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Abstract
Segmentation algorithm based on deep learning has become the main method of pulmonary nodules segmentation; neverthe-
less, the accuracy and lightweight of most such models are difficult to coexist. In order to accurately segment lung nodules
in computed tomography images and make the model lightweight, this paper proposes a lightweight segmentation network
called SKV-Net, able to achieve good performance. The overall design of the network uses the original V-Net structure
and introduces a selective convolution kernel with soft attention in selective kernel networks to extract multi-scale feature
information. Adopting a suitable grouped convolution can effectively reduce the number of parameters in the model while
maintaining good segmentation performance. Experimental results indicate that the average segmentation accuracy of SKV-
Net is 1.3% higher than that of V-Net, and the number of parameters is only 42% those of V-Net. In this paper, the Luna16
public dataset of pulmonary nodules is used to test and evaluate the performance of various improved models. The results
suggest that the SKV-Net is superior to other models, achieving good segmentation performance and fast operation speed.
Moreover, the SKV-Net improves the segmentation of different types of pulmonary nodules. It has the advantages of high
precision and lightweight structure, which further indicate that it has significant clinical application value in the segmentation
task of pulmonary nodules.
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1 Introduction

Lung cancer has the highest cancer-associated mortality rate
worldwide, making biomarker discovery a pressing issue [1].
Lung cancer is often in the middle or advanced stage when
it is discovered, and the early symptoms are mostly small
pulmonary nodules with a diameter usually less than 30 mm
[2]. Currently, in Chinese diagnosis and treatment standards,
pulmonary nodules with a diameter between 5 and 10mmare
defined as small nodules, while those with a diameter greater
than 10mmare defined as large nodules [3]. Themorphology
and grayscale characteristics of pulmonary nodules are sim-
ilar to those of blood vessels and tissues, making it difficult
for doctors to locate them correctly.

Currently, the available studies on segmentation meth-
ods of pulmonary nodules can be mainly divided into two
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categories: traditional methods based on manual feature
extraction [4–8] and deep learning methods based on auto-
matic feature extraction. In recent years, with the rapid
development of deep learning, many deep neural network
(DNN) models have been applied to the diagnosis of pul-
monary nodules in medical imaging [9]. In 2015, Long
et al. [10] proposed a fully convolutional network (FCN)
method, which uses a fully convolutional end-to-end net-
work that is more suitable for image segmentation. Based
on the FCN network structure, Korez et al. [11] proposed
a three-dimensional (3D) FCN network structure to further
improve the segmentation accuracy of spinal magnetic reso-
nance (MR) images. Nguyen et al. [12] compared the ability
of differentmachine learning algorithms trainedwith resting-
state functional MRI (rfMRI) latency data to detect epilepsy.
To improve the segmentation accuracy, Ronneberger et al.
[13] proposed U-Net, which added a jump connection on
the basis of FCNs to fuse low-level detail information with
high-semantic layer information. Xu et al. [14] segmented
two-dimensional (2D) lung profiles containing pulmonary
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nodules using U-Net, and the pixel accuracy of the segmen-
tation results reached 86.7%. Zhu et al. [15] improved the
structure of U-Net using the separable convolutional module
of Mobile-Net in the 2D image segmentation task of U-Net.
As a result, the image segmentation accuracy of 2D lung
profiles including pulmonary nodules was improved to 90%.
Zhong et al. [16] used Dense-Net improved U-Net to seg-
ment pulmonary nodules from small slices obtained from 2D
CT images of lungs. Cicek et al. [17] proposed a 3D U-Net
network structure, which performed 3D image segmentation
by inputting sequential 2D slices 3D images. Hui et al. [18]
designed a multi-scale model of U-Net improved based on
Dense-Net, and performed pulmonary nodule segmentation
on 2DCT images. The segmentation accuracy ofmediumand
small nodules was improved by 11% and 20%, respectively.
Hong et al. [19] used a region proposal network of Faster
RCNN to generate candidate regions and integrated attention
mechanismgates using a 3DU-Netwith residual connections
to detect pulmonary nodules; the free-response ROC (Froc)
increased by 1.6% compared to the baseline of Res-Net.
Gao et al. [20] used a residual network as the Faster RCNN
of the CNN as the main stem network, and used squeeze-
and-excitation (SE) and second-order fusion to replace the
original res block, achieving a detection accuracy of 89%.
Wang et al. [21] used YOLO combined with Dense-Net to
detect and predict benign and malignant nodules in 2D lung
CT images, reaching a detection recall rate of 95.6%. Singad-
kar et al. [22] proposed a CT image segmentation method for
pulmonary nodules based on a deep deconvolution residual
network (DDRN). Their method captured the complete res-
olution characteristics through end-to-end training, and the
Jaccard index was 88.68%.

