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Figure 1: The proposed zero-shot portrait stylization framework ZePo can directly synthesize stylized facial images with very
few sampling steps (including 1, 2, and 4 steps) (left), where the images synthesized in 4 steps have the best overall quality as
measured by the CLIP-CIA metric. Moreover, our method does not require model fine-tuning, and with 4-step sampling, the
inference time is only about 0.6 seconds (right).

ABSTRACT
Diffusion-based text-to-image generation models have significantly
advanced the field of art content synthesis. However, current por-
trait stylization methods generally require either model fine-tuning
based on examples or the employment of DDIM Inversion to revert
images to noise space, both of which substantially decelerate the
image generation process. To overcome these limitations, this pa-
per presents an inversion-free portrait stylization framework based
on diffusion models that accomplishes content and style feature
fusion in merely four sampling steps. We observed that Latent Con-
sistency Models employing consistency distillation can effectively
extract representative Consistency Features from noisy images. To
blend the Consistency Features extracted from both content and
style images, we introduce a Style Enhancement Attention Con-
trol technique that meticulously merges content and style features
within the attention space of the target image. Moreover, we pro-
pose a feature merging strategy to amalgamate redundant features
in Consistency Features, thereby reducing the computational load
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of attention control. Extensive experiments have validated the ef-
fectiveness of our proposed framework in enhancing stylization
efficiency and fidelity.

CCS CONCEPTS
• Computing methodologies→ Image manipulation.

KEYWORDS
Portrait Stylization, Diffusion Model, Zero-Shot

1 INTRODUCTION
Portrait stylization involves the transfer of an art style from a refer-
ence portrait to a standard facial photograph. Traditional methods
for portrait stylization [7, 9, 29, 51, 67] typically involve fine-tuning
a pre-trained generative model [17, 46], such as StyleGAN [23] or
Stable Diffusion [46], using various reference art portraits. How-
ever, these approaches necessitate considerable time for model fine-
tuning and additional storage space to accommodate the models
that have been fine-tuned for each distinct style image.

To overcome the limitations mentioned above, recent studies
have investigated a tuning-free method [10, 11, 31] that leverages
self-attention features from both content and reference images
during the generation process through Attention Control [5], en-
abling zero-shot portrait stylization. Despite this advancement, the
method struggles with slow image generation speeds. On the one
hand, the diffusion model requires an extensive sampling process to
iteratively denoise Gaussian noise. On the other hand, to accurately
reconstruct the content and reference images, this method often

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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depends on the protracted DDIM Inversion [52] process, which is
necessary to obtain a sequence of intermediate anchors for image
reconstruction. Additionally, the manually customized Attention
Control [5] operation exacerbates the situation by involving ex-
cessive computations of the redundant self-attention mechanism,
further impeding the image generation speed.

In this work, we introduce ZePo, a Zero-shot Portrait Stylization
framework, to address the aforementioned challenges. Regarding
the issue of slow sampling speeds, one intuitive solution is to em-
ploy high-order numerical ODE solvers [2, 34, 70] to decrease the
number of sampling steps required for image generation. However,
these methods, which leverage high-order ODE approximations, ne-
cessitate multiple network function evaluations (NFEs) and achieve
only a marginal reduction in actual sampling time. Moreover, these
ODE solvers do not integrate well with the intermediate anchors
established by DDIM Inversion, which restricts their applicabil-
ity for this particular method. Therefore, rather than relying on
high-order ODE samplers, we propose the use of accelerated distilla-
tion of pre-trained models, specifically Latent Consistency Models
(LCMs) [35], to expedite the image synthesis process. Additionally,
to obviate the need for DDIM Inversion, our findings indicate that
LCMs can directly extract representative consistency features from
noised images. Building on this capability, we suggest a method
to directly extract consistency features from noisy reference and
content images. These features are then seamlessly incorporated
during the generation process of the target image, resulting in a
more efficient and streamlined stylization approach.

To address the issue of speed reduction due to redundant compu-
tations in conventional Attention Control methods, we introduce
the Style Enhancement Attention Control (SEAC). SEAC begins
by integrating the redundant consistency features from both the
source and reference images. Subsequently, it concatenates these
merged features andmaps them as key and value features within the
self-attention space. To modulate the degree of image stylization,
the key features of the reference image are multiplied by a Style En-
hancement coefficient. Consequently, the attention map, calculated
using the query features from the target image and the merged
key features, can adaptively select the value features from both the
content and reference images. This method not only increases the
computational speed of Attention Control but also mitigates the
issue of query confusion, enhancing the precision and efficiency of
the stylization process.

