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Abstract

Much of the value that IoT (Internet-of-Things) devices bring to “smart” homes lies
in their ability to automatically trigger other devices’ actions: for example, a smart
camera triggering a smart lock to unlock a door. Manually setting up these rules
for smart devices or applications, however, is time-consuming and inefficient. Rule
recommendation systems can automatically suggest rules for users by learning
which rules are popular based on those previously deployed (e.g., in others’ smart
homes). Conventional recommendation formulations require a central server to
record the rules used in many users’ homes, which compromises their privacy
and leaves them vulnerable to attacks on the central server’s database of rules.
Moreover, these solutions typically leverage generic user-item matrix methods
that do not fully exploit the structure of the rule recommendation problem. In this
paper, we propose a new rule recommendation system, dubbed as FedRule, to
address these challenges. One graph is constructed per user upon the rules s/he is
using, and the rule recommendation is formulated as a link prediction task in these
graphs. This formulation enables us to design a federated training algorithm that
is able to keep users’ data private. Extensive experiments corroborate our claims
by demonstrating that FedRule has comparable performance as the centralized
setting and outperforms conventional solutions.

1 Introduction

With the rapid expansion of smart devices and applications in recent years, it becomes imperative
to automate the actions of different devices and applications by connecting them together. For
example, an occupancy sensor change can trigger a smart thermostat to turn on, or a code merge
can trigger software updates. These connections are broadly construed as rules between entities in
different systems. Setting up these rules between many entities can involve a tedious and challenging
search process, especially for new users. Hence, it is helpful to provide new users with meaningful
recommendations by learning from other users’ sets of rules.

Recommendation systems are growing in various applications from e-commerce [13] to social
networks [19] and entertainment industries [1, 8]. In most cases, the recommendation problem is
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(a) User-Item Matrix Design (b) Graph Structure Design

Figure 1: Illustrations of the conventional structure of recommendation systems based on user-item
structure (left), and the proposed graph-based structure for rule recommendation system in a smart
home device connections setting (right). In the conventional setting, each rule is considered as an
item while in the graph structure each rule is represented as an edge between pairs of entity nodes.

formulated as a matrix completion task of a user-item matrix [6, 21, 2] to recommend new items to
the users based on previous items chosen by the user. In this way, the recommendation problem is
reduced to a dual link between users and items, as depicted in Figure 1(a). Following this setting,
we consider each rule as an item for recommending them to users. However, this is not desirable as
the structure of entities (e.g. the structure of devices or applications owned by a user) on the user
side is not considered. Hence, we are not able to distinguish between different instances of an entity
type (e.g. multiple cameras or multiple motion sensors) to provide meaningful recommendations for
each separate entity based on their existing structure. Moreover, privacy and security concerns for
training models on users’ data in recommendation systems formulated as user-item matrix completion
become a great challenge in IoT systems. The user-item formulations require a central server to know
all users’ rules: these may be sensitive, especially if they involve smart devices’ behavior in users’
homes.

In this paper, we, first, propose a new rule recommendation framework dubbed as GraphRule, based
on the graph structure of entities for each user. In our proposed setup, we create a directed graph for
each user based on their available entities (e.g. light bulb and contact sensor) as nodes and their rule
connections as edges in this graph. Therefore, instead of representing a user’s rules as a row in the
user-item matrix (each item is an entity-rule-entity triplet, e.g. when contact sensor is open, turn on
light bulb), we represent each users’ rules as a graph that encapsulates the structure of entities and
how they are connected together through the available rules. As an example, in Figure 1(b), for user 1,
we have two separate cameras denoted by different nodes in the graph, each connecting to a distinct
set of devices by their specific rules. However, it is infeasible to distinguish between these cameras in
the user-item structure. In fact, in user-item design, we condense entities with the same type into
one general entity (e.g. camera 1 and camera 2 into camera) to only emphasize on their connections
to other entities as rules. Based on our graph structure design, the goal of the rule recommendation
system is then to predict the newly formed edges (rules) in the graph, which can be formulated as a
graph link prediction problem [22]. The system first learns node embeddings for each entity in the
user’s graph using a graph neural network [16, 18]. Based on the embeddings, a prediction model is
then used to estimate the probability of different rules connecting each pair of entities in the graph.