Milletari et al. [23] proposed V-Net, a 3D image seg-
mentation network, which added residual connection and
introduced dice loss function on the basis of U-Net to seg-
ment large targets such as prostatic glands. Subsequently, He
et al. [24] improved V-Net by replacing the large-size convo-
lution with several small-size bottleneck structure blocks to
segment 3D MRI images of the brain hippocampus, which
reduced the number of parameters significantly. Zhong et al.
[25] segmented pulmonary nodules using a multi-scale fea-
ture network composed of multiple sub-networks based on
V-Net.

In general, the above studies have produced successful
results. In the segmentation of pulmonary nodules under the
condition of 3D contour information, V-Net has achieved a
maximum dice of 0.791 and an average dice of 0.762 [26].
Nevertheless, taking a closer look at V-Net, three certain lim-
itations can be observed. First, the original V-Net model has
been applied to the segmentation of prostatic glands, while
the diameter of pulmonary nodules is much smaller. Sec-
ond, the morphology and gray characteristics of pulmonary
nodules are similar to those of blood vessels and tissues.

Sometimes pulmonary nodules adhere to blood vessels and
pleura. Moreover, the generalization ability and robustness
of the model are poor, and the number of parameters is huge.
Third, the model cannot exploit multi-scale information. To
this end, in this work, the characteristics of the 3D image data
of lung nodules are analyzed, the multi-core attention mech-
anism of SK-Net [27] is integrated on the basis of V-Net, and
a selective kernel V-Net (SKV-Net) is proposed. The network
can automatically fuse the feature information extracted from
multi-core, and the network training can effectively improve
the generalization ability of the model and the accuracy of
lung nodule segmentation.

2 Materials andmethods

2.1 Segmentation framework for pulmonary
nodules

The segmentation framework for pulmonary nodules used in
this paper is illustrated in Fig. 1.

For the original CT images, the Luna16 dataset not only
performs HU conversion on the original CT gray images
(data threshold from − 1024 to 3071), but also provides the
corresponding lung masks. The parenchyma was extracted
by multiplying the original data with the pulmonary mask.
Since the Luna16 dataset is collected from different sources,
the pixel intervals of all images need to be unified. The X-,
Y -, and Z-axes were unified at 1 mm to avoid experimen-
tal errors. To facilitate model calculation, data normalization
and mean removal were performed on the pixel values. In
the normalized range, the CT value of the lung window was
from − 1000 to 400. De-mean means that all dimensions are
subtracted from the mean value of the corresponding dimen-
sion, so that all dimensions of the input data are centered to
0, and all pixel values of this data set are subtracted 0.25. Due
to the limitation of computing resources, a 3D data block of
64 × 64 × 32 (length × width × depth) containing at least
one pulmonary nodule was intercepted. Thus, 64 × 64 × 32
blocks of data were input to the model, and binary splits of
the same size were exported.

2.2 SKV-Net structure

V-Net is a 3D full convolutional neural network. The left and
right ends of the V-Net are encoders and decoders, respec-
tively, which correspond to the two operations of extracting
image features and restoring the resolution of feature maps.
It is worth mentioning that, in order to improve the utiliza-
tion degree of features, a residual connection [28] was used
to connect the input of the first convolutional layer in the
module with the output of the last one, while the residual
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Fig. 1 Segmentation framework of pulmonary nodules

Fig. 2 V-Net network structure

connection used 1 × 1 × 1 convolution for channel align-
ment. This is the principal improvement ofV-Net overU-Net.
The structure diagram of V-Net is shown in Fig. 2.

