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Abstract

The field of Multimodal Sentiment Analysis (MSA) has recently witnessed an
emerging direction seeking to tackle the issue of data incompleteness. Recogniz-
ing that the language modality typically contains dense sentiment information,
we consider it as the dominant modality and present an innovative Language-
dominated Noise-resistant Learning Network (LNLN) to achieve robust MSA.
The proposed LNLN features a dominant modality correction (DMC) module and
dominant modality based multimodal learning (DMML) module, which enhances
the model’s robustness across various noise scenarios by ensuring the quality of
dominant modality representations. Aside from the methodical design, we perform
comprehensive experiments under random data missing scenarios, utilizing diverse
and meaningful settings on several popular datasets (e.g., MOSI, MOSEI, and
SIMS), providing additional uniformity, transparency, and fairness compared to
existing evaluations in the literature. Empirically, LNLN consistently outperforms
existing baselines, demonstrating superior performance across these challenging
and extensive evaluation metrics.'

1 Introduction

The field of Multimodal Sentiment Analysis (MSA) is at the vanguard of human sentiment identifica-
tion by assimilating heterogeneous data types, such as video, audio, and language. Its applicability
spans numerous fields, prominent among healthcare and human-computer interaction (Jiang et al.,
2020). MSA has become essential in enhancing both the precision and the robustness of sentiment
analysis by drawing sentiment cues from diverse perspectives.

Changing trends in recent research has taken a turn towards modeling data in natural scenarios from
laboratory conditions (Tsai et al., 2019; Hazarika et al., 2020; Yu et al., 2021; Zhang et al., 2023).
The shift has created a wider application space in the real-world for MSA, though concerns arise due
to problems like sensor failures and problems with Automatic Speech Recognition (ASR), leading to
inconsistencies such as incomplete data in real-world deployment.

Numerous impactful solutions have been proposed against this primary concern of incomplete
data in multimodal sentiment analysis. For instance, Yuan et al. (2021) introduced a Transformer-
based feature reconstruction mechanism, TFR-Net, aiming to strengthen the robustness of the
model handling random missing in unaligned multimodal sequences via reconstructing missing data.
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Furthermore, Yuan et al. (2024) proposed the Noise Intimating-based Adversarial Training (NIAT)
model, which superiorly learns a unified joint representation between an original-noisy instance pair,
utilizing the attention mechanism and adversarial learning. Lastly, Li et al. (2024) design a Unified
Multimodal Missing Modality Self-Distillation Framework (UMDF) which leverages a single network
to learn robust inherent representations from consistent multimodal data distributions. Yet, despite
these developments, the evaluation metrics for these models are inconsistent, and the evaluation
settings are not sufficiently comprehensive. This inconsistency limits effective comparisons and
hinders the dissemination of knowledge in the field.

Addressing this gap, our paper aims to offer a comprehensive evaluation on three widely-used
datasets, namely MOSI (Zadeh et al., 2016), MOSEI (Zadeh et al., 2018) and SIMS (Yu et al., 2020)
datasets. We introduce random data missing instances and subsequently compare the performance
of existing methods on these datasets. This endeavor seeks to provide an all-encompassing outlook
for evaluating the effectiveness and robustness of various methods in the face of incomplete data,
thereby sparking new insights in the field. Additionally, inspired by the previous work ALMT (Zhang
et al., 2023), we hypothesize that model robustness improves when the integrity of the dominant
modality is preserved despite varying noise levels. Therefore, we introduce a novel model, namely
Language-dominated Noise-resistant Learning Network (LNLN), to enhance MSA’s robustness over
incomplete data. LNLN aims to augment the integrity of the language modality’s features, regarded as
the dominant modality due to its richer sentiment cues, with the support of other auxiliary modalities.
The LNLN’s robustness against varying levels of data incompleteness is achieved through a dominant
modality correction (DMC) module for dominant modality construction, a dominant modality based
multimodal learning (DMML) module for multimodal fusion and classification, and a reconstructor
for reconstructing missing information to shield the dominate modality from noise interference.
This approach ensures a high-quality dominant modality feature, which significantly bolsters the
robustness of LNLN under diverse noise conditions. Consequently, extensive experimental results
demonstrate the LNLN’s superior performance across these challenging and evaluation metrics.

In summary, this paper conducts a comprehensive evaluation of existing advanced MSA methods. This
analysis highlights the strengths and weaknesses of various methods when contending with incomplete
data. We believe, it can improve the understanding of different MSA methods’ performance under
complex real-world scenarios, thereby informing technology’s future trajectory. Our proposed LNLN
also offers valuable insight and guidelines for thriving in this research space.

2 Related Work

2.1 Multimodal Sentiment Analysis

Multimodal Sentiment Analysis (MSA) methods can be categorized into Context-based MSA and
Noise-aware MSA, depending on the modeling approach. Most of previous works (Zadeh et al., 2017;
Tsai et al., 2019; Mai et al., 2020; Hazarika et al., 2020; Liang et al., 2020; Rahman et al., 2020; Yu
etal., 2021; Han et al., 2021; Lv et al., 2021; Yang et al., 2022; Guo et al., 2022; Zhang et al., 2023)
can be classified to Context-based MSA. This line of work primarily focuses on learning unified
multimodal representations by analyzing contextual relationships within or between modalities. For
example, Zadeh et al. (2017) explore computing the relationships between different modalities using
the Cartesian product. Tsai et al. (2019) utilize pairs of Transformers to model long dependencies
between different modalities. Yu et al. (2021) propose generating pseudo-labels for each modality to
further mine the information of consistency and discrepancy between different modalities.

Despite these advances, context-based methods are usually suboptimal under varying levels of noise
effects (e.g. random data missing). Several recent works (Mittal et al., 2020; Yuan et al., 2021, 2024;
Li et al., 2024) have been proposed to tackle this issue. For example, Mittal et al. (2020) introduce a
modality check step to distinguish invalid and valid modalities, achieving higher robustness. Yuan
et al. (2024) propose learning a unified joint representation between constructed “original-noisy”
instance pairs. Although there have been some advances in improving the model’s robustness under
noise scenarios, no extant method has provided a comprehensive and in-depth comparative analysis.



2.2 Robust Representation Learning in MSA

Context-based MSA and Noise-aware MSA differ in their approaches to robust representation
learning. In Context-based MSA, robust representation learning typically relies on modeling intra-
and inter-modality relationships. For instance, Hazarika et al. (2020) and Yang et al. (2022) apply
feature disentanglement to each modality, modeling multimodal representations from multiple feature
subspaces and perspectives. Yu et al. (2021) and Liang et al. (2020) explore self-supervised learning
and semi-supervised learning to enhance multimodal representations, respectively. Tsai et al. (2019)
and Rahman et al. (2020) introduce Transformer to learn the long dependencies of modalities. Zhang
et al. (2023) devise a language-guided learning mechanism that uses modalities with more intensive
sentiment cues to guide the learning of other modalities. In contrast, Noise-aware MSA focuses
more on perceiving and eliminating the noise present in the data. For example, Mittal et al. (2020)
design a modality check module based on metric learning and Canonical Correlation Analysis
(CCA) to identify the modality with greater noise. Yuan et al. (2021) design a feature reconstruction
network to predict the location of missing information in sequences and reconstruct it. Yuan et al.
(2024) introduce adversarial learning (Goodfellow et al., 2014) to perceive and generate cleaner
representations.

In this work, the LNLN belongs to the noise-aware MSA category. Inspired by Zhang et al. (2023),
we explore the capability of language-guided mechanisms in resisting noise and aim to provide new
perspectives for the study of MSA in noisy scenarios.

3 Method

3.1 Overview

The overall pipeline for the proposed Language-dominated Noise-resistant Learning Network (LNLN)
in robust multimodal sentiment analysis is illustrated in Figure 1. As depicted, a crucial initial step
involves forming a multimodal input with random data missing, which sets the stage for LNLN
training. Once the input is prepared, LNLN first utilizes an embedding layer to standardize the
dimension of each modality, ensuring uniformity. Recognizing that language is the dominant modality
in MSA (Zhang et al., 2023), a specially designed Dominant Modality Correction (DMC) module
employs adversarial learning and a dynamic weighted enhancement strategy to mitigate noise impacts.
This module first enhances the quality of the dominant feature computed from the language modality
and then integrates them with the auxiliary modalities (visual and audio) in the dominant modality
based multimodal learning (DMML) module for effective multimodal fusion and classification. This
process significantly bolsters LNLN’s robustness against various noise levels. Moreover, to refine the
network’s capability for fine-grained sentiment analysis, a simple reconstructor is implemented to
reconstruct missing data, further enhancing the system’s robustness.

3.2 Input Construction and Multimodal Input

Given the challenges of random data missing, we have constructed data sets that simulate these
conditions based on MOSI, MOSEI, and SIMS datasets.

Random Data Missing. Following the previous method (Yuan et al., 2021), for each modality, we
randomly erased changing proportions of information (from 0% to 100%). Specifically, for visual and
audio modalities, we fill the erased information with zeros. For language modality, we fill the erased
information with [UNK] which indicates the unknown word in BERT (Kenton and Toutanova, 2019).

Multimdoal Input. For each sample in the dataset, we incorporate data from three modalities:
language, audio, and visual data. Consistent with previous works (Zhang et al., 2023), each modality
is processed using widely-used tools: language data is encoded using BERT (Kenton and Toutanova,
2019), audio features are extracted through Librosa (McFee et al., 2015), and visual features are
obtained using OpenFace (Baltrusaitis et al., 2018). These pre-processed inputs are represented as
sequences, denoted by UY € RTm*dm where m € {l,v,a} represents the modality type (I for
language, v for visual, a for audio), T},, indicates the sequence length and d,,, refers to the dimension
of each modality’s vector. With obtained U?,, we apply random data missing to U?,, thus forming the

noise-corrupted multimodal input U}, € RTm>dm
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Figure 1: Overall pipeline. Note: Hy, Hy, H, He., and H) are randomly initialized learnable
vectors.

