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ABSTRACT

Vision-language models (VLMs) have demonstrated remarkable capabilities in
understanding and reasoning about visual content, but significant challenges persist
in tasks requiring cross-viewpoint understanding and spatial reasoning. We identify
a critical limitation: current VLMs excel primarily at egocentric spatial reasoning
(from the camera’s perspective) but fail to generalize to allocentric viewpoints
when required to adopt another entity’s spatial frame of reference. We introduce
ViewSpatial-Bench, the first comprehensive benchmark designed specifically for
multi-viewpoint spatial localization recognition evaluation across five distinct task
types, supported by an automated 3D annotation pipeline that generates precise
directional labels. Comprehensive evaluation of diverse VLMs on ViewSpatial-
Bench reveals a significant performance disparity: models demonstrate reasonable
performance on camera-perspective tasks but exhibit reduced accuracy when rea-
soning from a human viewpoint. By fine-tuning VLMs on our multi-perspective
spatial dataset, we achieve an overall performance improvement of 46.24% across
tasks, highlighting the efficacy of our approach. Our work establishes a crucial
benchmark for spatial intelligence in embodied AI systems and provides empirical
evidence that modeling 3D spatial relationships enhances VLMs’ corresponding
spatial comprehension capabilities.

1 INTRODUCTION

While Vision-Language Models (VLMs) demonstrate remarkable capabilities in visual content
understanding and reasoning (Chen et al., 2024a; Cheng et al., 2024; Song et al., 2024), they exhibit
significant limitations when confronted with complex tasks requiring cross-viewpoint comprehension
and spatial reasoning (Shiri et al., 2024; Stogiannidis et al., 2025). Specifically, current VLMs
perform adequately in egocentric spatial judgments but struggle to interpret and reason about spatial
relationships from alternative entity perspectives (Lee et al., 2025). This constraint substantially
impedes the performance of the model in practical application scenarios.

Humans naturally understand spatial relationships from multiple perspectives. When interacting with
others, we effortlessly adopt their viewpoints to interpret spatial references: intuitively distinguishing
between “the cup on my left” and “the cup on your left” without conscious effort. This perspective-
taking ability enables seamless communication in physical spaces and forms the foundation for
successful collaborative interactions. In contrast, current VLMs operate primarily within an egocentric
reference frame, where spatial reasoning is entirely anchored to the camera’s perspective (Paz-
Argaman et al., 2024).

This issue is particularly prominent in embodied interaction scenarios. When a person asks a robot
“Can you pass the mug on my right?”, they expect the robot to identify the target object from their
perspective rather than the robot’s own. This ability to reason spatially from different viewpoints,
known in cognitive science as "perspective-taking," represents a critical capability for human-machine
interaction, spatial navigation (Zhao et al., 2024), and multi-agents collaboration (Feng et al., 2025).
Crucially, this challenge becomes significantly more complex in three-dimensional environments,
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Q: When positioned at 

refrigerator facing desk, 

where can you find pillow? 

A: When I stand at the position of the 

refrigerator in the scene and face the 

desk, then the pillow should be in my 

front-left.

Q: Where is the pillow located 

compared to the nightstand from 

the camera's perspective?

A: From the camera's perspective, 

the pillow is located above and to 

the left of the nightstand.

Q: From the perspective of the man in 

white, the man in green was in what 

position relative to him?

A: From the perspective of the 

man in white, the man in green 

was positioned to his right.

Q: With the camera's viewpoint as 

the front, which direction is the man 

in white facing in the image?

A: From the camera's viewpoint, 

which serves as the front, the man 

in white is turned toward the left 

side of the image. 

Q: Imagine being 

the man dressed 

in green in this 

image, in which 

direction are you

facing?

A: As the man 

dressed in green in 

the image, I am 

facing the front, 

looking straight 

ahead toward what 

lies in front of me.

Figure 1: ViewSpatial-Bench for multi-perspective spatial reasoning. Our benchmark evaluates
spatial localization capabilities from both camera and human perspectives across five task types.

where viewpoint transformation involves not only changes in two-dimensional planes but also
considerations of depth, occlusion, and camera pose, factors that substantially increase the difficulty
of object localization tasks (Li et al., 2025a).

