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ABSTRACT

We propose Deep Patch Visual Odometry (DPVO), a new deep learning system
for monocular Visual Odometry (VO). DPVO is accurate and robust while running
at 2x-5x real-time speeds on a single RTX-3090 GPU using only 4GB of memory.
We perform evaluation on standard benchmarks and outperform all prior work
(classical or learned) in both accuracy and speed.

1 INTRODUCTION

Visual Odometry (VO) is the task of estimating a robot’s position and orientation from visual mea-
surements. In this work, we focus on most challenging case—monocular VO—where the only input
is a monocular video stream. The goal of the system is to estimate the 6-DOF pose of the camera at
every frame while simultaneously building a map of the environment.

VO is closely related to Simultaneous Localization and Mapping (SLAM). Like VO, SLAM systems
aim to estimate camera pose and map the environment but also incorporate techniques for global
corrections—such as loop closure and relocalization (Cadena et al., 2016). SLAM systems typically
include a VO frontend which tracks incoming frames and performs local optimization. We observe
that a significant portion of failures in SLAM systems occur in the frontend and hence focus on
this aspect of the problem. However, we demonstrate that even without loop closure and global
optimization, our approach is still accurate enough to outperform full SLAM systems.

Prior work typically treats VO as an optimization problem solving for a 3D model of the scene
which best explains the visual measurements (Cadena et al., 2016). Indirect approaches first detect
and match keypoints between frames, then solve for poses and 3D points which minimize the re-
projection distance (Mur-Artal et al., 2015; Campos et al., 2021; Leutenegger et al., 2013). Direct
approaches, on the other hand, operate directly on pixel intensities, attempting to solve for poses and
depths which align the images (Engel et al., 2014; Forster et al., 2014; Engel et al., 2017). The main
issue with prior systems, both direct and indirect, is the lack of robustness. Failure cases are too fre-
quent for many important applications such as autonomous vehicles. These failure cases typically
stem from moving objects, lost feature tracks, and poor convergence.

Several deep learning approaches have been introduced to address the robustness issue. The main
promise of deep learning is more reliable feature matching. DROID-SLAM (Teed & Deng, 2021)
and VOLODOR (Min et al., 2020; Min & Dunn, 2021) use neural networks to estimate dense flow
fields which are subsequently used to optimize depth and camera pose. Other approaches have used
neural networks to match and verify a sparse set of keypoints (DeTone et al., 2018; Sarlin et al.,
2020; Sun et al., 2021; Truong et al., 2021; Choy et al., 2016). Methods such as BANet (Tang &
Tan, 2018) and DeepFactors (Czarnowski et al., 2020) have used neural networks to parameterize the
space of admissible depth maps. However, many of these systems come with a large computational
cost which makes them impractical for real use cases. Furthermore, current deep VO systems are
typically not as accurate as classical systems when evaluated on datasets on which they weren’t
trained (Teed & Deng, 2021).

We introduce DPVO, a novel patch-based deep VO system which overcomes these limitations. The
central piece of our approach is a deep patch representation (Fig. 1). We use a neural network
to extract a collection of patches from incoming frames. A recurrent neural network is then used
to track each patch through time—alternating patch trajectory updates with a differentiable bundle
adjustment layer. We train our entire system end-to-end on synthetic data but demonstrate strong
generalization on real video.

1



Under review as a conference paper at ICLR 2023

Patch #1

Patch #K

t

Figure 1: Deep Patch Visual Odometry (DPVO). Camera poses and a sparse 3D reconstruction (top)
are obtained by iterative revisions of patch trajectories through time.

Compared to prior deep-learning systems, the novelty of our approach lies in the tight integration of
three key ingredients in a single architecture: (1) patch-based correspondence, (2) recurrent iterative
updates, and (3) differentiable bundle adjustment. Patch-based correspondence improves efficiency
and robustness over dense flow. Recurrent iterative updates and differentiable bundle adjustment
allow end-to-end learning of reliable feature matching.

