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Abstract

Digitally reconstructed radiographs (DRRs) are simulated 2D X-ray images gen-
erated from 3D CT volumes, widely used in preoperative settings but limited in
intraoperative applications due to computational bottlenecks, especially for ac-
curate but heavy physics-based Monte Carlo methods. While analytical DRR
renderers offer greater efficiency, they overlook anisotropic X-ray image formation
phenomena, such as Compton scattering. We present a novel approach that mar-
ries realistic physics-inspired X-ray simulation with efficient, differentiable DRR
generation using 3D Gaussian splatting (3DGS). Our direction-disentangled 3DGS
(DDGS) method separates the radiosity contribution into isotropic and direction-
dependent components, approximating complex anisotropic interactions without
intricate runtime simulations. Additionally, we adapt the 3DGS initialization to
account for tomography data properties, enhancing accuracy and efficiency. Our
method outperforms state-of-the-art techniques in image accuracy. Furthermore,
our DDGS shows promise for intraoperative applications and inverse problems
such as pose registration, delivering superior registration accuracy and runtime
performance compared to analytical DRR methods.

1 Introduction

Motivation. Digitally reconstructed radiographs (DRRs) are simulated (in silico) 2D X-ray images
rendered from 3D computational tomography (CT) volumes. While DRRs are widely utilized in
preoperative settings, such as optimizing dose delivery and in radiation oncology [20, 41, 6], their
potential intraoperative applications remain underexplored due to computational bottlenecks and
naive modeling capability [1, 27]. For instance, real-time multimodal registration for image-guided
procedures is currently impractical because of the time-consuming process of generating DRRs and
integrating them into slice-to-volume registration [36].

The advent of GPU-accelerated computing has significantly improved the efficiency of radiography
simulators [3, 39, 5], though they still fall short of meeting the stringent requirements of real-time
applications. Recent developments in inverse graphics have led to the creation of differentiable
DRR renderers (e.g., DiffDRR [11], X-Gaussian [7], GaSpCT [25]), which show promise for inverse
problems such as 2D/3D CT image registration [12]. However, these methods do not fully capture
the complexities of X-ray image formation. They typically use computationally efficient ray-tracing
techniques that model the attenuated photon fluence at each detector pixel by accumulating Hounsfield
unit (HU) values along the 3D view-ray through the voxelized CT volume. This approach, while fast,
cannot account for complex noise-inducing physical effects such as Compton scattering and beam
hardening [14], crucial for accurate X-ray imaging.
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Figure 1: Proposed pipeline of Direction-Disentangled 3D Gaussian Splatting (DDGS).

Physics-based Monte-Carlo simulations [2, 15, 3, 4] do not suffer from these limitations. Relying
on the decomposition of CT volumes into realistic materials via HU thresholding, they accurately
simulate single-photon transport and probabilistically evaluate photon-matter interactions (photo-
electric effect, Compton scattering, Rayleigh scattering, etc.) to determine the final attenuation and
hit-region of each photon. This approach provides a more accurate representation of X-ray image
formation; but the computational intensity of these methods—requiring >108 iterations to render an
image—makes them impractical for real-time applications and inverse problems.

In this paper, we propose a novel, more elegant balance between (a) realistic physics-inspired X-ray
simulation and (b) efficient, differentiable DRR generation, as illustrated in Figure 1.

Contributions. Our approach leverages 3D Gaussian splatting (3DGS) [17] for efficient DRR
generation from CT volumes, similar to X-Gaussian [7] and GaSpCT [25]. However, we introduce a
crucial adaptation: our direction-disentangled 3DGS (DDGS) method accounts for the dependencies
of X-ray image formation on light directionality. Specifically, we decompose the radiosity contri-
bution of 3D regions into two independent components: a non-directional component modeling the
isotropic X-ray interactions with the corresponding material, and a direction-dependent component
approximating higher-dimensional anisotropic interactions, such as scattering. Unlike the more
generic view-dependent spherical-harmonics decomposition adopted by common 3DGS solutions
[10], ours is tuned to the specific behaviors of high-energy photons. This formulation allows our
method to implicitly learn and reproduce the effects of scattering on X-ray images without the need
for complex photon-transport simulations at runtime.

Additionally, we adapt the initialization phase of 3DGS to account for the properties of tomography
data. We adopt a geometry- and intensity-based dual strategy to sample 3D points that correspond
to: (a) contact regions between different anatomical elements, where photon transport is likely to
show discontinuities; and (b) homogeneous regions, where the primary attenuation contribution can
be sparsely modeled but could benefit from view-dependent noise modeling.

We demonstrate that our solution achieves higher image accuracy compared to state-of-the-art
methods across various medical benchmarks Additionally, we showcase the efficient application of
our method to inverse problems, such as pose registration, highlighting its potential for real-time
intraoperative use cases. Our DDGS achieves better registration accuracy and runtime performance
than analytical DRR methods.

2 Related Work

The generation of DRRs and the simulation of X-ray images have been subjects of extensive research
due to their critical roles in medical imaging, particularly in radiotherapy planning and diagnostic
imaging [20, 41, 6, 43]. In this section, we provide some insight on X-ray imaging, traditional
simulation tools, and the recent integration of machine-learning techniques.