V-Net is desirable in the overall design of feature extrac-
tion; however, since only 5 × 5 × 5 convolution is used
in V-Net, the receptive field is large and single, and more
detailed features are not taken into consideration. Neverthe-
less, pulmonary nodules are small targets and more attention
needs to be paid to detailed features. For the judgment of
the same point, multi-scale information can provide richer
information, which is conducive to the classification of the

judgment points. In view of this, the original single-size con-
volution in V-Net is replaced by a SK-Block that contains a
multi-scale convolution kernel and soft attention. The SK-
Block can extract multi-scale features from feature maps,
paying attention to details and peripheral information. The
soft attentionmechanism enables themodel to focus onmore
effective channels and increase the single point judgment
accuracy.

In the SK-Block, the feature map passes through three
routes (3 × 3 × 3 convolution, 5 × 5 × 5 convolution, and
a route without any convolution operation; the 5 × 5 × 5
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convolution is a stack of two 3 × 3 × 3 convolutions). Sub-
sequently, the feature map generated after the three routes is
added to obtain a multi-scale fusion feature map. Then, the
feature map is globally pooled (one point of global pooling
represents the average value of all points in a channel) to
obtain a one-dimensional (1D) array with the same length
as the number of channels. The 1D array is fully connected
twice, and three groups of 1D arrays are generated during the
second full connection corresponding to the multi-scale fea-
tures on the three routes. Softmax operation is carried out on
the three groups of 1D arrays, and adaptive selection of fea-
ture maps of different scales is carried out by using scale soft
attention. Then, the new feature map is obtained by multi-
plying it with the feature map of the corresponding receptive
field, and the three groups of feature maps are fused by con-
catenation. Finally, the number of channels is adjusted by 1
× 1 × 1 point convolution to obtain the final feature map.

As depicted in Fig. 3, the input X format of the SK-Block
is N × C × H × W × D (batch size × number of channels
× length × width × depth). The number of input channels is
denoted as Cin and the number of output channels is denoted
as Cout. First, the multi-scale selective kernel SK-Block is
performed without any operation to obtain the feature graph
X1. The feature graph X2 is obtained by 3 × 3 × 3 convolu-
tion with a step size of 1. The feature graph X3 is obtained
by 5 × 5 × 5 convolution with a step size of 1. Afterwards,
X1, X2, and X3 are added together to obtain the fused feature
graph U, as defined by Eq. (1). It should be noted that X1,
X2, X3, and U have Cin channels. The global average pool-
ing Fgp of U is used to obtain a 1D array S, whose length
is consistent with the number of channels, as described by
Eq. (2). After S is processed by two fully connected layers
fc1 and fc2, the number of channels remains unchanged, as
shown in Eq. (3), where W = �d×C is the weight of the full
connection and δ is the leaky Relu activation function. For
the part of the input nodule of leaky Relu activation func-
tion less than zero, the gradient can also be calculated, which
can effectively avoid the vanishing gradients and the jagged
gradient direction. Make full use of the information in the
picture. Each full connection is followed by the activation
function; however, the Batch norm is not connected, since
the batch norm of the full connection layer will reduce the
effect of the attention mechanism and affect model learn-
ing. Then, fc2 generates three 1D arrays V1, V2, and V3,
whose parameters are shared in fc1 and soft-max in channel
dimension, as defined by Eq. (4), where Vi represents the ith
1D array. Soft-max can be regarded as the soft attention of
the channel. This operation can sort the importance of the
multi-scale features in the channel to obtain I1, I2, and I3,
and multiply them with the X1, X2, and X3 feature maps as
weights to generate the new feature maps Y1, Y2, and Y3.
Subsequently, the new feature map is concatenated, and the
number of channels is 3×Cin. Multi-scale feature fusion and

channel number adjustment are conducted by point convolu-
tion. The 3 × Cin number of channels is adjusted to output
Cout number of channels and the output feature graph Yout is
obtained. The overall design of the SK-Block can take into
account any number of input and output channels, and can be
embedded in any network. Furthermore, its multi-scale fea-
tures can effectively improve the model performance while
reducing the number of parameters, which can be used as an
alternative to ordinary convolution.