Ultimately, as illustrated in Figure 1 (left), our method demon-
strates the capability to synthesize stylized portraits using no more
than four sampling steps, significantly enhancing both the speed
and practicality of portrait stylization using diffusionmodels. Through
extensive experimentation, we have demonstrated the advantages
of our ZePo framework in rapid stylized portrait synthesis. As
illustrated in Figure 1 (right), ZePo does not require additional
fine-tuning time, and it achieves the optimal CLIP-CIA score while
reducing the inference time to just 0.6 seconds using a 4-step sam-
pling process.

To summarize, we make the following key contributions:
(i) We introduce ZePo, a new inversion-free portrait stylization

framework that requires as few as one sampling step to synthesize
high-quality stylized portraits.

(ii) We propose a novel attention control mechanism, termed
Style Enhancement Attention Control, which leverages redundant
feature fusion to enhance the speed of self-attention computations
and can adaptively select value features from source and reference
images.

(iii) We demonstrate from both quantitative and qualitative per-
spectives that our method surpasses existing state-of-the-art base-
lines, achieving a significantly better balance between preserving
source content information and enhancing image stylization.

2 RELATEDWORKS
2.1 Few-Shot Face Stylization
Early methods [20, 26, 33, 57, 72, 73] of face stylization often re-
quired sampling a large volume of image data to train image-to-
image translation models, consuming substantial training resources.
To mitigate the high cost of training and capitalize on the prior
knowledge embedded in pre-trained models, the few-shot face styl-
ization approach has gained considerable attention. This method
involves fine-tuning a pre-trained StyleGAN model [22–24] with
a limited number of target image samples, a technique commonly
known as GAN-adaptation [39, 45, 58, 59, 61, 69, 71]. Toonify [42]
was among the pioneers in experimenting with face stylization
using GAN-adaptation. They initially fine-tune a StyleGAN model
using a limited set of cartoon samples and subsequently interpo-
lated the weights of the fine-tuned model with those of the orig-
inal model to generate cartoon-styled faces. [30, 40] introduced
additional regularization terms in the latent space to mitigate the
tendency of overfitting when fine-tuning pre-trained models with a
small number of samples. AgileGAN [51] introduced an inversion-
consistent transfer learning framework that effectively reduces the
variance in the inversion distribution. [60] developed a method
that introduces an intermediate domain between the source and
animation domains to bridge the gap between the two. DualStyle-
GAN [63] adds an additional style path to a pre-trained StyleGAN,
enabling efficient modeling and adjustment of both intrinsic and
extrinsic styles. However, it still requires hundreds of images for
fine-tuning, which limits its applicability in scenarios with very
few examples. JoJoGAN [9] advances this by proposing a one-shot
face stylization method that utilizes a reference image to generate
a style mixed paired dataset. The model is then fine-tuned using
this dataset with pixel loss, enhancing its utility in limited-sample
environments. [68] proposed a novel one-shot adaptation method
for face stylization, which divides the process into style transforma-
tion and identity transformation. By effectively separating identity
from style, their approach results in more natural and coherent
transformation outcomes. StyleDomain [1] introduced a parameter-
efficient method that adapts pre-trained models to new domains by
modifying style vectors within the Style Space, enhancing adapt-
ability with minimal resource usage. [71] utilize a single real-style
paired reference to provide style direction in the DINO-ViT [6]
feature space, enabling precise fine-tuning of the generative model.

2.2 Diffusion-Based Style Transfer
Diffusion models [12, 18, 50, 52, 54] have increasingly become
prominent in the field of generative models in recent years, partic-
ularly with the advent of pre-trained text-to-image (T2I) models
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Figure 2: The overall framework of ZePo. The framework is divided into two stages. The first stage involves the extraction of
consistency features, where multi-scale consistent features are extracted from the reference and source images with slight
noise added. The second stage is the stylized image synthesis phase, where the source image, added with a moderate level
of noise, is used as the input. In this phase, the Style Enhancement Attention Control module within the U-Net fuses the
consistency features from both the reference and source images to synthesize a stylized portrait.

