

000 UNIVERSALRAG: 001 002 RETRIEVAL-AUGMENTED GENERATION OVER COR- 003 PORA OF DIVERSE MODALITIES AND GRANULARITIES 004 005

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Retrieval-Augmented Generation (RAG) has shown substantial promise in im-
014 proving factual accuracy by grounding model responses with external knowledge
015 relevant to queries. However, most existing approaches are limited to a text-only
016 corpus, and while recent efforts have extended RAG to other modalities such as
017 images and videos, they typically operate over a single modality-specific corpus.
018 In contrast, real-world queries vary widely in the type of knowledge they require,
019 which a single type of knowledge source cannot address. To this end, we introduce
020 UniversalRAG, designed to retrieve and integrate knowledge from heterogeneous
021 sources with diverse modalities and granularities. Specifically, motivated by the ob-
022 servation that forcing all modalities into a unified representation space derived from
023 a single aggregated corpus causes a modality gap, where the retrieval tends to favor
024 items from the same modality as the query, we propose modality-aware routing that
025 dynamically identifies the most appropriate modality-specific corpus and performs
026 targeted retrieval within it. Also, beyond modality, we organize each modality into
027 multiple granularity levels, enabling fine-tuned retrieval tailored to the complexity
028 and scope of the query. We validate UniversalRAG on 8 benchmarks of multiple
029 modalities, showing superiority over modality-specific and unified baselines.

030 1 INTRODUCTION

031 Large Language Models (LLMs) have demonstrated remarkable performance across various tasks,
032 and have been widely adopted in services to assist users in everyday life (Anil et al., 2023; OpenAI,
033 2024). Yet, LLMs often generate factually incorrect or misleading information, especially on topics
034 they were less or not exposed to during training (Zhang et al., 2023; Huang et al., 2025). To address
035 this, Retrieval-Augmented Generation (RAG) has emerged as a promising approach, which allows the
036 model responses to be grounded in the query-relevant knowledge retrieved from external knowledge
037 sources, enhancing factual accuracy (Lewis et al., 2020; Gao et al., 2024; Chen et al., 2024a).

038 Despite its effectiveness, existing RAG approaches are typically designed for a single corpus and
039 modality, limiting their ability to address queries that require diverse knowledge sources. In practice,
040 as shown in Figure 1, user queries vary widely in the type of knowledge they require: some are best
041 answered using text (e.g., surface-level facts and definitions), others demand visual understanding
042 from images (spatial relations of objects), and yet others require temporal reasoning supported by
043 videos (step-by-step instructions with dynamic scenes). Yet, the field of RAG primarily originates
044 with a textual corpus (Lewis et al., 2020; Jiang et al., 2023; Yan et al., 2024), and although recent
045 efforts have expanded it to modalities beyond text (such as images and videos) (Riedler & Langer,
046 2024; Abootorabi et al., 2025; Jeong et al., 2025), existing RAG methods individually are typically
047 modality- and corpus-specific; therefore, they may be suboptimal to serve as a universal, one-for-all
048 framework that can flexibly handle the wide range of queries, whose knowledge requirements vary.

049 In this work, we present UniversalRAG, a novel RAG framework that brings together knowledge
050 distributed across multiple modality-specific corpora, and leverages them to generate grounded
051 responses to queries in a universal workflow. To operationalize this, one straightforward approach
052 might be to aggregate all entries from the collected, heterogeneous knowledge corpora, and embed
053 them into a unified space using a multimodal encoder (which is typically trained to align inputs from

Figure 1: Illustration of different RAG approaches. (A) RAG with Single Modality struggles to handle queries requiring modalities other than one in the corpus; (B) Single Granularity lacks flexibility in granularity, resulting in overly fine or overly coarse information; (C) Single Unified Corpus causes modality gaps that bias retrieval toward the modality of the query; (D) Our UniversalRAG overcomes these limitations via a modality- and granularity-aware routing mechanism over diverse corpora.

different modalities if they are semantically similar). However, despite such alignment efforts, we find that this strategy suffers from modality gaps (Zhang et al., 2025; Bolya et al., 2025; Wang et al., 2024b), the tendency that inputs are clustered based on their modality rather than their semantic meaning (visualized in Figures 2 and 7). As a result, retrieval becomes biased toward knowledge sources that share the same modality as the query, overlooking relevant content from other modalities.

To address this challenge, instead of relying on a unified embedding space that forces all modalities into the shared representation, we take a different direction: introducing a *modality-aware routing strategy*. Specifically, UniversalRAG dynamically determines the most suitable knowledge source to retrieve from, based on the modality requirement of the given query, then routes the retrieval process to the corresponding modality-specific corpus. It is worth noting that this strategy not only sidesteps modality gaps by avoiding every cross-modal comparison but also enables seamless integration of new modalities by extending the routing logic without modifying existing modality-specific retrievers.

Beyond modality, another important angle is data granularity (the size or unit of each entry in the corpus), which impacts both retrieval precision and generation quality (Chen et al., 2024b; Zhong et al., 2025), since different queries benefit from different levels of granularity even within the same modality: overly fine-grained entries can dilute context, while overly coarse ones may bundle unrelated information. For example, complex analytical questions may require full documents or videos, while simple factoid questions are better served with a single paragraph or short video clip.

To accommodate this aspect, we further break down each modality into multiple granularity levels, organizing them into distinct corpora: textual documents are additionally segmented into paragraphs and stored in a paragraph-level corpus, and similarly, full-length videos are divided into short clips and stored, while images are kept intact since they are inherently piecemeal. Overall, with these modality- and granularity-aware corpora (including paragraphs, documents, images, clips, and videos) in place, as well as an additional no-retrieval option to efficiently handle straightforward queries (that require no external knowledge), our UniversalRAG dynamically routes each query to the most relevant knowledge source, ultimately supporting the diverse information needs of real-world users.

We validate UniversalRAG on 8 benchmark datasets spanning diverse modalities (Yang et al., 2018; Kwiatkowski et al., 2019; Chen et al., 2020; Hendrycks et al., 2021; Chang et al., 2022; Wang et al., 2024a; Jeong et al., 2025). It outperforms all baselines by large margins on average, demonstrating its effectiveness in handling diverse types of queries in realistic scenarios. Moreover, UniversalRAG improves overall efficiency by considering the appropriate levels of granularity (to avoid unnecessary use of lengthy documents or videos), and even maintains robustness on out-of-distribution datasets.

2 METHOD

We present UniversalRAG, which retrieves knowledge from multi-modal, multi-granularity corpora.

2.1 PRELIMINARIES

Large Vision Language Models Let us first define LLMs, which take an input sequence of tokens $\mathbf{x} = [x_1, x_2, \dots, x_n]$ and generate an output sequence of tokens $\mathbf{y} = [y_1, y_2, \dots, y_m]$, formalized

Figure 2: t-SNE result of unified embedding space.

108 as follows: $\mathbf{y} = \text{LLM}(\mathbf{x})$, where x_i and y_i are represented in text. Building on top of LLMs, Large
 109 Vision-Language Models (LVLMs) extend their capability to support multimodal understanding by
 110 incorporating visual encoders (Bai et al., 2023; Chen et al., 2024c; Liu et al., 2024; Li et al., 2024a;
 111 Chen et al., 2025; Bai et al., 2025), allowing them to process both the textual and visual inputs.
 112 Formally, similar to LLMs, LVLMs can be functionalized as follows: $\mathbf{y} = \text{LVLM}(\mathbf{x})$, whose input
 113 token x_i is extended to either textual or visual. However, despite the fact that they are extensively
 114 trained, LVLMs themselves are limited to their parametric knowledge, and often struggle with queries
 115 that require (fine-grained or up-to-date) information, less or not exposed during training.

116 **Retrieval-Augmented Generation** To address the aforementioned limitations of using only the
 117 parametric knowledge internalized in models themselves, RAG has been widely used, whose core
 118 idea is to retrieve query-relevant information from a large corpus and incorporate it into the generation
 119 process. Formally, in response to a query \mathbf{q} , a retrieval model \mathcal{T} fetches the relevant context \mathbf{c} from a
 120 corpus \mathcal{C} , formalized as follows: $\mathbf{c} = \mathcal{T}(\mathbf{q}; \mathcal{C})$ where $\mathbf{c} \in \mathcal{C}$. Then, in the subsequent generation step,
 121 the LVLM generates a response \mathbf{a} conditioned on both the query and retrieved context, denoted as
 122 follows: $\mathbf{a} = \text{LVLM}(\mathbf{q}, \mathbf{c})$. However, most existing RAG approaches are restricted to retrieving from
 123 a single corpus consisting of entries from a single modality (such as only the textual documents),
 124 limiting their ability to handle diverse queries with knowledge requirements that vary across them.

125 2.2 UNIVERSALRAG

126 We now turn to introduce UniversalRAG, a novel RAG framework that dynamically identifies and
 127 routes queries to the most appropriate modality and granularity of knowledge, for targeted retrieval.
 128

129 **Challenges in Multi-Corpus Retrieval** To accommodate the diverse knowledge needs of real-world
 130 queries, which may involve heterogeneous sources spanning different modalities, we consider a set of
 131 modality-specific corpora, each containing items of a particular type, denoted by \mathcal{C}_m for modality m .
 132 A straightforward strategy is to aggregate all corpora into a unified corpus $\mathcal{C}_{\text{unified}} = \bigcup_{m \in M} \mathcal{C}_m$ and
 133 embed all items into a shared space using a multimodal encoder, as for retrieval over a single corpus:
 134 $\mathbf{c} = \mathcal{T}(\mathbf{q}; \mathcal{C}_{\text{unified}})$. However, we find this approach suffers from the modality gap (Figures 2 and 7),
 135 where queries, being textual, align more closely with elements in the text corpus regardless of the
 136 modality required. Therefore, instead of forcing all heterogeneous elements into the unified corpus,
 137 we propose selectively engaging the most relevant, modality-specific corpora needed for queries.
 138

139 **Modality-Aware Retrieval** To sidestep the modality gap issue (introduced by handling all modalities
 140 over the unified space), we instead propose to break down the overall retrieval process into
 141 two subsequent stages: 1) identifying the most relevant set of modalities for the given query; and 2)
 142 performing targeted retrieval within the selected modality-specific corpora. Specifically, instead of
 143 merging all modality-specific corpora into a single corpus, we preserve each corpus in its original form
 144 with an independent embedding space. After that, to direct queries to their best-aligned knowledge
 145 sources (based on their modality-specific needs), we introduce a routing module \mathcal{R} that dynamically
 146 predicts the subset of modalities best suited for a query \mathbf{q} , yielding $M_{\mathbf{q}} = \mathcal{R}(\mathbf{q}) \subseteq M$. Retrieval
 147 is then restricted to the corresponding corpora $\{\mathcal{C}_m \mid m \in M_{\mathbf{q}}\}$, using any off-the-shelf retriever
 148 \mathcal{T}_m tailored to each modality, thereby avoiding the modality gap issue present in a unified space.
 149 Proposition 1 formally states that modality-aware retrieval achieves higher effectiveness than unified
 150 embedding when modality bias is present. We provide the proof for all propositions in Appendix C.

151 **Proposition 1.** *Let the similarity score in the unified embedding space of $\mathcal{C}_{\text{unified}}$ be defined as*

$$152 \quad s(\mathbf{q}, \mathbf{c}) = \alpha \cdot \mathbf{1}\{m(\mathbf{q}) = m(\mathbf{c})\} + \beta \cdot r(\mathbf{q}, \mathbf{c}) + \varepsilon,$$

153 where $\alpha > 0$ is a modality bias, $m(\cdot)$ denotes the modality, and $r(\cdot)$ measures semantic relevance. If
 154 α is sufficiently large relative to the variance of r , the probability of retrieving items from the required
 155 modality $m^*(\mathbf{q})$ is less than under modality-aware routing followed by within-modality retrieval.

156 However, while this routing principle mitigates the modality gap, organizing corpora solely by
 157 modality might still be suboptimal, as different queries require varying levels of granularity.
 158

159 **Granularity-Aware Retrieval** To accommodate the varying complexity and information scope
 160 of different queries, we extend UniversalRAG to operate not only across modalities but also across
 161 different levels of granularity within each modality. To be specific, rather than treating each modality-
 162 specific corpus as a flat collection of items, we organize it into representations at multiple resolutions,

enabling retrieval to target either fine-grained details or broader context as required by the query. For example, a video corpus may be accessed at the level of short clips for focused questions or as full-length videos when comprehensive understanding is required. Building on this richer organization of corpora, the routing module \mathcal{R} expands its prediction space to include modality-granularity pairs best suited to a query, as well as a no-retrieval option for cases where external context is unnecessary:

$$\mathcal{R} : Q \rightarrow \{\emptyset\} \cup \mathcal{P} \left(\bigcup_{m \in M} \{m\} \times G_m \right),$$

where Q is the space of queries, M is the set of modalities, G_m is the set of granularities available for modality m , and $\mathcal{P}(\cdot)$ denotes the power set. Once the router predicts the relevant pairs, retrieval is performed over the corresponding corpora, using retrievers specialized for each modality to obtain the relevant content c . Finally, the LVLG generates the answer a with c , customized to the modality and granularity for the query, thereby enabling the universal, one-for-all RAG framework. Proposition 2 states that adapting granularity to the query always yields strictly higher expected response quality.

Proposition 2. *Let $F(Q; m, g)$ be the expected response quality when retrieving from modality m using granularity g . If there exist queries q_1, q_2 and granularities g_f, g_c such that*

$$F(q_1; m, g_f) > F(q_1; m, g_c) \quad \text{and} \quad F(q_2; m, g_c) > F(q_2; m, g_f),$$

then the routing policy that assigns g_f for q_1 and g_c for q_2 achieves strictly higher expected quality than any fixed-granularity choice.

2.3 ROUTER IMPLEMENTATION STRATEGIES IN UNIVERSALRAG

A key component of UniversalRAG is the router, which is responsible for determining the optimal modality and granularity of knowledge for the given query. We consider two operational strategies.