For privacy concerns, unlike the conventional user-item structure, the proposed graph structure can be
easily distributed across different users for training the main recommendation model locally. Indeed,
by casting the rule recommendation problem as a link prediction task across graphs for different users,
we can employ privacy-preserving training setups such as federated learning [14], which allows data
to remain at the user’s side. Moreover, federated training methods are generally iterative, and can
thus easily adapt the model to new users’ data instead of having to retrain the whole model from
scratch, as is common in previous approaches for recommendation systems.

There has been a surge in applications of federated learning in the training of machine learning models
recently [14, 12, 4, 9, 7], with some applications in recommendation systems [20, 5]. However, most
of the proposals for recommendation tasks in federated learning are for cross-silo setups (i.e., data
could be distributed across pre-defined silos) based on user-item matrix completion, and not for
cross-device settings [12] (i.e., with limited data at each user, where here "device" represents one
user and its entities), as in our rule recommendation task.
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Our cross-device setting with the proposed graph structure, however, introduces new challenges:
the amount of data on each individual user is very limited (as each user generally has only a few
entities, e.g., a few smart home devices) and the local data is not independent and identically
distributed (non-IID). The non-IID data distribution with a small sample size severely increases the
variance of gradients among clients. Hence, when simply applying federated training methods, like
FedAvg [14, 11], the model will not converge easily and cannot have comparable performance on
par with the centralized training. To overcome the issue of severely non-IID data distribution across
clients, we use two control parameters in local machines for each client to correct the gradients
for different parts of our model and avoid drifting too much from the average model. With these
solutions, we then introduce FedRule, a federated rule recommendation system with graph neural
network. FedRule can learn the representation and link prediction models of the recommendation
system at the user level with a decent convergence rate using variance reduction techniques with
control parameters, while preserving the privacy of users’ data. Our main contributions are:

• We propose a new rule recommendation framework, called GraphRule, based on the
graph structure of current users by representing rules as edges between entity nodes over
conventional user-item structure.

• We propose an effective federated learning system, called FedRule, which effectively learns
from limited non-IID data on each user’s rules with fast convergence and preserving the
privacy of users’ data.

• Extensive empirical investigation shows the effectiveness of both the proposed structure for
the GraphRule and the FedRule algorithms. FedRule is able to achieve the same perfor-
mance as the centralized version (GraphRule) due to its variance reduction mechanism.

2 Federated Rule Recommendation

2.1 Graph Rule Recommendation

In common recommendation systems, the goal is to predict unknown links between users and items.
However, in rule recommendation problems we want to suggest how users can connect two or more
entities (e.g. smart devices). In previous approaches, we are limited to considering multiple entities’
connections as the connections of one abstract entity to create a user-item matrix (with items as rules).
In this case, the item is a rule between those entities, and hence, we are losing information on the
graph structure of entities and their connections.

In the rule recommendation problem, similar to the graph link prediction problem [22], we need
to consider the relationship between different entities as well. Hence, instead of representing the
connections as a row in a 2D matrix of user-item relationships, we have a graph of entities’ connections
for each user (see Figure 1). The graph also enables us to represent entities with the same type (i.e.,
Cameras) as separate entity nodes in the graph. In addition, in this setting, compared to a simple
graph, instead of binary connections between different entities, we can have multiple types of edge
connections. This will enable us to represent different types of connections as different rules between
entities. Using this structure, we can leverage advancements in the graph neural network domain to
learn a better model for recommending new rules to the users.