X-ray Image Simulation. X-ray imaging relies on the interactions of high-energy photons—emitted
by the X-ray source of the scanner—with the matter (e.g., body part) placed in between the X-ray
source of the scanner and its radiation-sensitive detector cells (dexels). Imaging contrast arises from
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differential absorption and scattering of X-ray photons by tissues, primarily through the photoelectric
effect, Compton scattering, and, to a lesser extent, beam hardening for polychromatic scanners. The
photoelectric effect involves the absorption of an X-ray photon by an atom and is more pronounced in
higher atomic number materials like bone, causing them to appear whiter on X-ray images2; whereas
Compton scattering occurs when an X-ray photon collides with an outer electron, resulting in the
photon being deflected and losing energy, which contributes to image noise and reduced contrast
[14, 29].

A variety of Monte Carlo (MC) simulation suites [2, 15, 3, 4] model these X-ray interactions and
light transport. They trace the paths of a large number of individual photons as they undergo
probabilistic interactions within the material. By simulating numerous photon trajectories, Monte
Carlo methods account for the random nature of photoelectric absorption and Compton scattering, as
well as secondary effects such as fluorescence and electron transport. These MC solutions produce
highly realistic simulations of radiographic images, though at a high computational cost which
makes them inadequate for most DRR use-cases. Furthermore, for these tools to render realistic
DRRs from CT volumes, one must first pre-process the CT data to assign proper materials and their
corresponding physical properties to each voxel, which is essential for realistic simulation. This step
is often approximated by decomposing the volume into a small set of predefined materials according
to user-provided HU ranges (e.g., “air” material assigned to voxels with HU value < −800, “lung”
assigned to voxels in range ] − 800,−200], “fat” for ] − 200,−100], etc.). This process can be
time-consuming and prone to errors, affecting the fidelity of MC-based DRR generation [9].

Efficient and Differentiable DRR Generation. Analytical DRR rendering methods [39, 38, 5]
have been developed in parallel to the aforementioned MC suites for real-time or near-real-time
applications. These methods have a much lower computational footprint, as they do not simulate
individual photon interactions but instead use mathematical models to directly calculate the primary
paths and approximated attenuations of X-rays. The seminal work of Siddon [31] on computing
line integrals through a discretized CT volume is still at the core of most recent DRR solutions, e.g.,
which proposed differentiable formulation of the rendering steps [11] or integrated neural networks
to add realistic noise to the output [35]. However, the inherent approximations in these methods can
affect their accuracy, particularly in modeling artifacts present in heterogeneous tissues or complex
anatomical structures, e.g., caused by scattering (non-primary light contributions).

Recently, researchers [7, 25] have tried to apply 3D Gaussian splatting (3DGS) techniques [17] to
DRR rendering, i.e., optimizing a cloud of 3D Gaussians to approximate voxel data, thereby enabling
faster rendering with minimal accuracy loss. However, these early solutions overlooked the specific
nuances of X-ray imaging, directly applying 3DGS methods designed for natural imaging [25] or
oversimplifying the physical properties of X-ray attenuation [25], leading to suboptimal modeling.

In this paper, we propose a novel formulation of 3D Gaussian splatting, tuned to more efficiently
approximate X-ray imaging (time- and quality-wise).

3 Methodology

3.1 Preliminaries

Gaussian Splatting. 3DGS [17] is a point-based rendering technique using 3D Gaussians to
explicitly represent scenes in a more compact manner than volumetric representations. Each Gaussian
gi = {µi,Σi,αi,fi} is defined by its mean position µi ∈ R3, covariance matrix Σi ∈ R3×3 (usually
decomposed into separate scale and rotation parameters), opacity αi ∈ R, and radiance properties
fi ∈ Rk, where k depends on the light contribution model adopted. E.g., k = (L + 1)2 × 3 for
anisotropic, view-dependent RGB radiance decomposed into spherical harmonics (SH) of degree L,
a model commonly used for natural-imaging applications. Images are rendered by casting view-rays
through each pixel p into the scene and alpha-blending the Gaussian contributions to the final ray
color C, as:

C(p) =
∑
j∈n

cjσj

j−1∏
l=1

(1− σl) with σi = αie
− 1

2 (p−µ̂i)Σ̂
−1
i (p−µ̂i), (1)

2X-ray film is historically white, turning black when exposed to high-energy photon.
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where n is the number of Gaussians considered, cj is the radiance (computed from fj , e.g., via SH)
of the jth Gaussian on the ray, and µ̂j and Σ̂j are the image-plane projections of µj and Σj .

Since the aforementioned rasterization process is differentiable w.r.t. to the Gaussian parameters,
the 3DGS representation of a scene can be learned via gradient-descent, given a set of 2D scene
observations IGT and their corresponding camera parameters. A combination of ℓ1 and SSIM [40]
loss functions are commonly-adopted as criterion for this iterative optimization process [17]:

L = (1− λ)ℓ1(IGT, I) + λ SSIM (IGT, I), (2)

with I the rendered images (based on provided camera parameters), and λ a loss-weighting hyper-
parameter. The initial state is typically obtained by sampling relevant 3D points in the scene domain
for the Gaussians, e.g., from a structured-from-motion (SfM) point-cloud [34, 28].