Training-based Router To tailor the available model for the routing task, we first consider training it to predict the appropriate modality–granularity pair for each query. However, since ground-truth labels (for the modality and granularity the query should be routed to) are not available, we leverage inductive biases in existing benchmarks, mapping each dataset to routing targets that match its task characteristics (e.g., clip retrieval for localized events vs. full-video retrieval for long-range video understanding), allowing us to automatically curate a labeled corpus without manual annotation. We then train a lightweight model, such as DistilBERT (Sanh et al., 2019), to serve as the router. At inference time, to account for cross-modality needs, the router may output multiple configurations when their confidence scores exceed a threshold, enabling cross-modality or multi-granularity retrieval when necessary, while standard single-modality queries remain routed to their single best match.

Training-free Router Alternatively, we also explore a training-free approach that leverages the broad knowledge and robust reasoning capabilities of modern frontier models, such as Gemini (Anil et al., 2023). Instead of learning from labeled data, the model is directly prompted to act as routers. Specifically, we first design the prompt template (used to elicit routing), which describes the objective and includes examples demonstrating how different types of queries correspond to specific retrieval targets (See Figure 8 for details). Then, at inference, the model is prompted with this template to predict the most suitable modality-granularity pairs from a predefined set. This eliminates the need for supervised labels or task-specific training, offering the flexibility to adapt to new tasks and domains.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

We explain the experimental setup, including datasets, models, metrics, and implementation details.

Datasets To evaluate UniversalRAG, we compile a comprehensive benchmark with various datasets for RAG, spanning seven different modalities and granularities. Specifically, for the no-retrieval, we use **MMLU** (Hendrycks et al., 2021), which assesses the capability of models themselves without requiring external sources. For the text RAG setting, we incorporate representative datasets such as **Natural Questions (NQ)** (Kwiatkowski et al., 2019), designed for single-hop RAG with paragraphs as the retrieval units; and **HotpotQA** (Yang et al., 2018), which targets multi-hop RAG with documents

(or sets of paragraphs) as the retrieval units. For the table RAG, we include **HybridQA** (Chen et al., 2020), a benchmark that requires reasoning over tables combined with additional text sources. For the image RAG, we consider **WebQA** (Chang et al., 2022), whose subset consists of queries that require grounding in external images. Lastly, for the video RAG, we use three datasets: **LVBench** (Wang et al., 2024a), whose queries target short or localized segments of video content; and **VideoRAG-Wiki** (Jeong et al., 2025) and **VideoRAG-Synth** (Jeong et al., 2025) that often consist of queries requiring comprehension of long-form (or complete) videos. Please see Appendix A for more details.

Knowledge Corpora To support diverse RAG scenarios with different modalities and granularities, we consider their corresponding corpora. Specifically, for the text RAG, in addition to the Wikipedia paragraph corpus compiled from Karpukhin et al. (2020), we also use the corpus of multi-paragraph documents following Jiang et al. (2024b) to build it by aggregating Wikipedia paragraphs. For the table corpus, we collect tables from the HybridQA benchmark. For the image, we use the corpus from the WebQA, consisting of images. Lastly, for the video, we construct two corpora (according to granularity): initially designing the video corpus by collecting full-length videos from LVbench and VideoRAG datasets, and segmenting them into multiple clips to construct the clip-level corpus. Together, these corpora define the seven routing pathways: **None**, **Paragraph**, **Document**, **Table**, **Image**, **Clip**, and **Video**. We provide additional details on corpus construction in Appendix A.

Methods We compare UniversalRAG to a diverse set of 12 baselines, grouped into four categories. The first is **Naïve**, which directly answers queries without retrieving external knowledge. In addition, the group of **Unimodal RAGs** includes **ParagraphRAG**, **DocumentRAG**, **TableRAG**, **ImageRAG**, **ClipRAG**, and **VideoRAG** methods, which retrieve information only from their respective modality-specific corpora and leverage it for response generation. The third group, **Unified Embedding Multimodal RAGs**, includes approaches that utilize the single embedding space for RAG, such as **UniRAG** (Sharifymoghadam et al., 2025) and **GME** (Zhang et al., 2025) that perform retrieval over multimodal data (such as text and images) by representing them into the shared space; **InternVideo2**¹ (Wang et al., 2024b) and **PE_{core}** (Bolya et al., 2025) that use multimodal encoders (trained to align different modalities) for representing videos as well as text and images. Lastly, **All** is included in the last group of **Multi-corpus Multimodal RAGs**, which performs retrieval over all the modality-specific corpora and incorporates the retrieved results into the LVLM for response generation. Notably, as UniversalRAG is operationalized with different routing strategies, we implement its several variants: training-based variants, **UniversalRAG (DistilBERT)** and **UniversalRAG (T5-Large)**, which train DistilBERT (Sanh et al., 2019) and T5-Large (Raffel et al., 2020) with the automatically constructed routing dataset to return the single-target prediction, and a training-free variant, **UniversalRAG (GPT-4.1)**, prompts GPT-4.1 (OpenAI, 2024) to select the most prominent modality-granularity pair. A further variant, **UniversalRAG (Cross-GPT-4.1)**, also leverages GPT-4.1 but is prompted to allow the selection of multiple modality-granularity pairs, enabling retrieval from diverse sources for queries that benefit from evidence across modalities. Finally, we include an oracle setup (**Oracle**), which routes each query to its ideal corpus, non-comparable with others.

Evaluation Metrics We report results with standard metrics. For datasets with multiple-choice questions, we report **Top-1 Accuracy (Acc)**, the proportion of questions answered correctly. For short-answer datasets, we use **Exact Match (EM)** and **F1**, which respectively measure exact agreement and word-level overlap between predictions and references. For datasets with longer free-form answers, we use **ROUGE-L**, which captures the longest common subsequences between the prediction and reference (Lin, 2004), and **BERTScore**, which assesses their semantic similarity (Zhang et al., 2020). We report the average score by averaging first within each modality, then across modalities.

Implementation Details For generations, we employ multiple LVLMs, including InternVL2.5-8B (Chen et al., 2025), Qwen2.5-VL-7B-Instruct (Bai et al., 2025), and Phi-3.5-Vision-Instruct (Abdin et al., 2024). Also, to take advantage of UniversalRAG in routing the retrieval process to the modality-specific corpus, we use modality-specific encoders: bge-large-en-v1.5 (Xiao et al., 2024) for text, InternVideo2 (Wang et al., 2024b) for vision, and dense row-level embedding (Ji et al., 2025) with the text encoder for tables, retrieving the nearest entries via cosine similarity over their embedding space. Lastly, for the router, we train it (for training-based variants) for 5 epochs with a learning rate of 2e-5 for DistilBERT and for 10 epochs with a learning rate of 3e-5 for T5-Large, selected

¹InternVideo2 also serves as the visual encoder for UniversalRAG. Unless otherwise specified, the term "InternVideo2" refers to the unified embedding baseline.

270 Table 1: Results of diverse RAG methods with InternVL2.5-8B by modalities. Our UniversalRAG
 271 is represented by the **colored cells**. **Bold** indicates the best performance and underline indicates the
 272 second-best, among UniversalRAG approaches. R-L and BERT refer to ROUGE-L and BERTScore.
 273

Models	MMLU		NQ		HotpotQA		HybridQA		WebQA		LVBench		VideoRAG-Wiki		VideoRAG-Synth		Avg
	Acc	EM	EM	FI	EM	FI	EM	FI	R-L	BERT	Acc	R-L	BERT	R-L	BERT		
Naive	64.50	24.71	38.11	12.92	20.87	0.86	4.91	40.63	90.30	28.60	15.74	84.20	14.93	85.73	31.16		
ParagraphRAG	64.50	35.14	47.89	14.45	23.05	7.43	10.98	37.25	89.77	28.80	13.92	83.68	22.18	87.29	33.28		
DocumentRAG	51.50	23.57	32.65	19.71	28.49	6.71	10.67	28.92	87.45	28.80	13.28	83.75	18.51	86.12	28.80		
TableRAG	54.50	9.43	15.42	9.19	14.49	7.29	11.17	31.33	88.68	27.03	12.11	83.21	18.77	86.31	24.80		
ImageRAG	54.50	23.57	32.96	13.11	20.18	1.29	5.53	46.50	91.32	31.64	17.26	83.79	20.72	87.02	30.68		
ClipRAG	53.50	13.86	21.82	9.38	16.51	1.29	4.95	39.53	90.27	35.36	18.76	86.38	27.37	89.34	28.41		
VideoRAG	59.50	14.43	22.99	9.95	16.95	1.29	5.03	40.08	90.51	33.59	19.23	86.35	28.23	89.45	29.36		
UniRAG (Sharifymoghadam et al., 2025)	57.50	16.14	27.49	9.57	16.49	0.43	3.61	43.98	90.89	25.27	15.86	83.95	24.75	88.22	28.14		
GME (Zhang et al., 2025)	60.00	15.57	26.65	10.53	17.95	4.71	9.63	45.16	90.04	26.15	17.28	84.89	26.33	88.50	29.96		
InternVideo2 (Wang et al., 2024b)	58.00	17.43	27.79	10.33	17.76	1.00	3.20	45.12	91.09	27.82	15.66	83.78	24.43	88.13	29.01		
PEco (Bolya et al., 2025)	60.50	16.57	27.34	9.76	16.67	1.29	4.19	44.19	90.84	28.31	15.91	83.98	23.63	87.99	29.20		
All	58.50	28.86	41.72	16.17	26.63	5.57	10.13	40.39	90.32	32.62	15.33	85.03	26.87	88.92	33.60		
UniversalRAG (DistilBERT)	62.50	34.86	47.08	18.56	26.98	7.86	12.04	46.32	91.28	35.65	19.23	86.35	28.23	89.45	36.82		
UniversalRAG (T5-Large)	63.00	35.43	47.71	18.95	27.56	7.14	12.00	46.43	91.77	34.38	19.23	86.35	28.20	89.49	36.95		
UniversalRAG (GPT-4.1)	65.00	34.86	47.60	15.89	23.84	8.57	12.13	44.74	91.06	31.15	13.95	83.68	22.49	84.71	35.27		
UniversalRAG (Cross-GPT-4.1)	63.50	35.86	47.86	15.98	24.21	10.71	15.57	48.13	95.02	30.36	16.27	84.30	25.39	88.92	36.25		
Oracle	64.50	35.14	47.89	19.71	28.49	12.00	17.16	46.50	91.32	35.65	18.79	86.38	27.45	89.35	38.31		

Figure 3: Comparison of averaged evaluation results across different RAG methods and LVLMs.

based on validation accuracy; meanwhile, for the training-free variant, we prompt GPT-4.1 with task objectives and examples, as shown in Figure 8. Further details are provided in Appendix B.

3.2 EXPERIMENTAL RESULTS AND ANALYSES

Now we present the overall results across diverse RAG scenarios spanning multiple modalities and levels of granularity, followed by a detailed analysis of the observed performance improvements.

Overall Results We present the modality- and granularity-specific results in Table 1, along with the averaged results with different LVLMs in Figure 3, from which we observe that UniversalRAG consistently achieves the best performance on average. Specifically, in Table 1, the results compared against the unimodal RAG baselines corroborate our hypothesis that retrieving from the modality (or granularity) that aligns best with the information needs of queries achieves the highest accuracy; however, mismatches between the query and retrieval source results in significant degradation, which supports our claim that considering the diverse modalities in the universal workflow is necessary for realistic RAG. Also, the level of granularity within each modality affects performance, suggesting that fine-grained retrieval and generation are necessary. In addition to them, UniversalRAG significantly outperforms another category of unified embedding multimodal RAG baselines (forcing all modalities into a single space), confirming the issue of the modality gap inherent within them (Figures 2 and 7). Lastly, when compared with the ‘All’ baseline (within the multi-corpus multimodal RAG category), which results in suboptimal performance due to the inclusion of noise from irrelevant modalities in generation, our UniversalRAG remains effective. Its strong performance is due to its core idea around modality-specific routing, enabling the selective retrieval from the most relevant modality and granularity for each query, yielding performance gains despite using several corpora.

Effectiveness of Cross-Modal Retrieval While many queries can be addressed by using a single, most prominent modality, certain tasks benefit from integrating evidence across multiple modalities. For instance, WebQA involves visually grounded questions that pair text with images, while HybridQA requires reasoning that spans both structured tables and accompanying textual sources. In such cases, UniversalRAG (Cross-GPT-4.1), which enables retrieval from multiple modality-granularity sources, demonstrates clear advantages over unimodal variants by aggregating cross-modal evidence. As shown in Table 1, the cross-modal variant achieves overall improvements across benchmarks, with large gains on WebQA and HybridQA. These results highlight the value of cross-modal retrieval in scenarios when single-modality evidence is insufficient, but also the flexibility of UniversalRAG to support both single- and cross-modal retrieval; however, they also suggest that current benchmarks underrepresent such cross-modal queries, suggesting the need for a richer evaluation suite.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 4: Distribution of the retrieved data modalities.

Figure 5: Retrieval latency per query across corpus sizes.

Figure 6: Router accuracy with varying the router model size.

Table 2: Modality accuracy (in corpus selection) and recall of retrieved items for retrieval methods. Table 3: Performance across different numbers of granularity (#Gn) for two router models.