Currently, most VLMs rely primarily on large-scale image-text pairs harvested from the webs,
where spatial information tends to be sparse due to the inherent lack of three-dimensional spatial
annotations (Ma et al., 2024a). Moreover, even in multimodal datasets that include spatial descriptions,
task designs typically remain limited to shallow spatial understanding from static viewpoints, lacking
multi-dimensional, multi-perspective spatial reasoning tasks that would enable models to develop
more generalizable spatial representations (Cheng et al., 2024; Zha et al., 2025). We therefore
hypothesize that VLMs’ deficiencies in cross-viewpoint spatial understanding tasks stem from
structural limitations in their training data.

To address this research gap, we introduce ViewSpatial-Bench, the first comprehensive benchmark
for evaluating spatial localization from both camera and human perspectives. This benchmark
encompasses five distinct localization recognition tasks and is supported by a reliable automated
3D orientation annotation pipeline that generates efficient, diverse, and scalable image datasets with
precise directional labels. Furthermore, we utilized this automated pipeline to produce extensive
spatially annotated training data for VLMs, enhancing their perceptual reasoning capabilities for
spatial relationships across multiple viewpoints.

Based on ViewSpatial-Bench, we conducted a comprehensive evaluation of multiple VLMs inves-
tigating their spatial understanding performance. Results demonstrate significant limitations in
spatial localization tasks, particularly when reasoning across different viewpoints. To address these
limitations, we introduced well-annotated spatial data for VLM training, enabling more concrete
multi-perspective spatial understanding and yielding the Multi-View Spatial Model. This approach
significantly improved spatial perception across viewpoints, partially validating our hypothesis. In
summary, our contributions are:

• We propose ViewSpatial-Bench, the first comprehensive benchmark for evaluating multi-
viewpoint spatial localization across 5,700 curated samples and five task types. This benchmark
systematically assesses VLMs’ spatial reasoning from both camera and human perspectives,
addressing a critical gap in cross-viewpoint evaluation frameworks;

• We design an automated 3D spatial annotation pipeline that efficiently generates large-scale,
precisely annotated multi-view datasets. This pipeline provides rich spatial relationship data for
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VLM training through automated orientation annotation, establishing important foundations for
future research;

• We develop the Multi-View Spatial Model trained on our large-scale multi-viewpoint VQA
dataset. Through systematic evaluation, we identify fundamental limitations in current models’
perspective-based spatial reasoning, particularly in 3D embodied environments. Our model
achieves 46.24% improvement over baselines, demonstrating our methodology’s effectiveness.

2 RELATED WORKS

Spatial Reasoning with VLMs. Recently, VLMs have demonstrated significant advancements
in understanding and reasoning about visual content (Bordes et al., 2024; Deng et al., 2025). Both
proprietary and open-source models have achieved impressive performance in visual question answer-
ing, image captioning, and complex multimodal reasoning tasks. These models typically incorporate
image encoders and vision-language fusion modules (Cho et al., 2023; Li et al., 2023; Liu et al.,
2025), pre-trained on large-scale image-text pairs (Zang et al., 2024).

However, despite current VLMs’ exceptional performance on certain visual reasoning tasks, their
spatial understanding capabilities remain fundamentally limited (Cheng et al., 2024; Shiri et al., 2024).
When handling tasks involving spatial relationships, object localization, or embodied interaction
reasoning, models typically rely on camera-centric reference frames, with their spatial understanding
strictly bound to the observational viewpoint (Shiri et al., 2024; Yang et al., 2025). This constraint
impairs their generalization capabilities and practical utility in tasks requiring perspective transfor-
mation or third-person spatial comprehension, making the development of models with stronger
perspective-taking awareness a critical challenge for advancing multimodal intelligence.

Benchmarks fo Spatial Perspective-Taking. Several benchmarks have been proposed to evaluate
spatial reasoning capabilities in VLMs, but most focus primarily on single-perspective spatial
understanding. For instance, EmbSpatial-Bench (Du et al., 2024) and What’sUP (Kamath et al.,
2023) concentrate on assessing models’ abilities to recognize spatial relationships between objects
in two-dimensional images, while VSI-Bench (Yang et al., 2025) tests model performance on
compositional visual reasoning tasks involving spatial queries. Additionally, some research explores
spatial reasoning in embodied AI, such as navigation and object localization tasks, but these works
predominantly rely on the agent’s egocentric perspective (Song et al., 2024).