Application to DRR. The volumetric rendering performed by 3DGS methods is conceptually
similar to the one performed by analytical DRR methods [31, 11], i.e., aggregating the attenuation
values of light-rays cast through the voxelized CT volume. This similarity has recently motivated
researchers [7, 25] to apply 3DGS models to DRR applications, driven by the compactness of
3DGS representations compared to voxel data (addressing the O(n3) complexity inherent to voxel
rendering). By optimizing a 3DGS model to approximate the visual properties of the CT volume, the
resulting representation can render accurate DRRs much faster than traditional methods, making it
more suitable for real-time intra-operative visualization. Consequently, the use of traditional, slower
rendering solutions can be limited to generating DRR targets (IGT) for the offline (i.e., pre-operative)
training.

However, these early 3DGS-for-DRR solutions [7, 25] do not account for noise-inducing photon
interactions (e.g., scattering) when applying the analytical methods [30, 5] to render their training
data. Since scatter-free DRRs are not affected by ray directions (i.e., the attenuation at each point is
naively considered isotropic), Cai et al. [7] simplified the radio-intensity function of each Gaussian
to ci = sigmoid (b · fi), where b ∈ Rk is a direction-independent optimizable basis vector shared
by all splats. Furthermore, their Gaussian point-cloud is initialized via evenly-spaced Cai et al. [7]
or random-uniform [25] sampling of the scanned 3D space, i.e., ignoring relevant geometrical and
material properties of the target CT data. Inadequate initialization strategies negatively impact the
convergence of 3DGS models and the resulting image accuracy [16]. In this work, we propose to
reformulate both the initialization strategy and the radiance function of the 3D Gaussians to address
these limitations.

3.2 Disentanglement of Isotropic and Anisotropic 3D Gaussians

We argue that, while X-ray scattering models are incompatible with the 3DGS rendering formulation
(secondary rays would have to be cast, increasing the computational footprint exponentially), their
anisotropic impact on X-ray imaging can be approximated to some extent by direction-dependent
radiance functions. However, modeling this high-dimensional residual contribution is only meaningful
if it appears in the training DRRs, i.e., if the target radiographs are rendered using physics-inspired
simulation tools. This is not always possible, e.g., if the mapping from HU values to materials
for the target CT scans is not provided. Ideally, in such cases, when only scatter-free DRRs can
be generated, the radiance function should gracefully degrade to a lighter anisotropic formulation
(e.g., similar to [7]), to avoid unnecessary computations that could impact the model optimization,
as well as its runtime performance. Moreover, X-ray interactions with matter themselves involve
both isotropic (e.g., photoelectric absorption/fluorescence, Rayleigh scattering) and anisotropic (e.g.,
Compton scattering) phenomena [14, 22]. Therefore, for the sake of both modularity and accuracy,
we propose to decompose our DRR representation into isotropic Gaussians giso

i and anisotropic,
direction-dependent ones gdir

j . We formulate their respective radiosity functions as:

ciso
i = sigmoid (biso · f iso

i ) ; cdir
j = sigmoid

(
Y1..L(θ, ϕ) ·Bdirf dir

j

)
, (3)

where f iso
i ,f dir

j ∈ Rk are feature vectors respectively encoding the contribution of isotropic and
anisotropic Gaussians, biso ∈ Rk is a global isotropic basis vector (similar to [7]), and Bdir ∈
RkL×k is a second, anisotropic basis matrix that interacts with the L-degree spherical-decomposition
Y : R2 7→ RkL applied to the ray angles θ, ϕ without constant term (degree = 0), resulting in
kL = L(L+ 2).

4



Uniformly random Evenly sample Marching cubes Density-weighted Radiodensity-aware (RA)

Anisotropic points Isotropic points

Figure 2: Illustration of the different sampling strategies for 3DGS initialization.

It is important to note that, while the usual spherical-harmonics representation for Gaussian splatting
also contains isotropic (degree = 0) and anisotropic (degree > 0) components, the model assumes
that both contributions are co-located (i.e., they belong to the same 3D Gaussian gi of position µi

and covariance Σi). To account for the complexity of X-ray light transport, we relax this co-location
constraint, i.e., modeling isotropic and anisotropic contributions via distinct 3D Gaussians (giso

i and
gdir
j ). We demonstrate in our evaluation that this disentanglement results in both higher image quality

and lighter representation.

3.3 Initialization via Radiodensity-Aware Dual Sampling (RADS)

Our second main contribution targets the initialization of the point-cloud that supports the Gaussian-
mixture modeling of the 3D data. Since 3DGS was defined for natural imaging (e.g., ignoring
sub-surface light transport), common initialization strategies limit their sampling to scene-surface
points (SfM- [17] or depth-guided [24] subsampling). Such sampling of the 3D space is, however,
inadequate for volumetric data, ignoring possibly salient regions. While uniform sampling of
the CT space could be considered [7, 25], we argue that such a strategy is also suboptimal for
anatomical data, discarding domain-relevant properties. We demonstrate empirically (c.f . Section
4) that uniform sampling results in slower convergence of the 3DGS representation and degraded
runtime performance.

Therefore, we propose a novel twofold sampling strategy that accounts for the specific nature of CT
data and for our dual isotropic/directional 3DGS model. Based on the radiodensity values contained
in the target CT volumes, our solution samples two set of 3D points Pmc ∈ Rn1×3 and Pdw ∈ Rn2×3

with distinct, complementary distributions (n1, n2 scalar hyper-parameters).