[41, 46, 49]. These models have not only popularized AI-generated
art but also spurred extensive research into style transfer methods
leveraging diffusion models. Several methods are inspired by classi-
fier guidance [12], utilizing precisely formulated energy functions to
deliver gradient information for guiding image generation [38, 64].
This allows unconditional diffusion models to produce images con-
ditioned on specific content and style. For instance, [28] advocates
for employing the style loss derived from a pre-trained DINO-ViT
[6] to guide the generation of stylized images. Similarly, [62] uti-
lizes style loss generated by CLIP [44] for guiding stylized image
generation. Other techniques focus on personalizing diffusion mod-
els with specific styles by fine-tuning pre-trained T2I models using
approaches like LoRA [19], Textual Inversion [14], or Dreambooth
[48]. Subsequently, DDIM Inversion [43, 52] is used to derive a
noise representation of content images, which the fine-tuned model
denoises in the noise space, thereby generating stylized images
[7, 25, 67]. Particularly, [7] combines this with null-text inversion
[36] to achieve more precise content reconstruction, though this
method tends to slow down the image synthesis process. Distinct
from methods that merely fine-tune T2I models, some strategies
[8] involve fine-tuning a pre-trained Diffusion Autoencoder [43]
using optimized semantic latent codes to meticulously control both
content and style. Furthermore, techniques such as ControlNet [65]
and T2I-Adapter [37] train additional style adapters using extensive
datasets of style images. These adapters are designed to adjust the
style of images produced by pre-trained T2I models, offering a tai-
lored approach to style management in image generation. Recent
studies have begun to explore zero-shot stylization methods that
utilize pre-trained T2I diffusion models [10, 11, 31]. These meth-
ods integrate content and style features within the attention space
through meticulously engineered attention control modules [5].
However, they depend on DDIM Inversion to derive noise repre-
sentations of content and style images, which consequently slows
down the image synthesis process.

3 PRELIMINARIES
3.1 Latent Diffusion Models
Latent Diffusion Models (LDMs) [46] employ a diffusion model
within the latent space of a pre-trained Variational Autoencoder
(VAE) [13]. The encoder E encodes images into latent codes 𝑧0 =
E(𝑥), while the decoder D reconstructs images 𝑥 = D(𝑧0) from
these codes.

The forward process of diffusion models operates as a Markov
chain, incrementally introducing noise into the initial latent code
𝑧0. Due to the additive nature of Gaussian noise, this process is gen-
erally modeled as a single-step addition of noise, directly yielding
the noisy latent code 𝑧𝑡 at any given step 𝑡 :

zt =
√
𝛼tz0 +

√
1 − 𝛼t𝝐, 𝝐 ∼ N(0, I), (1)

where 𝛼𝑡 is a predefined diffusion schedule. The reverse process of
diffusion models constitutes an approximate Markov chain, where
progressively removing noise in 𝑧𝑇 through the reverse process,
ultimately restoring the noise-free latent code 𝑧0 after 𝑇 iterative
steps:

z𝑡−1 =
1√︁

1 − 𝛽𝑡
(z𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝝐𝜃 (z𝑡 , 𝑡)) + 𝜎𝑡𝜖, (2)

where 𝝐𝜃 is a time-conditioned U-Net [47], tasked with predicting
the noise component in 𝑧𝑡 at each step 𝑡 . The parameters 𝜃 within
𝝐𝜃 are fine-tuned by minimizing a noise prediction loss:

𝐿(𝜃 ) = E𝑡,𝑧0,𝜖
[
∥𝝐 − 𝝐𝜃 (𝒛𝑡 , 𝑡)∥2

]
, (3)

where 𝝐 denotes the noise introduced during the forward process
as described in Eq. 1.

3.2 Latent Consistency Models
Latent Consistency Models (LCMs) [35], are a specialized form of
ConsistencyModels (CMs) [53] that significantly accelerate the gen-
eration speed of LDMs. In LCMs, the consistency function 𝑓 (𝑧𝑡 , 𝑡)
ensures that each anchor point 𝑧𝑡 in the sampling trajectory can
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be accurately mapped back to the initial latent code 𝑧0, thereby en-
suring self-consistency within the model. The consistency function
is defined as follows:

𝑓 (𝑥, 𝑡) = 𝑐skip (𝑡)𝑥 + 𝑐out (𝑡)𝐹 (𝑥, 𝑡), (4)

where 𝑐skip (𝑡) and 𝑐out (𝑡) are differentiable functions designed to
ensure the differentiability of 𝑓 (𝑥, 𝑡) with conditions 𝑐skip (0) = 1
and 𝑐out (0) = 0. The efficacy of 𝑓 (𝑥, 𝑡) is measured through the
following optimization objective:

min
𝜃,𝜃− ;𝜙

E𝑧0,𝑡

[
𝑑

(
𝑓𝜃 (𝑧𝑡+1, 𝑡 + 1), 𝑓𝜃− (𝑧

𝜙
𝑡 , 𝑡)

)]
, (5)

where 𝑓𝜃 denotes a consistency function parameterized by a train-
able neural network, and 𝑓𝜃− is updated at a slow decay rate 𝑢 to
adjust parameters within 𝑓𝜃 . The variable 𝑧

𝜙
𝑡 represents a one-step

estimate of 𝑧𝑡 obtained through the sampler 𝜙 from 𝑧𝑡+1.