DPVO is accurate, efficient, and simple to implement. On a modern graphics card (RTX-3090), it
runs 2x real-time using only 4GB of memory. We also provide a model which runs at 100fps on
the EuRoC dataset (Burri et al., 2016) while still outperforming prior work. Runtime is constant
for each frame and does not depend on the degree of camera motion. The implementation of the
system is exceedingly simple with a minimal code base. New network architectures can be easily
swapped in without any necessary change to the underlying VO implementation or logic. We hope
that DPVO can serve as a test bed for future development of deep VO and SLAM systems. In the
Appendix, we provide an anonymized version of our code and a video of our method running.

2 RELATED WORK

Visual Odometry (VO) systems aim to estimate robot state (position and orientation) from a video.
Overtime, a VO system will accumulate drift, and modern SLAM methods incorporate techniques
to identify previously mapped landmarks to correct drift (i.e loop closure). VO can be considered a
subproblem of SLAM with loop closures disabled (Cadena et al., 2016).

Many different modalities of VO have been explored by past work, including visual-inertial odom-
etry (VIO) (Von Stumberg et al., 2018; Forster et al., 2015) and stereo VO (Wang et al., 2017;
Engel et al., 2014). Here, we focus on the monocular case, where the only input is a monocular
video stream. Early works approached the problem using filtering and maximum-likelihood meth-
ods (Davison, 2003; Mourikis et al., 2007). Modern methods almost universally perform Maximum
a Posteriori (MAP) estimation over factor graphs with Gaussian noise; in which case, the MAP esti-
mate can be found by solving a non-linear least-squares optimization problem (Dellaert et al., 2017).
This problem has lead to the development of many libraries for optimizing non-linear least-squares
problems (Agarwal et al., 2022; Grisetti et al., 2011; Dellaert, 2012).

Among VO systems, our method borrows many core ideas of Direct Sparse Odometry (DSO) (En-
gel et al., 2017), a classical system based on least-squares optimization. Namely, we adopt a similar
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Figure 2: A subset of the patch trajectories predicted by our method. Patches extracted from the
green keyframe are tracked through subsequent frames. When a new keyframe is added (blue),
additional patches are extracted and tracked. Our method produces confidence values which weight
their respective contribution to the bundle adjustment.

patch representation and reproject patches between frames to construct the objective function. Un-
like DSO, the residuals are not based on intensity differences but instead predicted by a neural
network which can pass information between patches and across patch lifetimes. Outlier rejection
is automatically handled by the network, making our system more robust than classical systems like
DSO and ORB-SLAM (Engel et al., 2017; Mur-Artal et al., 2015). One important component of
classical systems is the careful selection of which image regions to use. We find, surprisingly, that
our system works well on a small number (64 per frame) of randomly sampled image patches.

With regards to deep SLAM systems, our method is closely related to DROID-SLAM (Teed & Deng,
2021) but uses a different underlying representation. DROID-SLAM is an end-to-end deep SLAM
system which shows good performance compared to both classical and deep baselines. Like our
method, it works by iterating between motion updates and bundle adjustment. However, it estimates
dense motion fields between selected pairs of frames which has a high computational cost and large
memory footprint. While it is capable of real-time inference on average, its speed varies depending
on the amount of motion in the video. Our method selects sparse patches from the video stream,
with a constant runtime per frame and 5x faster inference than DROID-SLAM.

Prior works such as BA-Net (Tang & Tan, 2018) and Lindenberger et al. (2021) also have embedded
bundle adjustment layers in end-to-end differentiable network architectures. However, BA-Net does
not use patch-based correspondence. Lindenberger et al. (2021) and Dusmanu et al. (2020) have
proposed neural networks which sit atop COLMAP (Schonberger & Frahm, 2016) and perform
subpixel-level refinement; these approaches are not, however, able to perform 3D reconstruction on
their own and are subject to failure cases in the underlying SfM system.

3 APPROACH

Our network is trained and evaluated in an online setting. New frames are added one by one and
optimization is performed in a local window of keyframes. Our approach has two main modules:
the patch extractor (3.1) and the update operator (3.2). The patch extractor extracts a sparse collec-
tion of image patches from incoming frames. The update operator attempts to track these patches
through time using a recurrent neural network alternating iterative updates with bundle adjustment.