Not unlike [24], the first set of points is sampled by applying the marching-cubes algorithm [21]
to extract points at the interface between materials with different physical properties (i.e., distinct
HU responses in the CT volume). These interface regions typically need careful modeling when
simulating X-ray imaging, as they result in discontinuous photon transport.

To complement this first set of points, the second set is semi-randomly sampled from the voxel
centroids, according to a uniform distribution weighted by the voxels’ radiodensities. I.e., voxels with
higher radiodensity, contributing to the X-ray attenuation, are more likely to be picked to initialize
the Gaussians. In other words, this radiodensity-weighted strategy identifies additional points within
the homogeneous regions of the CT volume that also contributes to the imaging process.

Based on their distinct properties, we assign the entire Pmc to initialize the isotropic Gaussians,
whereas we equally split Pdw to initialize both isotropic and direction-dependent Gaussians. All in
all, our dual radiodensity-aware strategy improves the initialization of the 3DGS representation and
is more explainable than prior work (see Figure 2).

4 Experiments

4.1 Experimental Protocol

Implementation. For evaluation, we set the decomposition degree to L=1, the feature dimension
to k=8, and initial cloud sizes to n1=15,000 and n2=10,000. We apply a loss weight λ = 0.2. We
choose the default threshold level (i.e., the average of the minimum and maximum volume) for the
marching-cubes algorithm. DDGS training is performed on a single NVIDIA A100 using an Adam
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Table 1: Comparison of Gaussian splatting-based DRR rendering techniques, on 2 datasets.

3DGS [17] (L = 1) X-Gaussian [7] (k = 32) DDGS (Ours, L = 1, k = 8)

# points↓ PSNR↑ SSIM↑ # points↓ PSNR↑ SSIM↑ # points↓ PSNR↑ SSIM↑
N

A
F-

C
T

abdomen 11,149 47.43 0.994 10,802 47.17 0.993 13,928 48.09 0.994
chest 13,669 44.42 0.988 16,568 43.33 0.987 13,533 44.50 0.989
foot 8,616 44.51 0.984 10,909 44.34 0.985 10,786 44.70 0.985
jaw 17,902 40.47 0.973 22,318 40.02 0.972 19,665 40.57 0.974
avg 12,834 44.21 0.985 15,149 43.72 0.984 14,478 44.47 0.986

C
T

Pe
lv

ic
1K

-D
at

as
et

6

001 53,988 35.40 0.971 50,059 36.81 0.979 41,947 37.88 0.984
002 49,099 37.03 0.982 48,113 37.79 0.986 43,933 38.43 0.988
003 60,755 35.73 0.973 59,822 36.46 0.977 48,536 38.28 0.983
004 42,349 38.87 0.982 37,243 39.84 0.985 39,176 40.35 0.986
005 42,482 39.37 0.984 46,014 39.30 0.984 39,570 40.36 0.987
006 53,832 37.14 0.983 57,197 37.42 0.983 47,398 38.26 0.986
007 45,360 37.09 0.980 48,454 37.62 0.983 41,032 38.87 0.987
008 51,211 38.03 0.980 45,750 38.70 0.982 43,577 39.81 0.986
009 44,060 38.19 0.981 41,279 38.92 0.985 41,389 39.87 0.987
010 38,691 37.80 0.984 40,030 37.55 0.985 39,691 38.73 0.987
avg 48,183 37.47 0.980 47,396 38.04 0.983 42,625 39.08 0.986

optimizer [18] with a learning rate of 1.25× 10−4 for biso and Bdir and 2.5× 10−3 for f iso and f dir.
Default 3DGS [17] learning rates are applied to the remaining parameters.

Datasets. We consider 4 datasets. (1) NAF-CT [42] includes four CT images of abdomen, chest,
foot, and jaw. For each, we adopt TIGRE [5] to sample 50 evenly-distributed projections for
training and 50 randomly-distributed ones for testing, in the range of [−90◦, 90◦] (scatter-free DRRs).
(2) CTPelvic1K [19] is a large dataset of pelvic CT images. We consider the first 10 scans of the
sub-dataset6 in our experiments. We adopt DeepDRR [35] to generate 60 training (evenly-distributed)
and 60 (randomly-distributed) testing DRRs (in the range of [−60◦, 60◦]), taking advantage of the
scattering-modeling capability of DeepDRR to render realistic X-ray data. (3) Ljubljana [26] is a
clinical dataset of 10 patients undergoing neurovascular surgery. Each patient underwent one CT and
two X-ray angiography scans. The pose of each X-ray is also provided. Following DiffPose strategy
[12], we randomly sample 900 projections for training and 100 for testing. (4) Finally, we provide
some additional qualitative results on DeepFluoro [13], a collection of pelvic X-rays and CT images
from six cadavers.

Metrics. We evaluate our method in two settings: novel-view synthesis and intraoperative 2D/3D
image registration (i.e., pose estimation). For novel-view synthesis, we use the standard PSNR and
SSIM as metrics. For intraoperative 2D/3D image registration, we consider the error both in terms of
rotation (angular distance) and translation (Euclidean distance). We further measure the clinically-
relevant registration accuracy of key anatomical landmarks for Ljubljana scans [26] where they are
provided. Following [12], we compute the target registration error (TRE) w.r.t. the positioning of
these landmarks after registration.

