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ABSTRACT

Retrieval-Augmented Generation (RAG) has shown substantial promise in im-
proving factual accuracy by grounding model responses with external knowledge
relevant to queries. However, most existing approaches are limited to a text-only
corpus, and while recent efforts have extended RAG to other modalities such as
images and videos, they typically operate over a single modality-specific corpus.
In contrast, real-world queries vary widely in the type of knowledge they require,
which a single type of knowledge source cannot address. To this end, we introduce
UniversalRAG, designed to retrieve and integrate knowledge from heterogeneous
sources with diverse modalities and granularities. Specifically, motivated by the ob-
servation that forcing all modalities into a unified representation space derived from
a single aggregated corpus causes a modality gap, where the retrieval tends to favor
items from the same modality as the query, we propose modality-aware routing that
dynamically identifies the most appropriate modality-specific corpus and performs
targeted retrieval within it. Also, beyond modality, we organize each modality into
multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity
and scope of the query. We validate UniversalRAG on 8 benchmarks of multiple
modalities, showing superiority over modality-specific and unified baselines.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance across various tasks,
and have been widely adopted in services to assist users in everyday life (Anil et al., 2023; OpenAI,
2024). Yet, LLMs often generate factually incorrect or misleading information, especially on topics
they were less or not exposed to during training (Zhang et al., 2023; Huang et al., 2025). To address
this, Retrieval-Augmented Generation (RAG) has emerged as a promising approach, which allows the
model responses to be grounded in the query-relevant knowledge retrieved from external knowledge
sources, enhancing factual accuracy (Lewis et al., 2020; Gao et al., 2024; Chen et al., 2024a).

Despite its effectiveness, existing RAG approaches are typically designed for a single corpus and
modality, limiting their ability to address queries that require diverse knowledge sources. In practice,
as shown in Figure 1, user queries vary widely in the type of knowledge they require: some are best
answered using text (e.g., surface-level facts and definitions), others demand visual understanding
from images (spatial relations of objects), and yet others require temporal reasoning supported by
videos (step-by-step instructions with dynamic scenes). Yet, the field of RAG primarily originates
with a textual corpus (Lewis et al., 2020; Jiang et al., 2023; Yan et al., 2024), and although recent
efforts have expanded it to modalities beyond text (such as images and videos) (Riedler & Langer,
2024; Abootorabi et al., 2025; Jeong et al., 2025), existing RAG methods individually are typically
modality- and corpus-specific; therefore, they may be suboptimal to serve as a universal, one-for-all
framework that can flexibly handle the wide range of queries, whose knowledge requirements vary.

In this work, we present UniversalRAG, a novel RAG framework that brings together knowledge
distributed across multiple modality-specific corpora, and leverages them to generate grounded
responses to queries in a universal workflow. To operationalize this, one straightforward approach
might be to aggregate all entries from the collected, heterogeneous knowledge corpora, and embed
them into a unified space using a multimodal encoder (which is typically trained to align inputs from
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Figure 1: Illustration of different RAG approaches. (A) RAG with Single Modality struggles to handle
queries requiring modalities other than one in the corpus; (B) Single Granularity lacks flexibility in
granularity, resulting in overly fine or overly coarse information; (C) Single Unified Corpus causes
modality gaps that bias retrieval toward the modality of the query; (D) Our UniversalRAG overcomes
these limitations via a modality- and granularity-aware routing mechanism over diverse corpora.

different modalities if they are semantically similar). However, despite such alignment efforts, we
find that this strategy suffers from modality gaps (Zhang et al., 2025; Bolya et al., 2025; Wang et al.,
2024b), the tendency that inputs are clustered based on their modality rather than their semantic
meaning (visualized in Figures 2 and 7). As a result, retrieval becomes biased toward knowledge
sources that share the same modality as the query, overlooking relevant content from other modalities.

Text
Corpus

Image
Corpus

Video
Corpus

Query
Text
Image
Video

Figure 2: t-SNE result of
unified embedding space.

To address this challenge, instead of relying on a unified embedding space
that forces all modalities into the shared representation, we take a different
direction: introducing a modality-aware routing strategy. Specifically,
UniversalRAG dynamically determines the most suitable knowledge
source to retrieve from, based on the modality requirement of the given
query, then routes the retrieval process to the corresponding modality-
specific corpus. It is worth noting that this strategy not only sidesteps
modality gaps by avoiding every cross-modal comparison but also enables
seamless integration of new modalities by extending the routing logic
without modifying existing modality-specific retrievers.

Beyond modality, another important angle is data granularity (the size or unit of each entry in the
corpus), which impacts both retrieval precision and generation quality (Chen et al., 2024b; Zhong
et al., 2025), since different queries benefit from different levels of granularity even within the
same modality: overly fine-grained entries can dilute context, while overly coarse ones may bundle
unrelated information. For example, complex analytical questions may require full documents or
videos, while simple factoid questions are better served with a single paragraph or short video clip.

To accommodate this aspect, we further break down each modality into multiple granularity levels,
organizing them into distinct corpora: textual documents are additionally segmented into paragraphs
and stored in a paragraph-level corpus, and similarly, full-length videos are divided into short clips
and stored, while images are kept intact since they are inherently piecemeal. Overall, with these
modality- and granularity-aware corpora (including paragraphs, documents, images, clips, and videos)
in place, as well as an additional no-retrieval option to efficiently handle straightforward queries
(that require no external knowledge), our UniversalRAG dynamically routes each query to the most
relevant knowledge source, ultimately supporting the diverse information needs of real-world users.

We validate UniversalRAG on 8 benchmark datasets spanning diverse modalities (Yang et al., 2018;
Kwiatkowski et al., 2019; Chen et al., 2020; Hendrycks et al., 2021; Chang et al., 2022; Wang et al.,
2024a; Jeong et al., 2025). It outperforms all baselines by large margins on average, demonstrating
its effectiveness in handling diverse types of queries in realistic scenarios. Moreover, UniversalRAG
improves overall efficiency by considering the appropriate levels of granularity (to avoid unnecessary
use of lengthy documents or videos), and even maintains robustness on out-of-distribution datasets.

2 METHOD

We present UniversalRAG, which retrieves knowledge from multi-modal, multi-granularity corpora.

2.1 PRELIMINARIES

Large Vision Language Models Let us first define LLMs, which take an input sequence of tokens
x = [x1, x2, . . . , xn] and generate an output sequence of tokens y = [y1, y2, . . . , ym], formalized
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as follows: y = LLM(x), where xi and yi are represented in text. Building on top of LLMs, Large
Vision-Language Models (LVLMs) extend their capability to support multimodal understanding by
incorporating visual encoders (Bai et al., 2023; Chen et al., 2024c; Liu et al., 2024; Li et al., 2024a;
Chen et al., 2025; Bai et al., 2025), allowing them to process both the textual and visual inputs.
Formally, similar to LLMs, LVLMs can be functionalized as follows: y = LVLM(x), whose input
token xi is extended to either textual or visual. However, despite the fact that they are extensively
trained, LVLMs themselves are limited to their parametric knowledge, and often struggle with queries
that require (fine-grained or up-to-date) information, less or not exposed during training.

Retrieval-Augmented Generation To address the aforementioned limitations of using only the
parametric knowledge internalized in models themselves, RAG has been widely used, whose core
idea is to retrieve query-relevant information from a large corpus and incorporate it into the generation
process. Formally, in response to a query q, a retrieval model T fetches the relevant context c from a
corpus C, formalized as follows: c = T (q; C) where c ∈ C. Then, in the subsequent generation step,
the LVLM generates a response a conditioned on both the query and retrieved context, denoted as
follows: a = LVLM(q, c). However, most existing RAG approaches are restricted to retrieving from
a single corpus consisting of entries from a single modality (such as only the textual documents),
limiting their ability to handle diverse queries with knowledge requirements that vary across them.

2.2 UNIVERSALRAG

We now turn to introduce UniversalRAG, a novel RAG framework that dynamically identifies and
routes queries to the most appropriate modality and granularity of knowledge, for targeted retrieval.

Challenges in Multi-Corpus Retrieval To accommodate the diverse knowledge needs of real-world
queries, which may involve heterogeneous sources spanning different modalities, we consider a set of
modality-specific corpora, each containing items of a particular type, denoted by Cm for modality m.
A straightforward strategy is to aggregate all corpora into a unified corpus Cunified =

⋃
m∈M Cm and

embed all items into a shared space using a multimodal encoder, as for retrieval over a single corpus:
c = T (q; Cunified). However, we find this approach suffers from the modality gap (Figures 2 and 7),
where queries, being textual, align more closely with elements in the text corpus regardless of the
modality required. Therefore, instead of forcing all heterogeneous elements into the unified corpus,
we propose selectively engaging the most relevant, modality-specific corpora needed for queries.

Modality-Aware Retrieval To sidestep the modality gap issue (introduced by handling all modal-
ities over the unified space), we instead propose to break down the overall retrieval process into
two subsequent stages: 1) identifying the most relevant set of modalities for the given query; and 2)
performing targeted retrieval within the selected modality-specific corpora. Specifically, instead of
merging all modality-specific corpora into a single corpus, we preserve each corpus in its original form
with an independent embedding space. After that, to direct queries to their best-aligned knowledge
sources (based on their modality-specific needs), we introduce a routing module R that dynamically
predicts the subset of modalities best suited for a query q, yielding Mq = R(q) ⊆ M . Retrieval
is then restricted to the corresponding corpora {Cm | m ∈ Mq}, using any off-the-shelf retriever
Tm tailored to each modality, thereby avoiding the modality gap issue present in a unified space.
Proposition 1 formally states that modality-aware retrieval achieves higher effectiveness than unified
embedding when modality bias is present. We provide the proof for all propositions in Appendix C.

Proposition 1. Let the similarity score in the unified embedding space of Cunified be defined as

s(q, c) = α · 1{m(q) = m(c)}+ β · r(q, c) + ε,

where α > 0 is a modality bias, m(·) denotes the modality, and r(·) measures semantic relevance. If
α is sufficiently large relative to the variance of r, the probability of retrieving items from the required
modality m∗(q) is less than under modality-aware routing followed by within-modality retrieval.