Therefore, given the set of users U and the set of connection types R, for each user uk ∈ U in
our setting, we create a graph of entities denoted by Gk = (Vk,Xk, Ek), where Vk is a set of nodes
(entities), Xk is the set of nodes’ (entities’) features (e.g., types of entities) , and Ek is the set of
connections between nodes in this graph. Each connection in Ek can be represented as (vi, vj , r),
which means there is an edge (rule) between node vi and node vj with connection type r ∈ R (e.g.
"is open, turn on" in "when contact sensor is open turn on light"). The goal of the recommendation
system in this problem is to learn an embedding model θ for nodes in the graph of user uk and a
predictor ϕ that can use the node embeddings to estimate the following probability:

P
(
(vi, vj , r) ∈ Ek|θ,ϕ;Gk

)
. (1)

Based on this probability we can then recommend new edges to the users. For each client, our
rule recommendation model has two parts: a Graph Neural Network (GNN) to calculate the node
embeddings and a predictor to predict the connections between nodes (the types of rules) as well as
their probabilities. As discussed above, each client uk has a graph Gk to represent the ground truth
connections between different nodes. We choose a two-layer graph neural network, GraphSage [10],
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to get the embedding of nodes. After the two-layer GNN, we can then get the node embeddings zkv
for all v ∈ Vk. For each client uk, after we get the node embeddings Zk = {zkv ,∀v ∈ Vk}. We then
need to predict the edge connection probability pk

vi,vj
∈ [0, 1]|R| between node vi and node vj for

all vi ∈ Vk and all vj ∈ Vk. In our case, for the predictor model, we use a two-layer fully-connected
neural network with ReLU activation for the first layer and the Sigmoid function in the last layer.
The predictor uses zkvi and zkvj

, embeddings of node vi and node vj as input, and outputs the link
probability of edges using its weights (ϕ).

Centralized Optimization The model can be easily trained in a centralized setting where the
centralized server stores all user graphs Gk = (Vk,Xk, Ek) for all uk ∈ U . We call this centralized
training on the graph structure for rule recommendation as GraphRule. User graphs are mainly
sparse, meaning most of connections between nodes are not set yet. Given the number of possible
types of edges between nodes, there are only a few positive edges Epos

k . The other possible edges can
then be considered as negative edges Eneg

k . Considering all negative edges lengthens the training time,
so we sample negative edges to balance the numbers of positive and negative edges.

We then use binary cross entropy loss including positive and negative edges as our objective function:

Lk(Pk, Epos
k , Eneg

k ) = − 1

|Epos
k |+ |Eneg

k |

 ∑
e∈Epos

k

log(pe) +
∑

e∈Eneg
k

log(1− pe)

 , (2)

where Pk ∈ [0, 1]|Vk|×|Vk|×|R| denotes all pairs of edge connection probability in Gk, and pe ∈ [0, 1]
denotes the connection probability of a specific edge e = (vi, vj , r).

2.2 FedRule

Learning the aforementioned models requires gathering the graph data of every user at a server to run
the training. The GraphRule training, despite its fast convergence speed, can expose users’ private
data related to the devices or applications they are using and how they are connected together. Hence,
it is important to facilitate a privacy-preserving training procedure to safeguard users’ data. Federated
learning [14] is the de-facto solution for such purpose in distributed training environments.

Recently, there have been some proposals to apply federated learning in recommendation problems
such as in [20, 5, 15]. However, almost all these proposals are designed for cross-silo federated
learning and not as granular as cross-device ones. In this paper, the problem of rule recommendation
is formulated so as to be more suited for the cross-device federated learning setup. Although the cross-
device federated learning setup is more desirable for the purpose of privacy-preserving algorithms, it
makes the training procedure more challenging. The reason behind this is that for the problem of rule
recommendation, the size of the data (i.e., the graph structure for each client) is small and it follows
non-IID distribution due to heterogeneous user behaviors. The non-IID data distribution increases the
variance of gradients among users and makes the gradient updates coming from different users to go
in different directions. Hence, the local training in the federated learning by averaging the gradients
is hard to converge due to misaligned directions of gradients. As it is shown in Section 3, applying
FedAvg with GNN on cross-device settings [14, 11] like rule recommendation problem can fail in
some cases due to the non-IID problem mentioned above.