4.2 Novel-View Synthesis

We first validate our contributions in terms of the quality of rendered DRRs and compactness of our
dual Gaussian-mixture representation.

Comparative Evaluation. We compare to 3DGS [17] and X-Gaussian [7] on the NAF-CT [42]
and CTPelvic1K [19] datasets for the novel-view synthesis. For each method, we adopt the hyper-
parameters recommended by their respective authors (e.g., L = 1 and 3 for normal 3DGS [17] and
k = 8 and 32 for X-Gaussian [7]).

As shown in Table 1, for NAF-CT [42] (without scatter-related noise), our DDGS outperforms both
3DGS and X-Gaussian in terms of PSNR and SSIM. For CTPelvic1K [19] (with scatter), our DDGS
significantly outperforms 3DGS and X-Gaussian in both PSNR and SSIM while using considerably
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Table 2: Novel-view synthesis evaluation on CTPelvic1K data.

Iteration=500 2000 7000 15000 30000
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DDGS (Ours)
(L = 1, k = 8)

001 25.77 0.908 30.46 0.944 35.18 0.975 36.91 0.981 38.04 0.984
002 27.64 0.921 31.60 0.954 35.33 0.977 36.90 0.984 38.30 0.987

DDGS (Ours)
(L = 3, k = 8)

001 26.20 0.909 31.50 0.950 35.65 0.978 37.68 0.983 38.15 0.985
002 27.87 0.923 32.23 0.956 36.02 0.979 37.87 0.986 38.97 0.989

3DGS [17]
(L = 1)

001 23.56 0.873 27.52 0.914 31.66 0.951 33.64 0.963 35.36 0.970
002 24.55 0.891 29.17 0.932 32.82 0.965 35.33 0.977 37.25 0.982

3DGS [17]
(L = 3)

001 23.55 0.872 27.54 0.914 33.34 0.962 36.01 0.975 37.12 0.980
002 24.55 0.891 28.96 0.931 34.50 0.973 37.72 0.985 38.75 0.988

X-Gaussian [7]
(k = 8)

001 17.31 0.794 24.79 0.877 29.00 0.923 30.72 0.933 33.39 0.947
002 13.45 0.742 27.19 0.904 32.72 0.962 34.52 0.973 36.04 0.978

X-Gaussian [7]
(k = 32)

001 26.34 0.854 31.28 0.950 33.56 0.968 35.07 0.974 36.83 0.979
002 28.32 0.868 33.44 0.966 35.85 0.980 36.55 0.984 37.89 0.986

Table 3: Ablation study w.r.t. the proposed disentangled isotropic/anisotropic representations.

DDGS (Ours) direct-entangled direct-independent direct-dependent 3DGS-disentangled
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

001 38.04 0.984 36.17 0.977 35.93 0.976 32.48 0.942 35.32 0.971
002 38.30 0.987 37.32 0.984 36.96 0.983 33.04 0.953 35.38 0.973

fewer points. Therefore, our DDGS method is more effective in simulating realistic X-ray images
from CT scans.

Furthermore, we compare our DDGS (with degrees L = 1 and L = 3 and feature dimension k = 8)
with traditional 3DGS (degrees L = 1 and L = 3) and X-Gaussian (feature dimensions k = 8 and
k = 32) on the 001 and 002 data of CTPelvic1K [19] at iterations of 500, 2000, 7000, 15,000, and
30,000, as shown in Table 2. Our model with L = 1 and k = 8 performs comparably to 3DGS with
L = 3 and outperforms X-Gaussian with k = 32 after 15,000 iterations. Experiments on more data
can be found in Table S1. Our model with L = 3 achieves the best performance overall. Figure
3 presents a qualitative comparison of the testing set, illustrating both the synthetic views and the
generated 3D Gaussian points.

It should also be highlighted that, even though both the original CT scan (as voxel grid) and our
3DGS-based solution are explicit representations, the latter is significantly more compact. E.g., our
model can represent a CTPelvic1K scan with only 42,625 Gaussians (c.f . Table 1), defined by 19
float values each (3D position/rotation + 3D covariance + opacity + feature vector) and a shared
32-dimensional basis vector b, so 809,907 float values in total; whereas the original CT scans are
each composed of 512 × 512 × 500 = 93, 363, 200 values. Indeed, the voxel data may contain
large homogeneous regions, which can be approximated with few Gaussians, hence a significant
compression rate.

Finally, similar to [12], we qualitatively compare the results of recent DRR methods with actual
X-ray images, for datasets providing both CT scans and real, posed projections (DeepFluoro [13],
Ljubljana [26]). Results are shared in Figure 4, with our method achieving state-of-the-art PSNR.
Further analyses are provided in Appendix B.

Ablation Study. Table 3 demonstrates the effectiveness of our direction-disentangled represen-
tation for 3D Gaussians. For several settings, we observe performance degradation when learning
the direction-dependent and direction-independent components in the same 3D Gaussians (direct-
entangled), learning the direction-independent 3D Gaussians alone (direct-independent), or learning
the direction-dependent 3D Gaussians alone (direct-dependent). Additionally, we decouple the
direction-dependent and direction-independent components in 3DGS [17] (3DGS-disentangled),
which also showed lower performance compared to our learnable features. Figure 5 shows the ren-
dered views from disentangled 3D Gaussians, highlighting that the direction-dependent 3D Gaussians
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Figure 3: Visualization of the Gaussian cloud optimization for different methods.
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Figure 4: Qualitative comparison of DRRs and real scans from DeepFluoro and Ljubljana datasets.

focus more on bones or anatomical structures, while the direction-independent 3D Gaussians focus
more on the background.