Although some benchmarks have begun to address cross-viewpoint spatial understanding, such as
3DSRBench (Ma et al., 2024b) and SPHERE (Zhang et al., 2024a), they remain insufficient in terms
of multi-task comprehensiveness and depth of perspective transformation assessment.

3 VIEWSPATIAL-BENCH

3.1 OVERVIEW

We introduce ViewSpatial-Bench to quantitatively evaluate VLMs’ spatial localization capabilities in
3D environments from multiple perspectives. Our benchmark contains over 5,700 question-answer
pairs spanning more than 1,000 unique 3D scenes, with source imagery from the validation sets of
ScanNet (Dai et al., 2017) and MS-CoCo (Lin et al., 2014). Following a construction pipeline
illustrated in Figure 2, we first acquired images with complete spatial information, created metadata
using existing annotations, extracted spatial relationships for specific tasks, and finally constructed
and filtered the QA dataset.

ViewSpatial-Bench comprises five localization recognition tasks across two complementary perspec-
tive frameworks. From the camera perspective: (1) Object Relative Direction recognition(Cam-Rel.
Dir.), which determines spatial relationships between objects directly from images; (2) Object View
Orientation recognition(Cam-Obj. Ori.), which identifies the gaze direction of individuals relative to
the camera from an egocentric viewpoint. These tasks evaluate VLMs’ intuitive, egocentric spatial
understanding abilities. From the human perspective: (3) Object Relative Direction recognition(Per-
Rel. Dir.), which involves adopting the viewpoint of a character in the image to determine the spatial
relationships of other objects from their perspective; (4) Object View Orientation recognition(Per-Obj.
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Ori.), which requires assuming the position of a character in the image to determine the direction
of their gaze; (5) Scene Simulation Relative Direction recognition(Per-Sce. Sim.), which requires
modeling oneself within a spatial scene across sequential frames to determine relative positions of
other objects. These latter three tasks assess VLMs’ abstract, perception-dependent spatial awareness
while accommodating complex human pose variations and spatial information in embodied scenarios.

Question:  Standing at desk, 

gazing at pillow, where should 

shelves be?

A. back-left   B. front-right 

C. front-left   D. back-right

Answer: B. front-right

Question: How is the chair

positioned with respect to the 

pillow? 

A. right      B. back 

C. left        D. above

Answer: A. right

Question: Taking the camera lens 

as the front, what direction is the 

man looking toward?

A. back         B. back-right

C. left            D. front

Answer: C. left 

Question: From the perspective of 

the man in white clothes, where 

is the man in red clothes?

A. front         B. right

C. left            D. back-left 

Answer: B. right

Question: As the man in 

black in the photo, in which 

direction are you facing?

A. back            B. left

C. front-right   D. back-right

Answer: B. left

ScanNet-Source CoCo-Source

Scene Simulation Relative Direction Relative Direction Object View Orientation Object View OrientationRelative Direction

QA Pairs Generation

Invalid data

Automatic Filtration

Partially Manually Annotated
Manual Verification 

and Filtering

Data Collection And Processing
Metadata Creation

Spatial Relation Extraction

Dataset Summary

ViewSpatial-Bench

x

y
（obj1, front-left, obj3 facing obj2）

（obj1, above-left, obj2）

（head, back-left, relative to the camera）

（head, front-right, relative to the body）

z

1
2

3

Figure 2: ViewSpatial-Bench construction pipeline. From data collection to QA generation across
camera perspective ( ) and person perspective ( ) tasks. The pipeline includes metadata creation,
automatic filtering, spatial relation extraction, and manual verification.

3.2 DATASET CONSTRUCTION

ViewSpatial-Bench construction follows a systematic process using two complementary data sources:
ScanNet for rich 3D scene reconstructions with accurate spatial coordinates, and MS-CoCo for
diverse images with human subjects and annotated keypoints. This combination supports both
precise 3D spatial reasoning and perspective-dependent person-centric understanding tasks. We
developed specialized processing pipelines for each source to extract reliable spatial relationships
using automated techniques with manual verification.