We then propose the FedRule, federated rule recommendation system with graph neural network.
The design schema of the system is depicted in Figure 2. We use negative sampling, which samples
negative edges in the graph, to balance the numbers of positive and negative edges. To avoid the
non-IID problem, we use two control parameters in local machines for each client to correct the
gradients and avoid drifting too much from the average model. FedRule, as presented in Algorithm 1
in the Appendix, consists of four main parts as follows:

Local Updates At the beginning of each local training stage (communication round c), clients will
get the updated global GNN (θk) and prediction (ϕk) models. Then, in each local iteration t, the
client’s device computes the gradients of models using local data. The gradient for the GNN part
is with respect to the graph data (Gk) and for the prediction model is with respect to the set of node
embeddings (Zk) from the local graph. With the control parameters described next, the gradients get
corrected and then the local models (θ(t,c)

k ,ϕ
(t,c)
k ) get updated using their respective learning rates
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Figure 2: Overview of FedRule System Architecture Design.

(ηθ, ηϕ). Note that since the GNN model is a global representation of nodes and the prediction model
is more of a personalized classifier, the learning rates of the models might be different.

Gradient Correction For each local iteration, after computing the gradients, we adapt the
FedGATE’s variance reduction technique [9] and use two control parameters (δθk

, δϕk
) for the

GNN and predictor models respectively. The use of these control parameters will help the training to
reduce the variance of convergence, as it can be inferred from the experimental results in Section 3 as
well. Similar to learning rates, due to different natures of the models, they might get corrected with
different rates using parameters λθ, λϕ.

Model Aggregation After τk local steps in each client’s device, we aggregate the models from the
devices. To do so, we first compute the difference between the current local models and the starting
global models at round c, denoted by ∆

(τk,c)
θk

,∆
(τk,c)
ϕk

. Then, the server averages over these updates

from clients and send back these averages to the clients (∆(c)
θ ,∆

(c)
ϕ ). Also, the server uses these

average updates to update the global models that needs to broadcast to the clients in the next round.
Secure gradient aggregation methods can be integrated in the system to better protect the privacy.

Parameter Updates Using the calculated average updates in the previous stage, clients update their
local control parameters using the deviation of the local updates from average updates:

δ
(c+1)
θk

= δ
(c)
θk

+
1

ηθτk

(
∆

(τk,c)
θk

−∆
(c)
θ

)
δ
(c+1)
ϕk

= δ
(c)
ϕk

+
1

ηϕτk

(
∆

(τk,c)
ϕk

−∆
(c)
ϕ

)
(3)

3 Empirical Evaluation

3.1 Dataset

To experiment the efficacy of our proposed algorithm, we first use a real-world dataset for smart
home devices. This proprietary dataset contains the rules that connect smart devices in different
clients’ houses. Hence, by nature the distribution of rules among different clients is non-IID, which
is in line with the federated learning setting. We call this dataset the “Smart Home Rules” dataset,
which contains 76, 218 users with 201, 940 rules. We simplify the current rules into the following
form: < trigger entity, trigger-action pairs, action entity>, where the trigger-action pairs denote the
connection type. For instance, we can connect a smart doorbell to another camera, when by pressing
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Figure 6: Train and test performance of different algorithms on Smart Home Rule Dataset. FedRule
smoothly converges while FedGNN training diverges after a while.

the doorbell we want to power on the camera for recording. Then, the rule format is < Doorbell,
Doorbell Pressed - Power On, Camera>. We have 11 unique entities and 163 unique trigger-action
pairs, resulting in a total of 1, 207 unique rules. We also provide more experiments on the IFTTT
dataset [6] in the Appendix. The details of experiments are deferred to the Appendix as well.