3.3 Dominant Modality based Multimodal Learning

Inspired by previous work ALMT, we hypothesize that model robustness improves when the integrity
of the dominant modality is preserved despite varying noise levels. We improve ALMT based on
the designed DMC module and Reconstructor, thus implementing dominant modality based DMML
module for sentiment analysis under random data missing scenarios. Here, we mainly introduce the
parts that differ from ALMT. Further details are available in Zhang et al. (2023).

Modality Embedding. For multimodal input U},, we employ an Embedding Encoder E! with
two Transformer encoder layers to extract and unify the feature. Each modality begins with a
randomly initialized low-dimensional token H?, € R7*9m_ These tokens are then processed by the
Transformer encoder layer, embedding essential modality information and producing unified features,
represented as !, € RT*?, The process is formalized by:

H! =E; (concat (H&,U}n)) , €))
where E! () extracts features for each modality, and concat(-) represents the concatenation operation.

Adaptive Hyper-modality Learning. In the original ALMT, each Adaptive Hyper-modality Learning
layer contains a Transformer and two multi-head attention (MHA) modules. These are applied to
learn language representations at different scales and hyper-modality representations from visual and
audio modalities, guided by the language modality. Considering the possibility of severe interference
in the language modality (i.e. dominant modality) due to random data missing, we designed a
Dominant Modality Correction (DMC) module to generate the proxy dominant feature H; and
construct corrected dominate feature H (more details can be found in Section 3.4). Specifically, the
process of learning corrected dominated representation H at different scales can be described as:

1} = B, (7). @

where i € {2, 3} means the i-th layer of Adaptive Hyper-modality Learning module, E! (-) is the
i-th Transformer encoder layer, H, € RT*4 is corrected dominated feature at different scale. To
learn the hyper-modality representation, the corrected dominated feature and audio/visual features are
used to calculate Query and Key/Value, respectively. Briefly, the process can be written as follows:
Hjyper = Hj L+ MHA(H), H)) + MHA(H}, H))), 3)

hyper

where MHA (-) represents multi-head attention, H},

that the feature H gyper

yper € RT*? s the hyper-modality feature. Note
€ RT*4 is a random initialized vector.



Multimodal Fusion and Prediction. With obtained H3 and H} a Transformer encoder with a

hyper?
classifier at a depth of 4 layers is employed for multimodal fusion and sentiment prediction:
i) = CrossTransformer(H3, Hgyp”), @)

where ¢ is the sentiment prediction.

3.4 Dominant Modality Correction

This module consists of two steps, i.e., completeness check of dominant modality and proxy dominant
feature generation using adversarial learning (Ganin and Lempitsky, 2015; Goodfellow et al., 2014).

Completeness Check. We apply an encoder E... that consists of a Transformer encoder with a depth
of two layers and a classifier for completeness check. For example, if the missing rate of dominate
modality is 0.3, the label of completeness is 0.7. This completeness prediction w can be obtained as
follows:

w = B (Concat (HCC7 Hll))7 5)

where H,. € RT*4 is a randomly initialized token for completeness prediction. We optimize this
process using L2 loss:

1 ©)

1 AL k k
Ecczﬁbkz:onw —w

where NV, is the number of samples in the training set, 1" is the label of completeness of k-th sample.

Proxy Dominant Feature Generation. With the randomly initialized feature H g € RT*4_ yisual
feature H! and audio feature H}, we employ a Proxy Dominant Feature Generator Eprg, which
consists of two Transformer encoder layers. This setup generates the proxy dominant features
H} € RT*4, designed to complement and correct the dominant modality. The corrected dominant
feature H} € RT*4 is calculated by combining H. ; and the language feature H}, weighted by the
predicted completeness w:

H, = Eprg (Concat (Hy, Hy, Hy) .0prc) , (7)

Hj=(1-w)*H, +wx*H], ®)
where 0p g denotes the parameters of the Proxy Dominant Feature Generator Ep pg.

To ensure that the agent feature offers a distinct perspective from the visual and audio features, we
utilize an effectiveness discriminator D. This discriminator includes a binary classifier and a Gradient
Reverse Layer (GRL) (Ganin and Lempitsky, 2015) and is tasked with identifying the origin of the
agent features:

jp =D (Hy/H],0p) ©)

where 0p represents the parameters of the effectiveness discriminator D, and g, indicates the
prediction of whether the input feature originates from the language modality.

In practice, the generator and the discriminator engage in an adversarial learning structure. The
discriminator aims to identify whether the features are derived from the language modality, while the
generator’s objective is to challenge the discriminator’s ability to make accurate predictions. This
dynamic is encapsulated in the adversarial learning objective:

0p Oprc

Ny
1
min max Lygq, = —Fb E y;f - log g}j’;, (10)
k=0

where IV}, is the number of samples in the training set, and yllj indicates the label determining whether
the input feature for the k-th sample originates from the visual or audio modality.

3.5 Reconstructor

Our experiments demonstrate that reconstructing missing information can significantly enhance
regression metrics. More details about this are shown in Table 4. To address this, we have developed



a reconstructor, denoted as E,..., which comprises two Transformer layers designed to effectively
rebuild missing information of each modality. The operational equation for the reconstructor is:

U =Er (U}) (11)
where USI is the reconstructed feature corresponding to the feature UY,.

To optimize the performance of the reconstructor, we apply an L2 loss function:
1 &
0k _ 170k
Erec = ﬁ Z Z HUm - Um
b h=0 m

where U2 ¥ and U,?Lk represent the original and reconstructed features with missing information
for the k-th sample, respectively. This loss function helps minimize the discrepancies between the
original and reconstructed features, thereby improving the accuracy of other components, such as
Dominant Modality Correction and final sentiment prediction.

2
; 12)
2

3.6 Overall Learning Objectives

To sum up, our method involves four learning objectives, including a completeness check loss L.,
an adversarial learning loss £, g4, for proxy dominant feature generation, a reconstruction loss L,...
and one final sentiment prediction loss L. The sentiment prediction loss L, can be described as:

Ny
Lop= 520" 3"} (13)
14 Nb ~ 2

Therefore, the overall loss £ can be written as:
L= O‘Accc + Bﬁadv + ’y‘crec + 6£sp; (14)

where «, (3, v and § are hyperparameters. On MOSI and MOSEI datasets, we empirically set them to
0.9, 0.8, 0.1, and 1.0, respectively. On the SIMS dataset, we empirically set them to 0.9, 0.6, 0.1, and
1.0, respectively.

4 Experiments and Analysis

In this section, we provide a comprehensive and fair comparison between the proposed LNLN and
previous representative MSA methods on MOSI (Zadeh et al., 2016), MOSEI (Zadeh et al., 2018)
and SIMS (Yu et al., 2020) datasets.

4.1 Datasets

MOSI. The dataset includes 2,199 multimodal samples, integrating visual, audio, and language
modalities. It is divided into a training set of 1,284 samples, a validation set of 229 samples, and
a test set of 686 samples. Every single sample has been given a sentiment score, varying from -3,
indicating strongly negative sentiment, to 3, signifying strongly positive sentiment.

MOSEI. The dataset consists of 22,856 video clips sourced from YouTube. The sample is divided
into 16,326 clips for training, 1,871 for validation, and 4,659 for testing. Each clip is labeled with a
score, ranging from -3, denoting the strongly negative, to 3, denoting the strongly positive.

SIMS. The dataset is a Chinese multimodal sentiment dataset that includes 2,281 video clips sourced
from different movies and TV series. It has been partitioned into 1,368 samples for training, 456 for
validation, and 457 for testing. Each sample has been manually annotated with a sentiment score
ranging from -1 (negative) to 1 (positive).

4.2 Evaluation Settings and Criteria

For a fair and comprehensive evaluation, we experiment ten times, setting the missing rates r to
predefined values from O to 0.9 with an increment of 0.1. For instance, 50% of the information is



randomly erased from each modality in the test data when = 0.5. Unlike previous works (Yuan
etal., 2021, 2024), we did not evaluate at » = 1.0, as this would imply complete data erasure from
each modality, rendering the experiment non-informative. With the obtained results of each missing
rate, we compute the average value as the model’s overall performance under different levels of noise.

For evaluation criteria, we report the binary classification accuracy (Acc-2), the F1 score associated
with Acc-2, and the mean absolute error (MAE). For Acc-2, we calculated accuracy and F1 in two
ways: negative/positive (left-side value of /) and negative/non-negative (right-side value of /) on the
MOSI and MOSEI datasets, respectively. Additionally, we provide the three-class accuracy (Acc-3),
the seven-class accuracy (Acc-7), and the correlation of the model’s prediction with humans (Corr)
on the MOSI dataset. For the SIMS dataset, we report Acc-3, the five-class accuracy (Acc-5), and
Corr. Due to the distinct focus of regression and classification metrics on different aspects of model
performance, a model achieving the lowest error on regression metrics may not necessarily exhibit
optimal performance on classification metrics. To comprehensively reflect the model capabilities, we
select the best-performing checkpoint for each type of metric across all models in the comparisons,
thus capturing the peak performance of both regression and classification aspects independently.

4.3 Implementation Details

We used PyTorch 2.2.1 to implement the method. The experiments were conducted on a PC with an
AMD EPYC 7513 CPU and an NVIDIA Tesla A40. To ensure consistent and fair comparisons across
all methods, we conducted each experiment three times using fixed random seeds of 1111, 1112, and
1113. Details of the hyperparameters are shown in Table 1. In addition, the result of MISA, Self-MM,
MMIM, CENET, TETFN, and TFR-Net is reproduced by the authors from open source code in the
MMSA? (Mao et al., 2022), which is a unified framework for MSA, using default hyperparameters.
The result of ALMT is reproduced by the authors from open source code on Github’.

