2
118  Affenpinscher 2
119  Peke-A-Poo 2
120 Anatolian Shepherd 2
121  Wirehaired Pointing Griffon 2
122 Toy Manchester Terrier 2
123 Clumber Spaniel 2
124 Standard Schnauzer 2
125  Irish Water Spaniel 1
126  Shiloh Shepherd 1
127  Cardigan Welsh Corgi 1
128  American Bully 1
129  Japanese Chin 1
130 English Coonhound 1
131  Border Terrier 1
132 Setter, NOS 1
133 Tibetan Spaniel 1
134 American Cocker Spaniel 1
135  Australian Terrier 1
136 Welsh Terrier 1
137  Norfolk Terrier 1
138 Dalmatian 1
139 Pharaoh Hound 1
140  Springer Spaniel 1
141  Silken Windsprite 1
142 Wirehaired Standard Dachshund 1
143  Retriever, NOS 1
144 Soft-Coated Wheaten Terrier 1
145 Maremma Sheepdog 1
146 Unknown 8039

Total 12385
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