4 METHOD
In this section, we introduce ZePo, a zero-shot framework for
portrait stylization that operates within four sampling steps. Our
framework leverages Latent Consistency Models (LCMs), a vari-
ant of Stable Diffusion that distilled with the consistent objective
(Eq. 5). ZePo capitalizes on the observation that LCMs not only
significantly reduce the number of sampling time steps required
for generating images but also efficiently extract representative
features from noisy images, which we term Consistency Features.
Utilizing the Consistency Features extracted from both source and
reference images, we seamlessly integrate these features into the
image generation process through our proposed Style Enhancement
Attention Control module. This integration allows for subtle yet
effective stylization adjustments. Ultimately, with just four sam-
pling steps, our framework is capable of synthesizing high-quality
stylized portraits that faithfully capture the style of the reference
image. The overall architecture of our framework is depicted in
Figure 2.

4.1 Consistency Features
The primary purpose of employing DDIM Inversion [52] is to derive
a series of anchor points {𝑧𝑡 } that facilitate the reconstruction of
the original image 𝑧0, where each anchor 𝑧𝑡 is capable of recovering
𝑧0 with better accuracy. As illustrated in Fig. 3 (a) (b), utilizing the
noisy latent 𝑧𝑡 derived from the forward process in Eq. 1, tends to
yield a predicted 𝑧0 that is blurry and lacks high-frequency details.
In contrast, the noisy latent 𝑧𝑡 post DDIM Inversion can estimate 𝑧0
with enhanced accuracy. The optimization objective (Eq. 5) of LCMs
is aims tominimize the disparity between the outputs of consistency
function in adjacent samples, which corresponds to the distance
between one-step predictions of the model for 𝑧0. It is observed
that this objective endows LCMs with superior one-step predictive
capabilities for 𝑧0. As depicted in Figure 3 (c), the noise level during
forward process is relatively low, particularly for time steps 𝑡 ≤
300, the estimated 𝑧0 by LCM exhibits clearer and more consistent
details compared to the original 𝑧0. This suggests that LCMs can
effectively extract representative features from a noisy image, which
is referred to Consistency Features. Inspired by this capability, we
propose leveraging the Consistency Features extracted from both

source and reference images for portrait stylization. This method
effectively replaces the time-consuming DDIM Inversion process,
offering amore efficient pathway to achieving high-quality portraits
stylization.

𝑡 = 300 𝑡 = 200 𝑡 = 100

(a)

𝑡 = 600 𝑡 = 500 𝑡 = 400

(b)

(c)

Input

Figure 3: The results of one-step denoising with different
noise levels (time-step), different noise addition methods
(DDIM Inversion and Forward Process), and different models
(SD and LCM) are examined. (a) DDIM Inversion + SD. (b)
Forward Process + SD. (c) Forward Process + LCM.

Given a source image 𝐼𝑠𝑟𝑐 and a reference image 𝐼𝑟𝑒 𝑓 , initially,
a pre-trained VAE encoder E encodes them into latent codes 𝑧𝑠𝑟𝑐

and 𝑧𝑟𝑒 𝑓 , respectively. Subsequently, a forward process (Eq. 1) is
applied to introduce noise to these latent codes in a single step,
defined as follows:

𝑧𝑠𝑟𝑐𝑡 =
√
𝛼𝑡𝑧

𝑠𝑟𝑐
0 +

√
1 − 𝛼𝑡𝜖,

𝑧
𝑟𝑒 𝑓
𝑡 =

√
𝛼𝑡𝑧

𝑟𝑒 𝑓

0 +
√
1 − 𝛼𝑡𝜖,

where 𝑡 represents a smaller time-step, and 𝜖 ∼ N (0, 𝑰 ). Finally,
the noisy latent codes 𝑧𝑠𝑟𝑐𝑡 and 𝑧𝑟𝑒 𝑓𝑡 are inputted into the noise
prediction network 𝜖𝜃 of the LCMs, from which the consistency
features {𝑓 𝑠𝑟𝑐

𝑙
} and {𝑓 𝑟𝑒 𝑓

𝑙
} of the source and reference images

at each transformer layer 𝑙 of 𝜖𝜃 are extracted. This process is
formalized as:

({𝑓 𝑠𝑟𝑐
𝑙
}, {𝑓 𝑟𝑒 𝑓

𝑙
}) = 𝜖𝜃 ((𝑧𝑠𝑟𝑐𝑡 , 𝑧

𝑟𝑒 𝑓
𝑡 ), 𝑡, 𝑐),

where 𝑐 denotes the textual condition.
In contrast to previous approaches [5, 55] which necessitate fea-

ture injection to align with the current generation time step, our
proposed consistency features exhibit flexibility in this regard. They
are not bound by the requirement to match the current generation
time step. Thus, the extracted consistency features can seamlessly
integrate into the generation process at any time step, ensuring
their consistent contribution throughout various stages of the gen-
eration process. We demonstrate the impact of feature extraction
at different time steps on the generated results in Figure 7.