However, while this routing principle mitigates the modality gap, organizing corpora solely by
modality might still be suboptimal, as different queries require varying levels of granularity.

Granularity-Aware Retrieval To accommodate the varying complexity and information scope
of different queries, we extend UniversalRAG to operate not only across modalities but also across
different levels of granularity within each modality. To be specific, rather than treating each modality-
specific corpus as a flat collection of items, we organize it into representations at multiple resolutions,
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enabling retrieval to target either fine-grained details or broader context as required by the query. For
example, a video corpus may be accessed at the level of short clips for focused questions or as full-
length videos when comprehensive understanding is required. Building on this richer organization of
corpora, the routing module R expands its prediction space to include modality-granularity pairs best
suited to a query, as well as a no-retrieval option for cases where external context is unnecessary:

R : Q → {∅} ∪ P

( ⋃
m∈M

{m} ×Gm

)
,

where Q is the space of queries, M is the set of modalities, Gm is the set of granularities available for
modality m, and P(·) denotes the power set. Once the router predicts the relevant pairs, retrieval is
performed over the corresponding corpora, using retrievers specialized for each modality to obtain the
relevant content c. Finally, the LVLM generates the answer a with c, customized to the modality and
granularity for the query, thereby enabling the universal, one-for-all RAG framework. Proposition 2
states that adapting granularity to the query always yields strictly higher expected response quality.

Proposition 2. Let F (Q;m, g) be the expected response quality when retrieving from modality m
using granularity g. If there exist queries q1, q2 and granularities gf , gc such that

F (q1;m, gf ) > F (q1;m, gc) and F (q2;m, gc) > F (q2;m, gf ),

then the routing policy that assigns gf for q1 and gc for q2 achieves strictly higher expected quality
than any fixed-granularity choice.

2.3 ROUTER IMPLEMENTATION STRATEGIES IN UNIVERSALRAG

A key component of UniversalRAG is the router, which is responsible for determining the optimal
modality and granularity of knowledge for the given query. We consider two operational strategies.

Training-based Router To tailor the available model for the routing task, we first consider training
it to predict the appropriate modality–granularity pair for each query. However, since ground-truth
labels (for the modality and granularity the query should be routed to) are not available, we leverage
inductive biases in existing benchmarks, mapping each dataset to routing targets that match its task
characteristics (e.g., clip retrieval for localized events vs. full-video retrieval for long-range video
understanding), allowing us to automatically curate a labeled corpus without manual annotation. We
then train a lightweight model, such as DistilBERT (Sanh et al., 2019), to serve as the router. At
inference time, to account for cross-modality needs, the router may output multiple configurations
when their confidence scores exceed a threshold, enabling cross-modality or multi-granularity retrieval
when necessary, while standard single-modality queries remain routed to their single best match.

Training-free Router Alternatively, we also explore a training-free approach that leverages the
broad knowledge and robust reasoning capabilities of modern frontier models, such as Gemini (Anil
et al., 2023). Instead of learning from labeled data, the model is directly prompted to act as routers.
Specifically, we first design the prompt template (used to elicit routing), which describes the objective
and includes examples demonstrating how different types of queries correspond to specific retrieval
targets (See Figure 8 for details). Then, at inference, the model is prompted with this template to
predict the most suitable modality-granularity pairs from a predefined set. This eliminates the need for
supervised labels or task-specific training, offering the flexibility to adapt to new tasks and domains.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

We explain the experimental setup, including datasets, models, metrics, and implementation details.

Datasets To evaluate UniversalRAG, we compile a comprehensive benchmark with various datasets
for RAG, spanning seven different modalities and granularities. Specifically, for the no-retrieval, we
use MMLU (Hendrycks et al., 2021), which assesses the capability of models themselves without
requiring external sources. For the text RAG setting, we incorporate representative datasets such as
Natural Questions (NQ) (Kwiatkowski et al., 2019), designed for single-hop RAG with paragraphs as
the retrieval units; and HotpotQA (Yang et al., 2018), which targets multi-hop RAG with documents
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(or sets of paragraphs) as the retrieval units. For the table RAG, we include HybridQA (Chen et al.,
2020), a benchmark that requires reasoning over tables combined with additional text sources. For the
image RAG, we consider WebQA (Chang et al., 2022), whose subset consists of queries that require
grounding in external images. Lastly, for the video RAG, we use three datasets: LVBench (Wang
et al., 2024a), whose queries target short or localized segments of video content; and VideoRAG-
Wiki (Jeong et al., 2025) and VideoRAG-Synth (Jeong et al., 2025) that often consist of queries
requiring comprehension of long-form (or complete) videos. Please see Appendix A for more details.

Knowledge Corpora To support diverse RAG scenarios with different modalities and granularities,
we consider their corresponding corpora. Specifically, for the text RAG, in addition to the Wikipedia
paragraph corpus compiled from Karpukhin et al. (2020), we also use the corpus of multi-paragraph
documents following Jiang et al. (2024b) to build it by aggregating Wikipedia paragraphs. For the
table corpus, we collect tables from the HybridQA benchmark. For the image, we use the corpus
from the WebQA, consisting of images. Lastly, for the video, we construct two corpora (according
to granularity): initially designing the video corpus by collecting full-length videos from LVBench
and VideoRAG datasets, and segmenting them into multiple clips to construct the clip-level corpus.
Together, these corpora define the seven routing pathways: None, Paragraph, Document, Table,
Image, Clip, and Video. We provide additional details on corpus construction in Appendix A.

Methods We compare UniversalRAG to a diverse set of 12 baselines, grouped into four cate-
gories. The first is Naïve, which directly answers queries without retrieving external knowledge. In
addition, the group of Unimodal RAGs includes ParagraphRAG, DocumentRAG, TableRAG,
ImageRAG, ClipRAG, and VideoRAG methods, which retrieve information only from their re-
spective modality-specific corpora and leverage it for response generation. The third group, Unified
Embedding Multimodal RAGs, includes approaches that utilize the single embedding space for
RAG, such as UniRAG (Sharifymoghaddam et al., 2025) and GME (Zhang et al., 2025) that perform
retrieval over multimodal data (such as text and images) by representing them into the shared space;
InternVideo2 (Wang et al., 2024b) and PEcore (Bolya et al., 2025) that use multimodal encoders
(trained to align different modalities) for representing videos as well as text and images. Lastly, All
is included in the last group of Multi-corpus Multimodal RAGs, which performs retrieval over
all the modality-specific corpora and incorporates the retrieved results into the LVLM for response
generation. Notably, as UniversalRAG is operationalized with different routing strategies, we imple-
ment its several variants: training-based variants, UniversalRAG (DistilBERT) and UniversalRAG
(T5-Large), which train DistilBERT (Sanh et al., 2019) and T5-Large (Raffel et al., 2020) with the
automatically constructed routing dataset to return the single-target prediction, and a training-free
variant, UniversalRAG (GPT-4.1), prompts GPT-4.1 (OpenAI, 2024) to select the most prominent
modality-granularity pair. A further variant, UniversalRAG (Cross-GPT-4.1), also leverages GPT-
4.1 but is prompted to allow the selection of multiple modality-granularity pairs, enabling retrieval
from diverse sources for queries that benefit from evidence across modalities. Finally, we include an
oracle setup (Oracle), which routes each query to its ideal corpus, non-comparable with others.

Evaluation Metrics We report results with standard metrics. For datasets with multiple-choice
questions, we report Top-1 Accuracy (Acc), the proportion of questions answered correctly. For short-
answer datasets, we use Exact Match (EM) and F1, which respectively measure exact agreement and
word-level overlap between predictions and references. For datasets with longer free-form answers,
we use ROUGE-L, which captures the longest common subsequences between the prediction and
reference (Lin, 2004), and BERTScore, which assesses their semantic similarity (Zhang et al., 2020).
We report the average score by averaging first within each modality, then across modalities.

Implementation Details For generations, we employ multiple LVLMs, including InternVL2.5-
8B (Chen et al., 2025), Qwen2.5-VL-7B-Instruct (Bai et al., 2025), and Phi-3.5-Vision-Instruct (Abdin
et al., 2024). Also, to take advantage of UniversalRAG in routing the retrieval process to the modality-
specific corpus, we use modality-specific encoders: bge-large-en-v1.5 (Xiao et al., 2024) for text,
InternVideo2 (Wang et al., 2024b) for vision, and dense row-level embedding (Ji et al., 2025) with
the text encoder for tables, retrieving the nearest entries via cosine similarity over their embedding
space. Lastly, for the router, we train it (for training-based variants) for 5 epochs with a learning
rate of 2e-5 for DistilBERT and for 10 epochs with a learning rate of 3e-5 for T5-Large, selected
based on validation accuracy; meanwhile, for the training-free variant, we prompt GPT-4.1 with task
objectives and examples, as shown in Figure 8. Further details are provided in Appendix B.
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Table 1: Results of diverse RAG methods with InternVL2.5-8B by modalities. Our UniversalRAG
is represented by the colored cells. Bold indicates the best performance and underline indicates the
second-best, among UniversalRAG approaches. R-L and BERT refer to ROUGE-L and BERTScore.