Table 1: Hyperparameters of LNLN we use on the different datasets

MOSI MOSEI SIMS
Vector Length T’ 8 8 8
Vector Dimension d 128 128 128
Batch Size 64 64 64
Initial Learning Rate le-4 le-4 le-4
Loss Weight o, 3, 7, § 09,0.8,0.1,1.0 0.9,0.8,0.1,1.0 0.9,0.6,0.1, 1.0
Optimizer AdamW AdamW AdamW
Epochs 200 200 200
Warm Up v v v
Cosine Annealing v v v
Early Stop v v v
Seed 1111,1112,1113 1111,1112,1113 1111,1112,1113

4.4 Robustness Comparison

Tables 2 and 3 show the robustness evaluation results on the MOSI, MOSEI, and SIMS datasets.
As shown in Table 2, LNLN achieves state-of-the-art performance on most metrics. On the MOSI
dataset, LNLN achieved a relative improvement of 9.46% on Acc-7 compared to the sub-optimal
result obtained by MMIM, demonstrating the robustness of LNLN in the face of different noise
effects. However, on the MOSEI dataset, LNLN achieves only sub-optimal performance on metrics
such as Acc-7 and Acc-5. After analyzing the data distribution (see Appendix A.3) and the confusion
matrix (see Appendix A.6), we believe that this is because LNLN does not overly bias the neutral
category, which has a disproportionate number of samples in noisy scenarios. As shown in Table 3,
LNLN achieves an improvement in F1 on the SIMS dataset, with a relative improvement of 9.17%
on F1 compared to the sub-optimal result obtained by ALMT. Similar to CENET’s performance
on the MOSETI dataset, TETFN on the SIMS dataset has a tendency to predict inputs as weakly
negative categories with high sample sizes, resulting in seemingly better performance on some
metrics. Additionally, as shown in Figure 2, we present the performance curves of several advanced

MMSA: https://github.com/thuiar/MMSA
SALMT: https://github. com/Haoyu-ha/ALMT
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methods under varying missing rates. The results demonstrate that the proposed LNLN consistently
outperforms others across most scenarios, showing its robustness under different missing rates.

Overall, LNLN attempts to make predictions in the face of highly noisy inputs without the severe
lazy behavior observed in other models, which often leads to predictions heavily biased towards a
certain category. This demonstrates that LNLN shows strong robustness and competitiveness across
various datasets and noise levels, highlighting its effectiveness in multimodal sentiment analysis.

Table 2: Robustness comparison of the overall performance on MOSI and MOSEI datasets. Note:
The smaller MAE indicates the better performance.

MOSI MOSEI
Acc-7  Acc-5 Acc-2 F1 MAE Corr  Acc-7 Acc-5 Acc-2 F1 MAE  Corr

MISA 29.85 33.08 71.49/70.33 71.28/70.00 1.085 0.524 40.84 3939 71.27/75.82 63.85/68.73 0.780 0.503
Self-MM  29.55 34.67 70.51/69.26 66.60/67.54 1.070 0.512 4470 4538 73.89/77.42 68.92/72.31 0.695 0.498
MMIM 31.30 3377 69.14/67.06 66.65/64.04 1.077 0.507 40.75 41.74 73.32/75.89 68.72/70.32 0.739 0.489
CENET 3038 3725 71.46/67.73 68.41/64.85 1.080 0.504 47.18 47.83 74.67/77.34 70.68/74.08 0.685 0.535
TETEN 3030 3434 69.76/67.68 65.69/63.29 1.087 0.507 3030 47.70 69.76/67.68 65.69/63.29 1.087 0.508
TFR-Net 29.54 34.67 68.15/66.35 61.73/60.06 1200 0.459 46.83 34.67 73.62/77.23 68.80/71.99 0.697 0.489
ALMT 3030 3342 70.40/68.39 72.57/71.80 1.083 0.498 4092 41.64 76.64/77.54 77.14/78.03 0.674 0.481

LNLN 3426 38.27 72.55/7094 72.73/71.25 1.046 0.527 4542 46.17 76.30/78.19 77.77/79.95 0.692 0.530

Method

Table 3: Robustness comparison of the overall performance on SIMS dataset. Note: The smaller
MAE indicates the better performance.

Method Acc-5 Acc-3 Acc-2 F1 MAE Corr
MISA 31.53 56.87 72.71 66.30 0.539 0.348
Self-MM 32.28 56.75 72.81 68.43 0.508 0.376
MMIM 31.81 52.76 69.86 66.21 0.544 0.339
CENET 22.29 53.17 68.13 57.90 0.589 0.107
TETEN 33.42 56.91 73.58 68.67 0.505 0.387
TFR-Net 26.52 52.89 68.13 58.70 0.661 0.169
ALMT 20.00 45.36 69.66 72.76 0.561 0.364
LNLN 34.64 57.14 72.73 79.43 0.514 0.397
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Figure 2: Performance curves of various missing rates. (a), (b) and (c) are the F1 curves on MOSI,
MOSEI, and SIMS, respectively. (d), (e) and (f) are the MAE curves on MOSI, MOSEI, and SIMS,
respectively. Note: The smaller MAE indicates the better performance.



4.5 Effects of Different Components

To verify the role of different components, we present the results after subtracting each component on
the MOSI dataset separately. As shown in Table 4, some metrics show an upward trend in performance
when certain modules are removed. On one hand, we believe this is due to randomness in noisy
scenarios. On the other hand, the same hyperparameters cannot make the model perform optimally
across all metrics. Moreover, the performance of LNLN decreases relatively slightly when the DMC
and reconstructor are removed individually. However, there is a significant drop in performance when
both are removed, e.g., 4.72% decrease in Acc-7 and 5.87% decrease in Acc-5. Performance drops
further after replacing DMML with concatenation fusion, which also proves that DMML plays an
important role in MSA. Additionally, after removing the noisy data used for training, the performance
of LNLN also shows a significant decrease. This observation indicates that LNLN needs to learn to be
aware of noise with the help of noisy data. Overall, both the presence of noisy data and well-designed
components are crucial for robust MSA in scenarios with random missing data.

Table 4: Effects of different components. Note: The smaller MAE indicates the better performance.

MOSI SIMS

Method

Acc-7  Acc-5 Acc-2 Fl1 MAE Corr  Acc-5 Acc-3  Acc-2 Fl1 MAE  Corr
LNLN 3426 3827 7255/7094 72.73/71.25 1.046 0.527 34.64 57.14 7273 7943 0514 0.397
w/o DMC & Reconstructor 29.54 3240 71.98/70.31 73.53/7129 1.104 0478 3381 5400 7257 78.10 0.525 0.376
w/o DMC 3394 3789 72.24/71.02 72.86/71.45 1.049 0522 3396 5830 7340 77.58 0.518 0.386
w/o Reconstructor 3394 3852 70.81/71.35 71.17/71.69 1.054 0518 34.02 5829 73.07 7871 0548 0.351
w/o DMML 3322 3725 69.55/69.55 70.81/70.71 1.084 0.504 34.87 56.06 70.74 7694 0.553 0.245
w/o Missing Data for Training  30.11  34.82  70.62/68.78 72.49/71.03 1.105 0.486 3348 53.09 7296 79.17 0.519 0.360

4.6 Effects of Different Regularization

As shown in Table 5, we present the ablation results after subtracting each regularization on the
MOSI dataset separately. Obviously, after each regularization is removed, LNLN shows a decrease
in performance on most metrics. This demonstrates that regularization contributes to the learning
of the model. Similar to the results in Table 4, there are a few metrics that improve after the
removal of regularization. We believe this is mainly due to the difficulty of optimizing a single set of
hyperparameters to achieve the best performance across all metrics.

Table 5: Effects of different regularization. Note: The smaller MAE indicate the better performance.
MOSI SIMS
Acc-7 Acc-5 Acc-2 F1 MAE Corr Acc-5 Acc-3 Acc-2 F1 MAE Corr

LNLN  34.26 38.27 72.55/70.94 72.73/71.25 1.046 0.527 34.64 57.14 72.73 79.43 0.514 0.397
wlo L. 33.61 37.78 72.32/70.72 72.55/71.02 1.047 0.531 32.87 56.41 70.78 75.30 0.523 0.376
w/o Lagn 32.84 37.79 72.28/70.31 72.83/70.40 1.052 0.526 32.47 54.24 73.80 73.91 0.525 0.351
w/o Lrec 33.94 38.52 72.46/70.81 72.69/71.17 1.048 0.523 34.33 56.12 71.29 74.73 0.525 0.364

Method

4.7 Effects of Different Modalities

To verify the role of different modalities, we present the ablation results after subtracting each modality
from the MOSI dataset. As shown in Table 6, all modalities contribute to the final performance.
Notably, when the language modality is removed, the performance of LNLN shows a significant
decrease, while removing the visual and audio modalities results in a smaller decrease. This indicates
that the language modality plays a crucial role in the MSA dataset. Moreover, we observe that LNLN
converges on most metrics even when the visual and audio modalities are removed. This is due to the
model’s lazy behavior, where LNLN tends to fix its predictions to a certain category. More details
can be found in Appendix A.3 and A.6.

4.8 Discussion

In this work, we conduct a comprehensive evaluation of current advanced methods, the results of
which have triggered some thoughts. Specifically, we find that all methods fail to accurately predict



Table 6: Effects of different modalities. Note: The smaller MAE indicates the better performance.

Method MOSI

Acc-7 Acc-5 Acc-2 F1 MAE Corr
LNLN 34.26 38.27 72.55/70.94 72.73/71.25 1.046 0.527
w/o language 16.30 16.31 54.88/55.79 60.33/63.10 1.399 0.033
w/o audio 33.51 38.10 72.31/70.54 73.67/71.10 1.064 0.535
w/o vision 33.53 38.15 72.32/70.58 73.68/71.14 1.064 0.536

the inputs in high missing rate scenarios because most of them are designed specifically for complete
data (see Appendix A.6 for more details). However, some methods show relatively more robust
performance in low missing rate scenarios and some specific scenarios (see Appendix A.8), such as
Self-MM, TETFN, and ALMT. We believe that some of the ideas in these methods may be useful for
future research on more robust MSA for incomplete data.