Models	Modality Acc	Recall			Models	#Gn	HotpotQA		LVBench	
		R@1	R@3	R@5			EM	F1	Acc	
UniRAG	25.00	0.02	0.05	0.06		1	11.00	21.91	29.29	
GME	41.29	23.01	34.29	40.80	GPT-4.1	2	15.89	23.84	31.15	
InternVideo2	25.00	1.87	2.44	4.01		3	15.79	24.11	31.15	
PE _{core}	25.00	0.98	1.34	1.72		4	15.60	23.64	31.83	
UniversalRAG (distilBERT)	83.64	29.73	45.19	53.24		1	14.45	22.99	31.48	
UniversalRAG (T5-Large)	87.71	32.01	46.68	54.09	Gemini 2.5 Flash	2	17.61	25.79	32.57	
UniversalRAG (GPT-4.1)	68.85	19.92	32.77	37.80		3	17.27	24.95	32.81	
						4	17.70	25.86	33.60	

Effectiveness of Modality Routing To investigate the benefit of our routing method, we compare the distribution of retrieved modalities among InternVideo2, GME, and UniversalRAG (DistilBERT), summarized in Figure 4. Using 200 sampled queries per benchmark and normalizing distributions for balance, we find that InternVideo2 retrieves only text (including tables), while GME exhibits a similar bias toward text regardless of the actual modality required for the given query. This highlights how the modality gap in the unified embedding space makes retrieval ineffective. However, UniversalRAG distributes retrieval more evenly across modalities, demonstrating that the query router effectively mitigates modality bias and adaptively directs queries to the most suitable knowledge source. This also results in high modality retrieval accuracy – the accuracy with which the correct modality (i.e., none, text, image, or video) is retrieved – which directly translates to high recall of the retrieved items, as shown in Table 2. Specifically, while GME achieves comparable recall on text and image corpora, its inability to accurately retrieve from the correct modality leads to lower recall on multimodal corpora that include videos. Yet, UniversalRAG, with trained routers, consistently retrieves from the correct modality, enabling it to achieve higher retrieval recall than baselines across all scenarios.

Effectiveness of Multigranularity Given the observed benefits of corpus selection in Table 1, we further investigate its impact beyond modality choice by comparing UniversalRAG at varying levels of granularity. Table 3 shows that incorporating granularity-aware corpus selection leads to consistent performance gains by avoiding the retrieval of context that is either insufficient (e.g., a short paragraph lacking key entities for multi-hop reasoning) or excessive (e.g., a full video when only a short clip is relevant), both of which can hinder accurate response generation. Also, as additional granularity levels are introduced, we observe further improvements in some cases, though gains are not strictly monotonic across tasks, reflecting the trade-off between context sufficiency and noise. In the meantime, we adopt a binary level of granularity in our main experiments to strike a balance between effectiveness and efficiency. Results with trained router variants are reported in Table 11.

Retrieval Efficiency of Modality-Specific Retrieval Beyond accuracy, UniversalRAG also improves efficiency by reducing the search space: it leverages modality- and granularity-aware routing to restrict retrieval to only the most relevant sources, instead of querying a unified embedding index that aggregates all modalities into a single mega-corpus. Also, the overhead for routing is small as this cost is outweighed at scale by the reduced search space, leading to sub-linear latency growth as corpus size increases, as shown in Figure 5. Specifically, UniversalRAG eventually achieves lower latency than unified embedding methods at large corpus sizes, with the gap widening further at very large scales (e.g., beyond 10M entries). This scalability makes UniversalRAG a practical solution for real-world applications, where corpora are significantly larger than our experimental settings.

Analysis on Router Size To examine whether the routing cost (while already small) can be further reduced by using smaller models as routers without sacrificing accuracy, we train six models (Liu et al., 2019; Radford et al., 2019; Sanh et al., 2019; Lan et al., 2020; Raffel et al., 2020; Zhang et al.,

378 Table 4: Results of UniversalRAG and baselines on out-of-domain dataset with InternVL2.5-8B.
379

380 Models	381 TruthfulQA		382 TriviaQA		383 LaRA		384 Visual-RAG		385 Cinepile		386 Avg
	387 Acc	388 EM	389 F1	390 R-L	391 BERT	392 R-L	393 BERT	394 Acc	395 Acc		
396 Naïve	397 64.68	398 49.47	399 57.92	400 23.15	401 87.62	402 6.24	403 80.98	404 30.76	405 33.88		
396 ParagraphRAG	397 58.73	398 54.61	399 65.14	400 20.23	401 86.48	402 4.74	403 80.77	404 30.07	405 33.88		
396 DocumentRAG	397 28.73	398 39.94	399 44.73	400 25.18	401 86.83	402 4.34	403 81.14	404 32.64	405 26.68		
396 ImageRAG	397 57.85	398 45.23	399 52.50	400 21.40	401 87.09	402 7.31	403 82.32	404 34.03	405 33.35		
396 ClipRAG	397 51.01	398 31.62	399 42.40	400 19.64	401 87.50	402 6.92	403 81.32	404 35.63	405 29.59		
396 VideoRAG	397 47.34	398 33.59	399 43.82	400 19.89	401 87.19	402 7.04	403 81.42	404 37.43	405 29.47		
396 UniRAG (Sharifymoghaddam et al., 2025)	397 55.70	398 39.64	399 47.88	400 19.66	401 86.47	402 5.20	403 80.67	404 31.60	405 29.16		
396 GME (Zhang et al., 2025)	397 54.94	398 54.31	399 65.12	400 19.28	401 86.31	402 5.64	403 81.14	404 30.14	405 33.82		
396 InternVideo2 (Wang et al., 2024b)	397 52.15	398 35.70	399 45.01	400 21.28	401 86.83	402 4.31	403 80.47	404 30.76	405 28.92		
396 PE _{core} (Bolya et al., 2025)	397 55.82	398 39.94	399 48.67	400 18.78	401 86.01	402 4.80	403 80.67	404 30.97	405 28.54		
396 All	397 45.82	398 28.74	399 41.63	400 19.14	401 87.01	402 6.02	403 80.77	404 36.60	405 29.07		
396 UniversalRAG (DistilBERT)	397 56.08	398 42.06	399 51.74	400 21.03	401 86.98	402 7.35	403 82.30	404 35.63	405 32.65		
396 UniversalRAG (T5-Large)	397 55.57	398 43.72	399 52.04	400 21.38	401 87.02	402 7.31	403 82.32	404 35.63	405 32.63		
396 UniversalRAG (GPT-4.1)	397 54.54	398 53.25	399 62.33	400 23.77	401 86.88	402 7.12	403 82.29	404 35.14	405 36.17		
396 Oracle	397 64.68	398 55.52	399 64.85	400 25.18	401 86.83	402 7.31	403 82.32	404 37.71	405 38.26		

393 Table 5: Input token efficiency with respect to
394 RAG performance on text and video datasets.

395 Models	396 Avg # Tokens ↓	397 Avg Score ↑
<i>398 Text-based Generation Scenarios</i>		
399 ParagraphRAG	182	35.47
399 DocumentRAG	3912	30.57
399 UniversalRAG (DistilBERT)	2126	37.02
<i>400 Video-based Generation Scenarios</i>		
401 ClipRAG	2154	24.37
401 VideoRAG	8466	25.07
401 UniversalRAG (DistilBERT)	6236	26.48

404 (2022) ranging from 12M to 1.3B parameters and measure router accuracy. As Figure 6 shows, router
405 accuracy increases with larger model sizes within each architecture, suggesting the scalability of our
406 routing approach. However, even compact models such as ALBERT achieve strong performance with
407 only 12M parameters, indicating that compact models can be effectively utilized in UniversalRAG.

409 **Generation Efficiency of Multigranularity** We hypothesize that the multigranular retrieval of
410 UniversalRAG is also superior in generation efficiency compared to baselines, for which we present
411 the average length of the input tokens (including retrieved data and query) with average scores for
412 text and video datasets in Table 5 (where we sample 32 frames for full videos and 8 frames for clips).
413 Fine-granularity baselines process shorter information during inference but underperform compared
414 to UniversalRAG, as the retrieved information is often insufficient to accurately answer the query;
415 meanwhile, coarse-granularity baselines provide more context but at the cost of substantially longer
416 inputs. UniversalRAG achieves the best of both worlds: it consistently outperforms coarse-granularity
417 baselines with fewer tokens, and it surpasses fine-granularity baselines by retrieving just enough
418 context to answer the query. For example, in text datasets, UniversalRAG achieves a 6.5% higher
419 average score than the Document baseline, while using only about half as many input tokens. With
420 granularity-aware retrieval, UniversalRAG can balance performance and computation efficiency.

421 **Generalizability on Out-of-Domain Datasets** While results on in-domain datasets demonstrate
422 the strong performance of UniversalRAG relative to baseline methods, particularly when using
423 trained routers, we also evaluate its ability to generalize to out-of-domain (OOD) tasks. Table 4
424 presents the full comparison between UniversalRAG and the baselines on OOD benchmarks. The
425 results show that trained routers underperform on TriviaQA and LaRA, where they either fail to
426 select the correct granularity or encounter task types that were largely unseen during training. In
427 contrast, the training-free router exhibits robust performance even in these challenging scenarios.
428 For the remaining benchmarks, a pattern similar to the in-domain setting emerges: UniversalRAG
429 outperforms unified embedding baselines, with trained routers outperforming training-free routers.

430 Table 6 summarizes UniversalRAG’s average performance across in-domain and OOD settings.
431 Interestingly, the trend reverses in the OOD scenario: the training-free router provides more robust
432 performance, while the trained router experiences a more noticeable decline. These results underscore

393 Table 6: Router accuracy and generation performance
394 across retrieval methods on two settings.

400 Models	401 In-Domain		402 Out-Domain	
	403 Router Acc	404 Avg Score	405 Router Acc	406 Avg Score
407 Random	408 14.29	409 28.91	410 16.67	411 29.99
407 UniversalRAG (DistilBERT)	408 81.38	409 36.86	410 40.10	411 32.65
407 UniversalRAG (T5-Large)	86.38	36.95	49.63	32.63
407 UniversalRAG (GPT-4.1)	51.20	35.27	63.86	36.17
407 Ensemble (Confidence-based)	79.32	36.71	62.44	35.98
407 Ensemble (Majority Voting)	85.29	36.90	51.32	34.88

Table 7: Case study comparing unimodal RAGs with fixed granularity to UniversalRAG (Ours).

432	Question	Who finishes first in the Men’s 100M Round 1 Heat 5 during the London 2012 Olympics, featuring Usain Bolt and Yohan Blake? (A) Su BingTian (B) Usain Bolt (C) Asafa Powell (D) Tyson Gay	433	Answer : (C)
434	TextRAG	Retrieved: former 100 m world champion, Zhanna Pintusevich-Block of Total Sports Management. On July 28, 2006, he announced a deal with Nike that will run through to the 2012 Summer Olympics in London. On July 11, 2006, at the Grand Prix in Lausanne ...	435	ImageRAG Retrieved:
436		Response: (B) ✗	437	Response: (B) ✗
438	VideoRAG	Retrieved: (Timestamp Range: 00:00~38:26)	439	Ours Routed to: Clip Retrieved: (Timestamp Range: 25:57~29:22)
440		Response: (B) ✗	441	Response: (C) ✓
442			443	
444			445	

the advantage of leveraging the training-free router’s inherent model knowledge, which enables stronger generalization to unseen tasks and makes it particularly effective in OOD conditions.

Ensemble Strategy for Robust Routing Building on our findings of the trade-off between the high in-domain accuracy of trained routers and the strong out-of-domain generalization of the training-free router, we further explore a novel ensemble strategy to leverage their complementary strengths. In particular, we propose two ensemble strategies: confidence-based ensemble and majority voting. In a confidence-based ensemble, the prediction of the trained router (DistilBERT) is used if its confidence score exceeds a predefined threshold; otherwise, the system falls back to the training-free router (GPT-4.1). For majority voting, we adopt the majority answer from three routers (including training-based and free) as a final prediction; if no majority exists, one is selected at random. Table 6 shows that UniversalRAG with the ensemble routers offers a robust middle ground between them, suggesting that it could be beneficial in real-world scenarios with unseen or shifting distributions.

Case Study We present a case study of UniversalRAG in Table 7. The query asks for the winner of Heat 5 in the Men’s 100M Round 1 at the London 2012 Olympics. TextRAG and ImageRAG retrieve a paragraph and an image related to the Olympics, but neither provides relevant evidence to answer the question, resulting in incorrect responses. Meanwhile, VideoRAG retrieves the full video of Men’s 100M Round 1 at the 2012 Olympics, but struggles to identify the winner of Heat 5 due to the inclusion of irrelevant segments from other heats. However, UniversalRAG selects ‘Clip’ corpus and retrieves the video clip for Heat 5, enabling the generation model to focus on the specific race mentioned in the query and generate the correct answer. More case studies are shown in Appendix F.

4 RELATED WORK

Large Vision Language Models Building on the impressive performance of LLMs (Anil et al., 2023; OpenAI, 2024), recent studies have extended their capabilities to handle visual information. Specifically, Liu et al. (2023) introduces one of the first Large Vision Language Models (LVLMs) by incorporating a CLIP-based (Radford et al., 2021) image encoder, enabling the language model to interpret visual inputs within a shared textual feature space. Subsequently, a variety of LVLMs have been proposed, each integrating different image encoders (Bai et al., 2023; Chen et al., 2024c; Liu et al., 2024), and this line of work has more recently been extended to video data (Li et al., 2024a; Chen et al., 2025; Bai et al., 2025). However, despite improved performance on multimodal benchmarks (Mathew et al., 2021; Yue et al., 2024; Li et al., 2024b; Fu et al., 2024), enabled by larger training datasets and better model architectures, LVLMs still often suffer from hallucinations (Huang et al., 2025), only when they rely solely on parametric knowledge acquired during pretraining.

Retrieval-Augmented Generation To address the aforementioned limitation of parametric-only models, RAG has emerged, incorporating external knowledge during response generation. While conventional RAG methods primarily operate over textual corpora (Lewis et al., 2020; Ram et al., 2023), recent studies have begun to explore RAG over multimodal sources (such as images and videos) (Chen et al., 2022; Riedler & Langer, 2024; Jeong et al., 2025). However, these approaches assume a fixed single-modality retrieval, making them less adaptable to real-world queries that may require information from different modalities. One promising approach is to leverage multimodal encoders (Radford et al., 2021; Wang et al., 2024b; Zhang et al., 2025; Bolya et al., 2025) that can

486 encode text, images, and videos into a shared embedding space, and Sharifymoghadam et al. (2025)
 487 proposes to retrieve from such a unified embedding space; however, it often struggles to retrieve visual
 488 content when queries are text. While other approaches (Cui et al., 2024; Liu et al., 2025a) attempt
 489 to retrieve knowledge from all modalities, followed by extra selection mechanisms during or after
 490 generation, they incur notable computational overhead. Lastly, adaptive retrieval strategies (Jeong
 491 et al., 2024; Islam et al., 2024; Ding et al., 2024; Yao et al., 2024; Tang et al., 2025), proposed to
 492 handle diverse query needs, are limited to a single corpus (Zhang et al., 2024; Li et al., 2024c).