ScanNet Source. For Cam-Rel. Dir. and Per-Sce. Sim. tasks, we utilized the ScanNet validation
set. We first obtained voxel information for each scene, then applied Maximum Coverage Sampling
(Algorithm 1 (Zheng et al., 2025)) to ensure complete spatial representations with minimal frames
while maximizing diversity. This approach prevented redundant capture of the same spatial locations.
For each selected frame, we generated scene metadata including visible objects with visibility rates
and 3D spatial coordinates in the camera coordinate system.

For Cam-Rel. Dir. task, we leveraged 3D spatial coordinates and camera parameters to determine
relative positions between object pairs. For Per-Sce. Sim. task, we first identified objects appearing
only once in each scene (set N ), selected object triads o1, o2, o3 from N , and used metadata to locate
frames containing all three objects. By simulating the position and orientation at o1, we calculated
the relative position of o3 from this simulated viewpoint.

MS-CoCo Source. For Cam-Obj. Ori. and Per-Obj. Ori. tasks, plus Per-Rel. Dir. task, we utilized
the MS-CoCo validation set. We filtered images containing animate objects occupying at least 20%
of the image area.

For orientation tasks, we selected images where subjects’ gaze directions aligned with head ori-
entations. Using MS-CoCo’s bounding boxes and keypoints, we segmented person images into
head and body components, then employed Orient-Anything-Large (Wang et al., 2024) to calculate
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rotation angles (Algorithm 2). For person-perspective orientation, we derived gaze direction by
analyzing angular offsets between head and body orientations. For camera-perspective orientation,
we calculated both head and body rotation angles, selecting the computation with highest confidence.
For complex cases with multiple subjects, we resorted to manual annotation.

For Per-Rel. Dir. task, which include questions like "From person A’s perspective, where is person
B located?", we manually annotated 864 instances due to the complexity of human and object
appearances and insufficient accuracy in automated approaches.

Algorithm 1 Maximum Coverage Sampling

Require: Set of frames F = {f1, f2, . . . , fn},
voxel sets Vk for each frame fk, budget K

Ensure: Subset S ⊆ F maximizing voxel cover-
age

1: Initialize S ← ∅
2: Initialize U ← ∅ {Covered voxels set}
3: while size of S is less than K do
4: Select f∗ = argmaxfk∈F\S |Vk \ U |
5: Add f∗ to S
6: Update U ← U ∪ Vf∗

7: if Stop condition is met then
8: break
9: end if

10: end while
11: return S

Algorithm 2 Head-to-body Orientation Offset
Require: Image I , keypoints K, bounding box B, Orient-

Anything model D
Ensure: Person gaze direction
1: P ← Crop(I,B)
2: (Lx, Ly), (Rx, Ry)← ExtractShoulders(K)
3: if Visibility(Ly) = 0 OR Visibility(Ry) = 0 then
4: return False
5: end if
6: H ← min(Ly, Ry)
7: Phead ← P [0 : H, :], Pbody ← P [H :, :]
8: (azhead, confhead)← D(Phead)
9: (azbody, confbody)← D(Pbody)

10: ∆← (azhead − azbody + 540) mod 360− 180
11: return direction based on ∆ thresholds for left, front-

left, front, front-right, right

QA Dataset Creation. ViewSpatial-Bench is structured as a multiple-choice benchmark derived
systematically from our metadata. After extracting 3D spatial information through our ScanNet and
MS-COCO processing pipelines, we converted the raw spatial coordinates and orientation angles into
standardized directional relationships using a rule-based mapping system. For each task category, we
designed question templates that explicitly test perspective transformation abilities. The construction
followed three key steps:

First, we converted raw spatial data (3D coordinates, orientation angles) into standardized directional
relationships using angle-based mapping (e.g., 22.5◦ to 67.5◦ as "front-right," 67.5◦ to 112.5◦ as
"right"). This discretization enabled consistent labeling across different scenes.