U = X1 + X2 + X3 (1)

S = Fgp(U ) = 1

H × W

H∑

i=1

W∑

j=1

U (i , j) (2)

Vi = Ffc(S) = δ(WS) (3)

I = e(Vi )

∑3
i=1 e

(Vi )
(4)

G = min(Cin, Cout, q) (5)

In SK-Block, convolution can be set as group convolution.
The setting of the group number G is given by Eq. (5), where
q is set manually, and the group number G determines the
number of the parameter. If the number of groups G is too
large, the memory access cost (MAC) consumption is too
large; if the number of groups G is too small, the number of
parameters is too large and the efficiency is reduced. In addi-
tion, experimental groups on route selection were conducted
as well. The first group included a 5 × 5 × 5 convolution
route and a route without any convolution operation. In the
second group, a 3 × 3 × 3 convolution route was added on
the basis of the first group, and in the third group, a 3 × 3 ×
3 expansion convolution was added on the basis of the sec-
ond group. In the comparative experiment, the model data of
different groups and different route combinations were dis-
played, and the model achieved the best effect when G = 4
and the route number P = 3 were weighed. According to the
ablation experiment, compared to the original SK-Net block,
adding a route without any convolution operation can extract
the details of the feature map; thus, the model can produce
better results.

2.3 Number of parameters

The number of parameters M1 of a single convolution layer
can be expressed by Eq. (6), where k denotes the convolution
kernel size, N is the input channel, b is the offset term, and
C is the output channel. In addition, k = 1 and C is the num-
ber of nodes used to calculate the number of full-connection
layer-parameters. According to this equation, the number of
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Fig. 3 Multi-scale selective nuclear structure SK-Block

parameters M2 of the original V-Net 5 × 5 × 5 convolution
kernel can be calculated by Eq. (7). After the SK-Block is
replaced, the convolution kernel becomes a 3 × 3 × 3 com-
mon convolution and a 5× 5× 5 common convolution, both
of which use grouping. The number of parametersM3 of the
convolution with two fully connected layers and a point is
determined as Eq. (8).

M1 = (k × N + b) × C (6)

M2 =
(
53 × N + 1

)
× C (7)

M3 =
(
33 × N + 1

)
× C × 1

G
+

(
53 × N + 1

)

× C × 1

G
+ (1 × C + 1) × d

+ (1 × d + 1) × C +
(
13 × N + 1

)
× C × 1

G
(8)

According to Eqs. (6)–(8), the total number of parame-
ters in V-Net is 85.77 million, and the weight file size is
425.51 MB. On the other hand, the total number of SKV-
Net parameters is 18.21 million, and the weight file size is
57.76MB. The number of parameters between the V-Net and
themethod proposed in this paperwas statistically compared,
as well as the training time and test time when the batch size
was 4; the results are given in Table 1.

As it can be seen in Table 1, the model proposed in
this paper not only improved the segmentation effect of the
model, but also significantly reduced the number of param-
eters to about 42% of the baseline. Therefore, the proposed

Table 1 Comparison of parameters, training time and test time of the
model

Model Parameter/million Training time/s Test time/s

V-Net 19.61 7213 202

SKV-Net 8.24 6560 269

model can be deployed on mobile devices. Moreover, the
training time was 10% lower than the baseline, while the
test time was higher than the baseline due to the grouping
convolution.

2.4 Loss function

In this paper, the dice loss was used as the loss function for
network training. The dice coefficient of the two binary seg-
mentation bodies can be expressed as Eq. (9). The calculation
method of the dice loss can be expressed as Eq. (10). When
Laplace smoothing = 1, zero division and overfitting can be
avoided. Thus, after Laplace smoothing = 1 is added, the
dice loss can be expressed as Eq. (11).