Preliminaries: The scene is represented as a collection of N camera poses T ∈ SE(3)N and a set
of M square image patches P. Using d to represent inverse depth and (x,y) pixel coordinates, we
represent each patch as the 4× p2 homogeneous array

Pi =

 x
y
1
d

 x,y,d ∈ R1×p2

(1)

where p is the width of the patch. We assume a constant depth for the full patch, meaning that it
forms a fronto-parallel plane in the frame from which it was extracted. Letting j denote the index of
the source frame from which patch Pi was extracted, we reproject the patch onto another frame k

P′
i ∼ KTkTj

−1K−1Pi. (2)
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Figure 3: Schematic of the update operator. Correlation features are extracted from edges in the
patch graph and injected into the hidden state alongside context features. We apply convolution,
message passing and a transition block. The factor head produces trajectory revisions which are
used by the bundle adjustment layer to update the camera poses and the depth of patches.

taking K to be the 4× 4 calibration matrix

K =

 fx 0 cx 0
0 fy cy 0
0 0 1 0
0 0 0 1

 (3)

The pixel coordinates x′ = (x′, y′) can be recovered by dividing by the third element. For the rest
of the paper, we use the shorthand xij = ωij(T,P) to denote the reprojection of patch i onto frame
j in terms of pixel coordinates.

Patch Graph: We use a bipartite patch graph data structure to represent the patch lifetimes. Edges
in the graph connect patches with frames. By default, the graph is constructed by adding an edge
between each patch and every frame within distance r from the index of the frame it was extracted
from. The reprojections of a patch onto all of its connected frames in the pose graph form the
trajectory of the patch. We provide an example trajectory in Fig. 2.

3.1 FEATURE AND PATCH EXTRACTION

We use a pair of residual networks to extract features from the input images. One network extracts
matching features while the other extracts context features. The first layer of each network is a
7 × 7 convolution with stride 2 followed by two residual blocks at 1/2 resolution (dimension 64)
and 2 residual blocks at 1/4 resolution (dimension 128), such that the final feature map is one-
quarter the input resolution. The architectures of the matching and context networks are identical
with the exception that the matching network uses instance normalization and the context network
uses no normalization. We construct a two-level feature pyramid by applying average pooling to the
matching features with a 4× 4 filter with stride 4.

We store the matching features for each frame. We additionally extract patches from both the match-
ing and context feature maps. Patch centroids are randomly sampled, then we use bilinear interpo-
lation for feature retrieval. Unlike DROID-SLAM, we never explicitly build correlation volumes.
We instead store both frame and patch feature maps such that correlation features can be computed
on-the-fly.

3.2 UPDATE OPERATOR

The purpose of the update operator is to update both poses and patches. This is done by performing
revisions to patch trajectories as shown in Fig. 1. We provide a schematic overview of the operator
in Fig. 3 and detail the individual components below. Each “+” operation in the diagram is a residual
connection followed by layer normalization. The update operator acts on the patch graph, and each
edge in the patch graph is augmented with a hidden state (dimension 384). When a new edge is
added, the hidden state is initialized with zeros.

Correlation: For each each edge (i, j) in the patch graph, we compute correlation features. We first
use Eqn. 2 to reproject patch i in frame j: xij = ωij(T,P). Given patch features g ∈ Rp×p×D
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and frame features f ∈ RH×W×D, for each pixel (u, v) in patch i, we compute its correlation with
a grid of pixels centered at the the reprojection of pixel (u, v) in frame j, using the inner product:

Cµνλρ = ⟨gµν , f(xij +∆λρ)⟩ (4)
where we take ∆ to be a 7 × 7 integer grid centered at 0 indexed by λ and ρ, and f(·) denotes
bilinear sampling. We compute correlation features for both levels in the pyramid and concatenate
the results. This operation is implemented as an optimized CUDA layer which leverages the regular
grid structure of the interpolation step. This implementation is identical to the alternative correla-
tion implementation used by RAFT (Teed & Deng, 2020) and is equivalent to indexing correlation
volumes due to the linearity of the inner product and interpolation.

1D Temporal Convolution: We apply a 1D-Convolution in the temporal dimension to each patch
trajectory. Since trajectories vary in length and keyframes are actively added and removed, it is
not straightforward to implement convolution as a batched operation. Instead, for each edge (i, j)
we index the features of its neighbors at (i, j − 1) and (i, j + 1), concatenate, then apply a linear
projection. The temporal convolution allows the network to propagate information along each patch
trajectory and model appearance changes of the patch through time.