Second, we populated templates with object identifiers and computed spatial relationships from
our metadata. For complex spatial reasoning tasks, our templates incorporate three objects to test
perspective adoption with relative positioning:

QA Generation Example

Template: "If you stand at object1 facing object2, where is object3?"

Metadata: bookshelf(1.2, 0.5, 0), window(1.2,3.5,0), sofa(3.2,1.5,0)

Computation:
1. Vector bookshelf→window: (0,3.0,0) [front direction]
2. Vector bookshelf→sofa: (2.0,1.0,0)
3. Angle: 63.43◦ clockwise = "front-right"

Question: "If you stand at the bookshelf facing the window, where is the sofa?"
Answer: "front-right"
Distractors: "left", "back", "front-left"

Finally, we implemented specific rules for distractor generation: for single-directional attributes
(e.g., "front"), distractors exclude compound directions containing that attribute ("front-left"); for
compound directions (e.g., "front-left"), distractors exclude constituent single directions ("front"
or "left"). This design systematically eliminates ambiguity and provides focused assessment of
fundamental spatial concepts while controlling for question difficulty.
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Filtering and Human Verification. To ensure the quality of ViewSpatial-Bench, we implemented
a multi-stage filtering process for all tasks. During metadata generation, we eliminated invalid data
with incorrectly calculated orientation angles or excessively large rotation angles. In the manual
filtering stage, for relative direction tasks, we removed instances where objects were too close to each
other, objects were difficult to identify, or images were blurry. For gaze direction recognition tasks,
we filtered out data where subjects’ gaze directions significantly differed from their head orientations
or where subjects were difficult to identify. Following automated construction and filtering, we
conducted manual verification to confirm that target objects were clearly visible in images and that
the spatial localizations were correct and unambiguous. This iterative refinement process continued
until ViewSpatial-Bench met our quality standards (Yang et al., 2025; Du et al., 2024). Additional
dataset construction details are provided in Appendix B.1.

3.3 DATASET STATISTICS

ScanNet - Source (50.4%)

Camera - Relative Direction(31.0%)
Person - Scene Simulation Relative 
Direction(19.4%)

CoCo - Source (49.6%)

Camera - Object View Orientation(17.4%)
Person - Object View Orientation(17.4%)
Person - Relative Direction(14.8%)

ViewSpatial-
Bench

Figure 3: Distribution of task categories in ViewSpatial-Bench, bal-
anced between ScanNet-Source and CoCo-Source approaches, with
five distinct subtasks for comprehensive evaluation of spatial reasoning
across different viewpoints.

Figure 3 illustrates the
five task categories in
ViewSpatial-Bench and
their respective proportions.
To ensure balanced evalu-
ation across viewpoints, we
constructed approximately
equal amounts of data for
camera-perspective (48.4%)
and human-perspective
(51.6%) tasks. This bal-
anced distribution enables
fair comparison of spatial
reasoning capabilities from
different observational
frameworks. For the Rela-
tive Direction recognition
task from camera viewpoints, which more directly demonstrates 3D scene understanding, we
developed additional data to enrich spatial information diversity.

Table 1 presents a comprehensive comparison between ViewSpatial-Bench and existing spatial
reasoning benchmarks. ViewSpatial-Bench contains 5,712 samples across 1,338 unique scenes,
employing a hybrid construction method that combines automated 3D annotation pipelines with
manual verification. The benchmark distinguishes itself with 18 distinct directional categories and
precise 3D coordinate annotations from ScanNet, while uniquely supporting evaluation across both
camera-perspective and human-perspective viewpoints for comprehensive assessment of perspective-
taking capabilities essential for embodied AI applications. Detailed statistical analysis is provided in
Appendix B.2.