3.2 Comparison of Graph-Based and User-Item Based Methods

We first compare our centralized graph model, GraphRule, with user-item-based methods. For
a fair comparison with user-item-based methods, we consider entities with the same type as one
entity. As shown in Figure 3, the hit rate of GraphRule is outperforming both GCMC and Matrix
Factorization in this task, which validates our analysis in Section 2.1. With the increase of the number
of recommendations, GraphRule has a better hit rate, close to 0.91, when recommends 40 rules,
which means by recommending 40 rules among 1207 rules total, the user has 91% chance to choose
rules in the recommendation lists on average.

3.3 Evaluation of Centralized and Federated Algorithms

Now, we evaluate the performance of our proposed FedRule, and compare it with FedGNN train-
ing [20], as well as our proposed centralized GraphRule. We perform the evaluations on both
train and test datasets. The results of applying the aforementioned algorithms on the Smart Home
Rules dataset are depicted in Figure 6. During the training, the centralized algorithm, GraphRule,
converges faster since it utilizes the training data of all users in an iid manner. For federated settings,
given the heterogeneous data distribution among users and the heterogeneity of the number of rules
and entities for each user, FedGNN converges to a higher loss with much higher variance. In the
IFTTT dataset, FedGNN diverges after 50 iterations, as depicted in the Appendix. This is especially
exacerbated by the large number of user with small amount of data (76, 218 users and 2.65 rules per
user on average). On the other hand, FedRule smoothly converges to the same loss as the GraphRule
due to its variance reduction mechanism. Similarly, the test AUC of GraphRule converges faster.
During the training process, FedGNN has a better test AUC than FedRule at the start but increases
slowly after 50 iterations as the training loss diverges. The test AUC of FedRule increases steadily
to the same level as GraphRule after 200 iteration. The test Mean Rank also shows similar patterns.
Also, Figure 4 shows the test hit rate of the Smart Home Rules dataset. FedRule and GraphRule
have very close performance and are at most 26.8% better than FedGNN.
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3.4 Entities with Same Type

As it was mentioned, the graph structure allows us to distinguish between different entities with the
same type in a user’s graph. In this case, user-item-based methods become infeasible. User graph-
based methods, however, can solve this problem by simply considering these entities as different
nodes in the graph and using a node embedding to distinguish between different nodes with the same
type. Figure 9 shows the training and testing results for centralized and federated methods. Similar to
the previous part, GraphRule converges faster, and FedGNN diverges after 150 iterations. Similarly,
the test loss of FedGNN diverges after 100 iterations while FedRule converges smoothly. Also, the
AUC and Mean Rank results show that FedRule has a better performance than FedGNN. Moreover,
Figure 5 shows test hit rates. GraphRule has a better performance than federated approaches.
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[18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[19] Frank Edward Walter, Stefano Battiston, and Frank Schweitzer. A model of a trust-based
recommendation system on a social network. Autonomous Agents and Multi-Agent Systems, 16
(1):57–74, 2008.

[20] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn: Federated
graph neural network for privacy-preserving recommendation. arXiv preprint arXiv:2102.04925,
2021.

[21] Qinyue Wu, Beijun Shen, and Yuting Chen. Learning to recommend trigger-action rules for
end-user development. In International Conference on Software and Software Reuse, pages
190–207. Springer, 2020.

[22] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in
Neural Information Processing Systems, 31:5165–5175, 2018.

8



Algorithm 1: FedRule Federated Learning for Rule Recommendation Systems
for c = 1, . . . , C do

for each client k ∈ [K] do in parallel
Set θ(1,c)

k = θ(c), ϕ(1,c)
k = ϕ(c),

for t = 1, . . . , τk do
Set g(t,c)

θk
= ∇θk

Lk(θ
(t,c)
k ,ϕ

(t,c)
k ;Gk)

Set g(t,c)
ϕk

= ∇ϕk
Lk(θ

(t,c)
k ,ϕ

(t,c)
k ;Zk)