4.2 Style Enhancement Attention Control
Attention Control Attention Control (AC) replaces the key and
value features in the target image generation branch with those
derived from the source image reconstruction branch. Leveraging
the self-attention mechanism, AC adaptively aggregates features
from the reference image, thereby preserving both semantic and
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structural information from the source image. However, the incor-
poration of AC significantly impacts the speed of image generation
in existing methods. We conducted a comparative analysis, mea-
suring the time required for image generation with and without
AC under identical step settings. As presented in Table 1, which
indicates approximately a 30% increase in time consumption when
AC is employed.

T=50 T=25 T=10
w/o AC 06.55 03.00 01.22
W AC 08.61 04.17 01.64

Table 1: The image generation speeds with and without At-
tention Control (AC) at different time steps.

Feature Merge In Vision Transformers, there exists redundancy
in tokens, and pruning these redundant tokens during inference
can lead to a model with faster inference speed [3]. Similar tech-
niques have been investigated within the diffusion model frame-
work, which extensively employs self-attention modules. Merging
redundant features in diffusion models has been shown to signif-
icantly enhance the speed of image generation without compro-
mising the quality of the generated images [4]. Building upon this
observation, we propose leveraging the token merge technique
to merge redundant feature sequences before to attention control,
thereby reducing the length of features from 𝑁 to 𝑁 /2 or less. In
contrast to the approach outlined in [4], which necessitates the un-
merging of merged token sequences to restore the original length
of token sequences, our method exclusively merges the consistency
features inputted into attention control. This targeted merging strat-
egy helps circumvent errors that may arise during the un-merging
process.
Style Enhancement Attention ControlWe denote the merged

consistency features at layer 𝑙 as ( ˆ𝑓 𝑠𝑟𝑐
𝑙

,
ˆ

𝑓
𝑟𝑒 𝑓

𝑙
). Upon entering the At-

tention Control mechanism, these merged features are individually
mapped to the key (𝐾𝑠𝑟𝑐 , 𝐾𝑟𝑒 𝑓 ) and value (𝑉 𝑠𝑟𝑐 ,𝑉 𝑟𝑒 𝑓 ) features
within the self-attention module. In contrast to the conventional
AC methods that directly replace key and value features, we intro-
duce a Style Enhancement Attention Control (SEAC) mechanism.
Specifically, we concatenate (𝐾𝑠𝑟𝑐 , 𝐾𝑟𝑒 𝑓 ) and (𝑉 𝑠𝑟𝑐 ,𝑉 𝑟𝑒 𝑓 ) from the
source and reference images into a unified set of key and value
features. Moreover, we enhance 𝐾𝑟𝑒 𝑓 by multiplying it with a Style
Enhancement coefficient 𝜆, yielding a new set of key and value
features as follows:

𝐾𝑠𝑟 = Concat(𝐾𝑠𝑟𝑐 , 𝜆 · 𝐾𝑟𝑒 𝑓 ) ∈ R𝐵,𝑁,𝐷

𝑉 𝑠𝑟 = Concat(𝑉 𝑠𝑟𝑐 ,𝑉 𝑟𝑒 𝑓 ) ∈ R𝐵,𝑁,𝐷 .

Subsequently, the key feature 𝐾𝑠𝑟 and the query feature 𝑄𝑡𝑔𝑡 ∈
R𝐵,𝑁,𝐷 from the target image are utilized to compute a self-attention
map 𝐴 given by:

𝐴 = SoftMax

(
𝑄𝑡𝑔𝑡 · 𝐾𝑠𝑟𝑇

√
𝑑

)
∈ R𝐵,𝑁,𝑁 ,

where𝑑 represents the dimensionality of the query and key features.
Finally, the self-attention map 𝐴 is applied to the value feature 𝑉 𝑠𝑟

to derive the final output 𝜙𝑡𝑔𝑡 as follows:

𝜙𝑡𝑔𝑡 = 𝐴 ·𝑉 𝑠𝑟 .