Benchmark
Construct
Method

Visual
Diversity

Scale & Diversity 3D Annotation Multi-Perspective Spatial Query Target

Samples Scenes Directions 3D-Coord Camera Person Person-Target Object-Target

SpatialRGPT-Bench (Cheng et al., 2024) Automated Single 1,410 524 6 ✓ ✓ ✗ ✗ ✓

EmbSpatial-Bench (Du et al., 2024) Automated Single 3,640 284 6 ✓ ✓ ✗ ✗ ✓

What’sUP (Kamath et al., 2023) Manual Single 820 205 12 ✗ ✓ ✗ ✗ ✓

VSI-Bench (Yang et al., 2025) Automated Multi 3,672 245 8 ✓ ✓ ✓ ✗ ✓

3DSRBench (Ma et al., 2024b) Manual Single 2,772 1,827 8 ✗ ✓ ✗ ✓ ✓

SPHERE (Zhang et al., 2024a) Manual Single 2,285 1,001 7 ✗ ✓ ✓ ✓ ✓

All-Angles Bench (Yeh et al., 2025) Hybrid Single 2,132 90 4 ✗ ✓ ✗ ✓ ✓

GSR-BENCH (Rajabi & Kosecka, 2024) Automated Multi 820 205 12 ✗ ✓ ✗ ✗ ✓

ViewSpatial-Bench Hybrid Multi 5,712 1,338 18 ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of ViewSpatial-Bench with existing spatial reasoning benchmarks. ViewSpatial-
Bench provides the first comprehensive evaluation framework for multi-perspective spatial localiza-
tion, uniquely supporting both camera and person viewpoints with the broadest scope of directional
categories and spatial query targets.
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4 MULTI-VIEW SPATIAL MODEL

To address the limitations in perspective-dependent spatial reasoning identified in current VLMs, we
developed the Multi-View Spatial Model (MVSM) through a systematic enhancement approach. Our
methodology combines high-quality training data with a specialized fine-tuning strategy designed
specifically for multi-viewpoint spatial understanding. Following the ViewSpatial-Bench construction
pipeline, we leveraged our automated spatial annotation framework to generate approximately 43K
diverse spatial relationship samples across all five task categories. This dataset incorporates 3D
spatial information from ScanNet (Dai et al., 2017) and MS-COCO (Lin et al., 2014) training
sets, supplemented with Spatial-MM (Shiri et al., 2024) data for the Person-perspective Relative
Direction task where full automation proved challenging due to complex human spatial coordinates
and environmental contexts. We structured all training data as image-text pairs using consistent
natural language templates to articulate spatial relationships between objects or entities, with answers
represented as standardized directional classifications. Our Multi-Perspective Fine-Tuning strategy
explicitly trains the model to reason from different observational viewpoints, enabling MVSM to
develop a more unified representation of 3D spatial relationships that supports robust reasoning across
both camera and human perspectives.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines and Metrics. We conducted comprehensive evaluations of current VLMs on ViewSpatial-
Bench using accuracy as our primary metric. Our evaluation includes a diverse set of models spanning
different architectures and parameter scales: (1) Open-source models: InternVL2.5/VL3 (Chen et al.,
2024b; Zhu et al., 2025), LLaVA-NeXT-Video (Zhang et al., 2024b), LLaVA-OneVision (Li et al.,
2024), Llama-3.2-Vision (Grattafiori et al., 2024), Kimi-VL-Instruct (Team et al., 2025), and Qwen2.5-
VL (Bai et al., 2025); (2) Proprietary models: GPT-4o (Hurst et al., 2024) and Gemini-2.0-Flash (Team
et al., 2024).

Implementation Details. We employ our MVSM fine-tuning strategy on Qwen2.5-VL-3B (Bai
et al., 2025) as the backbone model. Detailed training configurations and evaluation procedures are
provided in Appendix C.1 and C.2.

5.2 MAIN RESULTS

As shown in Table 2, our comprehensive evaluation reveals critical insights into the spatial reasoning
capabilities of current VLMs and validates our approach:

Model Camera-based Tasks Person-based Tasks Overall
Rel. Dir. Obj. Ori. Avg. Obj. Ori. Rel. Dir. Sce. Sim. Avg.