SoftMax Aggregation: We use global message passing layers to propagate information between
edges in the patch graph. This operation has appeared before in the context of graph neural networks.
Given edge e and denoting its neighbors as N(e) we define the channel-wise aggregation function

ψ

 ∑
x∈N(e)

σ(x) · ϕ(x)

 /
∑

x∈N(e)

σ(x)

 (5)

where ψ and ϕ are linear layers and σ is a linear layer followed by a sigmoid activation. We perform
two instantations of soft aggregation: (1) patch aggregation where edges are neighbors if they con-
nect to the same patch (2) frame aggregation where edges are neighbors if they connect to both the
same source and destination frames.

Transition: The transition block in Fig. 3 is simply two residual units with Layer Normalization
and ReLU non-linearities.

Factor Head: The factor head consists of 2 MLPs with one hidden unit each. For each edge (i, j) in
the pose graph, the first MLP predicts a trajectory update δij ∈ R2: a 2D flow vector indicating how
the reprojection of the patch center should be updated in 2D; the second MLP predicts a confidence
weight map Σij ∈ R2 which is bounded to (0, 1) using a sigmoid activation.

Differentiable Bundle Adjustment: This layer in Fig. 3 operates globally on the patch graph and
outputs updates to depth and camera poses. The predicted factors (δ,Σ) are used to define an
optimization objective: ∑

(i,j)∈E

∥ω̂ij(T,P)− [x̂ij + δij ]∥2Σij
(6)

where ∥·∥|Σ is the Mahalanobis distance and x̂ij denotes the center of patch xij . We apply two
Gauss-Newton iterations to the linearized objective, optimizing the camera poses as well as the
inverse depth component of the patch while keeping the pixel coordinates constant. This optimiza-
tion seeks to refine the camera poses and depth such that the induced trajectory updates agree with
the predicted trajectory updates. Similar to DROID-SLAM (Teed & Deng, 2021), we apply the
Schur complement trick for efficient decomposition and backpropagate gradients through the Gauss-
Newton iterations.

3.3 TRAINING AND SUPERVISION

DPVO is implemented using PyTorch. We train our network on the TartanAir dataset. On each
training sequence, we precompute optical flow magnitude between all pairs of frames using the
ground truth poses and depth. During training, we sample trajectories where frame-to-frame optical
flow magnitude is between 16px and 72px. This ensures that training instances are generally difficult
but not impossible.

We apply supervision to poses and induced optical flow (i.e. trajectory updates), supervising each
intermediate output of the update operator and detach the poses and patches from the gradient tape
prior to each update.

5



Under review as a conference paper at ICLR 2023

Figure 4: Example reconstructions: TartanAir (left) and ETH3D (right)

Pose Supervision: We scale the predicted trajectory to match the groundtruth using the Umeyama
alignment algorithm (Umeyama, 1991). Then for every pair of poses (i, j), we supervise on the
error ∑

(i,j) i ̸=j

∥[(G−1
i Gj)

−1(T−1
i Tj)]∥ (7)

where G is the ground truth and T are the predicted poses.

Flow Supervision: We additionally supervise on the distance between the induced optical flow and
the ground truth optical flow between each patch and the frames within two timestamps of its source
frame. Each patch induces a p× p flow field. We take the minimum of all p× p errors.

The final loss is the weighted combination

L = 10Lpose + 0.1Lflow. (8)

Training Details: We train for a total of 240k iterations on a single RTX-3090 GPU with a batch
size of 1. Training takes 3.5 days. We use the AdamW optimizer and start with an initial learning
rate of 8e-5 which is decayed linearly during training. We apply standard augmentation techniques
such as resizing and color jitter.

We train on sequences of length 15. The first 8 frames are used for initialization while the next 7
frames are added one at a time. We unroll 18 iterations of the update operator during training. For
the first 1000 training steps, we fix poses with the ground truth and only ask the network to estimate
the depth of the patches. Afterwards, the network is required to estimate both poses and depth.