493 **Retrieval Granularity** While most existing RAG systems operate at a fixed granularity (e.g., full
 494 documents, passages, or sentences), real-world queries often require information at varying levels of
 495 specificity depending on the knowledge needed, which in turn impacts performance and efficiency
 496 in both textual (Chen et al., 2024b; Liu et al., 2025b; Zhong et al., 2025) and video-based retrieval
 497 systems (Chen et al., 2023). In contrast, UniversalRAG performs query-level routing across modality
 498 and granularity dimensions, enabling retrieval from the most relevant source at the appropriate level.

500 5 CONCLUSION

501 In this paper, we propose UniversalRAG, a novel RAG framework designed to retrieve from cor-
 502 pora with diverse modalities and granularities. Through a modality- and granularity-aware routing
 503 mechanism, UniversalRAG dynamically selects the most suitable knowledge source for each query,
 504 effectively addressing the limitations posed by modality gaps and fixed-granularity retrieval. Exten-
 505 sive evaluations across 8 benchmarks demonstrate that UniversalRAG consistently outperforms both
 506 modality-specific and unified baselines, showcasing robust performance across diverse modalities.
 507 Also, our analyses highlight the importance of fine-grained retrieval and the complementary strengths
 508 of training-free and trained routers. These findings demonstrate the potential of UniversalRAG as an
 509 adaptive solution for grounding LVLMs with heterogeneous external knowledge, paving the way for
 510 a one-for-all RAG solution that unifies the fragmented landscape of existing corpus-specific RAGs.

511 512 ETHICS STATEMENT

513 The proposed UniversalRAG can be seamlessly integrated with any LVLMs and compatible retrieval
 514 corpora, reducing hallucination with the corpus-specific routing. However, there can be potential
 515 private, harmful, or biased content present in the retrieved or generated outputs, depending on the
 516 nature of the underlying corpora or the internalized knowledge within LVLMs. To mitigate such risks,
 517 it is recommended to apply safeguard mechanisms and filtering techniques in retrieval and generation,
 518 to ensure the safe and responsible deployment.

521 522 REPRODUCIBILITY STATEMENT

523 We take several steps to ensure the reproducibility of our work. All experimental details are described
 524 in Section 3.1 and Appendix B. The preprocessing pipeline for all datasets, along with benchmark
 525 sampling and corpus formulation, is described in Appendix A. Our routing and generation components
 526 mainly utilize open-source LLMs and LVLMs, which are fully reproducible, with the exception of
 527 training-free routers that are based on closed-source APIs. Lastly, we attach the complete source code
 528 in the supplementary materials, covering all stages from data preprocessing to end-to-end evaluation.

529 530 REFERENCES

531 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
 532 Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko,
 533 Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong
 534 Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai,
 535 Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg,
 536 Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J.
 537 Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin,
 538 Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev
 539 Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui
 Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo,

540 Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes,
 541 Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker,
 542 Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa,
 543 Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael
 544 Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song,
 545 Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan
 546 Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping
 547 Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali
 548 Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong
 549 Zhang, Cyril Zhang, Jianwen Zhang, Li Lyra Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
 550 Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.
 551 URL <https://arxiv.org/abs/2404.14219>.

552 Mohammad Mahdi Abootorabi, Amirhosein Zobeiri, Mahdi Dehghani, Mohammadali Mohammad-
 553 khani, Bardia Mohammadi, Omid Ghahroodi, Mahdieh Soleymani Baghshah, and Ehsaneddin
 554 Asgari. Ask in any modality: A comprehensive survey on multimodal retrieval-augmented genera-
 555 tion, 2025. URL <https://arxiv.org/abs/2502.08826>.

556 Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 557 Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov, Melvin
 558 Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler,
 559 Timothy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul Ronald
 560 Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan
 561 Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
 562 Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka,
 563 Becca Roelofs, Anaïs White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati, Mehran
 564 Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al. Gemini: A family
 565 of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023. URL <https://doi.org/10.48550/arXiv.2312.11805>.

566 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
 567 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization,
 568 text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.

569 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 570 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 571 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 572 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report, 2025. URL
 573 <https://arxiv.org/abs/2502.13923>.

574 Valeria Bolotova-Baranova, Vladislav Blinov, Sofya Filippova, Falk Scholer, and Mark Sanderson.
 575 WikiHowQA: A comprehensive benchmark for multi-document non-factoid question answering.
 576 In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual
 577 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5291–5314,
 578 Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 579 acl-long.290. URL <https://aclanthology.org/2023.acl-long.290/>.

580 Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu
 581 Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu,
 582 Shiyu Dong, Nikhila Ravi, Daniel Li, Piotr Dollár, and Christoph Feichtenhofer. Perception
 583 encoder: The best visual embeddings are not at the output of the network, 2025. URL <https://arxiv.org/abs/2504.13181>.

584 Brandon Castellano. PySceneDetect, 2014. URL <https://github.com/Breakthrough/PySceneDetect>.

585 Yingshan Chang, Guihong Cao, Mridu Narang, Jianfeng Gao, Hisami Suzuki, and Yonatan Bisk.
 586 Webqa: Multihop and multimodal QA. In *IEEE/CVF Conference on Computer Vision and Pattern
 587 Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 16474–16483. IEEE, 2022.
 588 doi: 10.1109/CVPR52688.2022.01600. URL <https://doi.org/10.1109/CVPR52688.2022.01600>.

594 Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. Benchmarking large language models in retrieval-
 595 augmented generation. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam Natarajan (eds.),
 596 *Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on*
 597 *Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational*
 598 *Advances in Artificial Intelligence, EAAI 2014, February 20-27, 2024, Vancouver, Canada*, pp.
 599 17754–17762. AAAI Press, 2024a. doi: 10.1609/AAAI.V38I16.29728. URL <https://doi.org/10.1609/aaai.v38i16.29728>.

600

601 Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,
 602 and Dong Yu. Dense X retrieval: What retrieval granularity should we use? In Yaser Al-
 603 Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on*
 604 *Empirical Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November*
 605 *12-16, 2024*, pp. 15159–15177. Association for Computational Linguistics, 2024b. URL <https://aclanthology.org/2024.emnlp-main.845>.

606

607 Wenhui Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Yang Wang.
 608 HybridQA: A dataset of multi-hop question answering over tabular and textual data. In Trevor
 609 Cohn, Yulan He, and Yang Liu (eds.), *Findings of the Association for Computational Linguistics:*
 610 *EMNLP 2020*, pp. 1026–1036, Online, November 2020. Association for Computational Linguis-
 611 *tics*. doi: 10.18653/v1/2020.findings-emnlp.91. URL <https://aclanthology.org/2020.findings-emnlp.91>.

612

613 Wenhui Chen, Hexiang Hu, Xi Chen, Pat Verga, and William W. Cohen. Murag: Multimodal retrieval-
 614 augmented generator for open question answering over images and text. In Yoav Goldberg,
 615 Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on Empirical*
 616 *Methods in Natural Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates,*
 617 *December 7-11, 2022*, pp. 5558–5570. Association for Computational Linguistics, 2022. doi:
 618 10.18653/v1/2022.EMNLP-MAIN.375. URL <https://doi.org/10.18653/v1/2022.emnlp-main.375>.

619

620 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 621 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 622 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision*
 623 *and pattern recognition*, pp. 24185–24198, 2024c. URL https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_InternVL_Scaling_up_Vision_Foundation_Models_and_Aligning_for_Generic_CVPR_2024_paper.pdf.

624

625 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 626 Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen,
 627 Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang,
 628 Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng,
 629 Jiaye Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu,
 630 Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Expanding performance boundaries of
 631 open-source multimodal models with model, data, and test-time scaling, 2025. URL <https://arxiv.org/abs/2412.05271>.

632

633 Zhipu Chen, Xun Jiang, Xing Xu, Zuo Cao, Yijun Mo, and Heng Tao Shen. Joint searching
 634 and grounding: Multi-granularity video content retrieval. In Abdulmotaleb El-Saddik, Tao Mei,
 635 Rita Cucchiara, Marco Bertini, Diana Patricia Tobon Vallejo, Pradeep K. Atrey, and M. Shamim
 636 Hossain (eds.), *Proceedings of the 31st ACM International Conference on Multimedia, MM 2023,*
 637 *Ottawa, ON, Canada, 29 October 2023- 3 November 2023*, pp. 975–983. ACM, 2023. doi:
 638 10.1145/3581783.3612349. URL <https://doi.org/10.1145/3581783.3612349>.

639

640 Wanqing Cui, Keping Bi, Jiafeng Guo, and Xueqi Cheng. MORE: Multi-mOdal REtrieval augmented
 641 generative commonsense reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 642 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 1178–1192, Bangkok,
 643 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 644 findings-acl.69. URL <https://aclanthology.org/2024.findings-acl.69>.

645

646 Hanxing Ding, Liang Pang, Zihao Wei, Huawei Shen, and Xueqi Cheng. Retrieve only when it needs:
 647 Adaptive retrieval augmentation for hallucination mitigation in large language models, 2024. URL
<https://arxiv.org/abs/2402.10612>.

648 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 649 Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li,
 650 Tong Xu, Xiawu Zheng, Enhong Chen, Rongrong Ji, and Xing Sun. Video-mme: The first-
 651 ever comprehensive evaluation benchmark of multi-modal llms in video analysis, 2024. URL
 652 <https://arxiv.org/abs/2405.21075>.

653 Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
 654 Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
 655 2024. URL <https://arxiv.org/abs/2312.10997>.

656 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 657 Steinhardt. Measuring massive multitask language understanding. In *9th International Conference
 658 on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*, 2021. URL
 659 <https://openreview.net/forum?id=d7KBjmI3GmQ>.

660 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 661 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
 662 language models: Principles, taxonomy, challenges, and open questions. *ACM Trans. Inf. Syst.*,
 663 43(2), January 2025. ISSN 1046-8188. doi: 10.1145/3703155. URL <https://doi.org/10.1145/3703155>.

664 Shayekh Bin Islam, Md Asib Rahman, K. S. M. Tozammel Hossain, Enamul Hoque, Shafiq Joty, and
 665 Md. Rizwan Parvez. Open-rag: Enhanced retrieval augmented reasoning with open-source large
 666 language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of
 667 the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November
 668 12-16, 2024*, pp. 14231–14244. Association for Computational Linguistics, 2024. URL <https://aclanthology.org/2024.findings-emnlp.831>.

669 Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong Park. Adaptive-rag: Learning
 670 to adapt retrieval-augmented large language models through question complexity. In Kevin Duh,
 671 Helena Gómez-Adorno, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the
 672 North American Chapter of the Association for Computational Linguistics: Human Language Tech-
 673 nologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024*, pp. 7036–
 674 7050. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-LONG.
 675 389. URL <https://doi.org/10.18653/v1/2024.naacl-long.389>.

676 Soyeong Jeong, Kangsan Kim, Jinheon Baek, and Sung Ju Hwang. Videorag: Retrieval-augmented
 677 generation over video corpus, 2025. URL <https://arxiv.org/abs/2501.05874>.

678 Xingyu Ji, Parker Glenn, Aditya G. Parameswaran, and Madelon Hulsebos. TARGET: Benchmarking
 679 table retrieval for generative tasks, 2025. URL <https://arxiv.org/abs/2505.11545>.

680 Ting Jiang, Minghui Song, Zihan Zhang, Haizhen Huang, Weiwei Deng, Feng Sun, Qi Zhang, Deqing
 681 Wang, and Fuzhen Zhuang. E5-v: Universal embeddings with multimodal large language models,
 682 2024a. URL <https://arxiv.org/abs/2407.12580>.

683 Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
 684 Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Houda Bouamor,
 685 Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in
 686 Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023*, pp. 7969–7992.
 687 Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.495.
 688 URL <https://doi.org/10.18653/v1/2023.emnlp-main.495>.

689 Ziyan Jiang, Xueguang Ma, and Wenhui Chen. Longrag: Enhancing retrieval-augmented generation
 690 with long-context llms, 2024b. URL <https://arxiv.org/abs/2406.15319>.

691 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale
 692 distantly supervised challenge dataset for reading comprehension. In Regina Barzilay and
 693 Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting of the Association for Com-
 694 putational Linguistics (Volume 1: Long Papers)*, pp. 1601–1611, Vancouver, Canada, July
 695 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1147. URL <https://aclanthology.org/P17-1147/>.

702 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 703 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Bonnie
 704 Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Conference on*
 705 *Empirical Methods in Natural Language Processing (EMNLP)*, pp. 6769–6781, Online, November
 706 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL
 707 <https://aclanthology.org/2020.emnlp-main.550/>.

708 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 709 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 710 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 711 Petrov. Natural Questions: A benchmark for question answering research. *Transactions of the*
 712 *Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
 713 <https://aclanthology.org/Q19-1026/>.

714 Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
 715 ALBERT: A lite BERT for self-supervised learning of language representations. In *8th International*
 716 *Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*.
 717 OpenReview.net, 2020. URL <https://openreview.net/forum?id=H1eA7AEtvS>.

718 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 719 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
 720 Retrieval-augmented generation for knowledge-intensive nlp tasks. In H. Larochelle, M. Ranzato,
 721 R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*,
 722 volume 33, pp. 9459–9474, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

723 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 724 Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer, 2024a.
 725 URL <https://arxiv.org/abs/2408.03326>.