DSC = 2|X ∪ Y |
|X | + |Y | (9)

Dice loss = 1 − DSC (10)

Dice loss = 1 − 2|X ∩ Y | + 1

|X | + |Y | + 1
(11)
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where X and Y represent predicted and true binaries, respec-
tively, X and Y represent predicted value and true value,
respectively. X ∩ Y denotes the sum of the values of the two
points, |X | said predicted sum, and |Y | said real value com-
bined. During the calculation process, dice loss calculation is
performed for the feature map predicted as non-nodules and
the real label predicted as non-nodules in the foreground.
Subsequently, dice loss calculation is performed for the fea-
ture map predicted as nodules and the real label predicted as
nodules in the foreground. The sum of the two is the actual
dice loss.

3 Experimental analysis

3.1 Experimental environment and data

The experimental environment was as follows: The proces-
sor was an Intel (R) Core (TM) i7-8750 CPU @ 2.20 GHz;
the memory capacity was 16 GB; the graphics card was an
NVIDIATeslaV100 (32Gvideomemory); the operating sys-
tem was Linux; the development language was Python 3.7,
and the deep learning framework was PyTorch 1.6.0.

The data used in this study were derived from the lung
nodule analysis 16 (Luna16) dataset,which is a chest imaging
dataset. Luna16 was released in 2016 and contains 888 CT
images of 1084 tumors with an ideal range of image quality
and tumor sizes. It is one of themost commonly used datasets
for lung tumor detection. Luna16 is derived from a larger data
set, i.e., LIDC-IDRI [29], which contains a total of 1018 CT
scan cases. Adding negative film will aggravate the problem
of uneven positive and negative samples to a certain extent.
Therefore, the data sets used in this paper are all images with
nodules.

The lung nodule data provided by Luna16 are the coor-
dinates of the lung nodule centers and their diameters; thus,
spherical labels with the same size as the image data without
morphological information were generated. Then, prepro-
cessing operations were performed, such as data resampling,
data normalization, and image cutting. Finally, 1186 lung CT
data blockswith a size of 64× 64× 32 containing at least one
pulmonary nodule and the corresponding pulmonary nodule
labels were obtained (Fig. 4). Figure 4a depicts the pul-
monary CT data block containing pulmonary nodules, and
Fig. 4b shows the pulmonary nodule label corresponding to
Fig. 4a. Subset0 to subset7 in Luna16 were used as the train-
ing set, subset8 as the verification set, and subset9 as the test
set, at a ratio of 8:1:1.

3.2 Evaluation indicators

The dice similarity coefficient (DSC), pixel accuracy (PA),
intersection-over-union (IOU), sensitivity, precision, F1

score, andHausdorff distance (HD)were selected as the eval-
uation indices of pulmonary nodule segmentation. Among
them, the calculation method of DSC is given by Eq. (9), that
of PA is given by Eq. (12), that of IOU is given by Eq. (13),
that of the sensitivity is given by Eq. (14), that of the pre-
cision is given by Eq. (15), that of the F1 score is given by
Eq. (16), that of the HD is given by Eq. (17).

PA = TP + TN

TP + TN + FP + FN
(12)

IOU = |X ∩ Y |
|X ∪ Y | (13)

Sensitivity = |X ∩ Y |
|X ∩ Y |+|Y − X | (14)

Precision = |X ∩ Y |
|X ∩ Y |+|X − Y | (15)

F1 = 2 × Precision × Sensitivity

Precision + Sensitivity
(16)

HD(X , Y ) = max
x∈X min

y∈Y ||x − y|| (17)

3.3 Parameter settings

In the training process, the epochs were set to 200 and the
stochastic gradient descent (SGD) optimizer was selected.
The initial learning rate was 0.001. After every 3 training
sessions, the learning rate was decreased to 0.1 times the
initial learning rate. The initial momentum was set at 0.99,
which decreased to 0.9 in the 180th round, and the weight
decayed to 1E−8. The validation set was validated every 5
epochs.