4 VO SYSTEM

In this section, we cover several key implementation details necessary for turning our network into a
complete visual odometry system. The logic of the system is primarily implemented in Python with
bottleneck operations such as bundle adjustment and visualization implemented in C++ and CUDA.
Compared to other VO system, DPVO is exceedingly simple and requires minimal design choices.

Initialization: We use 8 frames for initialization. We add new patches and frames until 8 frames
are accumulated and then run 12 iterations of our update operator. There needs to be some camera
motion for initialization; hence, we only accumulate frames with an average flow magnitude of at
least 8 pixels from the prior frame.

Expansion: When a new frame is added we extract features and patches. The pose of the new frame
is initialized using a constant velocity motion model. The depth of the patch is initialized as the
median depth of all the patches extracted from the previous 3 frames.

We connect each patch to every frame within distance r from the frame index where the patch was
extracted. This means that when a new patch is added, we add edges between that patch and the
previous r keyframes. When a new frame is added, we add edges between each patch extracted in
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Figure 5: Overview of the VO System.

the last r keyframes with the new frame. This strategy means that the patch graph will always have
a maximum size ensuring worst case constant runtime.

Optimization: Following the addition of edges we run one iteration of the update operator followed
by two bundle adjustment iterations. We fix the poses of all but the last 10 keyframes. The inverse
depths of all patches are free parameters. The patches are removed from optimization once they fall
outside the optimization window.

Keyframing: The most recent 3 frames are always taken to be keyframes. After each update, we
compute the optical flow magnitude between keyframe t− 5 and t− 3. If this is less than 64px, we
remove the keyframe at t − 4. When a keyframe is removed, we store the relative pose between its
neighbors such that the full pose trajectory can be recovered for evaluation.

Visualization: Reconstructions are visualized interactively using a separate visualization thread.
Our visualizer is implemented using the Pangolin library1. It directly reads from PyTorch tensors
avoiding all unnecessary memory copies from CPU to GPU. This means that the visualizer has very
little overhead–only slowing the full system down by approximately 10%. In the Appendix we
provide a live video of our system reconstructing an iPhone video.

5 EXPERIMENTS

We evaluate DPVO on the TartanAir (Wang et al., 2020b) and EuRoC (Burri et al., 2016) bench-
marks. On each dataset, we run multiple trials each with a different set of patches and report the
median results obtained. Example reconstructions on the TartanAir and ETH3D datasets are shown
in Fig. 4.

5.1 TARTAN AIR (WANG ET AL., 2020B)

Validation Split: We use the same 32-sequence validation split as DROID-SLAM and report aggre-
gated results in Fig. 6a and compare with DROID-SLAM and ORB-SLAM3. We run our method 3
times on each sequence and aggregate the results. In the [0, 1]m error window, we get an AUC of
0.80 compared to 0.71 for DROID-SLAM.

Test Split: In Tab. 1 we report results on the test-split used in the ECCV 2020 SLAM competition
compared to state-of-the-art methods. Classical methods such as DSO and ORB-SLAM fail on more
than 80% of the sequences, hence we use COLMAP as a classical baseline as it was used in the two
winning solutions of the ECCV SLAM competition. For our method, we run five times on each
sequence and report the median results.

We benchmark two versions of DROID-SLAM: the full version and a version where loop closure and
global bundle adjustment is disabled (DROID-VO). DROID-VO is more comparable to our method
as we only perform local optimization. We outperform both methods with an error 40% lower
than DROID-SLAM and 64% lower than DROID-VO. COLMAP takes 2 days to complete the 16
sequences and typically produces broken reconstructions which lead to large errors in evaluation.

1https://github.com/stevenlovegrove/Pangolin
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(a) Results on the TartanAir (Wang et al.,
2020b) validation split. Our method gets an
AUC of 0.80 compared to 0.71 for DROID-
SLAM while running 4x faster.

(b) Runtime distribution on EuRoC. Our sys-
tem averages 60fps with each new frame tak-
ing ∼17ms to process. The distribution is
very centralized and never drops below 50fps.