Hence, SEAC can effectively assess the similarity between the query
features𝑄𝑡𝑔𝑡 and the combined key features (𝐾𝑠𝑟𝑐 , 𝐾𝑟𝑒 𝑓 ), enabling
the adaptive aggregation of value features from (𝑉 𝑠𝑟𝑐 ,𝑉 𝑟𝑒 𝑓 ). Addi-
tionally, the lengths of the query, key, and value features utilized in
the attention computation are all 𝑁 , ensuring consistency in the
computational cost of attention control compared to the original
self-attention mechanism. The comprehensive pipeline of the Style
Enhancement Attention Control is illustrated in Fig. 2 (right).

Building upon the aforementioned consistency feature and Style
Enhancement Attention Control, we introduce a rapid portrait
stylization framework ZePo. With this framework, we achieve the
synthesis of stylized faces within four sample steps. The complete
algorithm is detailed in Algorithm 1.

Algorithm 1 Zero-shot Portrait Stylization
Require:

Distillated Diffusion Model 𝜖𝜃 , Encoder E, Decoder D;
Prompt condition 𝑐 , Guidance scale 𝑠 , Sample steps 𝑇 ;
Reference image 𝐼𝑟𝑒 𝑓 , Source image 𝐼𝑠𝑟𝑐 , Consistency feature

step 𝜏 ,;
1: 𝑧

𝑟𝑒 𝑓

0 , 𝑧𝑠𝑟𝑐0 ←− E(𝐼𝑟𝑒 𝑓 , 𝐼𝑠𝑟𝑐 );
2: Sample noise 𝜖 ←− N (0, I);
3: (𝑧𝑟𝑒 𝑓𝜏 , 𝑧𝑠𝑟𝑐𝜏 ) ←− Forward((𝑧𝑟𝑒 𝑓0 , 𝑧𝑠𝑟𝑐0 ), 𝜏, 𝜖);
4: ({𝑓 𝑟𝑒 𝑓

𝑙
}, {𝑓 𝑠𝑟𝑐

𝑙
}) ← 𝜖𝜃

(
(𝑧𝑟𝑒 𝑓𝜏 , 𝑧𝑠𝑟𝑐𝜏 ), 𝜏, 𝑐, 𝑠

)
;

5: 𝑧
𝑡𝑔𝑡

0 ← 𝑧𝑠𝑟𝑐0
6: 𝑡 = 𝑇
7: repeat
8: 𝑡 = 𝑡 − 1
9: Sample noise 𝜖 ←− N (0, I);
10: 𝑧

𝑡𝑔𝑡
𝑡 ←− Forward(𝑧𝑠𝑟𝑐0 , 𝑡, 𝜖);

11: 𝜖𝑡𝑔𝑡 ← 𝜖𝜃

(
𝑧
𝑡𝑔𝑡
𝑡 , 𝑡, 𝑐, 𝑠, ({𝑓 𝑟𝑒 𝑓

𝑙
}, {𝑓 𝑠𝑟𝑐

𝑙
})

)
;

12: 𝑧
𝑡𝑔𝑡

0 ← Prediction(𝑧𝑡𝑔𝑡𝑡 , 𝑡, 𝜖𝑡𝑔𝑡 );
13: until 𝑡 < 0
14: return 𝐼𝑡𝑔𝑡 ←− D(𝑧𝑡𝑔𝑡0 )

5 EXPERIMENTS
Implementation Details. Our experiments utilize Latent Consis-
tency Models (LCMs), a variant of the acceleration-distilled Sta-
ble Diffusion, employing the LCM sampler. The synthesis of each
stylized image proceeds through four sampling steps. We utilize
the word "head" as the conditional text prompt, and specify the
classifier-free guidance scale at 2. The style enhancement coefficient
𝜆 is set at 1.2. These experimental procedures are conducted using
a single NVIDIA 4090 GPU. Reference images are sourced from
the AFHQ dataset [32], and content images are drawn from the
CelebA-HQ dataset [21]. All images are processed at a resolution
of 512 × 512 pixels.
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(a) Style (b) Content

Ours
(c) Ours

VCT
(d) VCT [7]

INST
(e) InST [67]

StyleGA
N-Nada

(f) NADA [15] (g) DynaGAN [27]

JoJoGA
N

(h) JoJoGAN [9]

Figure 4: Qualitative comparisons with conventional portrait stylization baselines. (a) and (b) are the input reference image and
content image, respectively, while (c-h) are the stylized portraits synthesized by different baselines.