Figure 5 depicts the loss decline diagram of the model.
As it can be seen in Fig. 5a, after 120 rounds of verification,
the loss was basically flat, but increased slightly after 180
rounds, meaning that an over-fitting phenomenon took place.
In this experiment, the early stop strategy was adopted, and
the model with the minimum verification loss was selected
as the optimal model. As it can be observed in Fig. 5b, the
training loss entered a slowdecline stage after 110 rounds and
reached a stable level after 170 rounds. After testing, when
batch size is set to 2, the model does not converge within 200
epochs and the training speed is very slow. When batch size
is set to 8, it is fast to process the same amount of data, but
too many epochs are required to achieve the same accuracy.
When batch size is set to 4, the accuracy is high enough and
the time is optimal.
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Fig. 4 Experimental data, a,
Lung CT data block. b,
Pulmonary nodule label

Fig. 5 Network training and
verification curve, a, train loss. b,
valid loss

Table 2 Comparison between the
number of SKV-Net ablation
participants and dice

Dice G = 2 G = 4 G = 16 Parameter quantity G = 2 G = 4 G = 16

Path = 2 0.784 0.786 0.778 Path = 2 57.25 29.32 8.37

Path = 3 0.795 0.796 0.781 Path = 3 73.4 39.85 14.21

Path = 4 0.772 0.749 0.739 Path = 4 127.91 68.84 21.03

3.4 Ablation experiments

In Sect. 2.2, it has been mentioned that the grouping number
G and route number P of the grouping convolution affect
the number of parameters and the accuracy of the SKV-Net
model. The following study regarding their specific impact
was conducted. The number of grouping convolution was set
asG= 2,G= 4, andG= 16, and the groupingwas calculated
for the convolution on all routes. The number of routes was

set to P = 2, P = 3, and P = 4. The routes were set as no-
operation route p1, 3 × 3 × 3 convolution route p2, 5 × 5 ×
5 convolution route p3, and 3 × 3 × 3 dilatative convolution
route p4, while the number of expansion steps was 1. When
P = 2, routes p1 and p2 were taken; when P = 3, routes P1,
P2, and P3 were taken; when P = 4, all routes were taken
(Table 2).

Table 2 compares the number of parameters and dice val-
ues of all ablation structures. It can be observed that the
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Table 3 Performance
comparison of different models Model Dataset PA Dice Jaccard Sensitive F1 HD/mm 3D

U-Net LIDC 0.867 – – – – – No

MobileUNet LIDC 0.90 – – 0.899 0.898 – No

SquExUNet LIDC – 0.80 – 0.90 – – No

InceptionUNet LIDC – – 0.766 0.90 0.861 – No

V-Net LIDC 0.994 0.791 0.665 0.754 0.798 3.2 ± 1.6 Yes

MSDS-Unet TCIA – 0.675 – 0.746 0.682 – Yes

SK-Net LIDC 0.985 0.787 0.661 0.751 0.794 3.5 ± 1.8 Yes

SKV-Net (This work) LIDC 0.996 0.796 0.665 0.789 0.800 2.8 ± 1.3 Yes

Table 4 Performance comparison of different size

Dice Small nodules Medium nodules Large nodules

V-Net 0.789 0.766 0.751

SKV-Net 0.795 0.769 0.778

increase in the number of routes introduces more scale fea-
tures. Through experimental verification, it can be concluded
that p1, p2, and p3 improve the segmentation effect. Never-
theless, when p4 is added, the segmentation effect worsens;
thus, p4 is the scale that needs to be abandoned. P1 is a new
route proposed on the basis of the SK-Net, which can effec-
tively improve the segmentation accuracy of the model. In
addition, a too low number of groups will result in too many
parameters and a large model. Too many packets will cause
too much MAC consumption, slow down the running speed
of the program, and reduce the segmentation accuracy. The
effect of G = 2 was similar to that of G = 4, but the effect
becameworsewhenG= 16. For comprehensive comparison,
G = 4 and P = 3 were used in the final model configuration.