MMLU NQ HotpotQA HybridQA WebQA LVBench VideoRAG-Wiki VideoRAG-Synth
Avg

Models Acc EM F1 EM F1 EM F1 R-L BERT Acc R-L BERT R-L BERT

Naïve 64.50 24.71 38.11 12.92 20.87 0.86 4.91 40.63 90.30 28.60 15.74 84.20 14.93 85.73 31.16
ParagraphRAG 64.50 35.14 47.89 14.45 23.05 7.43 10.98 37.25 89.77 28.80 13.92 83.68 22.18 87.29 33.28
DocumentRAG 51.50 23.57 32.66 19.71 28.49 6.71 10.67 28.92 87.45 28.80 13.28 83.75 18.51 86.12 28.80
TableRAG 54.50 9.43 15.42 9.19 14.49 7.29 11.17 31.33 88.68 27.03 12.11 83.21 18.77 86.31 24.80
ImageRAG 54.50 23.57 32.96 13.11 20.18 1.29 5.53 46.50 91.32 31.64 17.26 83.79 20.72 87.02 30.68
ClipRAG 53.50 13.86 21.82 9.38 16.51 1.29 4.95 39.53 90.27 35.36 18.76 86.38 27.37 89.34 28.41
VideoRAG 59.50 14.43 22.98 9.95 16.95 1.29 5.03 40.08 90.51 33.59 19.23 86.35 28.23 89.45 29.36
UniRAG (Sharifymoghaddam et al., 2025) 57.50 16.14 27.49 9.57 16.49 0.43 3.61 43.98 90.89 25.27 15.86 83.95 24.75 88.22 28.14
GME (Zhang et al., 2025) 60.00 15.57 26.65 10.53 17.95 4.71 9.63 45.16 90.04 26.15 17.28 84.89 26.33 88.50 29.96
InternVideo2 (Wang et al., 2024b) 58.00 17.43 27.79 10.33 17.76 1.00 3.20 45.12 91.09 27.82 15.66 83.78 24.43 88.13 29.01
PEcore (Bolya et al., 2025) 60.50 16.57 27.34 9.76 16.67 1.29 4.19 44.19 90.84 28.31 15.91 83.98 23.63 87.99 29.20
All 58.50 28.86 41.72 16.17 26.63 5.57 10.13 40.39 90.32 32.62 15.33 85.03 26.87 88.92 33.60
UniversalRAG (DistilBERT) 62.50 34.86 47.08 18.56 26.96 7.86 12.04 46.32 91.28 35.65 19.23 86.35 28.23 89.45 36.82
UniversalRAG (T5-Large) 63.00 35.43 47.71 18.95 27.56 7.14 12.00 46.43 91.27 34.38 19.23 86.35 28.20 89.49 36.95
UniversalRAG (GPT-4.1) 65.00 34.86 47.60 15.89 23.84 8.57 12.13 44.74 91.00 31.15 13.95 83.68 22.49 84.71 35.27
UniversalRAG (Cross-GPT-4.1) 63.50 35.86 47.86 15.98 24.21 10.71 15.57 48.13 95.02 30.36 16.27 84.30 25.39 88.92 36.25
Oracle 64.50 35.14 47.89 19.71 28.49 12.00 17.16 46.50 91.32 35.65 18.79 86.38 27.45 89.35 38.31
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Figure 3: Comparison of averaged evaluation results across different RAG methods and LVLMs.

3.2 EXPERIMENTAL RESULTS AND ANALYSES

Now we present the overall results across diverse RAG scenarios spanning multiple modalities and
levels of granularity, followed by a detailed analysis of the observed performance improvements.

Overall Results We present the modality- and granularity-specific results in Table 1, along with
the averaged results with different LVLMs in Figure 3, from which we observe that UniversalRAG
consistently achieves the best performance on average. Specifically, in Table 1, the results compared
against the unimodal RAG baselines corroborate our hypothesis that retrieving from the modality
(or granularity) that aligns best with the information needs of queries achieves the highest accuracy;
however, mismatches between the query and retrieval source results in significant degradation, which
supports our claim that considering the diverse modalities in the universal workflow is necessary for
realistic RAG. Also, the level of granularity within each modality affects performance, suggesting that
fine-grained retrieval and generation are necessary. In addition to them, UniversalRAG significantly
outperforms another category of unified embedding multimodal RAG baselines (forcing all modalities
into a single space), confirming the issue of the modality gap inherent within them (Figures 2 and 7).
Lastly, when compared with the ‘All’ baseline (within the multi-corpus multimodal RAG category),
which results in suboptimal performance due to the inclusion of noise from irrelevant modalities
in generation, our UniversalRAG remains effective. Its strong performance is due to its core idea
around modality-specific routing, enabling the selective retrieval from the most relevant modality and
granularity for each query, yielding performance gains despite using several corpora.

Effectiveness of Cross-Modal Retrieval While many queries can be addressed by using a single,
most prominent modality, certain tasks benefit from integrating evidence across multiple modalities.
For instance, WebQA involves visually grounded questions that pair text with images, while Hy-
bridQA requires reasoning that spans both structured tables and accompanying textual sources. In such
cases, UniversalRAG (Cross-GPT-4.1), which enables retrieval from multiple modality-granularity
sources, demonstrates clear advantages over unimodal variants by aggregating cross-modal evidence.
As shown in Table 1, the cross-modal variant achieves overall improvements across benchmarks, with
large gains on WebQA and HybridQA. These results highlight the value of cross-modal retrieval in
scenarios when single-modality evidence is insufficient, but also the flexibility of UniversalRAG to
support both single- and cross-modal retrieval; however, they also suggest that current benchmarks
underrepresent such cross-modal queries, suggesting the need for a richer evaluation suite.

Effectiveness of Modality Routing To investigate the benefit of our routing method, we compare
the distribution of retrieved modalities among InternVideo2, GME, and UniversalRAG (DistilBERT),
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Table 2: Modality accuracy (in corpus selection)
and recall of retrieved items for retrieval methods.

Modality
Acc

Recall
Models R@1 R@3 R@5

UniRAG 25.00 0.02 0.05 0.06
GME 41.29 23.01 34.29 40.80
InternVideo2 25.00 1.87 2.44 4.01
PEcore 25.00 0.98 1.34 1.72
UniversalRAG (DistilBERT) 83.64 29.73 45.19 53.24
UniversalRAG (T5-Large) 87.71 32.01 46.68 54.09
UniversalRAG (GPT-4.1) 68.85 19.92 32.77 37.80

Table 3: Performance across different numbers of
granularity (#Gn) for two router models.

HotpotQA LVBench
Models #Gn EM F1 Acc

GPT-4.1

1 11.00 21.91 29.29
2 15.89 23.84 31.15
3 15.79 24.11 31.15
4 15.60 23.64 31.83

Gemini 2.5 Flash

1 14.45 22.99 31.48
2 17.61 25.79 32.57
3 17.27 24.95 32.81
4 17.70 25.86 33.60

summarized in Figure 4. Using 200 sampled queries per benchmark and normalizing distributions for
balance, we find that InternVideo2 retrieves only text (including tables), while GME exhibits a similar
bias toward text regardless of the actual modality required for the given query. This highlights how
the modality gap in the unified embedding space makes retrieval ineffective. However, UniversalRAG
distributes retrieval more evenly across modalities, demonstrating that the query router effectively
mitigates modality bias and adaptively directs queries to the most suitable knowledge source. This
also results in high modality retrieval accuracy – the accuracy with which the correct modality (i.e.,
none, text, image, or video) is retrieved – which directly translates to high recall of the retrieved items,
as shown in Table 2. Specifically, while GME achieves comparable recall on text and image corpora,
its inability to accurately retrieve from the correct modality leads to lower recall on multimodal
corpora that include videos. Yet, UniversalRAG, with trained routers, consistently retrieves from the
correct modality, enabling it to achieve higher retrieval recall than baselines across all scenarios.

Effectiveness of Multigranularity Given the observed benefits of corpus selection in Table 1,
we further investigate its impact beyond modality choice by comparing UniversalRAG at varying
levels of granularity. Table 3 shows that incorporating granularity-aware corpus selection leads to
consistent performance gains by avoiding the retrieval of context that is either insufficient (e.g., a
short paragraph lacking key entities for multi-hop reasoning) or excessive (e.g., a full video when only
a short clip is relevant), both of which can hinder accurate response generation. Also, as additional
granularity levels are introduced, we observe further improvements in some cases, though gains are
not strictly monotonic across tasks, reflecting the trade-off between context sufficiency and noise.
In the meantime, we adopt a binary level of granularity in our main experiments to strike a balance
between effectiveness and efficiency. Results with trained router variants are reported in Table 10.

Retrieval Efficiency of Modality-Specific Retrieval Beyond accuracy, UniversalRAG also im-
proves efficiency by reducing the search space: it leverages modality- and granularity-aware routing
to restrict retrieval to only the most relevant sources, instead of querying a unified embedding index
that aggregates all modalities into a single mega-corpus. Also, the overhead for routing is small as
this cost is outweighted at scale by the reduced search space, leading to sub-linear latency growth as
corpus size increases, as shown in Figure 5. Specifically, UniversalRAG eventually achieves lower
latency than unified embedding methods at large corpus sizes, with the gap widening further at very
large scales (e.g., beyond 10M entries). This scalability makes UniversalRAG a practical solution for
real-world applications, where corpora are significantly larger than our experimental settings.

Analysis on Router Size To examine whether the routing cost (while already small) can be further
reduced by using smaller models as routers without sacrificing accuracy, we train six models (Liu
et al., 2019; Radford et al., 2019; Sanh et al., 2019; Lan et al., 2020; Raffel et al., 2020; Zhang et al.,
2022) ranging from 12M to 1.3B parameters and measure router accuracy. As Figure 6 shows, router
accuracy increases with larger model sizes within each architecture, suggesting the scalability of our
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Table 4: Input token efficiency with respect to
RAG performance on text and video datasets.

Models Avg # Tokens ↓ Avg Score ↑

Text-based Generation Scenarios

ParagraphRAG 182 35.47
DocumentRAG 3912 30.57
UniversalRAG (DistilBERT) 2126 37.02

Video-based Generation Scenarios

ClipRAG 2154 24.37
VideoRAG 8466 25.07
UniversalRAG (DistilBERT) 6236 26.48

Table 5: Router accuracy and generation perfor-
mance across retrieval methods on two settings.