For example, the Unimodal Label Generation Module (ULGM) (Yu et al., 2021) used in both Self-
MM and TETEFEN facilitates the modeling of incomplete data. Due to the random data missing, the
temporal and structured affective information in the data is corrupted, making it difficult for the
models to perceive consistency and variability information between different modalities. Using
ULGM to generate pseudo-labels as an additional supervisory signal for the models may directly
enable the model to learn the relationship between different modalities. For ALMT, we believe that
its Adaptive Hyper-modality Learning (AHL) module facilitates the modeling of robust affective
representations. AHL mainly uses the dominant modality to compute query vectors and applies
multi-head attention to query useful sentiment cues from other modalities as a complement to the
dominant modality. This process may reduce the difficulty of multimodal fusion by avoiding the
introduction of sentiment-irrelevant information to some extent. Our proposed LNLN, based on this
idea from ALMT, proves the effectiveness of the method.

Additionally, we explore the performance of these methods in modality missing scenarios, which is a
special case of random data missing where the partial modality missing rate » = 1.0. We find that
when language modality is missing, the performance of many models decreases significantly and
converges to the same value. More details can be seen in Appendix A.8.

5 Conclusion and Future Work

In this paper, a novel Language-dominated Noise-resistant Learning Network (LNLN) is proposed
for robust MSA. Due to the collaboration between Dominate Modality Correction (DMC) module,
the Dominant Modality based Multimodal Learning (DMML) module, and the Reconstructor, LNLN
can enhance the dominant modality to achieve superior performance in data missing scenarios with
varying levels. Extensive evaluation shows that none of the existing methods can effectively model
the data with high missing rates. The related analyses can provide suggestions for other researchers to
better handle robust MSA. In the future, we will focus on improving the generalization of the model
to handle different types of scenes and varying intensities of noise effectively.

Limitations

We believe there are several limitations to the LNLN. 1) The LNLN achieves good performance
in data missing scenarios, but is not always better than all other methods in the modality missing
scenarios, which demonstrates the lack of multi-scene generalization capability of the LNLN. 2)
The data in real-world scenarios is much more complex. In addition to the presence of missing data,
other factors need to be considered, such as diverse cultural contexts, varying user behavior patterns,
and the influence of platform-specific features on the data. These factors can introduce additional
noise and variability, which may require further model adaptation and tuning to handle effectively. 3)
Tuning the hyperparameters, particularly those related to the loss functions, can be challenging and
may require more sophisticated methods to achieve optimal performance.
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A Additional Experiments and Analysis

A.1 Effect of Regularization Weight on Model Performance

As shown in Table 7, we empirically tried different combinations of hyperparameters in the loss func-
tion. The results show that the selected parameters can make the LNLN achieve better performance
in most metrics. This also demonstrates the effectiveness of the optimization objectives of LNLN.

Table 7: Effect of regularization weight on model performance. Note: The smaller MAE indicate the
better performance.

MOSI
a, B,7, 0 Acc-7  Acc-5 Acc-2 F1 MAE  Corr
09,0.8,0.1,1.0 34.26 3827 72.55/70.94 72.73/71.25 1.046 0.527
0.9,0.8,0,1.0 3394 3852 7246/70.81 72.69/71.17 1.148 0.523
09,0.8,0.2,1.0 3276 37.33 7220/70.69 7243/71.22 1.078 0.511
0.9,0,0.1, 1.0 32.84 37779 72.28/70.31 72.83/7040 1.052 0.526
09,0.5,0.1,1.0 3243 3723 72.04/70.24 72.59/7096 1.063 0.511
09,1.0,0.1,1.0 3224 37.07 71.61/70.72 73.04/70.89 1.063 0.518
0,0.8,0.1, 1.0 33.61 3778 72.32/70.72 72.55/71.02 1.047 0.531
0.5,0.8,0.1,1.0 3329 3778 7240/70.95 72.61/71.29 1.067 0.515
1.0,0.8,0.1,1.0 3322 36.64 71.66/70.57 7294/71.80 1.067 0.511
SIMS
a, B,7, 0 Acc-5  Acc-3 Acc-2 Fl MAE  Corr
09,0.6,0.1,1.0 34.64 57.14 72.73 79.43 0.514 0.397
0.9,0.6,0,1.0 32.87 56.41 70.78 75.30 0.523 0.376
09,0.6,0.2,1.0 3395 55.11 70.82 73.20 0.517 0.390
0.9,0,0.1, 1.0 3247 5424 73.80 73.91 0.525 0.351
09,0.3,0.1,1.0 3516 56.57 72.86 77.54 0.524 0.358
09,1.0,0.1,1.0 32.92 54.66 72.50 76.94 0.543  0.363
0,0.6,0.1, 1.0 3433  56.12 71.29 74.73 0.525 0.364
0.5,0.6,0.1,1.0 3396 55.57 70.63 73.06 0.539 0.360
1.0,0.6,0.1,1.0 33.25 57.03 70.57 72.20 0.522  0.367

A.2 Analysis of Model Stability

To evaluate the stability of the model, we selected the MOSI dataset for ablation experiments.
Specifically, based on the overall performance (mean) in Table 2, we selected several representative
methods to additionally compute the standard deviation. For each method, we first calculate the
standard deviation of evaluation results for the three random seeds when the missing rate r ranges
from 0 to 0.9, and then average the 10 sets of standard deviation. The final result is shown in Table 8.
We can see that the standard deviation of these methods is not very large in most metrics, indicating
that all these methods can guarantee stability in the presence of random noise. It should be noted that
LNLN strikes a balance between overall performance and stability.

A.3 Analysis of Data Distribution

Figure 4 illustrates the data distribution on the MOSI, MOSEI, and SIMS datasets. Significant
category imbalances can be seen across all datasets. Additionally, the distributions of the training set,
validation set, and test set are not identical on the MOSI and MOSEI datasets. For example, as shown
in Figure 4 (a), the percentage of weakly negative samples is 15.5% in the MOSI training set, while
this category reaches 22.7% in the test set, representing the highest percentage among all categories.
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Table 8: Comparison of model stability on MOSI dataset. Note: -4- means mean=std. The smaller
MAE indicates better performance.

Method Acc-7 Acc-5 Acc-2 F1 MAE Corr

MISA 29.854+2.62  33.08+1.77  71.49£1.00/70.33+£0.93  71.2840.92/70.00£1.26  1.085+0.08  0.524+0.08
Self-MM  29.554+1.06  34.67£1.87  70.51£0.71/69.26+1.07  66.604+1.92/67.54+£2.34  1.070£0.13  0.512+0.07
CENET 30.38+£1.27  37.25+1.53  71.46%£0.60/67.73+£0.71  68.41£1.12/64.85+£2.56  1.080+0.14  0.50440.11
TFR-Net  29.54£1.00 34.67+1.75  68.15+1.25/66.35+1.09  61.73£2.82/60.06+£2.33  1.200+0.11  0.45940.25

LNLN 34.26+1.17  38.27+1.23  72.554+1.11/70.94+1.28  72.73+£0.99/71.25+1.06  1.046+0.21  0.52740.17

Similarly, Figure 4 (b) and Figure 4 (c) show that this phenomenon also exists in the MOSEI and
SIMS datasets.

The unbalanced data distribution makes it difficult for the model to perform well in data missing
scenarios. Specifically, it is easy for the model to engage in lazy behavior in high-noise scenarios,
simply biasing predictions towards categories with a higher proportion in the training set. These
unbalanced distributions may further increase the learning difficulty of the model when facing data
missing. More details can be found in Appendix A.6.

A4 Case Study

As shown in Figure 3, we visualize several successful and failed predictions made by LNLN and
ALMT from the MOSI dataset for the case study. It shows that LNLN can perceive sentiment cues
in challenging samples, which demonstrates its ability to capture sentiment cues in noisy scenarios.
However, for inputs with high missing rates (e.g., the third example in the figure), both LNLN and
ALMT fail to make correct predictions. We believe this is due to the high loss of valid information in
the multimodal input, making accurate predictions difficult.

B L L Ll
Input %-*wr e ”’%M* m "'~ ’WPWW -

MY 8 WAS | SIGH WHEN SHOW
OF THE WAR SCENES
THIS THE THE THE SPENT
AND HE WAS STILL IS TERRIFYING THE AND
ALMT Positive x Positive x Negative x
LNLN Negative Negative Negative x

Figure 3: Visualization of successful and failed predictions. Note: The input is visualized to facilitate
readers’ understanding. In practice, random data missing is applied to the original input sequence, as
described in Section 3.

A.5 Details of Robust Comparison

Tables 9 and 10 show the details of robust comparison on the MOSI, MOSEI, and SIMS datasets,
respectively. We observe that Self-MM and TETEN have a clear advantage in many evaluation
metrics when the missing rate r is low. As the missing rate r increases, LNLN shows a significant
improvement in all evaluation metrics. This demonstrates LNLN’s ability to effectively model data
affected by noise of varying intensity. In general, models augmented with noisy data in training
usually cannot achieve state-of-the-art performance when the noise is low due to differences in data
distribution. It is also worthwhile to study in the future how to balance the performance of models
under different levels of noise.

In addition, when r is high, many models converge in their performance on metrics such as Acc-7
and Acc-5 (see Appendix A.6). This is due to the fact that these models exhibit lazy behavior, tending
to predict inputs as categories with a higher number of samples in the training set. In such cases, we
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believe that the models do not actually learn effective knowledge, even if their performance appears
good.

Training Set Validation set Test set
Negative Negative Weakly
Neutral Weakly  Negative Negative
Weakly Negative
L2z Negative Ll 2.7%
15.5% . ks Strongly 21.1% Strongly
Neutral 19.3% Strongly ol Negative s Negative
T Negative o 2.9% Strongly
Strongly - Strongly 15.5% Positive
17.7% e Positive 17.0% Positive 14.6%
- 21.8% 16.5%
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Weakly Positive
Positive Weakly Positive
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(a) Data distribution of MOSI dataset
Negative Neutral Negative Neutral Negative
Weak.ly Weakly Weakly
l2She Negative 13.0% Negative 1.9% Negative
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(b) Data distribution of MOSEI dataset
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(c) Data distribution of SIMS dataset

Figure 4: Data distribution of MOSI, MOSEI, and SIMS datasets.