3.5 Experimental result

Based on the setting of the network parameters in Sect. 2.4,
the training was conducted in the V-Net and SKV-Net mod-
els, and a comparison with other indicators related to this
work was performed. The comparative analysis of the test
results is exhibited in Table 3.

Compared with the traditional U-Net model, the Mobile-
UNet index was improved and the number of parameters
was reduced. This is because the MobileUNet uses resid-
ual connection and the depthwise separable convolution of
MobileNetV3 [30]. In the MobileUNet block, the point con-
volution uses a lightweight channel attention mechanism to
reduce the number of parameters and improve the chan-
nel efficiency. The precision and recall of MobileUNet are
effectively improved. SquExUNet [31] adopts a simple chan-
nel attention mechanism to emphasize the detection ability

of nodules, which can availably improve the training indi-
cators while maintaining the model parameters basically
unchanged. The dice value of SquExUNet achieves the
second-best result. InceptionUNet [32] refers to the block
structure of InceptionV4 [33], and its asymmetric convo-
lution and high-dimensional decomposition methods can
achieve a balance between the reduction in the number of
parameters and the improvement of the indicators. Inceptio-
nUNet uses a bottleneck structure to improve the recognition
ability of positive samples. In the 3DCT image segmentation
task, the MSDS-Unet [34] only adds residual connections
in the 3D U-Net in terms of model improvement, which
is similar to the V-Net, and index improvement is mainly
accomplished through depth supervision. Furthermore, due
to the large input scale of theMSDS-UNet model, the overall
index is lower than that of other models. The SK-Net con-
tains two kernels of different sizes and adaptively processes
the output through three operators: split, fuse and select.

Compared with SK-Net, SKV-Net can effectively utilize
multi-scale information and improve the model accuracy
under the condition of reducing parameter quantity. In all
3D models, SKV-Net outperforms other methods in six eval-
uation indexes such as pa, dice and Jaccard, which indicates
that the proposed method based on SKV-Net can achieve
lung nodule segmentation accurately, and the segmentation
effect is comparable to the current advanced segmentation
algorithms. Therefore, it can serve as a lightweight alterna-
tive to V-Net. In the SK-Block, the route setting determines
the source of multi-scale information extraction. When the
number of routes is 1, the model degenerates into V-Net.
Compared with the two routes of the block in SK-Net, SKV-
Net adds p1 route without any processing is very important,
since it facilitates the precise extraction of model features
to a large extent. Moreover, the contribution to the semantic
accuracy originates mainly from convolution routes such as
p2 and p3. The HD value decreased to 2.8 ± 1.3 mm.

According to the size of nodules, lung noduleswith diame-
ters less than 5mm are classified as small nodules, those with
diameters ranging from 5 to 10 mm are classified as medium
nodules, and those with diameters greater than 10 mm are
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Fig. 6 Distribution statistics of dice similarity coefficients of different models, a, V-Net. b, SKV-Net. c, 3D-SquExUNet. d, 3D-SquExUNet

classified as large nodules. The segmentation effects of V-
Net and SKV-Net on nodules with different sizes are shown
in Table 4.

SKV-Net is superior to V-Net in segmentation of the three
types of nodules, especially in segmentation of small nod-
ules and large nodules. The experimental results verify the
effectiveness and importance of multi-scale information for
pulmonary nodule segmentation.

This paper conducted also statistical analysis on the DSC
values obtained from the test sets of four networks, as shown
inFig. 6.As it can be observed, the dice proposed in this paper
was mainly concentrated between 0.7 and 0.8. Figure 6a
shows the training results of the V-Net model. The effect
of the model was relatively stable, with an average dice coef-
ficient of 0.762 and a maximum dice coefficient of 0.791.
Figure 6b exhibits the training results of the SKV-Net model.
When the number of parameters was significantly reduced,
the average dice coefficient was 0.772 and themaximum dice

coefficient was 0.796. The SKV-Net model achieved the best
dice metrics. Figure 6c displays the training results of the
3D-SquExUNet model, whose dice index was slightly lower
than that of the V-Net model. This was mainly due to that
the channel attention mechanism of SE [35] was equivalent
to the feature loss induced by the inactivation of unimpor-
tant channels. Figure 6d presents the training results of the
3D-MobileUNet model. Since the structure of the model was
simple, the feature extraction performance was insufficient,
reaching a maximum dice coefficient of only 0.749.