In-Domain Out-Domain

Router
Acc

Avg
Score

Router
Acc

Avg
ScoreModels

Random 14.29 28.91 16.67 29.99

UniversalRAG (DistilBERT) 81.38 36.86 40.10 32.65
UniversalRAG (T5-Large) 86.38 36.95 49.63 32.63
UniversalRAG (GPT-4.1) 51.20 35.27 63.86 36.17
Ensemble (Confidence-based) 79.32 36.71 62.44 35.98
Ensemble (Majority Voting) 85.29 36.90 51.32 34.88

routing approach. However, even compact models such as ALBERT achieve strong performance with
only 12M parameters, indicating that compact models can be effectively utilized in UniversalRAG.

Generation Efficiency of Multigranularity We hypothesize that the multigranular retrieval of
UniversalRAG is also superior in generation efficiency compared to baselines, for which we present
the average length of the input tokens (including retrieved data and query) with average scores for
text and video datasets in Table 4 (where we sample 32 frames for full videos and 8 frames for clips).
Fine-granularity baselines process shorter information during inference but underperform compared
to UniversalRAG, as the retrieved information is often insufficient to accurately answer the query;
meanwhile, coarse-granularity baselines provide more context but at the cost of substantially longer
inputs. UniversalRAG achieves the best of both worlds: it consistently outperforms coarse-granularity
baselines with fewer tokens, and it surpasses fine-granularity baselines by retrieving just enough
context to answer the query. For example, in text datasets, UniversalRAG achieves a 6.5% higher
average score than the Document baseline, while using only about half as many input tokens. With
granularity-aware retrieval, UniversalRAG can balance performance and computation efficiency.

Generalizability on Out-of-Domain Datasets As shown in Table 1, UniversalRAG with the trained
routers outperforms the training-free router (sometimes even approaching oracle performance), and
a natural follow-up question is how these routers behave on unseen, out-of-domain datasets. To
investigate this, we evaluate on five out-of-domain datasets (detailed in Appendix A.2), with results
presented in Table 5. From this, we observe an interesting reverse in trend: trained routers exhibit a
decent performance drop, while the training-free router demonstrates robust generalization and even
outperforms the trained ones in most cases. Nevertheless, UniversalRAG consistently outperforms
baselines, including those that represent all items in a unified embedding space or assign modality and
granularity at random, highlighting the value of adaptive, modality- and granularity-aware retrieval.

Ensemble Strategy for Robust Routing Building on our findings of the trade-off between the high
in-domain accuracy of trained routers and the strong out-of-domain generalization of the training-free
router, we further explore a novel ensemble strategy to leverage their complementary strengths. In
particular, we propose two ensemble strategies: confidence-based ensemble and majority voting.
In a confidence-based ensemble, the prediction of the trained router (DistilBERT) is used if its
confidence score exceeds a predefined threshold; otherwise, the system falls back to the training-free
router (GPT-4.1). For majority voting, we adopt the majority answer from three routers (including
training-based and free) as a final prediction; if no majority exists, one is selected at random. Table 5
shows that UniversalRAG with the ensemble routers offers a robust middle ground between them,
suggesting that it could be beneficial in real-world scenarios with unseen or shifting distributions.

Case Study We present a case study of UniversalRAG in Table 6. The query asks for the winner
of Heat 5 in the Men’s 100M Round 1 at the London 2012 Olympics. TextRAG and ImageRAG
retrieve a paragraph and an image related to the Olympics, but neither provides relevant evidence to
answer the question, resulting in incorrect responses. Meanwhile, VideoRAG retrieves the full video
of Men’s 100M Round 1 at the 2012 Olympics, but struggles to identify the winner of Heat 5 due to
the inclusion of irrelevant segments from other heats. However, UniversalRAG selects ‘Clip’ corpus
and retrieves the video clip for Heat 5, enabling the generation model to focus on the specific race
mentioned in the query and generate the correct answer. More case studies are shown in Appendix F.

4 RELATED WORK

Large Vision Language Models Building on the impressive performance of LLMs (Anil et al.,
2023; OpenAI, 2024), recent studies have extended their capabilities to handle visual information.
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Table 6: Case study comparing unimodal RAGs with fixed granularity to UniversalRAG (Ours).

Question Who finishes first in the Men’s 100M Round 1 Heat 5 during the London 2012 Olympics, featuring Usain Bolt and Yohan
Blake? (A) Su BingTian (B) Usain Bolt (C) Asafa Powell (D) Tyson Gay Answer : (C)

TextRAG Retrieved: former 100 m world champion, Zhanna
Pintusevich-Block) of Total Sports Management. On
July 28, 2006, he announced a deal with Nike that will
run through to the 2012 Summer Olympics in London.
On July 11, 2006, at the Grand Prix in Lausanne ...

ImageRAG Retrieved:

Response: (B) ✗ Response: (B) ✗

VideoRAG Retrieved:
(Timestamp Range: 00:00~38:26)

Ours Routed to: Clip
Retrieved: (Timestamp Range: 25:57~29:22)

Response: (B) ✗ Response: (C) ✓

Specifically, Liu et al. (2023) introduces one of the first Large Vision Language Models (LVLMs)
by incorporating a CLIP-based (Radford et al., 2021) image encoder, enabling the language model
to interpret visual inputs within a shared textual feature space. Subsequently, a variety of LVLMs
have been proposed, each integrating different image encoders (Bai et al., 2023; Chen et al., 2024c;
Liu et al., 2024), and this line of work has more recently been extended to video data (Li et al.,
2024a; Chen et al., 2025; Bai et al., 2025). However, despite improved performance on multimodal
benchmarks (Mathew et al., 2021; Yue et al., 2024; Li et al., 2024b; Fu et al., 2024), enabled by larger
training datasets and better model architectures, LVLMs still often suffer from hallucinations (Huang
et al., 2025), only when they rely solely on parametric knowledge acquired during pretraining.

Retrieval-Augmented Generation To address the aforementioned limitation of parametric-only
models, RAG has emerged, incorporating external knowledge during response generation. While
conventional RAG methods primarily operate over textual corpora (Lewis et al., 2020; Ram et al.,
2023), recent studies have begun to explore RAG over multimodal sources (such as images and
videos) (Chen et al., 2022; Riedler & Langer, 2024; Jeong et al., 2025). However, these approaches
assume a fixed single-modality retrieval, making them less adaptable to real-world queries that may
require information from different modalities. One promising approach is to leverage multimodal
encoders (Radford et al., 2021; Wang et al., 2024b; Zhang et al., 2025; Bolya et al., 2025) that can
encode text, images, and videos into a shared embedding space, and Sharifymoghaddam et al. (2025)
proposes to retrieve from such a unified embedding space; however, it often struggles to retrieve visual
content when queries are text. While other approaches (Cui et al., 2024; Liu et al., 2025a) attempt
to retrieve knowledge from all modalities, followed by extra selection mechanisms during or after
generation, they incur notable computational overhead. Lastly, adaptive retrieval strategies (Jeong
et al., 2024; Islam et al., 2024; Ding et al., 2024; Yao et al., 2024; Tang et al., 2025), proposed to
handle diverse query needs, are limited to a single corpus (Zhang et al., 2024; Li et al., 2024c).

Retrieval Granularity While most existing RAG systems operate at a fixed granularity (e.g., full
documents, passages, or sentences), real-world queries often require information at varying levels of
specificity depending on the knowledge needed, which in turn impacts performance and efficiency
in both textual (Chen et al., 2024b; Liu et al., 2025b; Zhong et al., 2025) and video-based retrieval
systems (Chen et al., 2023). In contrast, UniversalRAG performs query-level routing across modality
and granularity dimensions, enabling retrieval from the most relevant source at the appropriate level.

5 CONCLUSION

In this paper, we propose UniversalRAG, a novel RAG framework designed to retrieve from cor-
pora with diverse modalities and granularities. Through a modality- and granularity-aware routing
mechanism, UniversalRAG dynamically selects the most suitable knowledge source for each query,
effectively addressing the limitations posed by modality gaps and fixed-granularity retrieval. Exten-
sive evaluations across 8 benchmarks demonstrate that UniversalRAG consistently outperforms both
modality-specific and unified baselines, showcasing robust performance across diverse modalities.
Also, our analyses highlight the importance of fine-grained retrieval and the complementary strengths
of training-free and trained routers. These findings demonstrate the potential of UniversalRAG as an
adaptive solution for grounding LVLMs with heterogeneous external knowledge, paving the way for
a one-for-all RAG solution that unifies the fragmented landscape of existing corpus-specific RAGs.
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ETHICS STATEMENT

The proposed UniversalRAG can be seamlessly integrated with any LVLMs and compatible retrieval
corpora, reducing hallucination with the corpus-specific routing. However, there can be potential
private, harmful, or biased content present in the retrieved or generated outputs, depending on the
nature of the underlying corpora or the internalized knowledge within LVLMs. To mitigate such risks,
it is recommended to apply safeguard mechanisms and filtering techniques in retrieval and generation,
to ensure the safe and responsible deployment.

REPRODUCIBILITY STATEMENT

We take several steps to ensure the reproducibility of our work. All experimental details are described
in Section 3.1 and Appendix B. The preprocessing pipeline for all datasets, along with benchmark
sampling and corpus formulation, is described in Appendix A. Our routing and generation components
mainly utilize open-source LLMs and LVLMs, which are fully reproducible, with the exception of
training-free routers that are based on closed-source APIs. Lastly, we attach the complete source code
in the supplementary materials, covering all stages from data preprocessing to end-to-end evaluation.
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A ADDITIONAL DETAILS ON DATASET

Table 7 provides an overview of all datasets and their corresponding knowledge corpora used in our
experiments, including the target modality type as well as the size of the queries and corpora. We
divide each dataset into a 3:7 ratio for training and testing. We offer the detail of each dataset below.

A.1 IN-DOMAIN DATASET

MMLU As a dataset comprising queries that can be answered without the need for retrieval, we
use MMLU (Hendrycks et al., 2021), a benchmark that spans a wide range of tasks, including
problem-solving abilities (e.g., elementary mathematics, computer science) and world knowledge
(e.g., law, world religions). Specifically, we use questions from all tasks in the development split.