A.6 Visualization of Confusion Matrix

To verify the effectiveness of the method, we visualized the confusion matrix of several representative
methods on the MOSI, MOSEI, and SIMS datasets in Figure 5, Figure 6, and Figure 7, respectively.
Obviously, as the missing rate r increases, the predictions of all methods on all datasets tend to
favor certain categories. This phenomenon indicates that the models hardly learn useful knowledge
for prediction but instead ensure high accuracy by being lazy. For example, on the MOSI dataset,
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Table 9: Details of robust comparison on MOSI and MOSEI with different random missing rates.
Note: The smaller MAE indicates the better performance.

Method MOSI MOSEI
Acc-7 Acc-5 Acc-2 Fl1 MAE Corr Acc-7 Acc-5 Acc-2 Fl1 MAE Corr
Random Missing Rate 7 = 0
MISA 43.05 48.30 82.78 /81.24 82.83/81.23 0.771 0.777 51.79 53.85 85.28 /84.10 85.10/83.75 0.552 0.759
Self-MM 42.81 52.38 85.22/83.24 85.19/83.26 0.720 0.790 53.89 55.72 85.34/84.68 85.11/84.66 0.531 0.764
MMIM 45.92 49.85 83.43/81.97 83.43/81.94 0.744 0.778 50.76 53.04 83.53/81.65 83.39/81.41 0.576 0.724
CENET 43.20 50.39 83.08/81.49 83.06/81.48 0.748 0.785 54.39 56.12 85.49/82.30 85.41/82.60 0.531 0.770
TETFN 44.07 51.31 82.62/81.10 82.67 /81.09 0.719 0.794 44.07 55.96 82.62/81.10 82.67/81.09 0.719 0.794
TFR-Net 40.82 4791 83.64/81.68 83.57/81.61 0.805 0.760 53.71 47.91 84.96 / 84.65 84.71/84.34 0.550 0.745
ALMT 42.37 48.49 84.91/82.75 85.01/82.94 0.752 0.768 52.18 53.89 85.62/83.99 85.69 /84.53 0.542 0.752
LNLN 44.56 49.76 84.25/81.24 84.61/81.79 0.751 0.778 50.66 51.94 84.14/83.61 84.53/84.02 0.572 0.735
Random Missing Rate 7 = 0.1
MISA 40.28 46.21 80.18/79.01 80.21/78.97 0.847 0.721 50.13 51.34 82.21/82.28 81.28/80.79 0.598 0.722
Self-MM 40.33 49.03 81.40/80.03 81.19/80.03 0.812 0.728 51.80 53.18 83.03/83.79 82.43/83.23 0.564 0.725
MMIM 42.61 46.65 79.98/78.13 79.83/71.99 0.825 0.718 49.09 51.19 82.00/81.09 81.57/80.15 0.602 0.696
CENET 40.13 46.60 80.08/78.38 79.91/78.20 0.837 0.719 52.83 54.23 83.75/82.41 83.42/82.34 0.556 0.739
TETEN 40.67 46.84 80.59/78.91 80.55/78.79 0.805 0.731 40.67 54.28 80.59/78.91 80.55/78.79 0.805 0.731
TFR-Net 38.63 45.82 79.27171.99 78.70/77.61 0.872 0.705 52.29 45.82 82.92/83.31 82.25/82.40 0.573 0.715
ALMT 39.84 45.48 80.90/78.67 81.15/79.08 0.843 0.703 49.98 51.38 84.14/82.84 84.23/ 83.04 0.583 0.718
LNLN 42.37 4791 81.20/78.43 81.62/79.04 0.820 0.724 49.96 51.25 83.32/82.73 83.66/82.91 0.591 0.712
Random Missing Rate 7 = 0.2
MISA 36.25 41.55 77.54/76.34 77.58/76.30 0.939 0.654 47.24 47.66 77.84/79.93 75.56/76.88 0.659 0.674
Self-MM 36.64 43.98 78.15/76.48 7176 176.51 0.901 0.660 49.44 50.51 80.84/82.33 79.76 /81.17 0.604 0.678
MMIM 39.07 42.66 76.42/74.54 76.12/74.22 0.918 0.651 46.27 47.99 79.93 /79.66 79.08 /77.68 0.642 0.653
CENET 38.00 42.32 77.49174.64 77.35/74.28 0916 0.654 50.72 51.85 81.46/81.62 80.78 /81.17 0.590 0.698
TETEN 35.81 41.79 77.49 /75.60 77.35/75.35 0.910 0.657 35.81 52.35 77.49/75.60 77.35/75.35 0.910 0.657
TFR-Net 34.70 40.13 74.70/73.52 73.57/72.70 0.987 0.622 51.04 40.13 80.47/81.61 79.29/79.99 0.604 0.672
ALMT 35.33 40.33 77.64/75.70 77.94/76.24 0.927 0.645 46.61 47.82 82.71/81.65 82.82/81.83 0.607 0.669
LNLN 39.74 45.14 79.22/76.87 79.53/77.34 0.891 0.668 48.75 49.95 81.70/81.68 81.95/81.89 0.616 0.677
Random Missing Rate 7 = 0.3
MISA 34.60 38.97 7576 1 74.54 75.821/74.51 0.989 0.618 43.99 43.40 73.32/77.28 68.91/72.25 0.724 0.615
Self-MM 34.89 40.67 76.37/74.98 75.68/74.94 0.967 0.614 47.23 48.07 77.63/79.99 75.69/77.74 0.653 0.610
MMIM 36.83 40.43 74.08 /7191 73.47/71.28 0.974 0.612 4325 44.73 77.08/77.79 75.46/74.49 0.690 0.597
CENET 34.74 38.97 76.83/72.01 76.56 /71.30 0.983 0.605 48.49 49.37 78.65 /80.02 77.34/78.94 0.636 0.640
TETEN 33.24 38.58 75.25173.42 747717278 0.982 0.607 33.24 50.23 75.25/73.42 74.77172.78 0.982 0.607
TFR-Net 32.55 38.34 72.36/71.28 70.12/69.58 1.065 0.572 48.75 38.34 77.48/79.29 75.43/76.52 0.650 0.604
ALMT 33.04 37.17 75.15/72.94 75.51/73.66 0.992 0.596 43.04 44.05 80.94/79.94 81.15/80.20 0.632 0.598
LNLN 38.00 42.81 77.29 /75.46 77.56 1 75.68 0.953 0.617 47.36 48.40 80.11/80.45 80.44 /80.91 0.648 0.629
Random Missing Rate 7 = 0.4
MISA 32.65 35.37 73.88/72.59 73.88/72.49 1.041 0.585 40.87 39.53 70.46 /75.04 64.02/67.93 0.780 0.561
Self-MM 31.20 36.30 73.17/71.96 71.74/71.75 1.027 0.579 44.40 45.04 75.02/78.09 72.01/74.48 0.694 0.554
MMIM 33.38 35.76 70.84/68.90 69.69 /67.80 1.034 0.576 40.84 41.86 74.56/76.15 71.98/71.40 0.732 0.542
CENET 32.26 36.15 73.38/71.53 72.751770.26 1.031 0.574 47.12 47.74 76.03/78.57 73.87/76.75 0.678 0.587
TETFEN 30.66 35.28 72.05/70.07 70.79 1 68.58 1.051 0.571 30.66 47.62 72.05/70.07 70.79 / 68.58 1.051 0.571
TFR-Net 30.17 35.76 68.75/67.74 64.71/64.41 1.142 0.537 46.70 35.76 74.74177.65 71.67/73.71 0.688 0.548
ALMT 31.44 35.03 73.12/71.14 73.85/72.47 1.045 0.560 40.40 41.21 79.40/79.16 79.68 /79.50 0.651 0.536
LNLN 36.49 41.11 76.01/74.25 76.31/74.67 0.987 0.594 45.99 46.88 78.49/79.70 78.98 / 80.46 0.673 0.592
Random Missing Rate 7 = 0.5
MISA 28.14 30.61 70.53769.34 70.50 7 69.20 1.124 0.519 38.12 36.05 67.38/73.21 58.38/64.14 0.834 0.492
Self-MM 26.97 31.39 67.43/67.54 64.27/66.81 1.129 0.503 42.70 43.14 71.97/75.81 67.40/70.38 0.733 0.477
MMIM 28.23 29.89 68.09 /66.52 66.15/64.59 1.128 0.501 38.68 39.21 71.75/74.45 67.70/ 67.96 0.775 0.470
CENET 28.33 30.90 72.46 1 66.08 71.10/63.50 1.130 0.496 45.12 45.52 73.33/77.16 69.80/74.14 0.720 0.515
TETFN 27.55 31.34 67.23/65.06 64.30/61.78 1.157 0.492 27.55 45.63 67.23/65.06 64.30/61.78 1.157 0.492
TFR-Net 25.85 30.71 64.83/63.02 58.04 /56.64 1.270 0.443 45.00 30.71 71.53/75.69 66.88/70.07 0.730 0.471
ALMT 28.42 31.25 68.24/65.94 69.74 1 68.54 1.138 0.485 37.82 38.34 77.40/77.48 77.73/77.80 0.683 0.461
LNLN 33.92 38.39 73.37/71.86 73.70 / 72.30 1.059 0.536 44.90 45.59 76.44/178.10 77.23/79.30 0.710 0.529
Random Missing Rate 7 = 0.6
MISA 24.68 27.12 66.97 / 65.84 66.94 / 65.69 1.200 0.441 36.16 33.30 65.55/72.30 54.64/62.12 0.875 0.415
Self-MM 24.34 27.31 63.47/63.36 58.94/62.07 1.209 0.425 41.47 41.75 69.33/73.93 63.01/66.76 0.762 0.401
MMIM 25.41 27.11 63.67/62.49 60.87/59.48 1.208 0.418 37.13 37.48 68.83/73.16 63.09/65.43 0.808 0.402
CENET 24.54 26.53 67.58/61.47 64.87/57.86 1.215 0.415 44.45 .64 70.50/75.39 65.27/70.86 0.749 0.446
TETFEN 25.12 27.99 63.42/61.23 58.68/56.08 1.238 0.417 25.12 44.07 63.42/61.23 58.68 /56.08 1.238 0417
TFR-Net 24.05 28.33 61.64/59.47 52.44/50.53 1.371 0.363 43.88 28.33 68.80/74.05 62.51/67.07 0.762 0.397
ALMT 25.41 27.36 64.53/62.15 66.81/65.87 1.214 0.407 35.99 36.30 74.98 /76.26 75.44/76.71 0.710 0.395
LNLN 30.37 34.35 69.00 / 67.69 69.19/67.99 1.147 0.458 43.52 44.00 73.82/76.50 75.03/78.33 0.736 0471
Random Missing Rate 7 = 0.7
MISA 21.14 23.27 65.09/63.89 65.07/63.74 1.257 0.381 34.54 31.21 64.28/71.71 51.82/60.65 0.906 0.344
Self-MM 20.70 23.81 61.74/61.46 55.11/758.97 1.271 0.339 39.93 40.12 66.79 /72.55 58.05/63.45 0.786 0.329
MMIM 22.35 24.00 61.23/59.18 57.15754.36 1.267 0.342 35.25 3547 66.89/72.26 58.90/63.26 0.834 0.341
CENET 22.35 59.86 63.82/59.43 53.79/54.22 1.269 0.335 43.93 44.03 67.50/73.39 59.88/67.02 0.776 0.384
TETFN 23.13 25.27 61.13/58.65 53.79/50.77 1.293 0.337 23.13 43.15 61.13/58.65 53.79/50.77 1.293 0.337
TFR-Net 23.71 26.92 59.91/57.34 48.41/45.48 1.454 0.276 4291 26.92 66.64/72.77 58.32/64.02 0.786 0.322
ALMT 23.71 24.97 61.84/59.67 65.30/65.19 1.266 0.336 34.78 34.95 71.62/73.98 72.24/74.54 0.743 0.315
LNLN 27.79 31.19 65.95/65.01 65.95/65.14 1.219 0.383 4222 42.56 71.55/74.74 73.49/177.40 0.762 0.408

