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Abstract

Despite their impressive results, large-scale image-to-3D generative models re-
main opaque in their inductive biases. We identify a significant limitation in
image-conditioned 3D generative models: a strong canonical view bias. Through
controlled experiments using simple 2D rotations, we show that the state-of-the-art
Hunyuan3D 2.0 model can struggle to generalize across viewpoints, with perfor-
mance degrading under rotated inputs. We show that this failure can be mitigated
by a lightweight CNN that detects and corrects input orientation, restoring model
performance without modifying the generative backbone. Our findings raise an
important open question: Is scale enough, or should we pursue modular, symmetry-
aware designs?

1 Introduction

O
b
se

rv
a
t
io

n
S
pa

c
e

x

g
·x

Id
e
n
t
it

y
p
r
e
se

rv
e
d

In
p
u
t

P
o
in

t
c
lo

u
d

E
u
c
li

d
e
a
n

D
is

ta
n
c
e

M
a
h
a
la

n
o
b
is

D
is

ta
n
c
e

d
2 I
(u

,
v
)

=
(u

�
v
)�

I(
u

�
v
)

=
�u

�
v
�2 2

d
2 M

(u
,
v
)

=
(u

�
v
)�

M
�

1
(u

�
v
)

v u 1

Observation Space

x

g · x

Identity preserved
Input Pointcloud

Euclidean Distance

Mahalanobis Distance

d
2
I(u,v) = (u � v)�I(u � v)

= �u � v�2
2

d
2
M(u,v) = (u � v)�M�1(u � v)

v

u

1

Observation Space

x

g · x

Identity preserved
Input Pointcloud

Euclidean Distance

Mahalanobis Distance

d
2
I(u,v) = (u � v)�I(u � v)

= �u � v�2
2

d
2
M(u,v) = (u � v)�M�1(u � v)

v

u

1

Observation Space

x

g · x

Identity preserved
Input Pointcloud

Euclidean Distance

Mahalanobis Distance

d
2
I(u,v) = (u � v)�I(u � v)

= �u � v�2
2

d
2
M(u,v) = (u � v)�M�1(u � v)

v

u

1

Observation Space

x

g · x

Identity preserved
Apply Rotation Group
Input Pointcloud

Euclidean Distance

Mahalanobis Distance

d
2
I(u,v) = (u � v)�I(u � v)

= �u � v�2
2

d
2
M(u,v) = (u � v)�M�1(u � v)

v

u

1

O
b
se

rv
a
t
io

n
S
pa

c
e

x

g
·x

Id
e
n
t
it

y
p
r
e
se

rv
e
d

A
p
p
ly

R
o
ta

t
io

n
G

r
o
u
p

3
D

W
o
r
ld

S
pa

c
e

In
p
u
t

P
o
in

t
c
lo

u
d

E
u
c
li

d
e
a
n

D
is

ta
n
c
e

M
a
h
a
la

n
o
b
is

D
is

ta
n
c
e

d
2 I
(u

,
v
)

=
(u

�
v
)�

I(
u

�
v
)

=
�u

�
v
�2 2

d
2 M

(u
,
v
)

=
(u

�
v
)�

M
�

1
(u

�
v
)

v u 1

Figure 1: Equivariance between world
and observation spaces preserves identity.

The expressivity of generative models, particularly dif-
fusion architectures, has led to unprecedented success in
3D content creation from single images. These models
promise to learn the complex distribution from a mixture
of curated 3D training data and image foundation mod-
els. However, this success raises a foundational question:
What inductive biases are actually learned during train-
ing, and how do they impact generalization? In the phys-
ical world, objects retain their identity despite changes
in position and orientation. However, when these ob-
jects are projected into an observation space, such as
an image, transformations result in structured variations
in appearance. A model that genuinely understands 3D
structure should therefore maintain object identity across
these transformations, exhibiting equivariance between
the 3D world space and its representation in the observa-
tion space.

Established works argue that symmetry should be encoded rather than merely discovered: group-
equivariant CNNs enforce rotation/reflection structure in 2D [2], and SE(3)-equivariant networks
extend this to 3D representations [11, 3]. In contrast, popular image-to-3D pipelines often inherit
dataset view biases (e.g., canonical front views), which can encourage shortcut solutions over true
geometry [1, 6]. Recent efforts try to counter this bias through two main strategies: fine-tuning
models on orientation-aligned data to directly produce canonical outputs [8], or normalizing the input

EurIPS 2025 Workshop on Principles of Generative Modeling (PriGM).
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Figure 2: Rotating the input image breaks the image-to-3D pipeline (canonical-view bias), while a
lightweight CNN predicts the rotation and applies its inverse to re-canonicalize the image before 3D
generation, restoring performance. Note that the degraded 3D mesh is rotated to the canonical frame
for better visualization.

pose before reconstruction. The viability of the latter is supported by foundational work showing that
simple networks can effectively predict 2D image rotation [4].