726 Kuan Li, Liwen Zhang, Yong Jiang, Pengjun Xie, Fei Huang, Shuai Wang, and Minhao Cheng.
 727 LaRA: Benchmarking retrieval-augmented generation and long-context llms – no silver bullet for
 728 lc or rag routing, 2025. URL <https://arxiv.org/abs/2502.09977>.

729 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping
 730 Lou, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video understanding
 731 benchmark. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024*,
 732 *Seattle, WA, USA, June 16-22, 2024*, pp. 22195–22206. IEEE, 2024b. doi: 10.1109/CVPR52733.
 733 2024.02095. URL <https://doi.org/10.1109/CVPR52733.2024.02095>.

734 Yangning Li, Yinghui Li, Xinyu Wang, Yong Jiang, Zhen Zhang, Xinran Zheng, Hui Wang, Hai-Tao
 735 Zheng, Pengjun Xie, Philip S. Yu, Fei Huang, and Jingren Zhou. Benchmarking multimodal
 736 retrieval augmented generation with dynamic vqa dataset and self-adaptive planning agent, 2024c.
 737 URL <https://arxiv.org/abs/2411.02937>.

738 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization*
 739 *Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
 740 URL <https://aclanthology.org/W04-1013/>.

741 Sheng-Chieh Lin, Chankyu Lee, Mohammad Shoeybi, Jimmy Lin, Bryan Catanzaro, and Wei
 742 Ping. MM-EMBED: Universal multimodal retrieval with multimodal LLMS. In *The Thirteenth*
 743 *International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*,
 744 2025. URL <https://openreview.net/forum?id=i45NQb2iKO>.

745 Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human
 746 falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of*
 747 *the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 748 pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi:
 749 10.18653/v1/2022.acl-long.229. URL [https://aclanthology.org/2022.acl-long.229/](https://aclanthology.org/2022.acl-long.229).

756 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
 757 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural In-*
 758 *formation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*
 759 *16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/6dcf277ea32ce3288914faf369fe6de0-Abstract-Conference.html.

760

761 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 762 tuning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle,*
 763 *WA, USA, June 16-22, 2024*, pp. 26286–26296. IEEE, 2024. doi: 10.1109/CVPR52733.2024.02484.
 764 URL <https://doi.org/10.1109/CVPR52733.2024.02484>.

765

766 Pei Liu, Xin Liu, Ruoyu Yao, Junming Liu, Siyuan Meng, Ding Wang, and Jun Ma. Hm-rag:
 767 Hierarchical multi-agent multimodal retrieval augmented generation, 2025a. URL <https://arxiv.org/abs/2504.12330>.

768

769 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 770 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 771 approach, 2019. URL <https://arxiv.org/abs/1907.11692>.

772

773 Zuhong Liu, Charles-Elie Simon, and Fabien Caspani. Passage segmentation of documents for
 774 extractive question answering, 2025b. URL <https://arxiv.org/abs/2501.09940>.

775

776 Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for VQA on document
 777 images. In *IEEE Winter Conference on Applications of Computer Vision, WACV 2021, Waikoloa,*
 778 *HI, USA, January 3-8, 2021*, pp. 2199–2208. IEEE, 2021. doi: 10.1109/WACV48630.2021.00225.
 779 URL <https://doi.org/10.1109/WACV48630.2021.00225>.

780

781 Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and
 782 Josef Sivic. Howto100m: Learning a text-video embedding by watching hundred million
 783 narrated video clips. In *Proceedings of the IEEE/CVF International Conference on Computer*
 784 *Vision (ICCV)*, October 2019. URL https://openaccess.thecvf.com/content_ICCV_2019/html/Miech_HowTo100M_Learning_a_Text-Video_Embedding_by_Watching_Hundred_Million_Narrated_ICCV_2019_paper.html.

785

786 OpenAI. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

787

788 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
 789 et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9,
 790 2019. URL https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf.

791

792 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 793 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 794 Learning transferable visual models from natural language supervision. In Marina Meila and
 795 Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>.

796

797

798 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 799 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 800 text transformer. *J. Mach. Learn. Res.*, 21:140:1–140:67, 2020. URL <https://jmlr.org/papers/v21/20-074.html>.

801

802

803 Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, and
 804 Yoav Shoham. In-context retrieval-augmented language models. *Transactions of the Association for*
 805 *Computational Linguistics*, 11:1316–1331, 11 2023. ISSN 2307-387X. doi: 10.1162/tacl_a_00605.
 806 URL https://doi.org/10.1162/tacl_a_00605.

807

808 Ruchit Rawal, Khalid Saifullah, Miquel Farré, Ronen Basri, David Jacobs, Gowthami Somepalli, and
 809 Tom Goldstein. CinePile: A long video question answering dataset and benchmark, 2024. URL
<https://arxiv.org/abs/2405.08813>.

810 Monica Riedler and Stefan Langer. Beyond text: Optimizing rag with multimodal inputs for industrial
 811 applications, 2024. URL <https://arxiv.org/abs/2410.21943>.

812

813 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a dis-
 814 tilled version of BERT: smaller, faster, cheaper and lighter. In *NeurIPS 2019 EMC²*
 815 *Workshop*, 2019. URL <https://www.emc2-ai.org/assets/docs/neurips-19-emc2-neurips19-paper-33.pdf>.

816

817 Sahel Sharifymoghadam, Shivani Upadhyay, Wenhua Chen, and Jimmy Lin. UniRAG: Universal
 818 retrieval augmentation for large vision language models. In Luis Chiruzzo, Alan Ritter, and
 819 Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL 2025*, pp.
 820 2026–2039, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics.
 821 URL <https://aclanthology.org/2025.findings-naacl.108/>.

822

823 Xiaqiang Tang, Qiang Gao, Jian Li, Nan Du, Qi Li, and Sihong Xie. MBA-RAG: a bandit approach
 824 for adaptive retrieval-augmented generation through question complexity. In Owen Rambow, Leo
 825 Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert
 826 (eds.), *Proceedings of the 31st International Conference on Computational Linguistics, COLING*
 827 *2025, Abu Dhabi, UAE, January 19-24, 2025*, pp. 3248–3254. Association for Computational
 828 Linguistics, 2025. URL <https://aclanthology.org/2025.coling-main.218/>.

829

830 Weihang Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang,
 831 Bin Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Lvbench: An extreme long video understanding
 832 benchmark, 2024a. URL <https://arxiv.org/abs/2406.08035>.

833

834 Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
 835 Zun Wang, Yansong Shi, Tianxiang Jiang, Songze Li, Jilan Xu, Hongjie Zhang, Yifei Huang,
 836 Yu Qiao, Yali Wang, and Limin Wang. Internvideo2: Scaling foundation models for multimodal
 837 video understanding. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten
 838 Sattler, and Gülcin Varol (eds.), *Computer Vision - ECCV 2024 - 18th European Conference, Milan,*
 839 *Italy, September 29-October 4, 2024, Proceedings, Part LXXXV*, volume 15143 of *Lecture Notes*
 840 in *Computer Science*, pp. 396–416. Springer, 2024b. doi: 10.1007/978-3-031-73013-9_23. URL
 841 https://doi.org/10.1007/978-3-031-73013-9_23.

842

843 Yin Wu, Quanyu Long, Jing Li, Jianfei Yu, and Wenya Wang. Visual-rag: Benchmarking text-
 844 to-image retrieval augmented generation for visual knowledge intensive queries, 2025. URL
 845 <https://arxiv.org/abs/2502.16636>.

846

847 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack:
 848 Packed resources for general chinese embeddings. In *Proceedings of the 47th International ACM*
 849 *SIGIR Conference on Research and Development in Information Retrieval, SIGIR '24*, pp. 641–649,
 850 New York, NY, USA, 2024. Association for Computing Machinery. doi: 10.1145/3626772.3657878.
 851 URL <https://doi.org/10.1145/3626772.3657878>.

852

853 Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation,
 854 2024. URL <https://arxiv.org/abs/2401.15884>.

855

856 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
 857 Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
 858 ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings*
 859 *of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369–2380,
 860 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 861 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259/>.

862

863 Zijun Yao, Weijian Qi, Liangming Pan, Shulin Cao, Linmei Hu, Weichuan Liu, Lei Hou, and Juanzi
 864 Li. Seakr: Self-aware knowledge retrieval for adaptive retrieval augmented generation, 2024. URL
 865 <https://arxiv.org/abs/2406.19215>.

866

867 Xiang Yue, Yuanzheng Ni, Tianyu Zheng, Kai Zhang, Ruqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 868 Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun, Ming Yin,
 869 Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and Wenhua Chen.
 870 MMMU: A massive multi-discipline multimodal understanding and reasoning benchmark for

864 expert AGI. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, June 16-22, 2024*, pp. 9556–9567. IEEE, 2024. doi: 10.1109/CVPR52733.2024.00913. URL <https://doi.org/10.1109/CVPR52733.2024.00913>.

865

866

867 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer. Opt: Open pre-trained transformer language models, 2022. URL <https://arxiv.org/abs/2205.01068>.

868

869

870

871

872

873 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. BERTScore: Evaluating text generation with BERT. In *8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*, 2020. URL <https://openreview.net/forum?id=SkeHuCVFDr>.

874

875

876

877 Xin Zhang, Yanzhao Zhang, Wen Xie, Mingxin Li, Ziqi Dai, Dingkun Long, Pengjun Xie, Meishan Zhang, Wenjie Li, and Min Zhang. GME: Improving universal multimodal retrieval by multimodal llms, 2025. URL <https://arxiv.org/abs/2412.16855>.

878

879

880

881 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and Shuming Shi. Siren’s song in the ai ocean: A survey on hallucination in large language models, 2023. URL <https://arxiv.org/abs/2309.01219>.

882

883

884

885 Zihan Zhang, Meng Fang, and Ling Chen. Retrievalqa: Assessing adaptive retrieval-augmented generation for short-form open-domain question answering. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 6963–6975. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.415. URL <https://doi.org/10.18653/v1/2024.findings-acl.415>.

886

887

888

889

890

891 Zijie Zhong, Hanwen Liu, Xiaoya Cui, Xiaofan Zhang, and Zengchang Qin. Mix-of-granularity: Optimize the chunking granularity for retrieval-augmented generation. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of the 31st International Conference on Computational Linguistics, COLING 2025, Abu Dhabi, UAE, January 19-24, 2025*, pp. 5756–5774. Association for Computational Linguistics, 2025. URL <https://aclanthology.org/2025.coling-main.384/>.

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 A ADDITIONAL DETAILS ON DATASET
919920 Table 8 provides an overview of all datasets and their corresponding knowledge corpora used in our
921 experiments, including the target modality type as well as the size of the queries and corpora. We
922 divide each dataset into a 3:7 ratio for training and testing. We offer the detail of each dataset below.
923924 A.1 IN-DOMAIN DATASET
925926 **MMLU** As a dataset comprising queries that can be answered without the need for retrieval, we
927 use MMLU (Hendrycks et al., 2021), a benchmark that spans a wide range of tasks, including
928 problem-solving abilities (e.g., elementary mathematics, computer science) and world knowledge
929 (e.g., law, world religions). Specifically, we use questions from all tasks in the development split.
930931 **Natural Questions (NQ)** We also use Natural Questions (Kwiatkowski et al., 2019), a question
932 answering dataset consisting of real user queries issued to the Google search engine, with answers
933 annotated based on supporting Wikipedia articles. We randomly sample 1,000 QA pairs from the dev
934 split, and formulate the text corpus in the same setting as SQuAD, segmenting the Wikipedia corpus
935 into paragraphs of at most 100 words.
936937 **HotpotQA** HotpotQA (Yang et al., 2018) is a Wikipedia-based QA benchmark, but it contains
938 complex queries that are annotated to reason over multiple articles. We utilize 1,492 randomly
939 sampled QA pairs of the test split. As it requires multi-hop reasoning over multiple documents, we
940 formulate the text corpus by grouping multiple related documents following LongRAG (Jiang et al.,
941 2024b), which can be longer than 4K tokens.
942943 **HybridQA** HybridQA (Chen et al., 2020) is a benchmark that requires reasoning over both tabular
944 and textual information. Each question is grounded in a Wikipedia table, but often requires linking to
945 associated text information to locate the correct answer. We randomly sample 2,000 QA pairs from
946 the dev split. Unlike the original benchmark, which directly connects tables and textual evidence, we
947 separate them into distinct table and text corpora to better validate our modality-specific routing-based
948 retrieval framework.
949950 **WebQA** WebQA (Chang et al., 2022) is a benchmark designed to evaluate the ability of LVLMs
951 to reason over multiple sources of information, including both text and images, in an open-domain
952 setting. As the dataset is originally constructed with question-specific retrieval sources that combine
953 text and images, we extract a subset of questions that require only a single image for retrieval. We
954 then further filter these using GPT-4o with the prompt shown in Figure 9 to make sure questions are
955 not grounded to a certain image, resulting in a final set of 2,000 QA pairs.
956957 **LBench** LBench (Wang et al., 2024a) is a benchmark developed for long video understanding,
958 featuring questions generated by annotators based on YouTube videos with an average duration of
959 over one hour. Since the benchmark was originally designed for non-RAG tasks, we rephrase the
960 original text-video interleaved queries into a text-only format to align with our experimental setup
961 using GPT-4o, with video metadata and a prompt (Figure 10). Each query is associated with a specific
962 video and a corresponding time range. Notably, the majority of queries are annotated with timestamps
963 spanning less than five minutes, thereby focusing on short segments within the longer videos. For
964 training, we use these short-timestamp queries as a clip-level dataset.
965966 **VideoRAG** We also utilize VideoRAG-Wiki and VideoRAG-Synth benchmarks, introduced in
967 VideoRAG (Jeong et al., 2025), which are designed to evaluate RAG over a video corpus. These
968 benchmarks are built on the HowTo100M (Miech et al., 2019) corpus (a large-scale collection
969 of instructional YouTube videos) with queries sourced from WikiHowQA (Bolotova-Baranova
970 et al., 2023) and synthetically generated QA pairs based on the videos. Since they lack timestamp
971 annotations, we employ GPT-4o to identify video-level queries that are better answered through full
972 video retrieval rather than short segments from the ground-truth video, which are then used as a
973 video-level dataset for training the router.
974

972 Table 8: Dataset summary. Average corpus length is the mean token count for text corpora and the
 973 mean duration for video corpora.