Natural Questions (NQ) We also use Natural Questions (Kwiatkowski et al., 2019), a question
answering dataset consisting of real user queries issued to the Google search engine, with answers
annotated based on supporting Wikipedia articles. We randomly sample 1,000 QA pairs from the dev
split, and formulate the text corpus in the same setting as SQuAD, segmenting the Wikipedia corpus
into paragraphs of at most 100 words.

HotpotQA HotpotQA (Yang et al., 2018) is a Wikipedia-based QA benchmark, but it contains
complex queries that are annotated to reason over multiple articles. We utilize 1,492 randomly
sampled QA pairs of the test split. As it requires multi-hop reasoning over multiple documents, we
formulate the text corpus by grouping multiple related documents following LongRAG (Jiang et al.,
2024b), which can be longer than 4K tokens.

HybridQA HybridQA (Chen et al., 2020) is a benchmark that requires reasoning over both tabular
and textual information. Each question is grounded in a Wikipedia table, but often requires linking to
associated text information to locate the correct answer. We randomly sample 2,000 QA pairs from
the dev split. Unlike the original benchmark, which directly connects tables and textual evidence, we
separate them into distinct table and text corpora to better validate our modality-specific routing-based
retrieval framework.

WebQA WebQA (Chang et al., 2022) is a benchmark designed to evaluate the ability of LVLMs
to reason over multiple sources of information, including both text and images, in an open-domain
setting. As the dataset is originally constructed with question-specific retrieval sources that combine
text and images, we extract a subset of questions that require only a single image for retrieval. We
then further filter these using GPT-4o with the prompt shown in Figure 9 to make sure questions are
not grounded to a certain image, resulting in a final set of 2,000 QA pairs.

LVBench LVBench (Wang et al., 2024a) is a benchmark developed for long video understanding,
featuring questions generated by annotators based on YouTube videos with an average duration of
over one hour. Since the benchmark was originally designed for non-RAG tasks, we rephrase the
original text-video interleaved queries into a text-only format to align with our experimental setup
using GPT-4o, with video metadata and a prompt (Figure 10). Each query is associated with a specific
video and a corresponding time range. Notably, the majority of queries are annotated with timestamps
spanning less than five minutes, thereby focusing on short segments within the longer videos. For
training, we use these short-timestamp queries as a clip-level dataset.

VideoRAG We also utilize VideoRAG-Wiki and VideoRAG-Synth benchmarks, introduced in
VideoRAG (Jeong et al., 2025), which are designed to evaluate RAG over a video corpus. These
benchmarks are built on the HowTo100M (Miech et al., 2019) corpus (a large-scale collection
of instructional YouTube videos) with queries sourced from WikiHowQA (Bolotova-Baranova
et al., 2023) and synthetically generated QA pairs based on the videos. Since they lack timestamp
annotations, we employ GPT-4o to identify video-level queries that are better answered through full
video retrieval rather than short segments from the ground-truth video, which are then used as a
video-level dataset for training the router.
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Table 7: Dataset summary. Average corpus length is the mean token count for text corpora and the
mean duration for video corpora.

Dataset Gold Retrieval # Queries Corpus Size Avg Corpus Length

In-Domain Datasets

MMLU None 285 - -
Natural Questions Paragraph 1,000 850k 100 tokens
HotpotQA Document 1,492 509k 693 tokens
HybridQA Table 1,000 15k -
WebQA Image 2,000 20k -
LVBench Clip/Video 1,376 94 3,941s
VideoRAG-Wiki Clip/Video 374 9k 378sVideoRAG-Synth Clip/Video 374

Out-of-Domain Datasets

TruthfulQA None 790 - -
TriviaQA Paragraph 661 661k 100 tokens
LaRA Document 112 34 28k tokens
Visual-RAG Image 374 2k -
CinePile Clip/Video 1,440 144 158s

A.2 OUT-OF-DOMAIN DATASET

Unlike the in-domain datasets, the out-of-domain datasets are used solely for evaluation to assess the
generalizability of our routing approach and consist only of test splits.

TruthfulQA TruthfulQA (Lin et al., 2022) includes general knowledge questions designed to test
whether LLMs can avoid common false beliefs or misconceptions, on diverse categories, including
health, law, and politics. We use the multiple-choice version of the dataset, which includes only a
single correct answer per question.

TriviaQA TriviaQA (Joshi et al., 2017) is a reading comprehension dataset consisting of trivia
questions paired with evidence texts sourced from Wikipedia and the web. To distinguish between
queries that require text retrieval and those that do not, we categorize each query based on whether
GPT-4o can produce an exact-match answer without access to external text. We randomly sample
QA pairs from the dev split. Following the preprocessing strategies used in SQuAD and NQ, all
supporting evidence documents are segmented into paragraphs of no more than 100 words.

LaRA We also utilize LaRA (Li et al., 2025), which is designed for understanding long-context
documents such as academic papers and novels. For our use case, we focus on a subset of these
documents, specifically excluding queries on the ‘comparison’ task, as our goal is RAG, not reading
comprehension. Additionally, we slightly reformat the remaining queries to align with a general QA
format. Given the length of the source material, each document is treated as a single entry in the
document-level corpus.

Visual-RAG Visual-RAG (Wu et al., 2025) is a question-answering benchmark designed for visual
knowledge-intensive questions, specifically tailored for text-to-image retrieval tasks. We utilize the
full set of provided queries but sample five images per category to construct the image retrieval pool,
ensuring efficient text-to-image retrieval.

CinePile CinePile (Rawal et al., 2024) is a long-video question-answering benchmark that features
questions based on movie clips from YouTube. Since the benchmark was originally designed for
video understanding tasks rather than RAG, we reformulate each query using the same procedure as
LVBench. For each of the 144 available videos, we randomly select 10 questions from the test split.
Since CinePile does not provide granularity annotations, we classify the questions into two categories
(such as clip-level and full-video-level granularity) using GPT-4o, following the same approach used
in VideoRAG.
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B ADDITIONAL IMPLEMENTATION DETAILS

To effectively leverage both visual and textual information for visual element retrieval, we employ
an ensemble approach that combines visual and textual similarity scores with a weighting ratio of
0.8 for visual information. The textual information consists of image captions for images and scripts
for videos. To handle long videos, we utilize PySceneDetect (Castellano, 2014), an open-source
tool that detects scene boundaries by analyzing content changes (e.g., color histogram differences or
threshold-based detection), to segment long videos into shorter clips with an average length of no
more than 3 minutes. Moreover, for both the retrieval and generation stages, we uniformly sample 32
frames per video. For baseline models that do not natively support video input, specifically UniRAG
(which utilizes CLIP) and GME, we average the embeddings of these sampled frames to obtain a
single representative embedding vector. Our experiments are conducted on NVIDIA RTX A6000
GPUs equipped with 48GB VRAM.

C PROOF OF PROPOSITIONS

C.1 PROOF OF PROPOSITION 1

Proposition 1. Let the similarity score in the unified embedding space of Cunified be defined as

s(q, c) = α · 1{m(q) = m(c)}+ β · r(q, c) + ε,

where α > 0 is a modality bias, m(·) denotes the modality, and r(·) measures semantic relevance. If
α is sufficiently large relative to the variance of r, the probability of retrieving items from the required
modality m∗(q) is less than under modality-aware routing followed by within-modality retrieval.

Proof. Without loss of generality, we consider the top-1 retrieval case, as the extension to the top-k
case follows directly. Let the unified retrieval corpus Cunified be decomposed into three disjoint sets:

S = {c : m(c) = m(q)}, R = {c : m(c) = m∗(q)}, O = Cunified \ (S ∪R).

Let us assume the scenario where m∗(q) ̸= m(q) and S,R ̸= ∅. Define

Xc := β · r(q, c) + εc,

and suppose {Xc}c∈Cunified are independent, mean-zero, sub-Gaussian with variance proxy σ2 =
β2 · Var[r(q, c)] + Var[εc]. Then the similarity scores can be written as

s(q, c) =

{
α+Xc, c ∈ S

Xc, c ∈ R ∪O.

Let
MS = max

s∈S
Xs, MR = max

r∈R
Xr, MO = max

o∈O
Xo.

Under unified retrieval, the top-1 item lies in R if and only if

MR ≥ α+max{MS ,MO}.

Hence, we can obtain the upper bound of the probability where top-1 retrieval comes from R:

P(Tunified(q; Cunified) ∈ R) = P(MR ≥ α+max{MS ,MO}) ≤ P(MR −MS ≥ α). (1)

As {MR −MS ≥ α} ⊆ ∪(r,s)∈R×S{Xr −Xs ≥ α}, by the union bound we have

P(MR −MS ≥ α) ≤
∑

(r,s)∈R×S

P(Xr −Xs ≥ α).

As Xr −Xs is sub-Gaussian with variance proxy 2σ2, the Chernoff bound of the tail probability
combined with Equation 1 leads to:

P(Tunified(q; Cunified) ∈ R) ≤ |R||S| exp
(
− α2

4σ2

)
. (2)
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By contrast, if the retrieval is done at the modality-specific corpus after modality-aware routing with
accuracy r, the probability where the top-1 item is in R is r. Combining this with Equation 2,

P(Tunified(q; Cunified) ∈ R) ≤ |R||S| exp
(
− α2

4σ2

)
< r = P(TR(q)(q; CR(q)) ∈ R)

whenever α > 2σ
√

log(|R||S|)
r . Meanwhile, the right-hand side of Equation 2 decays to 0 as

α/σ → ∞. Hence, for α large enough relative to the variance of r, unified embedding retrieval is
strictly worse than retrieving from modality-specific corpus after modality-aware routing.

Remark. Suppose we have very large corpora with size |R| = |S| = 1012. In this setting, if p = 0.8

and σ = 0.01, then α > 2σ
√

log(|R||S|)
p ≃ 0.17 is a sufficient condition to make routing-based

retrieval more effective than unified embedding retrieval. Since most multimodal encoders exhibit
inherent modality bias, this underscores the necessity of modality-aware routing.