MISA 19.92 20.99 63.56/62.24 63.16/61.67 1.311 0.321 33.29 29.51 63.43/71.30 49.95/59.69 0.927 0.267
Self-MM 19.29 22.11 59.55/58.26 49.98/53.56 1.313 0.282 38.69 38.78 65.07/71.83 54.44/61.49 0.805 0.259
MMIM 20.26 21.77 58.33/55.30 52.46/47.89 1.312 0.287 33.64 33.71 64.97/71.57 54.76 /1 61.45 0.858 0.269
CENET 21.14 21.67 60.93/57.53 54.68 /50.80 1.314 0.274 42.71 42.74 65.88/72.16 56.80/64.67 0.798 0.316
TETEN 22,01 23.76 59.40/56.85 48.73/45.59 1.337 0.274 22.01 42.11 59.40/56.85 48.73/45.59 1.337 0.274
TFR-Net 2323 27.70 58.49/55.98 44.70/41.88 1.497 0.155 42.23 27.70 65.05/71.95 54.91/61.82 0.807 0.241
ALMT 23.13 23.66 60.37/58.31 65.45/66.14 1.310 0.273 34.01 34.09 68.15/71.48 69.12/72.28 0.774 0.231
LNLN 26.34 28.23 62.75/62.10 62.56/62.03 1.283 0.314 40.76 40.97 68.62/72.86 71.83/76.80 0.791 0.325

MISA 17.78 18.41 58.64/58.21 56.84/56.19 1.369 0.226 32.29 28.03 62.95/71.07 48.80/59.12 0.941 0.180
Self-MM 18.32 19.78 58.59/55.25 46.16 / 47.46 1.353 0.197 37.46 37.50 63.85/71.24 51.32/59.72 0.821 0.188
MMIM 18.95 19.53 55.29/51.65 47.33/40.89 1.357 0.186 32.61 32.67 63.69/71.10 51.26/59.99 0.877 0.197
CENET 19.15 19.10 58.99/54.76 50.01/46.58 1.357 0.181 42.08 42.08 64.14/70.42 54.27/62.33 0.814 0.254
TETEN 20.75 21.19 58.43/55.88 45.24/42.12 1.378 0.186 20.75 41.55 58.43/55.88 45.24/42.12 1.378 0.186
TFR-Net 21.67 25.12 57.93/55.44 43.01/40.18 1.534 0.155 41.73 25.12 63.64/71.34 52.02/59.99 0.820 0.175
ALMT 20.31 20.50 57.321/56.66 64.92/67.82 1.349 0.205 34.40 34.40 61.41/68.65 63.32/69.83 0.810 0.138
LNLN 22.98 23.86 56.50/56.51 56.32/56.47 1.349 0.202 40.10 40.19 64.83/71.51 70.60 /77.52 0.820 0.221
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Table 10: Details of robust comparison on SIMS with different random missing rates. Note: The
smaller MAE indicates the better performance.
Method Acc-5  Acc-3  Acc-2 F1 MAE Corr  Method Acc-5 Acc-3  Acc-2 F1 MAE  Corr
Random Missing Rate r = 0 Random Missing Rate » = 0.5

MISA 40.55 6338 78.19 77.22 0449 0.576 MISA 30.56 5478 7126 64.16 0.552 0.367
Self-MM  40.77 6492 7826 78.00 0421 0.584 Self-MM 32.02 5390 7141 67.11 0517 0.390
MMIM 3742 60.69 7542 73.10 0475 0.528 MMIM 3341 5237 6849 6481 0553 0.336
CENET 2385 54.05 68.71 57.82 0578 0.137 CENET 23.12 54.05 6871 5792 0588 0.107
TETEN 4194 65.86 80.23 79.25 0424 0.589 TETFN 3348 5624 7243 6730 0512 0.39%4
TFR-Net 33.85 54.12 69.15 5844 0.562 0.254 TFR-Net 24.65 5237 6747 58.66 0.685 0.171
ALMT 23.41 5478 75.64 7627 0527 0.536 ALMT 18.38 47.12 6827 7122 0.563 0.395
LNLN 38.66 6397 7593 79.89 0458 0.570 LNLN 36.40 57.70 7272 78.77 0513 0412

Random Missing Rate 7 = 0.1 Random Missing Rate » = 0.6

MISA 38.88 63.02 7739 75.82 0461 0.561 MISA 2772 5397 7046 61.81 0578 0.286
Self-MM 4026 63.53 7732 76.76 0.433 0.563 Self-MM 29.10 5186 70.02 6421 0.548 0.313
MMIM 37.27 60.90 7425 72.08 0473 0.529 MMIM 29.18 4931 6791 63.86 0578 0.270
CENET 2283 5398 6857 5736 0580 0.136 CENET 2246 53.69 69.00 58.64 0592 0.102
TETFN 41.36 64.62 7892 77.70 0.432 0.578 TETFN 29.90 5354 7097 64.19 0545 0.309
TFR-Net 30.12 5325 68.85 5938 0.596 0.203 TFR-Net 2480 5259 67.03 5830 0.696 0.157
ALMT 22.10 55.14 7440 75.19 0530 0.537 ALMT 18.67 43.69 6681 70.69 0574 0.322
LNLN 38.51 6273 7629 80.07 0458 0.562 LNLN 3370 54.63 71.55 79.56 0.535 0.352

Random Missing Rate r = 0.2 Random Missing Rate r = 0.7

MISA 38.15 5923 7433 7170 0.489 0490 MISA 2487 5252 69.95 59.54 0.601 0.167
Self-MM 3837 61.71 7498 73.71 0.464 0.500 Self-MM 2553 50.62 69.58 6228 0.571 0.198
MMIM 37.27 5733 7236 69.80 0.504 0460 MMIM 28.59 46.53  66.89 62.23 0595 0.190
CENET 2225 5420 6857 57.64 0583 0.132 CENET 2181 5332 67.69 57.87 0599 0.070
TETFN 3946 6156 7549 7359 0457 0.527 TETEN 27.86 51.06 69.29 61.09 0572 0.190
TFR-Net 29.03 53.61 68.64 59.74 0.619 0.191 TFR-Net 2378 5230 67.18 58.15 0.707 0.163
ALMT 21.08 53.17 72.65 73.90 0541 0485 ALMT 18.02 38.66 6557 70.27 0.586 0.218
LNLN 38.88 61.78 7476 78.53 0.474 0.513 LNLN 30.27 51.64 69.73 79.37 0.558 0.261

Random Missing Rate 7 = 0.3 Random Missing Rate » = 0.8

MISA 36.40 5930 7411 7040 0505 0464 MISA 22.69 5222 6937 57.82 0.610 0.092
Self-MM 3793 59.81 7476 7285 0474 0487 Self-MM 22.03 50.77 69.51 60.68 0.585 0.138
MMIM 3771 58.06 7236 69.52 0512 0436 MMIM 2232 4435 6528 60.53 0.607 0.145
CENET 2144 5405 6842 5741 0578 0.175 CENET  21.73 52.15 6747 5844 0599 0.074
TETFN 3880 61.92 7586 7328 0.463 0.521 TETFN 2348 49.60 69.88 60.92 0584 0.154
TFR-Net 27.64 5230 6842 59.88 0.640 0.182 TFR-Net 2297 5274 67.54 57.55 0.721 0.100
ALMT 2035 50.62 72.06 73.64 0546 0.469 ALMT 18.60 3406 64.19 69.64 0.597 0.133
LNLN 3837 60.98 7425 78.60 0478 0.509 LNLN 27.94 5047 69.58 80.23 0.580 0.183

Random Missing Rate » = 0.4 Random Missing Rate » = 0.9

MISA 3486 57.33 7287 67.52 0523 0436 MISA 20.64 5295 69.22 57.01 0.617 0.041
Self-MM  34.57 5828 7330 7036 0482 0479 Self-MM 22.17 52.15 6892 5832 0.586 0.111
MMIM 3457 5536 6995 6649 0533 0399 MMIM 2035 4267 6572 59.64 0.610 0.096
CENET 2254 5412 6849 57.68 0.583 0.141 CENET 2086 48.07 6572 58.18 0.609 -0.002
TETFN 3581 5893 7381 70.66 0473 0.504 TETFN 22.10 4573 6892 58.75 0.590 0.108
TFR-Net 2531 51.86 6791 59.16 0.664 0.176 TFR-Net 23.05 53.76 69.08 57.71 0.721 0.088
ALMT 1991 4945 7075 7297 0549 0470 ALMT 19.47 2691 6623 7376 0596 0.076
LNLN 3749 60.03 7381 78.82 0491 0481 LNLN 26.19 4748 68.64 8042 0591 0.127

Self-MM predicts all samples as weak negative when the missing rate is 0.9. Although the accuracy
of Self-MM is high when the missing rate r is high, it does not demonstrate that the model is more
robust.