// Correct Gradients

g̃
(t,c)
{θk,ϕk} = g

(t,c)
{θk,ϕk} − λ{θ,ϕ}δ{θk,ϕk}

// Update Parameters

θ
(t+1,c)
k = θ

(t,c)
k − ηθ g̃

(t,c)
θk

ϕ
(t+1,c)
k = ϕ

(t,c)
k − ηϕ g̃

(t,c)
ϕk

end
// Update Control Parameters

send ∆
(τk,c)
{θk,ϕk} =

{
θ
(c)
k ,ϕ

(c)
k

}
−

{
θ
(τk,c)
k ,ϕ

(τk,c)
k

}
to server and gets ∆(c)

{θ,ϕ}
Update control parameters using Eq. (3)

end
// Server Operations
// Difference Aggregation

∆
(c)
{θ,ϕ} = 1

K

∑K
k=1 ∆

(τk,c)
{θk,ϕk} and broadcasts back to clients

// Update Global Models
Compute

{
θ(c+1),ϕ(c+1)

}
=

{
θ(c),ϕ(c)

}
−∆

(c)
{θ,ϕ} and broadcast to local clients

end

A FedRule Algorithm

The details of the FedRule algorithm can be seen in Algorithm 1.

B Additional Details on Experiments

B.1 Experimental Setups

Comparing Methods We compare these methods: (i) Matrix Factorization [3]: Complete user-item
matrix by matrix factorization. GCMC [2]: Graph-based auto-encoder framework for matrix com-
pletion based on user-item bipartite graph. (ii) GraphRule: The proposed centralized optimization
for graph formulation of rule recommendation. (iii) FedAvg with GNN [14, 11]: Each user has a
user graph and a local model. The server aggregates the local models and uses FedAvg to train the
global model. We call this FedGNN. (iv) FedRule: Our proposed federated rule recommendation
algorithm.

Experiment Setting We use the Adam optimizer with learning rate 0.1 and 100 training rounds.
For federated algorithms, we use 3 local steps at each communication round, for 300 total iterations.
The dimensions of the hidden states between the two GraphSage layers and the two NN layers are
16 and the number of possible trigger-action pairs, respectively. For GraphRule, users’ graphs are
stored in the central server and we do the gradient descent with all users’ graphs. For federated
methods, we compute the batch gradient descent on each user’s graph with local epoch of 3 to train
the local models, then the server aggregates the local models to update the global model. We set the
hyper-parameter λ = 1 for FedRule algorithm. For each user, we use 80% rules set by the user for
training and the remaining 20% rules for testing.

Evaluation Metrics We use the following metrics to compare algorithms: (i) Loss: Binary cross
entropy loss with the positive and negative edges. (ii) AUC: Area Under the Curve. (iii) Mean Rank:
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Figure 7: Training and test performance of different centralized and federated algorithms on IFTTT
Dataset. Again, FedRule smoothly converges while FedGNN overfits.
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Figure 8: The Hit Rate on the IFTTT test dataset for centralized and federated algorithms with the
rule filter.

Mean rank of positive testing edges between specific entities. (iv) Hit Rate@N: Recommend N rules
and check if the positive test edges are included.

B.2 Description of Datasets

Proprietary Smart Home Rules Dataset As discussed in the main body, we primarily use this
dataset for our comparisons, which consist the data of smart home devices’ rules. The types of entities
and trigger-action pairs are shown in Table 1.

IFTTT Dataset The IFTTT Dataset [6] is one of the most popular EUD tools. To the best of
our knowledge, this is the only publicly available dataset of IF-THEN rules defined and shared by
different users. But it does not support entities with the same type. It was obtained by Ur et al. [17]
with a web scrape of the IFTTT platform as of September 2016. The dataset contains 144 different
users with 8, 729 rules. There are 3, 020 types of rules used by users. In the current dataset, we use
53 unique entities and 132 unique trigger-action pairs. The types of entities and trigger-action pairs
are shown in Table 2.