C.2 PROOF OF PROPOSITION 2

Proposition 2. Let F (Q;m, g) be the expected response quality when retrieving from modality m
using granularity g. If there exist queries q1, q2 and granularities gf , gc such that

F (q1;m, gf ) > F (q1;m, gc) and F (q2;m, gc) > F (q2;m, gf ),

then the routing policy that assigns gf for q1 and gc for q2 achieves strictly higher expected quality
than any fixed-granularity choice.

Proof. Consider any fixed policy that always uses a single granularity g ∈ {gf , gc}.

• If g = gf :

F (q1;m, gf ) + F (q2;m, gf ) < F (q1;m, gf ) + F (q2;m, gc).

• If g = gc:

F (q1;m, gc) + F (q2;m, gc) < F (q1;m, gf ) + F (q2;m, gc).

In both cases, the sum of response quality with the routing policy that uses gf for q1 and gc for q2 is
strictly larger than under any fixed granularity g.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 ADDITIONAL RESULTS USING DIFFERENT LVLMS

Table 8 shows detailed generation results of baselines and UniversalRAG models on 8 benchmarks
using Qwen2.5-VL-7B and Phi-3.5-Vision-Instruct as generation models. In both settings, Univer-
salRAG outperforms all baselines and achieves average scores comparable to Oracle. These results
demonstrate that UniversalRAG is robust and generalizable in various LVLM generators.

D.2 ROUTING RESULTS PER DATASET

We present routing results of three routers for each dataset in Table 9. On in-domain datasets,
GPT-4.1 often struggles to distinguish between Paragraph and Document RAG queries, and misroutes
VideoRAG queries to the textual corpus. Meanwhile, two trained routers show strong classification
performance across all in-domain datasets. In out-of-domain datasets, GPT-4.1 generalizes well for
most datasets, except for image-based RAG queries. In contrast, trained routers fail to classify the
appropriate granularity needed for each query. This is mainly due to the limited diversity of training
data, which causes overfitting to seen examples.
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Table 8: Results of diverse RAG variants using different LVLMs, including UniversalRAG and
baselines, on modality-specific benchmarks.

MMLU NQ HotpotQA HybridQA WebQA LVBench VideoRAG-Wiki VideoRAG-Synth
Avg

Models Acc EM F1 EM F1 EM F1 R-L BERT Acc R-L BERT R-L BERT
Q

w
en

2.
5-

V
L

-7
B

Naïve 73.00 17.29 25.71 18.47 25.47 3.14 7.72 61.26 94.39 29.38 14.26 83.04 10.52 84.34 34.50

ParagraphRAG 72.00 39.57 50.33 17.80 24.71 8.43 12.02 49.00 92.06 27.52 14.82 83.24 11.30 84.97 36.29
DocumentRAG 66.50 23.14 31.02 20.96 28.78 7.43 11.30 54.37 92.71 27.23 14.78 83.33 11.39 84.50 33.94
TableRAG 66.00 9.29 13.87 11.39 15.79 7.00 11.07 41.80 90.86 24.49 15.48 83.29 9.98 83.19 27.15
ImageRAG 68.50 16.14 23.14 16.94 23.01 1.86 5.22 64.39 94.73 30.17 16.17 83.62 13.35 85.10 33.63
ClipRAG 68.50 15.14 22.69 16.46 22.86 2.71 5.59 62.78 94.38 33.50 18.39 85.04 20.53 87.75 34.43
VideoRAG 70.00 14.00 21.42 17.42 23.74 2.43 5.63 63.89 94.54 32.81 19.34 85.64 23.31 88.52 34.78

UniRAG (Sharifymoghaddam et al., 2025) 69.50 11.86 19.51 14.45 21.26 1.86 5.26 51.37 92.37 28.01 15.05 82.80 12.77 85.03 30.60
GME (Zhang et al., 2025) 70.00 12.43 20.02 14.55 21.08 5.29 9.24 59.61 93.93 28.01 16.53 83.72 18.01 86.04 32.78
InternVideo2 (Wang et al., 2024b) 71.50 12.29 19.81 14.35 21.11 2.00 4.42 55.64 93.07 30.14 14.97 82.83 11.38 84.16 31.71
PEcore (Bolya et al., 2025) 70.50 12.29 20.00 14.45 20.84 2.29 5.42 51.09 92.30 27.62 14.77 82.75 11.23 84.72 30.57

All 71.00 39.00 49.86 19.04 27.56 7.29 10.59 63.89 94.48 30.85 15.64 83.62 14.23 86.03 39.24

UniversalRAG (DistilBERT) 71.50 39.00 49.45 19.62 27.41 7.86 11.84 64.12 94.70 33.20 19.34 85.64 23.45 88.53 40.54
UniversalRAG (T5-Large) 72.50 39.43 49.86 20.19 28.61 8.00 12.14 64.08 94.61 33.00 19.34 85.64 23.10 88.60 40.89
UniversalRAG (GPT-4.1) 73.50 38.00 48.39 18.37 25.17 8.57 12.56 62.01 94.32 30.95 14.82 83.25 21.88 87.80 39.36
UniversalRAG (Cross-GPT-4.1) 72.50 38.29 48.00 18.18 25.07 10.29 14.57 66.01 96.49 32.13 15.23 83.08 21.05 86.87 40.21

Oracle 73.00 39.57 50.33 20.96 28.78 13.57 18.33 64.39 94.73 33.20 18.43 85.05 20.70 87.80 41.85

Ph
i-3

.5
-V

is
io

n-
In

st
ru

ct

Naïve 61.00 10.43 18.49 14.26 21.01 2.29 5.57 54.01 93.01 29.58 15.94 83.64 34.58 90.66 30.95

ParagraphRAG 59.00 35.57 46.59 16.36 23.56 6.86 10.29 59.18 93.51 29.87 16.91 84.84 32.28 89.84 36.53
DocumentRAG 52.50 16.43 24.80 17.80 25.86 6.57 10.14 57.46 93.18 29.09 14.05 84.18 33.27 90.18 32.25
TableRAG 47.00 5.29 9.41 11.00 15.36 5.14 8.68 55.68 92.79 28.60 10.11 83.65 30.47 89.48 26.91
ImageRAG 55.50 9.86 15.73 13.68 18.70 1.29 3.13 63.25 94.13 31.15 15.16 85.02 34.18 90.32 30.69
ClipRAG 54.00 11.43 16.48 13.40 18.73 1.14 2.79 60.22 93.60 35.06 19.50 86.04 36.34 90.97 31.15
VideoRAG 53.00 9.29 15.09 13.11 17.91 1.57 3.25 59.90 93.50 32.13 19.33 86.14 36.71 90.95 30.16

UniRAG (Sharifymoghaddam et al., 2025) 54.50 5.57 13.32 11.48 18.36 1.00 4.12 58.94 92.27 28.21 16.69 84.03 35.52 90.82 29.24
GME (Zhang et al., 2025) 54.00 5.29 13.02 11.29 17.72 3.14 6.71 56.22 93.68 27.72 18.12 84.90 36.00 90.07 29.00
InternVideo2 (Wang et al., 2024b) 55.00 5.86 13.48 11.87 18.46 0.71 3.25 58.01 93.42 27.74 18.09 84.76 35.78 90.82 29.02
PEcore (Bolya et al., 2025) 54.50 5.43 13.11 11.77 18.61 1.14 4.47 56.58 93.22 28.60 16.72 83.98 35.75 90.85 29.05

All 55.50 34.86 47.08 12.44 13.68 6.43 10.11 55.28 93.29 31.14 18.28 85.92 35.12 89.92 34.42

UniversalRAG (DistilBERT) 54.50 34.71 45.58 16.46 24.54 6.43 10.23 63.23 94.11 34.48 19.33 86.14 36.49 90.92 37.59
UniversalRAG (T5-Large) 59.50 34.00 44.86 17.22 25.74 6.86 11.00 63.26 94.02 35.16 19.33 86.14 36.69 90.86 38.63
UniversalRAG (GPT-4.1) 59.00 33.57 44.69 15.50 22.83 7.00 10.94 62.32 94.00 33.20 16.89 84.83 32.24 89.88 37.25
UniversalRAG (Cross-GPT-4.1) 59.00 33.43 44.29 15.91 22.49 9.71 12.14 64.11 94.25 33.99 17.25 85.01 34.07 90.13 37.82

Oracle 61.00 35.57 46.59 17.80 25.86 11.29 15.36 63.25 94.13 34.57 19.53 86.04 36.20 90.97 39.57

Table 9: Routing results across in-domain and out-of-domain datasets. VRAG-Wiki, VRAG-Synth,
and Vis-RAG refer to VideoRAG-Wiki, VideoRAG-Synth, and Visual-RAG, respectively.

M
od

el
s In-Domain Dataset Out-of-Domain Dataset

MMLU NQ HotpotQA HybridQA WebQA LVBench VRAG-Wiki VRAG-Synth TruthfulQA TriviaQA LaRA Vis-RAG CinePile

Routes 200 700 1045 700 1392 829 374 374 790 661 112 374 1440

D
is

til
B

E
R

T

None 84 1 0 0 0 0 0 0 2 1 14 0 0
Paragraph 54 663 132 71 21 1 0 5 642 274 24 0 0
Document 7 10 808 183 8 1 0 0 44 332 5 2 0
Table 11 2 77 429 1 2 0 0 - - - - -
Image 3 19 19 6 1352 7 0 0 16 34 4 371 1
Clip 7 1 5 9 17 818 0 2 4 8 27 0 1439
Video 34 4 4 2 1 0 374 367 82 12 38 1 0

T
5-

L
ar

ge

None 149 16 0 0 0 0 0 0 16 5 12 0 0
Paragraph 35 649 39 39 8 2 0 0 638 385 41 1 0
Document 12 24 947 293 10 0 0 0 71 247 43 0 0
Table 0 10 57 359 5 0 0 0 - - - - -
Image 0 0 1 5 1360 5 0 0 8 15 2 373 0
Clip 0 0 0 0 12 820 0 4 5 3 2 0 1439
Video 4 1 1 4 5 2 374 370 52 6 12 0 1

G
PT

-4
.1

None 126 58 60 3 60 0 5 19 482 218 1 0 0
Paragraph 46 612 510 200 213 53 368 341 277 427 47 31 6
Document 4 3 357 335 9 27 0 6 30 14 64 0 8
Table 24 21 118 160 23 26 0 0 - - - - -
Image 0 3 0 2 1091 98 1 6 1 2 0 343 25
Clip 0 3 0 0 4 603 0 0 0 0 0 0 1362
Video 0 0 0 0 0 22 0 2 0 0 0 0 39

D.3 ADDITIONAL RESULTS ON MULTIGRANULARITY

While Table 3 demonstrated a correlation between the number of granularity levels and end-to-end
performance using two training-free models, leveraging the flexibility of the approach in scenarios
without labeled data. Table 10 extends this by including two training-based variants, comparing the
performance with and without granularity. The results consistently show an advantage when granular-
ity is leveraged, showcasing its efficacy across both training-based and training-free approaches.