5.1 Qualitative Comparison
Baselines. To evaluate our method’s efficacy, we performed ex-
tensive comparative experiments against current state-of-the-art
(SOTA) few-shot adaptation techniques. This analysis encompassed
StyleGAN-based approaches, including JoJoGAN [9], StyleGAN

NADA (NADA) [15], and DynaGAN [27]. We also compared our
method with diffusion-based techniques such as InST [67] and
VCT [7]. All stylized outputs were generated using the respective
open-source implementations provided by the authors.
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Table 2: Quantitative comparison with conventional portrait stylization baselines. The best and second best of each metrics will
be highlighted in boldface and underline format, respectively. ↓ indicates the lower is better, and ↑ higher is better. The best
and second best of each metrics will be highlighted in boldface and underline format, respectively. ↓ indicates the lower is
better, and ↑ indicates higher is better. Our method achieved the best LPIPS and CLIP-CIA scores among all baselines, and the
best Style score and fastest inference speed among all diffusion-based methods.

Methods LPIPS ↓ CLIP-CIA ↑ Style ↓ Fine-tuning(s) ↓ Inference(s) ↓

StyleGAN-Based
JoJoGAN [9] 0.550 0.538 3.742 48.524 0.052

DynaGAN [27] 0.588 0.555 2.810 1156.822 0.041
NADA [15] 0.561 0.566 4.813 155.321 0.091

Diffusion Based
InST [67] 0.564 0.727 5.775 2007.966 6.932
VCT [7] 0.348 0.467 5.887 374.117 37.850
Our 0.261 0.858 5.213 0 0.684

Figure 4 provides a qualitative comparison among various meth-
ods. (a) presents reference artistic portraits, while (b) displays the
original natural faces. And (c) illustrates the results of our ZePo,
and the subsequent columns showcase outputs from various com-
peting models. As illustrated in Figure 4 (f-h), although StyleGAN-
based methods are effective in transferring the reference style to
content images, they often lead to excessive stylization. This over-
stylization results in significant deviations from the original content
images, particularly altering facial poses as shown in the fourth and
fifth rows for NADA [15]. Moreover, while JoJoGAN [9] achieves su-
perior stylization effects compared to other StyleGAN-based meth-
ods, it struggles with content consistency, especially in preserving
background elements of the content images. Among diffusion-based
methods, InST [67] shows tendencies of overfitting, resulting in
less desirable outputs. Conversely, VCT [7] manages a better bal-
ance between style transformation and content retention, though
it often introduces significant changes in expressions. Our method
not only facilitates various style transformations but also excels
in preserving local details, such as facial features and hair texture,
thereby maintaining consistent facial characteristics between the
source and output images. For instance, specific local details, such
as earrings in the first and fourth rows, are meticulously preserved
in our methond.

5.2 Quantitative Comparison.
To demonstrate the superior quality and efficiency of our method
in portrait art synthesis, we conducted quantitative comparisons
with existing state-of-the-art (SOTA) methods.
Metric. To objectively assess the effectiveness of our proposed
method, we employed LPIPS [66] for content preservation and VGG
Style loss [16] for stylization evaluation. We observed that style loss
predominantly focuses on external texture styles, which does not
effectively capture the intrinsic style of images. Consequently, we
propose the adoption of the non-referential evaluation metric, CLIP-
IQA [56], for a more comprehensive assessment of image quality.
CLIP-IQA leverages the CLIP model [44], pre-trained on a large-
scale text-image paired dataset, as an image feature extractor. Then,
this method evaluates the overall image quality through different
text prompts that relate to image quality and aesthetics.
Evaluation. For quantitative assessment, we randomly selected 10
style images and 10 content images, generating a total of 100 styl-
ized images for each baseline. The quantitative results are presented

in Table 2. Our method outperformed other techniques, achieving
the best scores on both LPIPS and CLIP-IQA metrics. A lower LPIPS
score indicates superior content preservation by our method, while
a higher CLIP-IQA score reflects our method’s ability to synthesize
images with better overall quality and visual appeal. Additionally,
our style score was the highest among methods based on diffusion
models. In addition to evaluating the quality of the generated re-
sults, we assessed the fine-tuning and inference times required by
each method, as presented in Table 2. The results indicate that the
previous approaches necessitate extended periods for fine-tuning.
Moreover, diffusion-based methods exhibit prolonged inference
times, for example, InST [67] requires approximately 7 seconds to
synthesize one stylized image, whereas VCT [7] experiences an
increase in inference time to 37 seconds due to the need for Null-
text text inversion [36]. Our framework, employing a zero-shot
approach, eliminates the need for additional fine-tuning. By incor-
porating Style Enhancement Attention Control, we have reduced
the inference time to approximately 0.6 seconds, thereby enhancing
the practicality of our method.