Types of Entities
Camera
Chime Sensor
Contact Sensor
Light
Lock
Mesh Light
Motion Sensor
Outdoor Plug
Plug
Thermostat
Outdoor Camera

Types of Trigger-Action Pairs
Open, Power On
Open, Power Off
Open, Motion Alarm On
Open, Change Brightness
...
Open, Siren On
Open, Alarm Action
...
Person Detected, Power Off
Smoke Detected, Power Off
Doorbell Pressed, Power On

Table 1: Smart Home Rules Dataset enti-
ties and trigger-action pairs.

Types of Entities
Android Device
Weather
Gmail
YouTube
...
Facebook
Instagram
Linkedin
...
Twitter
Reddit

Types of Trigger-Action Pairs
New Post, Share a Link
New Follower, Post a Tweet
New Like, Add File from Url
New Liked Video, Create a Post
...
New Photo, Send Me an Email
New Photo, Add File from Url
New Screenshot, Add File from Url
...
You Exit an Area, Set Temperature
Battery Low, Send an Sms

Table 2: IFTTT Dataset entities and trigger-
action pairs.
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Figure 9: Training and test performance of different centralized and federated algorithms on Smart
Home Rule Dataset, when considering multiple entities with the same type.

Loss AUC MR MR(RT)
GraphRule 0.1997 0.9768 4.349 3.0970
FedGNN 0.3878 0.9521 6.661 5.3946
FedRule 0.1892 0.9804 4.156 2.9150

Table 3: Final test results on Smart Home Rules
Dataset (RT: remove rules shown in training
graph).

Loss AUC MR MR(RT)
GraphRule 0.3238 0.9491 9.6997 9.6745
FedGNN 0.4905 0.9072 12.4479 12.4240
FedRule 0.3614 0.9417 8.8812 8.8564

Table 4: Final test results on IFTTT Dataset. (RT:
remove rules shown in training graph).

B.3 Additional Evaluation of Centralized and Federated Algorithms

Additional Results on Smart Home Dataset Table 3 shows the final test results of Smart Home
Rules data. Although the GraphRule has access to all users’ graphs during the training, FedRule
slightly outperforms GraphRule since it employs variance reduction, making the convergence more
smooth. FedRule greatly outperforms FedGNN in all criteria. The mean rank of FedRule is 2.915
after removing the rules in training graphs, which means that for any rules between two specific
entities, we need to recommend three rules in average and the user is very likely to adopt at least one
of them.

Results on IFTTT Dataset The results of applying these methods on IFTTT dataset is shown in
Figure 7. The IFTTT dataset is relatively smaller than the Smart Home Rules data, so it is easier
to converge during the training process. For the training loss, the centralized training, GraphRule,
convergences faster since it benefits from iid distribution of data. For federated setting, given it is
a small dataset, the train loss of FedGNN converges faster than FedRule with the same learning
rate but the test loss of FedGNN diverges after 50 iterations. Similar to the Smart Home Rules
dataset, FedGNN has a better test AUC at the start but it decreases after 50 iterations as the test loss
diverges. The test AUC of FedRule increases steadily during the training. Also, its test mean rank
smoothly decreases, converging to even lower value than the GraphRule. Table 4 shows the final
test results on IFTTT data. Although GraphRule has a better testing loss and a slightly better AUC,
the Mean Ranks of FedRule are better than those of GraphRule, which is a better indicator of the
recommendation performance.

Figure 8 shows the hit rate of different algorithms in IFTTT dataset. Given the huge number of rules
and apps, there are trigger-action pairs that are infeasible between some entities in practice. Since
the number of users are small and hard to train a general model to avoid these infeasible pairs, we
do rule filtering on the recommended rules to keep valid rules. Due to the small size of the dataset,
the evaluation has high variance. FedGNN is slightly better than GraphRule and FedRule for top-5
recommendation. But FedRule is the best in general and has at the best 8.1% higher hit rate than
GraphRule and FedGNN.
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