Table 4 shows the effectiveness of our proposed initialization scheme (radiodensity-aware) compared
to other initialization methods. Our scheme outperforms both the uniformly random sampling used in
3DGS [17] and the even sampling method used in X-Gaussian [7].

At last, we conduct experiments on the impact of feature dimension k, as shown in Table 5. Our results
indicate that increasing the feature dimension generally improves overall performance. However, the
improvement becomes marginal once the feature dimension exceeds k = 16.
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Table 4: Impact of initialization strategies on image quality during training, i.e., measured on
CTPelvic1K scans w.r.t. training iterations.

Iteration Strategy 001 002 003 004 005 006 007 008 009 010 avg

500
RADS (ours) 25.86 27.72 25.24 28.52 30.52 28.31 29.23 27.92 28.95 29.20 28.15
Random 25.29 26.73 24.66 27.40 28.46 26.35 27.23 26.43 27.34 28.53 26.84
Even 24.96 26.64 24.40 26.60 27.54 26.63 25.06 26.01 26.15 26.92 26.09

7,000
RADS (ours) 35.02 37.06 36.47 36.49 36.79 34.52 35.56 36.03 36.44 35.55 35.99
Random 34.39 35.78 34.18 35.83 36.37 34.36 35.20 35.74 36.30 35.26 35.34
Even 34.22 36.07 33.65 36.31 36.64 34.13 34.97 35.85 35.61 35.33 35.28

30,000
RADS (ours) 37.88 38.43 38.28 40.35 40.36 38.26 38.87 39.81 39.87 38.73 39.08
Random 37.17 38.36 38.15 40.09 39.97 38.36 38.69 39.37 39.85 38.84 38.89
Even 37.33 38.51 37.83 39.58 39.12 38.27 38.87 39.88 39.46 38.95 38.78

Table 5: Impact of k dimensionality on image quality, measured on 2 CTPelvic1K scans (001, 002).

k = 1 k = 4 k = 8 k = 16 k = 32
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

001 34.60 0.965 36.81 0.979 38.04 0.984 38.41 0.986 38.27 0.987
002 33.66 0.964 37.08 0.982 38.30 0.987 38.76 0.989 38.89 0.989
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Figure 5: Visualization of the isotropic and anisotropic X-ray contributions to the rendered DRRs.
Target pose Initial pose Target + initial 3DGS X-Gaussian (𝑘=8) DDGS (Ours)X-Gaussian (𝑘=32)

Figure 6: Illustration of the pose-registration convergence using various differentiable DRR renderers.
Table 6: Accuracy of image registration on the CTPelvic1K [19] dataset.

3DGS [17] X-Gaussian [7] (k=8) X-Gaussian [7] (k=32) DDGS (Ours)
001 002 003 001 002 003 001 002 003 001 002 003

Rot. error (deg) 0.134 0.062 0.229 0.326 0.163 0.312 0.097 0.070 0.266 0.067 0.067 0.152
Trans. error (mm) 1.788 1.163 3.108 4.037 2.144 3.781 1.378 1.288 3.483 1.285 1.092 2.180
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Table 7: Registration evaluation w.r.t. anatomical landmark accuracy and time efficiency, on Ljubljana.

Method DRR render time (ms) ↓ total optimization time (s) ↓ TRE (mm) ↓
mean med std mean med std mean med std

DiffDRR [11] 30.88 31.51 3.25 431.98 316.54 261.70 2.14 0.72 5.40
DDGS 7.46 6.94 2.67 121.45 39.93 117.67 0.80 0.65 0.51

4.3 Application to Downstream Task (2D/3D CT Image Registration)

We validate our solution in terms of applicability to downstream tasks, considering here the registration
of intraoperative 2D X-ray images to preoperative 3D CT volumes; a task crucial to a variety of
clinical applications.

We choose the first five testing images on the 001, 002, and 003 CT data of CTPelvic1K [19] for
image registration. Considering this task as an optimization-based problem that can be solved via
inverse graphics (i.e., rendering synthetic images based on predicted poses and comparing to the
target image, then backpropagating the difference to improve the pose prediction), we adopt the
framework from iComMA [32], replacing their image rendered by DDGS. We use Adam optimizer
with a learning rate of 0.05. We use the isocenter pose as the initialization pose. As shown in Table 6
and Figure 6, our DDGS achieves the lowest rotation and translation errors.

Finally, we also consider the experimental protocol proposed in DiffPose [12], where the authors
rely on a pretrained pose-regression CNN to get a first rough estimation of the scanner pose, before
refining said pose via a gradient-descent based optimization, leveraging their differentiable DRR
renderer [11]. We adopt their pose-initialization network and testbed for the Ljubljana dataset,
replacing their DiffDRR analytical renderer [11] by our DDGS, and compare to them in terms of
runtime performance and landmark-registration accuracy. The results, reported in Table 7, highlight
the convergence boost brought by our lighter solution.