974 Dataset	975 Gold Retrieval	976 # Queries	977 Corpus Size	978 Avg Corpus Length
<i>In-Domain Datasets</i>				
MMLU	None	285	-	-
Natural Questions	Paragraph	1,000	850k	100 tokens
HotpotQA	Document	1,492	509k	693 tokens
HybridQA	Table	1,000	15k	-
WebQA	Image	2,000	20k	-
LVBench	Clip/Video	1,376	94	3,941s
VideoRAG-Wiki	Clip/Video	374	9k	378s
VideoRAG-Synth	Clip/Video	374		
<i>Out-of-Domain Datasets</i>				
TruthfulQA	None	790	-	-
TriviaQA	Paragraph	661	661k	100 tokens
LaRA	Document	112	34	28k tokens
Visual-RAG	Image	374	2k	-
CinePile	Clip/Video	1,440	144	158s

990 A.2 OUT-OF-DOMAIN DATASET

992 Unlike the in-domain datasets, the out-of-domain datasets are used solely for evaluation to assess the
 993 generalizability of our routing approach and consist only of test splits.

996 **TruthfulQA** TruthfulQA (Lin et al., 2022) includes general knowledge questions designed to test
 997 whether LLMs can avoid common false beliefs or misconceptions, on diverse categories, including
 998 health, law, and politics. We use the multiple-choice version of the dataset, which includes only a
 999 single correct answer per question.

1001 **TriviaQA** TriviaQA (Joshi et al., 2017) is a reading comprehension dataset consisting of trivia
 1002 questions paired with evidence texts sourced from Wikipedia and the web. To distinguish between
 1003 queries that require text retrieval and those that do not, we categorize each query based on whether
 1004 GPT-4o can produce an exact-match answer without access to external text. We randomly sample
 1005 QA pairs from the dev split. Following the preprocessing strategies used in SQuAD and NQ, all
 1006 supporting evidence documents are segmented into paragraphs of no more than 100 words.

1008 **LaRA** We also utilize LaRA (Li et al., 2025), which is designed for understanding long-context
 1009 documents such as academic papers and novels. For our use case, we focus on a subset of these
 1010 documents, specifically excluding queries on the ‘comparison’ task, as our goal is RAG, not reading
 1011 comprehension. Additionally, we slightly reformat the remaining queries to align with a general QA
 1012 format. Given the length of the source material, each document is treated as a single entry in the
 1013 document-level corpus.

1015 **Visual-RAG** Visual-RAG (Wu et al., 2025) is a question-answering benchmark designed for visual
 1016 knowledge-intensive questions, specifically tailored for text-to-image retrieval tasks. We utilize the
 1017 full set of provided queries but sample five images per category to construct the image retrieval pool,
 1018 ensuring efficient text-to-image retrieval.

1020 **CinePile** CinePile (Rawal et al., 2024) is a long-video question-answering benchmark that features
 1021 questions based on movie clips from YouTube. Since the benchmark was originally designed for
 1022 video understanding tasks rather than RAG, we reformulate each query using the same procedure as
 1023 LVbench. For each of the 144 available videos, we randomly select 10 questions from the test split.
 1024 Since CinePile does not provide granularity annotations, we classify the questions into two categories
 1025 (such as clip-level and full-video-level granularity) using GPT-4o, following the same approach used
 in VideoRAG.

1026 **B ADDITIONAL IMPLEMENTATION DETAILS**
 1027

1028 To effectively leverage both visual and textual information for visual element retrieval, we employ
 1029 an ensemble approach that combines visual and textual similarity scores with a weighting ratio of
 1030 0.8 for visual information. The textual information consists of image captions for images and scripts
 1031 for videos. To handle long videos, we utilize PySceneDetect (Castellano, 2014), an open-source
 1032 tool that detects scene boundaries by analyzing content changes (e.g., color histogram differences or
 1033 threshold-based detection), to segment long videos into shorter clips with an average length of no
 1034 more than 3 minutes. Moreover, for both the retrieval and generation stages, we uniformly sample 32
 1035 frames per video. For baseline models that do not natively support video input, specifically UniRAG
 1036 (which utilizes CLIP) and GME, we average the embeddings of these sampled frames to obtain a
 1037 single representative embedding vector. Our experiments are conducted on NVIDIA RTX A6000
 1038 GPUs equipped with 48GB VRAM.

1039 **C PROOF OF PROPOSITIONS**
 1040

1041 **C.1 PROOF OF PROPOSITION 1**
 1042

1043 **Proposition 1.** *Let the similarity score in the unified embedding space of $\mathcal{C}_{\text{unified}}$ be defined as*

$$1044 s(\mathbf{q}, \mathbf{c}) = \alpha \cdot \mathbf{1}\{m(\mathbf{q}) = m(\mathbf{c})\} + \beta \cdot r(\mathbf{q}, \mathbf{c}) + \varepsilon,$$

1045 where $\alpha > 0$ is a modality bias, $m(\cdot)$ denotes the modality, and $r(\cdot)$ measures semantic relevance. If
 1046 α is sufficiently large relative to the variance of r , the probability of retrieving items from the required
 1047 modality $m^*(\mathbf{q})$ is less than under modality-aware routing followed by within-modality retrieval.

1048 *Proof.* Without loss of generality, we consider the top-1 retrieval case, as the extension to the top- k
 1049 case follows directly. Let the unified retrieval corpus $\mathcal{C}_{\text{unified}}$ be decomposed into three disjoint sets:

$$1050 S = \{\mathbf{c} : m(\mathbf{c}) = m(\mathbf{q})\}, \quad R = \{\mathbf{c} : m(\mathbf{c}) = m^*(\mathbf{q})\}, \quad O = \mathcal{C}_{\text{unified}} \setminus (S \cup R).$$

1051 Let us assume the scenario where $m^*(\mathbf{q}) \neq m(\mathbf{q})$ and $S, R \neq \emptyset$. Define

$$1052 X_c := \beta \cdot r(\mathbf{q}, \mathbf{c}) + \varepsilon_c,$$

1053 and suppose $\{X_c\}_{c \in \mathcal{C}_{\text{unified}}}$ are independent, mean-zero, sub-Gaussian with variance proxy $\sigma^2 =$
 1054 $\beta^2 \cdot \text{Var}[r(\mathbf{q}, \mathbf{c})] + \text{Var}[\varepsilon_c]$. Then the similarity scores can be written as

$$1055 s(\mathbf{q}, \mathbf{c}) = \begin{cases} \alpha + X_c, & c \in S \\ X_c, & c \in R \cup O. \end{cases}$$

1056 Let

$$1057 M_S = \max_{\mathbf{s} \in S} X_s, \quad M_R = \max_{\mathbf{r} \in R} X_r, \quad M_O = \max_{\mathbf{o} \in O} X_o.$$

1058 Under unified retrieval, the top-1 item lies in R if and only if

$$1059 M_R \geq \alpha + \max\{M_S, M_O\}.$$

1060 Hence, we can obtain the upper bound of the probability where top-1 retrieval comes from R :

$$1061 \mathbb{P}(\mathcal{T}_{\text{unified}}(\mathbf{q}; \mathcal{C}_{\text{unified}}) \in R) = \mathbb{P}(M_R \geq \alpha + \max\{M_S, M_O\}) \leq \mathbb{P}(M_R - M_S \geq \alpha). \quad (1)$$

1062 As $\{M_R - M_S \geq \alpha\} \subseteq \bigcup_{(\mathbf{r}, \mathbf{s}) \in R \times S} \{X_r - X_s \geq \alpha\}$, by the union bound we have

$$1063 \mathbb{P}(M_R - M_S \geq \alpha) \leq \sum_{(\mathbf{r}, \mathbf{s}) \in R \times S} \mathbb{P}(X_r - X_s \geq \alpha).$$

1064 As $X_r - X_s$ is sub-Gaussian with variance proxy $2\sigma^2$, the Chernoff bound of the tail probability
 1065 combined with Equation 1 leads to:

$$1066 \mathbb{P}(\mathcal{T}_{\text{unified}}(\mathbf{q}; \mathcal{C}_{\text{unified}}) \in R) \leq |R||S| \exp\left(-\frac{\alpha^2}{4\sigma^2}\right). \quad (2)$$

1080 By contrast, if the retrieval is done at the modality-specific corpus after modality-aware routing with
 1081 accuracy r , the probability where the top-1 item is in R is r . Combining this with Equation 2,
 1082

$$1083 \mathbb{P}(\mathcal{T}_{\text{unified}}(\mathbf{q}; \mathcal{C}_{\text{unified}}) \in R) \leq |R||S| \exp\left(-\frac{\alpha^2}{4\sigma^2}\right) < r = \mathbb{P}(\mathcal{T}_{\mathcal{R}(\mathbf{q})}(\mathbf{q}; \mathcal{C}_{\mathcal{R}(\mathbf{q})}) \in R)$$

1085 whenever $\alpha > 2\sigma\sqrt{\frac{\log(|R||S|)}{r}}$. Meanwhile, the right-hand side of Equation 2 decays to 0 as
 1086 $\alpha/\sigma \rightarrow \infty$. Hence, for α large enough relative to the variance of r , unified embedding retrieval is
 1087 strictly worse than retrieving from modality-specific corpus after modality-aware routing. \square
 1088

1089 *Remark.* Suppose we have very large corpora with size $|R| = |S| = 10^{12}$. In this setting, if $p = 0.8$
 1090 and $\sigma = 0.01$, then $\alpha > 2\sigma\sqrt{\frac{\log(|R||S|)}{p}} \simeq 0.17$ is a sufficient condition to make routing-based
 1091 retrieval more effective than unified embedding retrieval. Since most multimodal encoders exhibit
 1092 inherent modality bias, this underscores the necessity of modality-aware routing.
 1093

1094 C.2 PROOF OF PROPOSITION 2

1095 **Proposition 2.** *Let $F(Q; m, g)$ be the expected response quality when retrieving from modality m
 1096 using granularity g . If there exist queries $\mathbf{q}_1, \mathbf{q}_2$ and granularities g_f, g_c such that*

$$1097 F(\mathbf{q}_1; m, g_f) > F(\mathbf{q}_1; m, g_c) \quad \text{and} \quad F(\mathbf{q}_2; m, g_c) > F(\mathbf{q}_2; m, g_f),$$

1100 *then the routing policy that assigns g_f for \mathbf{q}_1 and g_c for \mathbf{q}_2 achieves strictly higher expected quality
 1101 than any fixed-granularity choice.*

1104 *Proof.* Consider any fixed policy that always uses a single granularity $g \in \{g_f, g_c\}$.

- 1106 • If $g = g_f$:

$$1108 F(\mathbf{q}_1; m, g_f) + F(\mathbf{q}_2; m, g_f) < F(\mathbf{q}_1; m, g_f) + F(\mathbf{q}_2; m, g_c).$$

- 1110 • If $g = g_c$:

$$1112 F(\mathbf{q}_1; m, g_c) + F(\mathbf{q}_2; m, g_c) < F(\mathbf{q}_1; m, g_f) + F(\mathbf{q}_2; m, g_c).$$

1113 In both cases, the sum of response quality with the routing policy that uses g_f for \mathbf{q}_1 and g_c for \mathbf{q}_2 is
 1114 strictly larger than under any fixed granularity g . \square
 1115

1116 D ADDITIONAL EXPERIMENTAL RESULTS

1117 D.1 ADDITIONAL RESULTS USING DIFFERENT LVLMs

1118 Table 9 shows detailed generation results of baselines and UniversalRAG models on 8 benchmarks
 1119 using Qwen2.5-VL-7B and Phi-3.5-Vision-Instruct as generation models. In both settings, UniversalRAG
 1120 outperforms all baselines and achieves average scores comparable to Oracle. These results
 1121 demonstrate that UniversalRAG is robust and generalizable in various LVLM generators.
 1122

1123 D.2 ROUTING RESULTS PER DATASET

1124 We present routing results of three routers for each dataset in Table 10. On in-domain datasets,
 1125 GPT-4.1 often struggles to distinguish between Paragraph and Document RAG queries, and misroutes
 1126 VideoRAG queries to the textual corpus. Meanwhile, two trained routers show strong classification
 1127 performance across all in-domain datasets. In out-of-domain datasets, GPT-4.1 generalizes well for
 1128 most datasets, except for image-based RAG queries. In contrast, trained routers fail to classify the
 1129 appropriate granularity needed for each query. This is mainly due to the limited diversity of training
 1130 data, which causes overfitting to seen examples.
 1131

Table 9: Results of diverse RAG variants using different LVLMs, including UniversalRAG and baselines, on modality-specific benchmarks.