We position our study within this landscape, using in-plane rotations of the input image as a controlled
probe of whether the Hunyuan3D 2.0 image-to-3D pipeline [15], a current state-of-the-art model,
exhibits genuine equivariance or instead relies upon on canonical views. A model that internalizes
3D structure should be equivariant to such transformations, maintaining object identity as the
observation rotates. However, the prevalence of canonical orientations in large-scale image corpora
may incentivize shortcut learning, yielding a preference for canonical views rather than robust 3D
geometry. We refer to this as canonical-view bias, which limits generalization to arbitrarily oriented
inputs.

Contributions This work investigates the impact of viewpoint biases in image-to-3D generation. (i)
We empirically identify a strong canonical view bias in the Hunyuan3D generative model, particularly
for object categories with well-defined orientations, such as airplanes, chairs, and cars. (ii) We
demonstrate that this bias can significantly degrade 3D generation quality when input images are
rotated away from their canonical poses. (iii) We show that a lightweight CNN-based pre-processing
module, trained to detect and correct image orientation, can effectively restore generation quality,
without requiring any changes to the generative model itself.

2 Methodology
2.1 Image-to-3D Generative Model
Our investigation focuses on Hunyuan3D [15], a state-of-the-art flow-matching architecture for
single-image 3D generation. The model adopts a decoupled pipeline, separating 3D representation
learning from the generative process. To obtain the 3D representation, high-level semantic features
are extracted from the input image using a frozen DINOv2-based encoder [9]. These features are
projected into a latent space as vector sets [14], which serve as implicit representations of complex
3D shapes. The generative component is a flow-matching diffusion transformer trained in this latent
space to predict object token sequences from the input image. These token sequences are decoded
into Signed Distance Functions (SDFs), which are subsequently converted into triangle meshes via
iso-surfacing [7].

This architecture implies that the model’s synthesis quality is bottlenecked by the feature fidelity of
its 2D encoder. If the DINOv2 encoder exhibits a bias toward canonical object views, it may produce
distorted feature representations when processing rotated inputs.
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2.2 Probing for Canonical View Bias
Curated Dataset. To investigate the model’s sensitivity to input orientation, we constructed a
targeted evaluation dataset comprising three object categories with well-established canonical poses:
airplanes, chairs, and cars. Images were sourced from publicly available repositories and manually
curated to ensure the presence of a single, dominant object in each image, minimal occlusion, and
sufficient diversity across object instances.

Rotational Transformations. To systematically evaluate robustness to viewpoint variation, we
apply a set of in-plane 2D rotations to each image in the dataset. Specifically, each source image I is ro-
tated by angles ✓ 2 {0�

, 90�
, 180�

, 270�}, producing a set of transformed inputs {I
0
0, I

0
90, I

0
180, I

0
270}.

Here, 0� denotes the original, canonical orientation.

Evaluation Metric: Cross-Modal Similarity (ULIP). To quantitatively assess the semantic fidelity
of the generated 3D shapes, we employ the ULIP (Unified Language-Image Pre-training) score [13],
which enables direct comparison between modalities by embedding 2D images and 3D shapes into a
shared semantic space. In our setup, each generated mesh is converted into a point cloud of 8,192
points, and 3D features are extracted using a pretrained Point-BERT variant integrated within the
ULIP framework. The ULIP score is computed as the cosine similarity between the image and point
cloud embeddings, with higher scores indicating stronger semantic alignment between the input
image and the generated 3D shape.

Evaluation Procedure. For each rotated image I
0
✓, we use the Hunyuan3D model to generate a

corresponding 3D shape M
0
✓, and compute the associated ULIP score:

S✓ = ULIP(I 0
✓, M

0
✓).

By comparing scores across rotation angles, we assess the model’s robustness to input orientation
and identify any performance degradation when the input deviates from the canonical view.

2.3 A Lightweight CNN-based Orientation Corrector
To mitigate orientation bias, we introduce a lightweight pre-processing module: a compact orientation
classifier based on EfficientNetV2, equipped with a 4-way softmax output. We provide more
information on the orientator in Appendix A. Given an input image I , the classifier produces logits
z(I) 2 R4, corresponding to discrete rotation angles {0�

, 90�
, 180�

, 270�}. The predicted rotation
r
? is obtained by

r
? = arg max

k
zk(I),

after which the image is rotated back to a canonical orientation. We employ publicly available
pretrained weights for the classifier without any additional fine-tuning. With only 20.3M parameters,
negligible compared to the 2.8B parameters of the generative model, the classifier achieves 96.2%
accuracy in our evaluations.

3 Results and Analysis
3.1 Canonical-View Bias in Hunyuan3D 2.0
We observe a consistent decline in ULIP similarity scores as the input image is rotated away from the
canonical 0� orientation across all evaluated categories: airplanes, chairs, and cars. In each case, the
0� view yields the highest similarity, while rotated views at 90�, 180�, and 270� result in significantly
lower scores, revealing a clear sensitivity to input orientation rather than robust 3D understanding
(Fig. 3).