Based on the above experimental results, it has been
proved that SKV-Net has better segmentation performance
and higher robustness than the othermodels, and can produce
good segmentation results for different types of pulmonary
nodules.

Figure 7 depicts the cross sections of the 3D segmen-
tation images of 5 pulmonary nodules by 4 networks. The
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Fig. 7 Cross section of
three-dimensional segmentation
results of different networks, a,
Label. b, V-Net. c,
3D-MobileUNet. d,
3D-SquExUNet. e, SK-Net. f ,
SKV-Net

non-nodular diameters from left to right correspond to small,
medium, large, adhesion, and ground glass shadow nodules.

The five models of small nodules performed well, indi-
cating that all had good sensitivity and effectiveness for
the lesion region. The 3D-SquExUNet model for medium
and large nodules began to exhibit over-segmentation and
several false positive points. This can be mainly attributed
to that the channel attention overexpressed some features,
leading to the inability of the feature extractor to effec-
tively converge within a limited amount of time. The V-Net
and 3D-SquExUNet models are used to under-segment vas-
cular adhesion nodules, the research results show unclear
morphological contour segmentation and unsegmented or
incomplete vascular adhesion contour segmentation, the 3D-
MobileUNetmodel presented an over-segmentation problem
in vascular adhesions. The above results are due to the lack
of multi-scale information correction and the model pays

too much attention to local information in point classifi-
cation and judgment. But SK-Net method has the problem
of over-segmentation in adhesion nodules and ground glass
shadownodules,which is caused by the lack of detailed infor-
mation. Since the boundaries of opaque nodules of frosted
glass are very fuzzy, the model can extract pathological fea-
tures, but the contour information is not clear. Thus, the five
models cannot achieve a sufficient segmentation effect. The
SKV-Net can adequately solve this problem. Through the
information fusion of different sensory domains, the under-
and over-segmentation problem iswell balanced.At the same
time, the segmentation effect of ground glass nodules of the
SKV-Net is superior to the overall over-segmentation of 3D-
MobileUNet and othermodels,which indicate the superiority
of SKV-Net regarding multi-scale feature extraction. Based
on the above experimental results, it has been proved that the
method proposed in this paper has better segmentation per-
formance and robustness than other models, and can provide
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a better segmentation effect for different types of pulmonary
nodules.

4 Discussion and conclusion

In this paper, a high-precision and lightweight pulmonary
nodule segmentation model called SKV-Net has been pro-
posed. The SKV-Net improves the maximum dice of the
segmentation results under experimental conditions to 0.796
and the average dice to 0.772, which is 1.3% higher than the
baseline. The segmentation results filled in the missing mor-
phological information well, and the number of parameters
was decreased to 42%of the original. Its structure inherits the
overall design of V-Net, and the 3D convolution of V-Net is
replaced by SK-Block. The latter has a multi-scale selective
core and uses soft attention to fusemulti-scale information to
improve the model. Based on the traditional selective kernel,
this paper innovatively incorporates an unprocessed route to
better extract detailed features. Compared with V-Net, the
SKV-Net improves the segmentation effect, and reduces the
number of parameters by using block convolution. Compared
to other models, SKV-Net is more robust and can achieve a
significant optimization effect for a variety of nodules, such
as vascular adhesion and ground glass shadow nodules. Its
small number of parameters enables its potential deployment
on mobile devices. In future research, alternative data blocks
will be selected from the entire lung CT images in combina-
tion with pulmonary nodular detection to achieve end-to-end
pulmonary CT nodular segmentation.
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