5 Conclusion

We proposed DDGS, a novel 3DGS-based representation for efficient and realistic DRR genera-
tion from CT volumes. We extended traditional 3DGS by considering light directionality, crucial
for accurate X-ray image modeling. By decomposing radiosity into non-directional and direction-
dependent components, DDGS captures isotropic interactions and anisotropic effects. Unlike generic
view-dependent spherical-harmonics decomposition, DDGS implicitly learns scattering effects, sub-
stantially improving the speed and accuracy of downstream clinical applications such as intraoperative
2D/3D registration.

Limitations. It should be noted that, similar to previous methods, our model expects an offline
DRR renderer to produce realistic ground truth to train DDGS, which can be a limitation for some
scenarios (e.g., when such renderer or certain parameters required for realistic rendering are not
available). Our direction-dependent function relating to anisotropic X-ray effects may also fail to
approximate complex multi-bounce light scenarios. Recent developments in N -dimensional Gaussian
splatting [8] show promising potential for modeling such cases. We should also note that the quality
of DRRs is bound to the quality of the input CT scans. This issue affects both DRR methods and
Monte-Carlo simulations (as the latter relies on the segmentation of CT scans into materials-specific
regions – if a 3D scan is noisy, so will the material segmentation and simulation results). When our
method uses simulators to get target images, it will face similar noise issues, though, our experiments
show that DDGS barely introduces additional noise. Compensating for CT noise is an interesting,
under-explored research direction that could benefit all DRR methods; but, we believe it is beyond
the scope of our study.

Societal Impact. The above limitations may restrict the adoption of DDGS to specific use cases,
and our method should undergo a clinical evaluation of the generated images in terms of anatomical
accuracy. Nonetheless, we believe that our proposed method can positively impact both the computer
vision and medical communities by providing a more efficient and versatile DRR tool.
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Supplementary Material

In this supplementary material, we provide further methodological context and showcase additional
quantitative and qualitative results to highlight further the contributions claimed in the paper.

A Methodological Insight

A.1 Transmittance in Natural vs. X-Ray Imaging

The exponential transmittance model T (t) used in NeRF and Gaussian-splatting (GS) solutions for
natural scenes—to describe the light attenuation as it travels through a medium from point r(t0) to
r(t)—is based on Beer-Lambert law [16, 23, 37, 33]:

T (t) = exp(−
∫ t

t0

a(r(s))δs), (4)

where r(t) = o+td is a 3D point at step t on a ray of origin o and direction d, and a(p) is the medium’s
absorption/extinction (linked to its density) at point p. Assuming a piece-wise homogeneous medium
(with ai the absorption of homogeneous segment l of length δl), this transmittance can be rewritten:

T (t) = exp(−
lt∑
l=1

alδl) =

lt∏
l=1

(1− σl), (5)

as in our Equation 3.1; with σl = 1− exp(−alδn) and lt the end segment containing t. See [33] for
proof.

X-ray attenuation from photoelectric effect (PE) follows the same model: at each step through the
medium (e.g., voxel), the probability of photon extinction (i.e., averaged attenuation) is proportional
to the atomic density. E.g., if a ray travels through only 2 voxels, and if it is attenuated by a1 = 50%
at step 1 then a2 = 50% again at step 2, then its total attenuation is 75% (c.f . (100− (100− 50)2)%),
in accordance to Beer-Lambert.

Hence, Equation 3.1 (3DGS rendering) could be directly applied to DDR synthesis (assuming standard
neglog scaling of absorption values into pixel ones [12, 35]), if we were to adopt a simplified model
of X-ray imaging which only considers isotropic absorption (i.e., following the Beer-Lambert law)
and optionally omit the term cj ∈ RK (view-dependent radiance). This is the simplified model
proposed in prior work [7].

In our paper, we propose to go beyond the isotropic simplification in X-Gaussian [7] and further
account for anisotropic scattering of X-rays. This is why we preserve cj and decompose it into two
terms: an isotropic term ciso and direction-dependent non-linear term cdir (Equation 3.2). Note that we
also fix the dimension K of these variables (i.e., the number of output channels) to 1 (monochromatic
DRR) instead of three in natural 3DGS (RGB).

A.2 Joint Gaussian Rasterization

As explained in Section 3, we define two distinct functions for the absorption contribution of the
two Gaussian sets: one function is isotropic to approximate average radio-absorption (ciso

i ), and one
function is direction-dependent to approximate the contribution of anisotropic Compton scattering to
the image (cdir

j ), c.f . Equation 3.2.

These two distinct Gaussian sets could be rasterized separately, as done in Figure 5 as qualitative
ablation. However, the two sets need to be rendered together to ensure correct simulation. Otherwise,
Gaussians from one set occluded by others belonging to the other set could incorrectly contribute to
the ray absorption. We refer the readers to Figure S1 for an explanatory diagram. There, point gdir

2
should not contribute to the final pixel value, as it is occluded by giso

2 (i.e., it absorbs all the remaining
energy before the ray can reach gdir

2 ). This could not be properly simulated if each Gaussian set is
rasterized separately.
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Figure S1: Importance of joint rasterization of Gaussian sets (simplified diagram).

By having 2 sets of Gaussians with distinct yet complementary contribution functions (isotropic versus
direction-dependent functions), our solution can better model DRR imaging. During optimization,
each Gaussian set will approximate its respective imaging effect, conditioned by its respective
function.