This trend is further supported by qualitative analysis. Inputs at non-canonical angles often lead to
systematic geometric failures; for example, collapsed or sheared airplane wings, and misaligned or
duplicated chair legs, whereas outputs from canonical views remain structurally coherent and faithful
to the object’s shape (Fig. 4).

Effect of Inference Steps. We evaluated whether increasing the number of diffusion inference
steps mitigates the orientation bias. Across categories and view angles, we observed no consistent
trend: additional steps sometimes yielded small gains for non-canonical inputs, but the improvements
were unstable and insufficient to close the gap to the 0� view. This suggests the bias is embedded in
the learned representation rather than an artifact of under-converged sampling.

3
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Figure 3: ULIP similarity (higher is better) versus diffusion inference steps for Hunyuan3D 2.0 under
four in-plane input rotations {0�

, 90�
, 180�

, 270�}, shown separately for (a) airplanes, (b) chairs, and
(c) cars. Across all categories, the canonical 0� view consistently achieves the highest ULIP, while
non-canonical rotations suffer substantial drops.
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Figure 4: Qualitative effect of input rotation on Hunyuan3D 2.0. For each object, the input image is
rotated by {0°, 90°, 180°, 270°}. To ensure comparability, all generated meshes are reoriented to a
common camera before being rendered from canonical front and side views. Non-canonical inputs
induce systematic geometric failures (e.g., collapsed airplane wings, misaligned/duplicated chair
legs), whereas the 0° view remains stable, illustrating a strong canonical-view bias.

3.2 Lightweight Orientation Corrector

To address the model’s sensitivity to input orientation, we introduce a compact CNN-based orientation
corrector that re-canonicalizes input images prior to 3D generation. Importantly, this correction is
applied as a pre-processing step and does not require any modification to the generative backbone.
After correction, ULIP scores closely align with those obtained from images originally presented at
the canonical 0� view (Table 1), demonstrating the effectiveness of this lightweight intervention.

Table 1: ULIP scores (mean ± std) by category and input condition. Our lightweight CNN corrector
restores performance close to the canonical view across all categories.

Input Image Condition Airplanes Chairs Cars

Canonical View (0�) 0.166 ± 0.047 0.184 ± 0.07 0.176 ± 0.07
Rotated View (avg. non-canonical) 0.126 ± 0.048 0.155 ± 0.06 0.132 ± 0.06
Rotated View + CNN Corrector 0.166 ± 0.047 0.181 ± 0.06 0.170 ± 0.07
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4 Discussion and Conclusion
Discussion. Our findings reveal a clear canonical-view bias in a state-of-the-art image-to-3D pipeline.
Specifically, rotating input images by 90�, 180�, or 270� consistently leads to lower ULIP similarity
scores across object categories such as airplanes, chairs, and cars, with the 0� (canonical) view
performing best in all cases (Fig. 3). Qualitative results further illustrate structured geometric artifacts
in outputs from non-canonical views, for example, collapsed or sheared wings and duplicated chair
legs, while canonical inputs yield stable and coherent reconstructions (Fig. 4).

Notably, increasing the number of diffusion inference steps fails to mitigate this discrepancy, suggest-
ing that the degradation stems from limitations in the learned representation itself rather than from
insufficient sampling or premature convergence. To address this, we demonstrate that a lightweight
auxiliary network, trained to predict input rotation, can effectively recover performance to near-
canonical levels, without any modification to the underlying generative model (Table 1).

Limitations and Future Work. We identify three primary limitations of our current study, each of
which motivates future research directions:

1. Discrete Rotation Group (C4): Our analysis is limited to 90° in-plane rotations, corre-
sponding to the discrete cyclic group C4. Extending this evaluation to continuous in-plane
rotations (SO(2)) remains an open direction. Additionally, it would be valuable to explore
whether orientation-invariant or equivariant architectures, such as steerable CNNs that pro-
duce continuously equivariant features, can mitigate this bias more effectively than discrete
classification approaches.

2. Model Scope: Our experiments focus exclusively on Hunyuan3D 2.0 [15]. However, other
image-to-3D models such as TripoSR [12], OpenLRM [5], and others, are also promising
candidates for assessing rotation-induced degradation and for testing the generality of our
correction strategy.

3. Category Coverage: This study focuses on object categories with well-defined canonical
views, such as airplanes, chairs, and cars. An open question is whether similar canonical-
view biases persist in more diverse or less geometrically constrained categories.

Conclusion. These findings suggest that scaling alone is unlikely to resolve the observed failure
modes. We demonstrate that a lightweight CNN, trained to detect and correct input orientation,
can effectively mitigate these issues and restore model performance, all without modifying the
generative backbone. While our study focuses on a constrained problem setting, the results highlight
the importance of encoding natural symmetries into the representation pipeline, raising interesting
questions for future research.
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