In addition, TETFN and TFR-Net tend to randomly predict within the negative and weak negative
categories under high noise, indicating that their lazy behavior is not as severe as methods like
Self-MM, MMIM, and MISA. Unlike other methods, although LNLN also suffers from the impact of
data missing, the model’s lazy behavior is less severe. For example, at a missing rate of 0.9, the model
is still attempting to predict the samples, and there is no case of predictions favoring a particular
category to an extreme extent.

From Figure 6 and Figure 7, we can see that a similar phenomenon also occurs in the MOSEI and
SIMS datasets. These observations demonstrate that methods targeting complete data often fail
when modeling highly incomplete data. Therefore, the design of methods specifically for modeling
incomplete data is necessary.
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Figure 5: Seven-category confusion matrix of several representative methods on MOSI dataset.

Note: 0-6 denote strongly negative, weakly negative, negative, neutral, weakly positive, positive, and
strongly positive, respectively.
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Figure 6: Seven-category confusion matrix of several representative methods on MOSEI dataset.
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Figure 7: Five-category confusion matrix of several representative methods on SIMS dataset. Note:
0-4 denote weakly negative, negative, neutral, weakly positive, and positive, respectively.
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A.7 Visualization of Representations

Figure 8 shows the language feature H;' extracted without applying data missing and the corrected
dominant feature H with different data missing rates. we can see that the model tends to learn
H}, which is consistent with the distribution of the H}', indicating that LNLN can complement the
information of the language modality when data is missing. Additionally, when the missing rate
ris 1.0 (no valid information for the input), it becomes difficult for the model to learn H é that is
consistent with the language feature. This also suggests that the generator is indeed trying to learn
H} for fusion in DMML, rather than just guessing.
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Figure 8: Visualization of the corrected dominant feature H} with different data missing rate and the
language feature H;' without data missing.

A.8 Analysis of the generalization to modality missing scenarios

To explore the generalization of the method, we further evaluated it in the special case of data missing,
i.e., modality missing scenarios. The overall performance of the model is shown in Table 11 and
Table 12. The detailed performance of the model is shown in Table 13 and Table 14. It is evident that
LNLN, ALMT, TETFN, and Self-MM all exhibit excellent generalization.

We believe that the Dominant Modality Correction (DMC) proposed in LNLN, the Adaptive Hyper-
modality Learning (AHL) proposed in ALMT, and the Unimodal Label Generation Module (ULGM)
proposed/used in Self-MM and TETEN deserve more research attention in the future. These modules
and their corresponding ideas have significant reference value for achieving robust Multimodal
Sentiment Analysis (MSA).

However, we also found that many methods converge to the same value when the noise is high.
This is similar to the phenomenon observed in previous data missing scenarios, where many models
exhibited lazy behavior. Therefore, handling modality missing and improving model robustness in
different noise scenarios remain critical challenges that need to be addressed in the field of MSA.
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Table 11: Generalization comparison of the overall performance on MOSI and MOSEI with random
modality missing. Note: the parameters used for evaluation are consistent with those used for testing
in random data missing. The smaller MAE indicates better performance.

Method MOSI MOSEI
Acc-7  Acc-5 Acc-2 F1 MAE Corr  Acc-7 Acc-5 Acc-2 F1 MAE Corr

MISA 2944 31776 67.64/67.27 64.81/64.30 1.096 0.461 4145 4032 73.94/7749 66.65/71.30 0.752 0.438
Self-MM 2974  36.40 71.45/68.17 63.71/6191 1.052 0450 45.17 46.05 74.12/77.85 67.00/71.81 0.684 0.447
MMIM 31.28 33.74 68.34/65.12 63.38/58.28 1.058 0444 4136 4253 73.19/76.14 68.11/70.18 0.732 0.448
CENET 3030 3394 70.37/66.67 62.66/58.61 1.068 0450 4741 48.19 73.45/74.14 68.43/70.37 0.684 0.480
TETEN 32.66 3626 70.17/68.15 62.47/60.18 1.061 0446 47.52 4841 73.87/7743 66.70/71.45 0.691 0.426
TFR-Net 29.76 3496 70.49/67.95 62.87/60.08 1.177 0451 4733 48.08 73.50/77.45 66.89/71.28 0.700 0.427
ALMT 27.87 30.73 70.53/67.47 75.89/73.35 1.130 0447 2594 2746 60.66/63.37 70.63/71.24 0.711 0.354

LNLN 3193 3486 68.53/65.64 72.01/69.65 1.093 0423 4385 4450 73.52/77.04 80.85/83.19 0.733 0.425

Table 12: Generalization comparison of the overall performance on SIMS dataset with random
modality missing. Note: the parameters used for evaluation are consistent with those used for testing
in random data missing. The smaller MAE indicate the better performance.

Method Acc-5 Acc-3 Acc-2 F1 MAE Corr
MISA 29.62 56.82 73.61 66.32 0.535 0.330
Self-MM 30.36 59.56 75.01 73.13 0.508 0.321
MMIM 27.21 50.79 71.52 65.48 0.546 0.286
CENET 19.95 43.63 64.08 56.96 0.601 0.033
TETEN 30.61 50.98 74.77 68.00 0.514 0.317
TFR-Net 24.69 52.57 69.31 58.03 0.629 0.133
ALMT 21.82 39.39 72.30 78.86 0.563 0.287
LNLN 30.39 54.32 72.67 80.87 0.527 0.287
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Table 13: Generalization comparison on MOSI and MOSEI with random modality missing. Note:
The smaller MAE indicates the better performance.