W/ AC W/ SEAC
𝜆 = 1

W/o ACStyleContent W/ SEAC
𝜆 = 1.2

Figure 5: Ablation experiments on Attention Control (AC).
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5.3 Ablation Study
Attention Control. We conducted extensive ablation experiments
to verify the effectiveness of the proposed Style Enhancement At-
tention Control (SEAC). Figure 5 presents the ablation results using
different Attention Control (AC) methods. Excluding AC results in
merely the reconstruction of content images, lacking any substan-
tive stylization. Conversely, the use of conventional AC often leads
to over-stylization and the loss of critical content details. In con-
trast, our proposed Style Enhancement Attention Control (SEAC)
maintains the integrity of content information while imparting a
more subtle stylization effect. Additionally, the Style Enhancement
(SE) coefficient effectively controls the strength of stylization. By
adjusting the SE coefficient to 1.2, the stylization effect is notably en-
hanced, thus affirming the capability of SEAC to maintain a balance
between content preservation and the desired level of stylization.
Inference Steps Figure 6 illustrates the results produced by our
method at various sampling steps. Notably, our method can gen-
erate satisfactory stylized outcomes with just a single sampling
step, and further increasing the number of sampling steps refines
the detail of the synthesized images. As indicated in Table 3, en-
hancing the number of sampling steps leads to higher CLIP-CIA
scores. However, this increment also results in a slight decline in
content preservation and inference speed. To strike an optimal bal-
ance among stylization quality, content preservation, and inference
efficiency, we established the sampling steps at four for all experi-
ments. Additionally, we validated the effectiveness of the Feature
Merge (FM) technique. As depicted in Table 3, implementing FM
reduces the time required to synthesize images by 20%, without sig-
nificantly compromising the quality of the generated images. This
demonstrates that the feature merge technique not only enhances
efficiency but also maintains high-quality stylization outcomes.

T=8 T=2T=4Style Content T=1

Figure 6: Ablation experiment on different sampling time
steps T. Our method can produce satisfactory stylized results
with just one sampling, and further increasing the number
of sampling steps can enhance the details of the synthesized
results.

Consistency Features. We performed an ablation study on the
use of a fixed time step for consistent feature extraction in Figure 7.
Contrary to initial expectations, extracting features directly from
the input image without the addition of noise results in the inability
of the model to discern content and style features effectively. This
phenomenon is consistent with the behavior of the consistency
equation (Eq. 4) at 𝑡 = 0, where it merely outputs 𝑧0 without any
processing through the network. Consequently, during the consis-
tency model distillation process, the noise prediction network 𝜖𝜃

Table 3: Ablation experiment on different sampling time
steps T and Feature Merge (FM). Increasing the sampling
time steps can improve the CLIP-CIA score and reduce style
loss. Employing FM can enhance the model’s inference speed
without significantly affecting the quality of the images.

Step CLIP-CIA ↑ LPIPS ↓ Style ↓ Inference(s) ↓

W/
FM

T=25 0.797 0.470 1.628 2.862
T=8 0.835 0.409 1.848 1.049
T=4 0.823 0.376 1.993 0.634
T=2 0.781 0.326 2.181 0.416
T=1 0.753 0.242 2.357 0.304

W/o
FM

T=25 0.778 0.440 1.747 3.434
T=8 0.844 0.413 1.994 1.232
T=4 0.817 0.368 2.094 0.724
T=2 0.779 0.313 2.228 0.467
T=1 0.766 0.226 2.411 0.355

has not learned to process inputs at 𝑡 = 0 and therefore fails to
extract features directly from 𝑧0. Based on these ablation insights,
we have set the fixed time step for consistency feature extraction to
99, enabling the extraction of more distinct consistency features.

T=0 T=199T=99Style Content T=299 T=399 T=499

Figure 7: Ablation experiment on the time-step 𝑇 during
the forward noise addition process in consistency feature
extraction.

6 CONCLUSION
In this study, we introduce ZePo, a framework capable of rapidly
generating stylized portraits. Unlike previous methods, ZePo elim-
inates the need for fine-tuning on specific samples or DDIM In-
version for input images, thereby enabling high-quality stylization
in just four sampling steps. This efficiency reduces the inference
time to merely 0.6 seconds. We also introduce Consistency Fea-
tures extraction strategy, which leverage a pre-trained diffusion
model to extract multi-scale Consistency Features from both con-
tent and reference images. Through the proposed style Enhance-
ment Attention Control module, Consistency Features are adap-
tively fused, allowing for adjustable stylization intensity via the
style enhancement coefficient. Furthermore, we introduced a fea-
ture merge technique to merge redundant consistency features,
significantly decreasing the computational cost of attention control
and enhancing the model’s sampling speed. Extensive experiments
demonstrate that our method can synthesize high-quality stylized
results while effectively preserving the content integrity of the
source image, markedly surpassing the performance of existing
advanced approaches.
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