Models	MMLU		NQ		HotpotQA		HybridQA		WebQA		LVBench		VideoRAG-Wiki		VideoRAG-Synth		Avg
	Acc	EM	F1	EM	F1	EM	F1	EM	F1	Acc	R-L	BERT	R-L	BERT	R-L	BERT	
Naïve	73.00	17.29	25.71	18.47	25.47	3.14	7.72	61.26	94.39	29.38	14.26	83.04	10.52	84.34	34.50		
ParagraphRAG	72.00	39.57	50.33	17.80	24.71	8.43	12.02	49.00	92.06	27.52	14.82	83.24	11.30	84.97	36.29		
DocumentRAG	66.50	23.14	31.02	20.96	28.78	7.43	11.30	54.37	92.71	27.23	14.78	83.33	11.39	84.50	33.94		
TableRAG	66.00	9.29	13.87	11.39	15.79	7.00	11.07	41.80	90.86	24.49	15.48	83.29	9.98	83.19	27.15		
ImageRAG	68.50	16.14	23.14	16.94	23.01	1.86	5.22	64.39	94.73	30.17	16.17	83.62	13.35	85.10	33.63		
ClipRAG	68.50	15.14	22.69	16.46	22.86	2.71	5.59	62.78	94.38	33.50	18.39	85.04	20.53	87.75	34.43		
VideoRAG	70.00	14.00	21.42	17.42	23.74	2.43	5.63	63.89	94.54	32.81	19.34	85.64	23.31	88.52	34.78		
UniRAG (Sharifmoghadam et al., 2025)	69.50	11.86	19.51	14.45	21.26	1.86	5.26	51.37	92.37	28.01	15.05	82.80	12.77	85.03	30.60		
GME (Zhang et al., 2025)	70.00	12.43	20.02	14.55	21.08	5.29	9.24	59.61	93.93	28.01	16.53	83.72	18.01	86.04	32.78		
InternVideo2 (Wang et al., 2024b)	71.50	12.29	19.81	14.35	21.11	2.00	4.42	55.64	93.07	30.14	14.97	82.83	11.38	84.16	31.71		
PE _{Com} (Bolya et al., 2025)	70.50	12.29	20.00	14.45	20.84	2.29	5.42	51.09	92.30	27.62	14.77	82.75	11.23	84.72	30.57		
All	71.00	39.00	49.86	19.04	27.56	7.29	10.59	63.89	94.48	30.85	15.64	83.62	14.23	86.03	39.24		
UniversalRAG (DistillBERT)	71.50	39.00	49.45	19.62	27.41	7.86	11.84	64.12	94.70	33.20	19.34	85.64	23.45	88.53	40.54		
UniversalRAG (T5-Large)	72.50	39.43	49.86	20.19	28.61	8.00	12.14	64.08	94.61	33.00	19.34	85.64	23.10	88.60	40.89		
UniversalRAG (GPT4.1)	73.50	38.00	48.39	18.37	25.17	8.57	12.56	62.01	94.32	30.95	14.82	83.25	21.88	87.80	39.36		
UniversalRAG (Cross-GPT4.1)	72.50	38.29	48.00	18.18	25.07	10.29	14.57	66.01	96.49	32.13	15.23	83.08	21.05	86.87	40.21		
Oracle	73.00	39.57	50.33	20.96	28.78	13.57	18.33	64.39	94.73	33.20	18.43	85.05	20.70	87.80	41.85		
Naïve	61.00	10.43	18.49	14.26	21.01	2.29	5.57	54.01	93.01	29.58	15.94	83.64	34.58	90.66	30.95		
ParagraphRAG	59.00	35.57	46.59	16.36	23.56	6.86	10.29	59.18	93.51	29.87	16.91	84.84	32.28	89.84	36.53		
DocumentRAG	52.50	16.43	24.80	17.80	25.86	6.57	10.14	57.46	93.18	29.09	14.05	84.18	33.27	90.18	32.25		
TableRAG	47.00	5.29	9.41	11.00	15.36	5.14	8.68	55.68	92.79	28.60	10.11	83.65	30.47	89.48	26.91		
ImageRAG	55.50	9.86	15.73	13.68	18.70	1.29	3.13	63.25	94.13	31.15	15.16	85.02	34.18	90.32	30.69		
ClipRAG	54.00	11.43	16.48	13.40	18.73	1.14	2.79	60.22	93.60	35.06	19.56	86.04	36.34	90.97	31.15		
VideoRAG	53.00	9.29	15.09	13.11	17.91	1.57	3.25	59.90	93.50	32.13	19.33	86.14	36.71	90.95	30.16		
UniRAG (Sharifmoghadam et al., 2025)	54.50	5.57	13.32	11.48	18.36	1.00	4.12	58.94	92.27	28.21	16.69	84.03	35.52	90.82	29.24		
GME (Zhang et al., 2025)	54.00	5.29	13.02	11.29	17.72	3.14	6.71	56.22	93.68	27.72	18.12	84.90	36.00	90.07	29.00		
InternVideo2 (Wang et al., 2024b)	55.00	5.86	13.48	11.87	18.46	0.71	3.25	58.01	93.42	27.74	18.09	84.76	35.78	90.82	29.02		
PE _{Com} (Bolya et al., 2025)	54.50	5.43	13.11	11.77	18.61	1.14	4.47	56.58	93.22	28.60	16.72	83.98	35.75	90.85	29.05		
All	55.50	34.86	47.08	12.44	13.68	6.43	10.11	55.28	93.29	31.14	18.28	85.92	35.12	89.92	34.42		
UniversalRAG (DistillBERT)	54.50	34.71	45.58	16.46	24.54	6.43	10.23	63.23	94.11	34.48	19.33	86.14	36.49	90.92	37.59		
UniversalRAG (T5-Large)	59.50	34.00	44.86	17.22	25.74	6.86	11.00	63.26	94.02	35.16	19.33	86.14	36.69	90.86	38.63		
UniversalRAG (GPT4.1)	59.00	33.57	44.69	15.50	22.83	7.00	10.94	62.32	94.00	33.20	16.89	84.83	32.24	89.88	37.25		
UniversalRAG (Cross-GPT4.1)	59.00	33.43	44.29	15.91	22.49	9.71	12.14	64.11	94.25	33.99	17.25	85.01	34.07	90.13	37.82		
Oracle	61.00	35.57	46.59	17.80	25.86	11.29	15.36	63.25	94.13	34.57	19.53	86.04	36.20	90.97	39.57		

Table 10: Routing results across in-domain and out-of-domain datasets. VRAG-Wiki, VRAG-Synth, and Vis-RAG refer to VideoRAG-Wiki, VideoRAG-Synth, and Visual-RAG, respectively.

Models	In-Domain Dataset								Out-of-Domain Dataset											
	Routes	MMLU		NQ		HotpotQA		HybridQA		WebQA		LVBench		VRAG-Wiki		VRAG-Synth				
		200	700	200	700	200	1392	200	829	200	374	200	374	200	790	200	661			
None	84	1	0	0	0	0	0	0	0	0	0	0	0	2	1	14	0	0		
Paragraph	54	663	132	71	21	1	0	5	5	642	274	24	0	0	0	0	0	0		
Document	7	10	808	183	8	1	0	0	0	44	332	5	2	0	0	0	0	0		
Table	11	2	77	429	1	2	0	0	0	-	-	-	-	-	-	-	-	-		
Image	3	19	19	6	1352	7	0	0	0	16	34	4	371	1	0	0	0	0		
Clip	7	1	5	9	17	818	0	2	4	4	8	27	0	1439	1	0	0	0		
Video	34	4	4	2	1	0	374	367	367	82	12	38	1	0	0	0	0	0		
None	149	16	0	0	0	0	0	0	0	16	5	12	0	0	0	0	0	0		
Paragraph	35	649	39	39	8	2	0	0	0	638	385	41	1	0	0	0	0	0	0	
Document	12	24	947	293	10	0	0	0	0	71	247	43	0	0	0	0	0	0	0	
Table	0	10	57	359	5	0	0	0	0	-	-	-	-	-	-	-	-	-	-	
Image	0	0	1	5	1360	5	0	0	0	8	15	2	373	0	0	0	0	0	0	
Clip	0	0	0	0	12	820	0	4	5	3	2	0	0	1439	0	0	0	0	0	
Video	4	1	1	4	5	2	374	370	370	52	6	12	0	1	0	0	0	0	0	
None	126	58	60	3	60	0	5	19	482	218	1	0	0	0	0	0	0	0	0	
Paragraph	46	612	510	200	213	53	368	341	341	277	427	47	31	6	0	0	0	0	0	0
Document	4	3	357	335	9	27	0	6	30	14	64	0	8	0	0	0	0	0	0	0
Table	24	21	118	160	23	26	0	0	0	-	-	-	-	-	-	-	-	-	-	-
Image	0	3	0	2	1091	98	1	6	1	2	0	0	0	343	25	0	0	0	0	0
Clip	0	3	0	0	4	603	0	0	0	0	0	0	0	0	1362	0	0	0	0	0
Video	0	0	0	0	0	22	0	2	0	0	0	0	0	0	0	0	0	0	0	0

D.3 ADDITIONAL RESULTS ON MULTIGRANULARITY

While Table 3 demonstrated a correlation between the number of granularity levels and end-to-end performance using two training-free models, leveraging the flexibility of the approach in scenarios without labeled data. Table 11 extends this by including two training-based variants, comparing the performance with and without granularity. The results consistently show an advantage when granularity is leveraged, showcasing its efficacy across both training-based and training-free approaches.

1188
1189
1190 Table 11: Effect of granularity on the performance. Gn denotes Granularity.
1191
1192
1193
1194
1195
1196
1197
1198

Models	Gn	HotpotQA		LVBench
		EM	F1	Acc
DistilBERT	✗	13.88	22.30	32.57
	✓	18.56	26.96	35.65
T5-Large	✗	14.16	22.01	33.90
	✓	18.95	27.56	34.38
GPT-4.1	✗	11.00	21.91	29.29
	✓	15.89	23.84	31.15

1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212 Figure 7: Visualization of the unified embedding space across various multimodal encoders.1213
1214
1215 E MODALITY GAP IN UNIFIED EMBEDDING SPACE
1216

1217 Figure 7 visualizes the modality gap within the unified embedding space of five multimodal encoders (Wang et al., 2024b; Jiang et al., 2024a; Bolya et al., 2025; Lin et al., 2025; Zhang et al., 2025). The PCA plot reveals that embeddings cluster by modality, with text embeddings (shown in green) exhibiting larger distances from those of other modalities. Recent methods like E5-V and GME focus on better aligning these modalities to narrow the gap. However, despite these efforts, a noticeable separation between modalities remains, indicating that current multimodal encoders still struggle to fully unify the embedding space across text, images, and videos. Therefore, the modality routing mechanism of UniversalRAG is required to dynamically direct each query to its corresponding modality-specific embedding space, thereby effectively bridging the modality gap and enhancing retrieval performance.

1227
1228 F QUALITATIVE RESULTS
1229

1230 We present case studies to demonstrate the effectiveness of UniversalRAG. Table 12 compares the
1231 results of various RAG approaches, including traditional single-modality methods and UniversalRAG,
1232 on queries from the WebQA dataset. Traditional approaches such as TextRAG and VideoRAG fail
1233 to generate accurate answers: TextRAG retrieves passages lacking relevant visual details, while
1234 VideoRAG is better suited for temporal reasoning tasks. In contrast, UniversalRAG correctly routes
1235 the query to the image modality, recognizing that visual information about color is necessary, and
1236 successfully generates the correct response. This highlights the advantage of modality-aware routing
1237 in leveraging the appropriate data from the correct modality corpus, demonstrating UniversalRAG’s
1238 ability to adaptively select the most informative modality for accurate answer generation.

1239 In addition to modality routing, we observe that UniversalRAG also benefits from retrieving information
1240 at the appropriate granularity. Table 13 shows results from HotpotQA, where the query requires
1241 complex reasoning over multiple text sources. While paragraph-level granularity fails to provide
sufficient context for reasoning, UniversalRAG routes the query to the document-level corpus to

1242 retrieve all the textual information necessary for accurate reasoning. Similarly, for video queries,
 1243 Table 14 shows results from LVBench on the query that requires only a short segment of the full long
 1244 video to answer. While full-video-level retrieval includes irrelevant content and uniformly sampled
 1245 32 frames fail to capture the necessary information, clip-level retrieval focuses on smaller, more
 1246 relevant segments of the video to ensure that only the most pertinent visual details are considered,
 1247 leading to a more accurate answer.

1248 UniversalRAG not only retrieves from the most relevant single modality but also allows cross-modal
 1249 retrieval, where the router can select more than a single modality-granularity pair when required.
 1250 Table 15 shows an example from HybridQA, where queries primarily require tables, but can be
 1251 largely benefit from complementary textual sources. Typically, factual information is best captured
 1252 from paragraphs, whereas structured knowledge, such as numerical values, is more effectively
 1253 represented in tables. With its cross-modal retrieval capability, UniversalRAG-Cross successfully
 1254 retrieves from both modalities, providing the information required to answer the query. In contrast,
 1255 UniversalRAG-Uni, limited to choose a single modality source, retrieves insufficient evidence to
 1256 answer correctly.

1257 However, there are some cases where the routing mechanism fails, particularly when the query
 1258 exhibits ambiguity in modality requirement or when the required information spans across multiple
 1259 modalities. Table 16 shows failure cases in which UniversalRAG, employing DistilBERT as the
 1260 trained router, incorrectly routes the modality. The first case shows the case where the router’s
 1261 inductive bias leads it to mistakenly route a query, routing a commonsense query to paragraph-level
 1262 retrieval. Also, the router sometimes struggles to distinguish between closely related modalities, such
 1263 as images to short clips that capture specific moments. There are also cases where the router fails to
 1264 correctly determine granularity, frequently misrouting queries that lie near the boundary between two
 1265 granularity levels, as shown in the last two examples.

1266 G USE OF LARGE LANGUAGE MODELS (LLMs)

1267 We use large language models merely as a writing assistant. Its role is confined to improving
 1268 grammar and paraphrasing sentences for clarity, and all the core ideas regarding problem definition,
 1269 UniversalRAG framework, experimental design, and interpretation of results are entirely our own.

1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 Table 12: Case study comparing RAG on single modality against UniversalRAG (Ours). Traditional
 1297 RAG models are limited by modality-specific retrieval, often missing relevant knowledge from other
 1298 modalities. UniversalRAG (Ours) dynamically routes each query to the most appropriate modality,
 1299 enabling more accurate retrieval and response generation.