ME ME ME ME ME ME ME ME MH MH MH MH MH MH MH MH Avg000 001 002 003 004 005 006 007 000 001 002 003 004 005 006 007
ORB-SLAM3 (Campos et al., 2021) 13.61 16.86 20.57 16.00 22.27 9.28 21.61 7.74 15.44 2.92 13.51 8.18 2.59 21.91 11.70 25.88 14.38
DSO (Engel et al., 2017) 9.65 3.84 12.20 8.17 9.27 2.94 8.15 5.43 9.92 0.35 7.96 3.46 - 12.58 8.42 7.50 7.32
COLMAP (Schonberger & Frahm, 2016) 15.20 5.58 10.86 3.93 2.62 14.78 7.00 18.47 12.26 13.45 13.45 20.95 24.97 16.79 7.01 7.97 12.50
DROID (Teed & Deng, 2021) 0.17 0.06 0.36 0.87 1.14 0.13 1.13 0.06 0.08 0.05 0.04 0.02 0.01 0.68 0.30 0.07 0.33
DROID-VO 0.22 0.15 0.24 1.27 1.04 0.14 1.32 0.77 0.32 0.13 0.08 0.09 1.52 0.69 0.39 0.97 0.58
Ours-60fps 0.16 0.11 0.11 0.66 0.31 0.14 0.30 0.13 0.21 0.04 0.04 0.08 0.58 0.17 0.11 0.15 0.21

Table 1: Results on the TartanAir monocular test split. Results are reported as ATE with scale
alignment. For our method, we report the median of 5 runs.

5.2 EUROC MAV (BURRI ET AL., 2016)

In Tab. 2 we benchmark on the EuRoC (Burri et al., 2016) dataset and compare to other visual
odometry methods including SVO (Forster et al., 2014), DSO (Engel et al., 2017) and the visual
odometry version of DROID-SLAM (Teed & Deng, 2020). Video from the EuRoC benchmark is
recorded at 20fps. Like DROID-SLAM, we skip every other frame, doubling the effective frame
rate of the system. We benchmark two configuration settings: Ours-60fps uses 96 patches per image
and a 10 frame optimization window and Ours-100fps uses 48 patches and a 7 frame optimization
window. These runtimes are near-constant since our method uses a constant number of FLOPS
per-frame, unlike prior methods which slow down and make more keyframes during fast motion.
Following prior work, we run our system five times on each sequence, randomly sampling a different
collection of patches, and report the median result. Our 3x real-time system outperforms prior work
on the majority of the EuRoC sequences. The average error is 43% lower than DROID-VO (Teed &
Deng, 2021). Even the 100fps system outperforms DROID-VO on most video.

5.3 ICL-NUIM (HANDA ET AL., 2014)

In Tab. 3 we benchmark on the ICL-NUIM (Handa et al., 2014) dataset and compare to other visual
odometry and SLAM methods including SVO (Forster et al., 2014), DSO (Engel et al., 2017) and
DROID-SLAM (Teed & Deng, 2021). Video from the ICL-NUIM benchmark is recorded at 30fps.
We evaluate the same 60fps and 100fps configurations of our method as on EuRoC MAV dataset
in Sec. 5.2. We also run our system five times on each sequence, randomly sampling a different
collection of patches, and report the median result. Our 3x real-time system outperforms prior work
on the majority of the ICL-NUIM sequences. The average error of our 100fps model is 51% lower
than DROID-SLAM (Teed & Deng, 2021) and 32% lower than SVO (Forster et al., 2014). Our
100fps and 60fps systems perform similarly.

5.4 ABLATIONS

We perform ablation experiments on the TartanAir validation split and show results in Fig. 7. We use
the same parameter settings in all experiments with augmentation disabled. We run each ablation
experiment three times on the validation split and aggregate the results.

Point vs Patch Features: In Fig. 7 (left), we demonstrate the importance of the patch over simply
using point features (i.e 1x1 patches). The patch features encode local context which is lacking with
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MH01 MH02 MH03 MH04 MH05 V101 V102 V103 V201 V202 V203 Avg
TartanVO (Wang et al., 2020a) 0.639 0.325 0.550 1.153 1.021 0.447 0.389 0.622 0.433 0.749 1.152 0.680
SVO (Forster et al., 2014) 0.100 0.120 0.410 0.430 0.300 0.070 0.210 - 0.110 0.110 1.080 0.294
DSO (Engel et al., 2017) 0.046 0.046 0.172 3.810 0.110 0.089 0.107 0.903 0.044 0.132 1.152 0.601
DROID-VO (Teed & Deng, 2021) 0.163 0.121 0.242 0.399 0.270 0.103 0.165 0.158 0.102 0.115 0.204 0.186