We randomly split Pmc (3D points sampled based on the CT scan distribution) into 2 sets, each
subset contributing to the initialization positions of giso

i and gdir
j (half the 3D points in Pmc will

serve as initialization for giso
i , along with the entire Pmc set; and the other half of Pmc will serve as

initialization for gdir
j ). After initialization, during 3DGS-based model optimization, the points in each

set of Gaussians can move/split/drop independently (along with the optimization of their respective
covariance/opacity/feature values). Since the optimization of each set (isotropic and anisotropic) is
conditioned on their respective differentiable absorption function, they will acquire distinct properties.

B Additional Experiments

B.1 Additional Comparison and Ablation Results

To further support the results in Table 2 and Table 3, we evaluate our method on all the 10 selected
data from the CTPelvic1K dataset, as shown in Table S1.

Table S1: Novel-view synthesis evaluation on CTPelvic1K data.
DDGS (ours)

(L = 1, k = 8)
3DGS

(L = 1)
X-Gaussian

(k = 8)
DDGS (ours)

(L = 3, k = 8)
3DGS

(L = 3)
X-Gaussian

(k = 32)
direct-entangled
c.f . Ablation Study

PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM PNSR SSIM

001 38.04 .984 35.36 .970 33.39 .947 38.15 .985 37.12 .980 36.83 .979 36.17 .977
002 38.30 .987 37.25 .982 36.04 .978 38.97 .989 38.75 .988 37.89 .986 37.32 .984
003 38.21 .983 35.81 .974 33.99 .965 39.42 .986 39.09 .984 35.84 .976 35.32 .975
004 40.54 .987 38.43 .980 37.18 .974 40.74 .987 40.69 .986 39.06 .984 39.70 .985
005 39.88 .987 39.44 .985 37.50 .978 40.02 .987 40.68 .989 39.24 .985 39.36 .986
006 38.12 .986 36.69 .982 35.03 .977 38.79 .986 38.65 .987 37.14 .983 36.89 .983
007 38.91 .987 36.88 .978 35.51 .970 39.37 .988 38.58 .984 38.10 .987 37.72 .985
008 39.83 .982 37.85 .979 36.70 .973 40.19 .986 39.70 .986 38.57 .982 38.53 .982
009 39.67 .987 37.94 .980 37.60 .979 40.35 .988 39.16 .983 38.99 .987 38.74 .985
010 38.60 .987 37.50 .982 36.30 .978 39.18 .988 39.13 .986 37.89 .986 37.20 .985

avg 39.01 .986 37.32 .979 35.92 .972 39.52 .987 39.16 .985 37.96 .984 37.70 .983

B.2 Comparison to Real X-ray Projections

The main purpose of DRRs is to provide quick visualization to clinicians (with the key metrics
being speed and visibility), as well as to integrate larger imaging applications (with priority given
again to speed and feature-level similarity w.r.t. real data). Therefore, prior DRR papers (traditional
[11, 30, 31] or GS-based [7, 25]) mostly evaluate on downstream tasks (e.g., pose registration). A
few evaluate the image quality compared to other DRR tools (DiffDRR [11] compares to Siddon’s

15



Table S2: Quantitative comparison of analytical DRRs to real images from Ljubljana dataset.

Methods
SSIM PSNR

mean↑ med↑ std↓ mean↑ med↑ std↓

DiffDRR [11] .404 .440 .179 24.16 24.35 2.82
3DGS [17] .409 .518 .199 22.57 23.44 2.78
X-Gaussian [7] .409 .521 .198 22.58 23.42 2.78
DDGS (ours) .459 .558 .204 25.61 27.35 3.48

and Plastimatch [30]; [7] to other NVS baselines). We found that only DiffPose (based on DiffDRR)
[12] provides a qualitative comparison to some real scans.

Quantitative comparison to real data is challenging. Not all imaging parameters are usually provided
or accurate enough to create matching DRRs (w.r.t. intensity, CT pose, etc.). It is especially hard to
render DRRs aligned with real scans with existing Monte-Carlo (MC) simulation tools [2–4, 15];
which is likely why no DRR paper has performed such evaluation. Their interfaces and custom
coordinate conventions are not compatible with pose annotations in public CT/X-ray datasets, and
their documentation/support is lacking. Bridging the convention gap between MC and analytical
communities would greatly benefit our domain and could be the focus of our next effort.

Nevertheless, we do provide an indirect comparison to real projections. E.g., the registration
experiments (Table 6) implicitly provide insight into the similarity between real and synthetic data,
as pose optimization is done by comparing DRRs to real target scans.

In this supplementary, we share a more direct comparison. We use our DDGS-based registration
method to refine GT poses in Ljubljana data (c.f . aforementioned GT inaccuracies), then use the
refined poses to render and compare DRRs to real scans. Results can be found in Table S2 and Figure
4. E.g., when zooming into the images of the latter figure, one can observe that DiffDRR suffers from
pixelization, unlike GS methods.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction explicitly list our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Section 5 in the main paper for detailed discussion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Preliminaries are provided at the beginning of Section 3, and further theoretical
background is provided in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Implementation and experimental details are provided, so that an expert in the
art should be able to reproduce the presented results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: All data used are public, and implementation release is pending approval at the
moment.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .

Justification:See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See implementation details in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All standard guidelines were followed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please refer to Section 5 of the main paper for further details.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Public datasets and libraries are referenced.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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