D.4 DETAILED RESULTS ON OUT-OF-DOMAIN DATASET

Generation results of UniversalRAG models and the baselines for each out-of-domain dataset are
shown in Table 11. UniversalRAG models outperform the baselines in general. GPT-4.1 demonstrates
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Table 10: Effect of granularity on the performance. Gn denotes Granularity.

HotpotQA LVBench
Models Gn EM F1 Acc

DistilBERT ✗ 13.88 22.30 32.57
✓ 18.56 26.96 35.65

T5-Large ✗ 14.16 22.01 33.90
✓ 18.95 27.56 34.38

GPT-4.1 ✗ 11.00 21.91 29.29
✓ 15.89 23.84 31.15

Table 11: Results of UniversalRAG and baselines on out-of-domain dataset with InternVL2.5-8B.

TruthfulQA TriviaQA LaRA Visual-RAG Cinepile
Avg

Models Acc EM F1 R-L BERT R-L BERT Acc

Naïve 64.68 49.47 57.92 23.15 87.62 6.24 80.98 30.76 33.88

ParagraphRAG 58.73 54.61 65.14 20.23 86.48 4.74 80.77 30.07 33.88
DocumentRAG 28.73 39.94 44.73 25.18 86.83 4.34 81.14 32.64 26.68
ImageRAG 57.85 45.23 52.50 21.40 87.09 7.31 82.32 34.03 33.35
ClipRAG 51.01 31.62 42.40 19.64 87.50 6.92 81.32 35.63 29.59
VideoRAG 47.34 33.59 43.82 19.89 87.19 7.04 81.42 37.43 29.47

UniRAG (Sharifymoghaddam et al., 2025) 55.70 39.64 47.88 19.66 86.47 5.20 80.67 31.60 29.16
GME (Zhang et al., 2025) 54.94 54.31 65.12 19.28 86.31 5.64 81.14 30.14 33.82
InternVideo2 (Wang et al., 2024b) 52.15 35.70 45.01 21.28 86.83 4.31 80.47 30.76 28.92
PEcore (Bolya et al., 2025) 55.82 39.94 48.67 18.78 86.01 4.80 80.67 30.97 28.54

All 45.82 28.74 41.63 19.14 87.01 6.02 80.77 36.60 29.07

UniversalRAG (DistilBERT) 56.08 42.06 51.74 21.03 86.98 7.35 82.30 35.63 32.65
UniversalRAG (T5-Large) 55.57 43.72 52.04 21.38 87.02 7.31 82.32 35.63 32.63
UniversalRAG (GPT-4.1) 54.54 53.25 62.33 23.77 86.88 7.12 82.29 35.14 36.17
Oracle 64.68 55.52 64.85 25.18 86.83 7.31 82.32 37.71 38.26

robust performance across all datasets, primarily due to the outstanding generalization capability of
the router on unseen queries, as discussed in Appendix D.2. However, trained routers show degraded
performance compared to the results on in-domain datasets, since their routers often misclassify
unseen queries.

E MODALITY GAP IN UNIFIED EMBEDDING SPACE

Figure 7 visualizes the modality gap within the unified embedding space of five multimodal en-
coders (Wang et al., 2024b; Jiang et al., 2024a; Bolya et al., 2025; Lin et al., 2025; Zhang et al.,
2025). The PCA plot reveals that embeddings cluster by modality, with text embeddings (shown in
green) exhibiting larger distances from those of other modalities. Recent methods like E5-V and
GME focus on better aligning these modalities to narrow the gap. However, despite these efforts,
a noticeable separation between modalities remains, indicating that current multimodal encoders
still struggle to fully unify the embedding space across text, images, and videos. Therefore, the
modality routing mechanism of UniversalRAG is required to dynamically direct each query to its
corresponding modality-specific embedding space, thereby effectively bridging the modality gap and
enhancing retrieval performance.

F QUALITATIVE RESULTS

We present case studies to demonstrate the effectiveness of UniversalRAG. Table 12 compares the
results of various RAG approaches, including traditional single-modality methods and UniversalRAG,
on queries from the WebQA dataset. Traditional approaches such as TextRAG and VideoRAG fail
to generate accurate answers: TextRAG retrieves passages lacking relevant visual details, while
VideoRAG is better suited for temporal reasoning tasks. In contrast, UniversalRAG correctly routes
the query to the image modality, recognizing that visual information about color is necessary, and
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Figure 7: Visualization of the unified embedding space across various multimodal encoders.

successfully generates the correct response. This highlights the advantage of modality-aware routing
in leveraging the appropriate data from the correct modality corpus, demonstrating UniversalRAG’s
ability to adaptively select the most informative modality for accurate answer generation.

In addition to modality routing, we observe that UniversalRAG also benefits from retrieving informa-
tion at the appropriate granularity. Table 13 shows results from HotpotQA, where the query requires
complex reasoning over multiple text sources. While paragraph-level granularity fails to provide
sufficient context for reasoning, UniversalRAG routes the query to the document-level corpus to
retrieve all the textual information necessary for accurate reasoning. Similarly, for video queries,
Table 14 shows results from LVBench on the query that requires only a short segment of the full long
video to answer. While full-video-level retrieval includes irrelevant content and uniformly sampled
32 frames fail to capture the necessary information, clip-level retrieval focuses on smaller, more
relevant segments of the video to ensure that only the most pertinent visual details are considered,
leading to a more accurate answer.

UniversalRAG not only retrieves from the most relevant single modality but also allows cross-modal
retrieval, where the router can select more than a single modality-granularity pair when required.
Table 15 shows an example from HybridQA, where queries primarily require tables, but can be
largely benefit from complementary textual sources. Typically, factual information is best captured
from paragraphs, whereas structured knowledge, such as numerical values, is more effectively
represented in tables. With its cross-modal retrieval capability, UniversalRAG-Cross successfully
retrieves from both modalities, providing the information required to answer the query. In contrast,
UniversalRAG-Uni, limited to choose a single modality source, retrieves insufficient evidence to
answer correctly.

However, there are some cases where the routing mechanism fails, particularly when the query
exhibits ambiguity in modality requirement or when the required information spans across multiple
modalities. Table 16 shows failure cases in which UniversalRAG, employing DistilBERT as the
trained router, incorrectly routes the modality. The first case shows the case where the router’s
inductive bias leads it to mistakenly route a query, routing a commonsense query to paragraph-level
retrieval. Also, the router sometimes struggles to distinguish between closely related modalities, such
as images to short clips that capture specific moments. There are also cases where the router fails to
correctly determine granularity, frequently misrouting queries that lie near the boundary between two
granularity levels, as shown in the last two examples.

G USE OF LARGE LANGUAGE MODELS (LLMS)

We use large language models merely as a writing assistant. Its role is confined to improving
grammar and paraphrasing sentences for clarity, and all the core ideas regarding problem definition,
UniversalRAG framework, experimental design, and interpretation of results are entirely our own.
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Table 12: Case study comparing RAG on single modality against UniversalRAG (Ours). Traditional
RAG models are limited by modality-specific retrieval, often missing relevant knowledge from other
modalities. UniversalRAG (Ours) dynamically routes each query to the most appropriate modality,
enabling more accurate retrieval and response generation.

Comparison of UniversalRAG to Single-modality RAG

Question What color balloons were displayed on the USNS Carl Brashear during its ship
launching ceremony in San Diego?

Ground Truth The balloons were red, white, and blue that were displayed on the USNS Carl
Brashear during the ship launching ceremony in San Diego.

No Retrieval The USNS Carl Brashear’s ship launching ceremony in San Diego likely
featured a diverse range of balloons, but the specific color or colors of the
balloons during the ceremony are not universally documented. They may not
have been a focus of the event, and such details can vary or not be available in
the public record. Therefore, the exact answer to the colors of the balloons on
the USNS Carl Brashear may not be specified or may be unknown. ✗

TextRAG Retrieved: Randall Dark Randall P. Dark is a Canadian writer, director, and
producer recognized as an early proponent of HDTV. In 1995, Dark and his
company, HD Vision, were involved with the United Nations 50th Anniversary
where they shot, in HDTV, President Bill Clinton’s speech in San Francisco.
In 1999, Dark and HD Vision produced a documentary for PBS about ...

Response: The provided documents do not contain any information about the
color of the balloons displayed on the USNS Carl Brashear during its ship
launching ceremony in San Diego. ✗

TableRAG Retrieved:

Rank MSA Region Chinese-Americans %

1 New York-Newark-Jersey City Mid-Atlantic 739,144 3.7
2 Los Angeles-Long Beach-Anaheim Pacific 528,248 4.0
...

...
...

...
...

Response: The document provided does not contain any information about
the color of the balloons displayed on the USNS Carl Brashear during its ship
launching ceremony in San Diego. ✗

VideoRAG Retrieved:

Response: Green, blue, and yellow. ✗

UniversalRAG (Ours) Routed to: Image

Retrieved:

Response: The USNS Carl Brashear was adorned with red, white, and blue
balloons during its launch ceremony in San Diego. ✓
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Table 13: Case study comparing different levels of text granularity. The user query requires complex
retrieval involving multiple entities. ParagraphRAG retrieves limited context centered around a single
entity, leading to an incorrect answer. UniversalRAG (Ours) routes the query to the document corpus
and retrieves richer document-level information, allowing it to capture both relevant entities and
generate the correct response.