Method MOSI MOSEI

Acc-7  Acc-5 Acc-2 F1 MAE Corr Acc-7 Acc-5 Acc-2 F1 MAE  Corr

Language Modality Missing
MISA 15.60 15.65 52.18/53.74 48.09/49.42 1422 0171 3093 26.75 62.85/71.02 48.51/58.99 0.946 0.128
Self-MM  16.86  19.29 57.77/54.37 4231/43.81 1381 0.129 36.59 36.59 63.03/71.02 49.22/58.99 0.832 0.152
MMIM 17.44 1720 54.67/49.61 46.95/37.63 1363 0.153 3196 3197 62.71/71.01 54.70/59.43 0.886 0.195
CENET 17.54 1754 57.67/51.80 42.26/35.71 1.387 0.118 41.70 41.70 63.23/69.38 52.41/60.67 0.821 0.238
TETFN 21.19 21.14 57.77/5525 4231/39.32 1403 0.097 4131 4131 62.82/71.01 4853/5898 0.831 0.148
TFR-Net 2313 2595 57.82/55.30 42.43/39.43 1563 0.167 4140 4143 62.85/71.02 48.88/58.99 0.829 0.163
ALMT 1929 19.68 56.40/55.05 66.99/66.01 1.394 0.139 21.58 21.58 54.28/57.38 69.52/70.01 0.867 0.071
LNLN 18.80 17.68 52.18/49.03 58.89/56.84 1427 0.075 39.10 39.10 62.85/71.02 77.19/83.06 0.847 0.156
Audio Modality Missing
MISA 4349 4844 83.74/81.58 83.72/81.49 0.762 0.776 51.59 5391 84.94/83.91 84.62/83.46 0.561 0.759
Self-MM  42.81 5233 85.22/83.24 85.19/83.26 0.720 0.790 5391 55.66 8531/84.70 85.06/84.64 0.532 0.763
MMIM 4539 4952 83.08/81.15 83.00/81.02 0.744 0.777 51.01 5326 83.72/81.51 83.60/81.29 0.572 0.726
CENET  43.05 5039 83.08/81.54 83.06/81.54 0.750 0.785 54.34 5598 85.37/82.08 85.35/82.44 0.531 0.770
TETFN 44.07 51.31 82.52/81.00 82.57/80.99 0.719 0.794 54.15 5594 85.08/83.99 85.05/84.05 0.543 0.753
TFR-Net 37.71 4548 82.72/80.52 82.71/80.45 0.821 0.759 5375 5534 84.95/84.65 84.69/84.32 0.550 0.745
ALMT 3649 41.84 84.60/79.88 84.81/80.70 0.865 0.767 30.51 33.55 67.13/70.05 71.76/72.59 0.535 0.556
LNLN 4505 52.04 84.86/82.21 85.12/82.43 0.760 0.772 50.63 51.92 84.39/83.09 84.71/83.34 0.610 0.736
Visual Modality Missing
MISA 4329 47.09 82.37/81.00 8243/80.99 0.777 0.777 51.76 53.80 85.25/83.99 85.11/83.76 0.550 0.757
Self-MM 4276 5547 85.11/82.80 85.09/82.82 0.722 0.789 53.68 5547 85.20/84.62 84.95/84.59 0.533 0.761
MMIM 4475 49.85 83.54/81.83 83.52/81.78 0.740 0.778 50.45 52.86 83.71/81.31 83.53/81.09 0.579 0.722
CENET 4320 5039 83.08/81.49 83.06/81.48 0.748 0.785 5295 54.48 84.99/81.04 85.03/81.56 0.544 0.761
TETFN 4422 5146 82.62/81.10 82.67/81.09 0.719 0.794 5355 5534 84.84/83.78 84.81/83.86 0.544 0.761
TFR-Net 37.85 4587 83.54/81.10 83.41/80.95 0.799 0.760 52.94 54.45 83.97/83.48 83.93/83.18 0.577 0.726
ALMT 36.39 4193 84.81/79.98 84.81/80.76 0.863 0.768 29.80 3295 66.81/69.41 71.72/72.23 0.559 0.747
LNLN 4505 5199 84.91/82.26 85.17/82.48 0.759 0.772 50.16 51.44 84.09/83.41 84.43/83.76 0.577 0.729
Language & Audio Modality Missing
MISA 1555 15.60 5529/55.20 49.53/49.24 1419 0.098 31.17 26.76 62.85/71.02 48.51/58.99 0961 0.121
Self-MM  16.86  19.29 57.77/54.03 42.31/4331 1381 0.130 36.61 36.61 63.01/71.02 49.18/58.99 0.831 0.144
MMIM 17.59 17.40 52.24/4820 39.57/31.53 1.389 0.024 3191 31.92 6231/7094 54.32/59.28 0.886 0.182
CENET 17.40 17.40 57.67/51.85 42.26/35.65 1.387 0.110 41.40 4140 60.69/6421 51.22/56.68 0.823 0.236
TETFN 21.19 21.14 57.77/5525 4231/39.32 1403 0.098 4131 41.31 62.82/71.00 48.51/58.98 0.832 0.144
TFR-Net 21.38 2396 58.03/55.59 43.37/40.54 1554 0.107 4137 4138 62.81/71.02 48.75/58.99 0.829 0.161
ALMT 19.24  19.24 56.35/54.96 66.89/6586 1397 0.104 21.57 21.57 54.28/57.28 69.52/70.09 0.870 0.091
LNLN 18.80 17.68 52.18/49.03 58.89/56.84 1427 0.072 3472 3472 62.85/71.02 77.19/83.06 0.900 0.145
Language & Visual Modality Missing
MISA 1545 1540 48.98/50.87 41.79/43.51 1427 0169 31.57 26.89 62.85/71.02 48.51/58.99 0.936 0.105
Self-MM 1647 19.24 57.77/51.75 4231/3544 1386 0.072 36.55 36.55 62.85/71.02 4851/58.99 0.838 0.101
MMIM 1793 17.40 53.05/48.64 43.80/36.52 1.366 0.155 32.12 32.12 62.88/70.94 4891/59.00 0.891 0.143
CENET 17.54 1754 57.67/51.80 4226/3571 1387 0.118 4136 41.36 61.78/67.49 51.87/59.63 0.838 0.112
TETFN 21.19 21.14 57.77/5525 42.31/39.32 1403 0.097 4136 41.36 62.81/71.02 4851/58.99 0.840 0.017
TFR-Net 22,50 25.07 57.77/5525 42.31/39.32 1486 0.154 41.36 41.36 62.47/71.02 51.16/58.99 0.839 0.039
ALMT 1929 1977 5645/55.10 67.09/66.11 1.394 0.136 21.54 21.54 54.28/57.01 69.52/70.35 0.874 -0.086
LNLN 18.80 17.68 52.18/49.03 58.89/56.84 1.427 0.075 38.41 3841 62.85/71.02 77.19/83.06 0.853 0.052
Audio & Visual Modality Missing

MISA 4325 4840 83.28/81.24 83.29/81.17 0.768 0.776 51.67 53.80 84.88/83.97 84.64/83.64 0.558 0.756
Self-MM 4271 5277 85.06/82.80 85.04/82.82 0.722 0.789 53.67 5543 85.32/84.74 85.06/84.67 0.535 0.761
MMIM 4456 51.07 83.48/81.29 8342/81.17 0.748 0.777 50.70 53.07 83.79/81.14 83.61/80.96 0.579 0.722
CENET  43.05 5039 83.08/81.54 83.06/81.54 0.750 0.785 5271 5422 84.64/80.66 84.71/81.23 0.545 0.760
TETFN 4412 5136 82.57/81.05 82.62/81.04 0.719 0.794 5346 5522 84.83/83.79 84.80/83.85 0.549 0.747
TFR-Net  36.00 43.44 83.08/79.98 83.01/79.82 0.838 0.758 53.13 54.54 83.97/83.49 8391/83.18 0.578 0.726
ALMT 3649 4193 84.55/79.83 84.76/80.65 0.864 0.767 30.64 3357 67.14/69.11 71.77/72.15 0.560 0.748
LNLN 4510 52.04 84.86/82.26 85.12/82.48 0.760 0.772 50.10 51.38 84.10/82.69 84.39/82.86 0.609 0.730
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Table 14: Generalization comparison on SIMS with random modality missing. Note: The smaller
MAE indicates the better performance.
Method Acc-5  Acc-3  Acc-2 F1 MAE Corr  Method Acc-5 Acc-3  Acc-2 F1 MAE  Corr
Language Modality Missing Language & Audio Modalities Missing

MISA 18.60 50.77 69.23 56.75 0.595 0.104 MISA 21.23 5427 6937 56.82 0.613 0.064
Self-MM  19.77 5420 7826 78.00 0.594 0.058 Self-MM 19.69 5420 7476 72.85 0.594 0.059
MMIM 17.22 4128 67.76 57.76 0.617 0.055 MMIM 1722 4128 6791 5786 0.617 0.026
CENET  20.71 4924 6820 57.67 0.601 0.037 CENET 2042 49.60 6631 5749 0.601 0.002
TETEN 19.26  36.11 69.37 56.82 0.603 0.045 TETFN 19.26  36.11 6937 56.82 0.603 0.040
TFR-Net 22.25 5427 6930 56.78 0.712 0.008 TFR-Net 21.96 4698 6944 57.12 0.635 0.041
ALMT 21.15 2495 69.37 8191 0595 0.049 ALMT 21.30  16.05 69.37 8191 0.594 0.039
LNLN 21.37 4530 69.37 8191 0597 0.005 LNLN 21.37 4325 69.37 8191 0598 -0.008

Audio Modality Missing Language & Visual Modalities Missing

MISA 3837 6192 77.68 75.17 0466 0.574 MISA 19.70 4858 69.37 5695 0.600 0.091
Self-MM 4092 6499 7732 76.76 0.421 0.585 Self-MM 1948 5398 7330 7036 0.594 0.056
MMIM 37.27 60.61 7520 7296 0475 0.527 MMIM 1722 40.99 67.40 57.70 0.617 0.055
CENET 2159 5390 6893 5745 0.582 0.141 CENET 18.45 3355 6550 59.55 0.612 -0.054
TETFN 4194 65.86 80.16 79.16 0424 0.589 TETFN 1933 36.11 69.37 56.82 0.603 0.045
TFR-Net 2640 5245 69.66 5921 0.569 0.239 TFR-Net 19.55 5427 6937 56.82 0.720 0.027
ALMT 23.05 5945 7527 7636 0531 0.529 ALMT 19.99  20.57 69.15 81.08 0.596 0.043
LNLN 39.53  64.19 7578 79.69 0.454 0.570 LNLN 21.44 4639 69.37 8191 0.600 0.014

Viusal Modality Missing Audio & Visual Modalities Missing

MISA 40.84 63.67 78.19 77.07 0458 0.574 MISA 3895 61.70 77.83 75.15 0478 0.573
Self-MM  41.21 6499 7498 7371 0.421 0.584 Self-MM 41.06 6499 7141 67.11 0421 0.585
MMIM 3734 6047 7557 7343 0475 0.528 MMIM 3698 60.10 7527 73.18 0476 0.527
CENET 19.70 38,51 59.08 56.38 0.600 0.027 CENET 18.82 3698 56.46 53.23 0.608 0.045
TETFN 4194 6586 80.16 79.19 0424 0.589 TETFN 4194 6586 80.16 79.19 0424 0.589
TFR-Net  30.20 54.56 69.15 5886 0.566 0.247 TFR-Net 27.79 52.88 6893 5940 0571 0234
ALMT 2283 5551 7535 7575 0529 0.535 ALMT 22.61 5981 7527 76.17 0532 0.529
LNLN 38.80 6331 7622 80.11 0458 0.569 LNLN 39.82 6346 7593 79.72 0454 0.569
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B Social Impacts

Our proposed LNLN has a wide range of applications in real-world scenarios, such as healthcare and
human-computer interaction. However, it might also be misused to monitor individuals based on their
affections for illegal purposes, potentially posing negative social impacts.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope. They clearly outline the capabilities of the proposed
LNLN and its performance in handling data missing scenarios, as well as emphasizing the
comprehensive evaluation of existing methods and their significance in improving robust
Multimodal Sentiment Analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The article does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper reports the network structure required for reproduction as well as
the hyperparameter settings. In addition, as mentioned in the abstract, the code is available
on GitHub.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

27



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used in the thesis are open datasets and can be accessed by anyone
upon request. As mentioned in the abstract, the code is available on GitHub.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Optimizer selection, data partitioning, and other details are described. Hyper-
parameters are chosen empirically.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As shown in 8, we report the std/fluctuation of several representative methods
on the mosi dataset. It shows the overall stability of the different methods in the face of
noise impacts of different levels.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report this information in Section Implementation Details.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This study meets the requirements of moral and ethical norms.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We describe this in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The used data has been cited in the paper. As mentioned in the abstract, the
code is available on GitHub..

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: The dataset used is a public dataset, and the code is available on GitHub..
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve above problems.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This study does not involve the above issues and the datasets used are all
publicly available datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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