Comparison of UniversalRAG to Single-modality RAG																								
Question	What color balloons were displayed on the USNS Carl Brashear during its ship launching ceremony in San Diego?																							
Ground Truth	The balloons were red, white, and blue that were displayed on the USNS Carl Brashear during the ship launching ceremony in San Diego.																							
No Retrieval	The USNS Carl Brashear's ship launching ceremony in San Diego likely featured a diverse range of balloons, but the specific color or colors of the balloons during the ceremony are not universally documented. They may not have been a focus of the event, and such details can vary or not be available in the public record. Therefore, the exact answer to the colors of the balloons on the USNS Carl Brashear may not be specified or may be unknown. X																							
TextRAG	<p>Retrieved: Randall Dark Randall P. Dark is a Canadian writer, director, and producer recognized as an early proponent of HDTV. In 1995, Dark and his company, HD Vision, were involved with the United Nations 50th Anniversary where they shot, in HDTV, President Bill Clinton's speech in San Francisco. In 1999, Dark and HD Vision produced a documentary for PBS about ...</p> <p>Response: The provided documents do not contain any information about the color of the balloons displayed on the USNS Carl Brashear during its ship launching ceremony in San Diego. X</p>																							
TableRAG	<p>Retrieved:</p> <table border="1"> <thead> <tr> <th>Rank</th><th>MSA</th><th>Region</th><th>Chinese-Americans</th><th>%</th></tr> </thead> <tbody> <tr> <td>1</td><td>New York-Newark-Jersey City</td><td>Mid-Atlantic</td><td>739,144</td><td>3.7</td></tr> <tr> <td>2</td><td>Los Angeles-Long Beach-Anaheim</td><td>Pacific</td><td>528,248</td><td>4.0</td></tr> <tr> <td>:</td><td>:</td><td>:</td><td>:</td><td>:</td></tr> </tbody> </table> <p>Response: The document provided does not contain any information about the color of the balloons displayed on the USNS Carl Brashear during its ship launching ceremony in San Diego. X</p>				Rank	MSA	Region	Chinese-Americans	%	1	New York-Newark-Jersey City	Mid-Atlantic	739,144	3.7	2	Los Angeles-Long Beach-Anaheim	Pacific	528,248	4.0	:	:	:	:	:
Rank	MSA	Region	Chinese-Americans	%																				
1	New York-Newark-Jersey City	Mid-Atlantic	739,144	3.7																				
2	Los Angeles-Long Beach-Anaheim	Pacific	528,248	4.0																				
:	:	:	:	:																				
VideoRAG	<p>Retrieved:</p> <p>Response: Green, blue, and yellow. X</p>																							
UniversalRAG (Ours)	<p>Routed to: Image</p> <p>Retrieved:</p> <p>Response: The USNS Carl Brashear was adorned with red, white, and blue balloons during its launch ceremony in San Diego. ✓</p>																							

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359

Table 13: Case study comparing different levels of text granularity. The user query requires complex retrieval involving multiple entities. ParagraphRAG retrieves limited context centered around a single entity, leading to an incorrect answer. UniversalRAG (Ours) routes the query to the document corpus and retrieves richer document-level information, allowing it to capture both relevant entities and generate the correct response.

1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378

Comparison of Using Different Text Granularity

Question	George Reed was, along with which Drake University player , one of the greatest running backs in CFL history ?
Ground Truth	Johnny D. Bright
ParagraphRAG	<p>Retrieved: Blue Bombers. He remained in Winnipeg for two seasons (1986-87), but only played in nine games. He finished his career with 4,586 rushing yards, 275 receptions for 2,861 yards and 48 total touchdowns. His son Corey was a sprinter on Clemson's men's track & field team. Lester Brown (Canadian football) Lester Brown (born January 5, 1957) is a former Canadian Football League running back for the Saskatchewan Roughriders, Montreal Concordes, Toronto Argonauts, Ottawa Rough Riders and Winnipeg Blue Bombers. He played college football at Clemson University. Brown attended Myrtle Beach High School, before accepting a football scholarship from Clemson University.</p> <p>Response: Lester Brown X</p>
UniversalRAG (Ours)	<p>Routed to: Document</p> <p>Retrieved: <i>George Reed (Canadian football)</i> George Robert Reed, CM, SOM (born October 2, 1939), is a former American college football and Canadian Football League player. Reed, along with Mike Pringle and Johnny Bright, is one of the players most often mentioned as being the greatest running back in CFL history. In November 2006, Reed was voted one of the CFL's Top 50 players (#2) of the league's modern era by Canadian sports network.</p> <p>...</p> <p><i>Johnny Bright</i> Johnny D. Bright (June 11, 1930 – December 14, 1983) was a professional Canadian football player in the Canadian Football League. He played college football at Drake University. He is a member of the Canadian Football Hall of Fame, the National Football Foundation's College Football Hall of Fame, the Missouri Valley Conference Hall of Fame, the Edmonton Eskimos Wall of Honour, the Alberta Sports Hall of Fame, and the "Des Moines Register's" Iowa Sports Hall of Fame.</p> <p>Response: Johnny Bright ✓</p>

1395
1396
1397
1398
1399
1400
1401
1402
1403

1404

1405

1406

1407

1408

Table 14: Case study comparing different levels of video granularity. The user query requires only a segment of the video to determine the answer. VideoRAG retrieves a broad range of frames across the video, which may include irrelevant content or miss key frames, leading to an incorrect response. UniversalRAG (Ours) routes the query to the clip-level granularity, retrieving more focused and relevant visual information, enabling it to generate the correct response.

1413

1414

Comparison of Using Different Video Granularity

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Question	What does the protagonist observe through the window after being taken to the utility room in the full episode of Blue Eye Samurai on Netflix? (A) A group of monks sitting cross-legged in the snow (B) A group of citizens chatting together (C) A group of warriors practicing swords (D) A group of samurais eating
-----------------	---

Groud Truth	C
--------------------	---

VideoRAG	Retrieved:

(Timestamp Range: 00:00~1:01:05)

Response: A ✗

UniversalRAG (Ours)	Routed to: Clip
	Retrieved:

--	--

(Timestamp Range: 33:46~36:56)

Response: C ✓

1458

1459

1460

1461

1462

1463

1464

Table 15: Case study comparing UniversalRAG across uni-modal and cross-modal scenarios. In the uni-modal setup, where only a single prominent modality is used, information can sometimes be incomplete as they require evidence across modalities. UniversalRAG-Cross, with its cross-modal capability, gathers evidence from multiple modalities to generate a more comprehensive response.

Comparison of UniversalRAG across Uni- and Cross-Modal Retrieval																															
Question	What year did an artist known by the mid-1960s in soul and jazz circles for his recording skills release an American record company and label founded by brothers Max and Sol Weiss in 1949?																														
Ground Truth	2000																														
UniversalRAG-Uni	<p>Routed to: Paragraph</p> <p>Retrieved: David Axelrod (April 17 , 1931 [nb 1] - February 5 , 2017) was an American composer , arranger , and producer . After starting out as a staff producer for record companies specializing in jazz , Axelrod became known by the mid-1960s in soul and jazz circles for his recording skills . In 1968 , Axelrod embarked on a solo career and released several eccentric albums during the 1970s that showcased his characteristic sound , which combined heavily microphoned drums and baroque orchestration , and avant garde themes ranging from the environment to heightened mental awareness . With his early solo projects , Axelrod was one of the first recording artists to fuse elements of jazz , rock , and R & B . One of his most important records , Song of Innocence (1968) , featured instrumental interpretations of 18th-century poet William Blake 's poetry collection of the same name done in a contemporary musical vein , leading one critic at the time to coin the term jazz fusion and numerous hip hop producers to sample the album 's music decades later .</p>																														
	Response: 1960 ✗																														
UniversalRAG-Cross	<p>Routed to: Paragraph+Table</p> <p>Retrieved: (Above Paragraph with the following table)</p> <table border="1"> <thead> <tr> <th>Year</th><th>Album</th><th>Artist</th><th>Genre</th><th>Label</th><th>Credit</th></tr> </thead> <tbody> <tr> <td>1998</td><td>Greatest Hits</td><td>Joe Cocker</td><td>Rock</td><td>EMI Electrola</td><td>Trombone on You Can Leave Your Hat On</td></tr> <tr> <td>2000</td><td>The Axelrod Chronicles</td><td>David Axelrod</td><td>Jazz , funk , soul</td><td>Fantasy</td><td>Trombone</td></tr> <tr> <td>2004</td><td>Ultimate Collection</td><td>Joe Cocker</td><td>Rock</td><td>Hip-O , A & M</td><td>Horn on You Can Leave Your Hat On</td></tr> <tr> <td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td><td>⋮</td></tr> </tbody> </table> <p>Response: 2000 ✓</p>	Year	Album	Artist	Genre	Label	Credit	1998	Greatest Hits	Joe Cocker	Rock	EMI Electrola	Trombone on You Can Leave Your Hat On	2000	The Axelrod Chronicles	David Axelrod	Jazz , funk , soul	Fantasy	Trombone	2004	Ultimate Collection	Joe Cocker	Rock	Hip-O , A & M	Horn on You Can Leave Your Hat On	⋮	⋮	⋮	⋮	⋮	⋮
Year	Album	Artist	Genre	Label	Credit																										
1998	Greatest Hits	Joe Cocker	Rock	EMI Electrola	Trombone on You Can Leave Your Hat On																										
2000	The Axelrod Chronicles	David Axelrod	Jazz , funk , soul	Fantasy	Trombone																										
2004	Ultimate Collection	Joe Cocker	Rock	Hip-O , A & M	Horn on You Can Leave Your Hat On																										
⋮	⋮	⋮	⋮	⋮	⋮																										

1492

1493

1494

1495

1496

1497

1498

Table 16: Failure cases in modality routing with UniversalRAG (Ours).

Question	Ground Truth	UniversalRAG (Ours)
What is produced during photosynthesis? (A) hydrogen (B) nylon (C) oxygen (D) light	No	Paragraph
Who is seated to the right of Kobe in the Jimmy Kimmel tribute show?	Clip	Image
What is the name of a type of dual purpose fighter-bomber aircraft used by the US Air Force?	Paragraph	Document
What is the main cause of Lee Chong Wei losing points in the first half of his semi-final match against Lin Dan in the Rio 2016 Olympics replay?	Video	Clip

1509

1510

1511

1512
1513
1514
1515
1516
1517
1518
1519
1520

1521 Classify the following query into one of seven categories: **[No, Paragraph, Document,**
1522 **Table, Image, Clip, Video]**, based on whether it requires retrieval-augmented generation
1523 (RAG) and the most appropriate modality. Consider:

1524

- **No:** The query can be answered directly with common knowledge, reasoning, or computation without external data.
- **Paragraph:** The query requires retrieving factual descriptions, straightforward explanations, or concise summaries from a single source.
- **Document:** The query requires multi-hop reasoning, combining information from multiple sources or documents to form a complete answer.
- **Table:** The query requires information that is best represented in a tabular format, often involving comparisons or structured data.
- **Image:** The query focuses on visual aspects like appearances, structures, or spatial relationships.
- **Clip:** The query targets a short, specific moment or event within a video, without needing full context.
- **Video:** The query requires understanding dynamic events, motion, or sequences over time in a video.

1538

Examples:

- "What is the capital of France?" → **No**
- "What is the birth date of Alan Turing?" → **Paragraph**
- "Which academic discipline do computer scientist Alan Turing and mathematician John von Neumann have in common?" → **Document**
- "Among the recipients of the Turing Award, who had the earliest birth year?" → **Table**
- "Describe the appearance of a blue whale." → **Image**
- "Describe the moment Messi scored his goal in the 2022 World Cup final." → **Clip**
- "Explain how Messi scored his goal in the 2022 World Cup final." → **Video**
- "Solve 12×8 ." → **No**
- "Who played a key role in the development of the iPhone?" → **Paragraph**
- "Which Harvard University graduate played a key role in the development of the iPhone?" → **Document**
- "What is the cheapest iPhone model available in 2023?" → **Table**
- "Describe the structure of the Eiffel Tower." → **Image**
- "Describe the moment Darth Vader reveals he is Luke's father in Star Wars." → **Clip**
- "Analyze the sequence of events leading to the fall of the Empire in Star Wars." → **Video**

1554 Classify the following query: {query}
1555 Provide only the category.

1556

1558 Figure 8: Prompt for query routing in a train-free manner. The prompt defines each category with
1559 concise criteria and illustrative examples. Specifically, examples are designed to contrast closely
1560 related cases: for example, Paragraph vs. Document for simple fact retrieval vs. multi-hop reasoning;
1561 and Clip vs. Video for short specific moments vs. long-term sequential understanding, highlighting
1562 the key aspect that differentiates each category.

1563
1564
1565

1566

1567

1568 Evaluate whether the query can be answered using general knowledge about the image's
 1569 subject rather than relying solely on details unique to the provided image, and verify that the
 1570 answer is obtainable from the image and the query.

1571

- Respond "yes" if:
 1. The query can be fully answered using general knowledge about the subject.
 2. The answer can be derived solely from the image and the query, without needing image-specific details.
- Respond "no" if either condition is not met.

1575

Example 1:

1577

1578

1579

1580

- Image: A portrait of Donald Trump
- Query: What is the color of Trump's hair?
- Answer: White
- Response: "yes"

1581

1582

Example 2:

1583

1584

1585

1586

- Image: A close-up photo of a light bulb
- Query: What is the color of the light bulb in this image?
- Answer: Yellow
- Response: "no"

1587

1588

Figure 9: Prompt to filter queries for WebQA.

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

You will receive a query from a video QA dataset and the title of the corresponding video on YouTube. I want you to paraphrase the query by replacing "in the video?", "of the video", or similar phrases with references to the video content naturally. The output should sound as if a human is asking ChatGPT, and should not explicitly mention the exact name of the video or even parts of the title. However, the rephrased query should contain enough implicit information about the video to allow the model to identify it. Try to reduce the chance of the model getting confused between multiple possible video candidates. If there could be multiple video matches for a given query, try to include more information in the rephrased query.

1601

1602

Example 1:

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

- Query: What year appears in the opening caption of the video?
- Video Title: Blue Eye Samurai | Hammerscale | Full Episode | Netflix
- Upload Date: 2023-11-05
- Channel Name: Netflix
- Rephrased Output: What year appears in the opening caption of the Blue Eye Samurai episode on Netflix?

Example 2:

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Figure 10: Prompt to rephrase queries using video metadata for LVBench and CinePile.