Comparison of Using Different Text Granularity

Question George Reed was, along with which Drake University player, one of the
greatest running backs in CFL history?

Ground Truth Johnny D. Bright

ParagraphRAG Retrieved: Blue Bombers. He remained in Winnipeg for two seasons (1986-
87), but only played in nine games. He finished his career with 4,586 rushing
yards, 275 receptions for 2,861 yards and 48 total touchdowns. His son Corey
was a sprinter on Clemson’s men’s track & field team. Lester Brown (Canadian
football) Lester Brown (born January 5, 1957) is a former Canadian Football
League running back for the Saskatchewan Roughriders, Montreal Concordes,
Toronto Argonauts, Ottawa Rough Riders and Winnipeg Blue Bombers. He
played college football at Clemson University. Brown attended Myrtle Beach
High School, before accepting a football scholarship from Clemson University.

Response: Lester Brown ✗

UniversalRAG (Ours) Routed to: Document

Retrieved:
George Reed (Canadian football) George Robert Reed, CM, SOM (born Oc-
tober 2, 1939), is a former American college football and Canadian Football
League player. Reed, along with Mike Pringle and Johnny Bright, is one of
the players most often mentioned as being the greatest running back in CFL
history. In November 2006, Reed was voted one of the CFL’s Top 50 players
(#2) of the league’s modern era by Canadian sports network.
...
Johnny Bright Johnny D. Bright (June 11, 1930 – December 14, 1983) was a
professional Canadian football player in the Canadian Football League. He
played college football at Drake University. He is a member of the Canadian
Football Hall of Fame, the National Football Foundation’s College Football
Hall of Fame, the Missouri Valley Conference Hall of Fame, the Edmonton Es-
kimos Wall of Honour, the Alberta Sports Hall of Fame, and the "Des Moines
Register’s" Iowa Sports Hall of Fame.

Response: Johnny Bright ✓
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Table 14: Case study comparing different levels of video granularity. The user query requires only a
segment of the video to determine the answer. VideoRAG retrieves a broad range of frames across
the video, which may include irrelevant content or miss key frames, leading to an incorrect response.
UniversalRAG (Ours) routes the query to the clip-level granularity, retrieving more focused and
relevant visual information, enabling it to generate the correct response.

Comparison of Using Different Video Granularity

Question What does the protagonist observe through the window after being taken to the
utility room in the full episode of Blue Eye Samurai on Netflix?
(A) A group of monks sitting cross-legged in the snow
(B) A group of citizens chatting together
(C) A group of warriors practicing swords
(D) A group of samurais eating

Groud Truth C

VideoRAG Retrieved:

(Timestamp Range: 00:00~1:01:05)

Response: A ✗

UniversalRAG (Ours) Routed to: Clip

Retrieved:

(Timestamp Range: 33:46~36:56)

Response: C ✓
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Table 15: Case study comparing UniversalRAG across uni-modal and cross-modal scenarios. In the
uni-modal setup, where only a single prominent modality is used, information can sometimes be
incomplete as they require evidence across modalities. UniversalRAG-Cross, with its cross-modal
capability, gathers evidence from multiple modalities to generate a more comprehensive response.

Comparison of UniversalRAG across Uni- and Cross-Modal Retrieval

Question What year did an artist known by the mid-1960s in soul and jazz circles for
his recording skills release an American record company and label founded by
brothers Max and Sol Weiss in 1949?

Ground Truth 2000

UniversalRAG-Uni Routed to: Paragraph

Retrieved: David Axelrod ( April 17 , 1931 [ nb 1 ] - February 5 , 2017 ) was
an American composer , arranger , and producer . After starting out as a staff
producer for record companies specializing in jazz , Axelrod became known
by the mid-1960s in soul and jazz circles for his recording skills . In 1968
, Axelrod embarked on a solo career and released several eccentric albums
during the 1970s that showcased his characteristic sound , which combined
heavily microphoned drums and baroque orchestration , and avant garde themes
ranging from the environment to heightened mental awareness . With his early
solo projects , Axelrod was one of the first recording artists to fuse elements of
jazz , rock , and R & B . One of his most important records , Song of Innocence
( 1968 ) , featured instrumental interpretations of 18th-century poet William
Blake ’s poetry collection of the same name done in a contemporary musical
vein , leading one critic at the time to coin the term jazz fusion and numerous
hip hop producers to sample the album ’s music decades later .

Response: 1960 ✗

UniversalRAG-Cross Routed to: Paragraph+Table

Retrieved: (Above Paragraph with the following table)

Year Album Artist Genre Label Credit

...
...

...
...

...
1998 Greatest Hits Joe Cocker Rock EMI Electrola Trombone on You Can Leave Your Hat On
2000 The Axelrod Chronicles David Axelrod Jazz , funk , soul Fantasy Trombone
2004 Ultimate Collection Joe Cocker Rock Hip-O , A & M Horn on You Can Leave Your Hat On

...
...

...
...

...

Response: 2000 ✓

Table 16: Failure cases in modality routing with UniversalRAG (Ours).

Question Ground Truth UniversalRAG (Ours)

What is produced during photosynthesis? (A) hydrogen
(B) nylon (C) oxygen (D) light No Paragraph

Who is seated to the right of Kobe in the Jimmy Kimmel
tribute show? Clip Image

What is the name of a type of dual purpose fighter-bomber
aircraft used by the US Air Force? Paragraph Document

What is the main cause of Lee Chong Wei losing points
in the first half of his semi-final match against Lin Dan in
the Rio 2016 Olympics replay?

Video Clip
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Classify the following query into one of seven categories: [No, Paragraph, Document,
Table, Image, Clip, Video], based on whether it requires retrieval-augmented generation
(RAG) and the most appropriate modality. Consider:

• No: The query can be answered directly with common knowledge, reasoning, or compu-
tation without external data.

• Paragraph: The query requires retrieving factual descriptions, straightforward explana-
tions, or concise summaries from a single source.

• Document: The query requires multi-hop reasoning, combining information from
multiple sources or documents to form a complete answer.

• Table: The query requires information that is best represented in a tabular format, often
involving comparisons or structured data.

• Image: The query focuses on visual aspects like appearances, structures, or spatial
relationships.

• Clip: The query targets a short, specific moment or event within a video, without needing
full context.

• Video: The query requires understanding dynamic events, motion, or sequences over
time in a video.

Examples:
• "What is the capital of France?" → No
• "What is the birth date of Alan Turing?" → Paragraph
• "Which academic discipline do computer scientist Alan Turing and mathematician John

von Neumann have in common?" → Document
• "Among the recepients of the Turing Award, who had the earliest birth year?" → Table
• "Describe the appearance of a blue whale." → Image
• "Describe the moment Messi scored his goal in the 2022 World Cup final." → Clip
• "Explain how Messi scored his goal in the 2022 World Cup final." → Video
• "Solve 12 × 8." → No
• "Who played a key role in the development of the iPhone?" → Paragraph
• "Which Harvard University graduate played a key role in the development of the iPhone?"
→ Document

• "What is the cheapest iPhone model available in 2023?" → Table
• "Describe the structure of the Eiffel Tower." → Image
• "Describe the moment Darth Vader reveals he is Luke’s father in Star Wars." → Clip
• "Analyze the sequence of events leading to the fall of the Empire in Star Wars." → Video

Classify the following query: {query}
Provide only the category.

Figure 8: Prompt for query routing in a train-free manner. The prompt defines each category with
concise criteria and illustrative examples. Specifically, examples are designed to contrast closely
related cases: for example, Paragraph vs. Document for simple fact retrieval vs. multi-hop reasoning;
and Clip vs. Video for short specific moments vs. long-term sequential understanding, highlighting
the key aspect that differentiates each category.
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Evaluate whether the query can be answered using general knowledge about the image’s
subject rather than relying solely on details unique to the provided image, and verify that the
answer is obtainable from the image and the query.

• Respond "yes" if:
1. The query can be fully answered using general knowledge about the subject.
2. The answer can be derived solely from the image and the query, without needing

image-specific details.
• Respond "no" if either condition is not met.

Example 1:
• Image: A portrait of Donald Trump
• Query: What is the color of Trump’s hair?
• Answer: White
• Response: "yes"

Example 2:
• Image: A close-up photo of a light bulb
• Query: What is the color of the light bulb in this image?
• Answer: Yellow
• Response: "no"

Figure 9: Prompt to filter queries for WebQA.

You will receive a query from a video QA dataset and the title of the corresponding video on
YouTube. I want you to paraphrase the query by replacing "in the video?", "of the video",
or similar phrases with references to the video content naturally. The output should sound
as if a human is asking ChatGPT, and should not explicitly mention the exact name of the
video or even parts of the title. However, the rephrased query should contain enough implicit
information about the video to allow the model to identify it. Try to reduce the chance of
the model getting confused between multiple possible video candidates. If there could be
multiple video matches for a given query, try to include more information in the rephrased
query.

Example 1:
• Query: What year appears in the opening caption of the video?
• Video Title: Blue Eye Samurai | Hammerscale | Full Episode | Netflix
• Upload Date: 2023-11-05
• Channel Name: Netflix
• Rephrased Output: What year appears in the opening caption of the Blue Eye Samurai

episode on Netflix?

Example 2:
• Query: After the vlogger sees a dog with an advertisement from the company named

Smitten, camera changes to the scene with ___.
• Video Title: My ICELAND Experience | Ultimate Travel Vlog
• Upload Date: 2022-10-26
• Channel Name: Kallmekris
• Rephrased Output: After spotting a dog with a Smitten advertisement, what scene does

the camera transition to in Kallmekris’s Iceland travel vlog from 2022?

Figure 10: Prompt to rephrase queries using video metadata for LVBench and CinePile.
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