Ours-60fps 0.087 0.055 0.158 0.137 0.114 0.050 0.140 0.086 0.057 0.049 0.211 0.105
Ours-100fps 0.101 0.067 0.177 0.181 0.123 0.053 0.158 0.095 0.095 0.063 0.310 0.129

Table 2: Monocular SLAM on the EuRoC datasets, ATE[m] compared to other visual odometry
methods.

Living Living Living Living Office Office Office Office AvgRoom 0 Room 1 Room 2 Room 3 Room 0 Room 1 Room 2 Room 3
ORB-SLAM2 (Mur-Artal & Tardós, 2017) 0.461 0.172 0.806 N/A 0.589 0.813 1.000 N/A N/A
DROID (Teed & Deng, 2021) 0.008 0.027 0.039 0.012 0.065 0.025 0.858 0.481 0.189
DROID-VO (Teed & Deng, 2021) 0.010 0.123 0.072 0.032 0.095 0.041 0.842 0.504 0.215
SVO (Forster et al., 2014) 0.02 0.07 0.09 0.07 0.34 0.28 0.14 0.08 0.136
DSO (Engel et al., 2017) 0.01 0.02 0.06 0.03 0.21 0.83 0.36 0.64 0.270
DSO (Realtime) (Engel et al., 2017) 0.02 0.03 0.33 0.06 0.29 0.64 0.23 0.46 0.258

Ours-60fps 0.006 0.006 0.023 0.010 0.067 0.012 0.017 0.635 0.097
Ours-100fps 0.008 0.007 0.021 0.010 0.071 0.015 0.018 0.593 0.093

Table 3: Results on the ICL-NUIM dataset benchmark. Results are reported as ATE with scale
alignment. For our method, we report the median of 5 runs. SVO and DSO results are from Forster
et al. (2016). ORB-SLAM2 results are from Duan et al. (2021) (only partial results were provided).
Despite our best efforts, we were unsuccessful in running monocular ORB-SLAM3: The official
software would not produce any keyframes while running.

0.0 0.2 0.4 0.6 0.8 1.0
ATE [m]

0.0

0.2

0.4

0.6

0.8

1.0

%
 ru

ns

Point
Patch

0.0 0.2 0.4 0.6 0.8 1.0
ATE [m]

0.0

0.2

0.4

0.6

0.8

1.0

%
 ru

ns

w/o 1D-Conv
w/o SoftAgg
Ours Full

Figure 7: Ablation experiments. (Left) We show the importance of using patches over point features.
(Right) Removal of different components of the update operator degrades accuracy.

point features. The additional information stored in the correlation features allows for more precise
tracking.

Update Operator: In Fig. 7 (right), we test the effect of removing various components from the
update operator. Both removing 1D-Convolution and Softmax-Aggregation degrade performance
on the validation set.

Timing: The default configuration of our system runs at 60fps. We plot the distribution of runtimes
over multiple frames and runs in Fig. 6b. The design of our system leads to very little variance in
latency.

6 CONCLUSION

DPVO is a new deep visual odometry system built using a sparse patch representation. It is accurate
and efficient, capable of running at 2x-5x real-time frame rates with minimal memory requirements.
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7 REPRODUCIBILITY STATEMENT

In the Appendix, we provide a link to an anonymized repository of our code which reproduces our
results.
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A APPENDIX

A.1 ANONYMIZED CODE

We provide an anonymized version of our code which reproduces our results:

https://github.com/a46068902/DPVO_ICLR

It includes interactive visualizations.

A.2 VIDEO

We also provide a video of our method running on video from an iPhone:

https://www.youtube.com/watch?v=fqch28-jEvY

A.3 CONFIDENCE WEIGHTS

Figure 8: Factor confidence weights. Our method predicts a confidence weight w ∈ R2 bounded to
(0, 1) for each factor in the factor graph. Cold colors (blue) represent high confidence factors while
hot colors (red) represent low confidence factors.
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