InternVL2.5 (2B) (Chen et al., 2024b) 38.52 22.59 32.79 47.09 40.02 25.70 37.04 34.98
Qwen2.5-VL (7B) (Bai et al., 2025) 46.64 29.72 40.56 37.05 35.04 28.78 33.37 36.85
LLaVA-NeXT-Video (7B) (Zhang et al., 2024b) 26.34 19.28 23.80 44.68 38.60 29.05 37.07 30.64
LLaVA-OneVision (7B) (Li et al., 2024) 29.84 26.10 28.49 22.39 31.00 26.88 26.54 27.49
InternVL2.5 (8B) (Chen et al., 2024b) 49.41 41.27 46.48 46.79 42.04 32.85 40.20 43.24
Llama-3.2-Vision (11B) (Grattafiori et al., 2024) 25.27 20.98 23.73 51.20 32.19 18.82 33.61 28.82
InternVL3 (14B) (Zhu et al., 2025) 54.65 33.63 47.09 33.43 37.05 31.86 33.88 40.28
Kimi-VL-Instruct (16B) (Team et al., 2025) 26.85 22.09 25.14 63.05 43.94 20.27 41.52 33.58
GPT-4o(Hurst et al., 2024) 41.46 19.58 33.57 42.97 40.86 26.79 36.29 34.98
Gemini 2.0 Flash (Team et al., 2024) 45.29 12.95 33.66 41.16 32.78 21.90 31.53 32.56

Qwen2.5-VL (3B) (Bai et al., 2025) [Backbone] 43.43 33.33 39.80 39.16 28.62 28.51 32.14 35.85
Multi-View Spatial Model 83.59 87.65 85.05 90.16 71.14 75.75 79.31 82.09
Improvement over backbone +40.16 +54.32 +45.25 +51.00 +42.52 +47.24 +47.17 +46.24

Random Baseline 25.16 26.10 25.50 24.60 31.12 26.33 27.12 26.33

Table 2: Zero-shot performance on ViewSpatial-Bench. Accuracy comparison across multiple VLMs
on camera and human perspective spatial tasks. Our Multi-View Spatial Model (MVSM) significantly
outperforms all baseline models across all task categories, demonstrating the effectiveness of our
multi-perspective spatial fine-tuning approach.

Fundamental limitations in perspective-based spatial reasoning: Even powerful proprietary
models like GPT-4o (34.98%) and Gemini-2.0-Flash (32.56%) demonstrate surprisingly weak spatial
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localization capabilities, barely outperforming random chance (26.33%). This confirms our hypothe-
sis presented in the introduction that current VLMs, despite their impressive performance on standard
vision-language tasks, fundamentally struggle with perspective-dependent spatial reasoning. The con-
sistently poor performance across diverse architectures suggests this is not merely an implementation
issue but a systematic deficiency in how these models conceptualize spatial relationships.

Egocentric vs. allocentric reasoning gap: Most VLMs exhibit an intriguing pattern wherein
their spatial localization accuracy from camera perspectives (averaging 33.2%) falls below their
performance from human viewpoints (averaging 35.7%). This contradicts the intuitive expectation
that egocentric perspective (camera-based) should be easier than allocentric reasoning (human-based).
This finding aligns with our observation that VLMs lack the perspective-taking ability that humans
naturally possess, and suggests that current vision-language architectures may implicitly encode
certain spatial biases that favor third-person viewpoints, potentially due to the prevalence of such
compositions in web-harvested training data.

Task-specific performance asymmetries: A particularly revealing pattern emerges in the interaction
between task type and perspective. Most VLMs perform significantly worse on Object View Orien-
tation tasks from camera perspectives compared to Relative Direction tasks, yet show the opposite
pattern for human perspective tasks (42.6% for Object View Orientation vs. 36.9% for Relative
Direction). This striking asymmetry confirms our hypothesis that current VLMs lack consistent
cross-viewpoint spatial understanding. The discrepancy suggests these models fail to construct a
coherent 3D representation that can be flexibly navigated from different viewpoints, instead treating
different perspective-task combinations as essentially separate problems.

Effectiveness of perspective-aware training: Our Multi-View Spatial Model achieves dramatic
improvement compared to its backbone Qwen2.5-VL (3B) model, representing a 46.24% absolute
performance gain. The model shows remarkably consistent improvements across all task cate-
gories. The most substantial gains occur in orientation tasks, with improvements of 54.32% for
camera-perspective and 51.00% for human-perspective Object View Orientation tasks. This sym-
metrical improvement pattern is particularly noteworthy, as it demonstrates that explicit training on
diverse spatial annotations with perspective awareness enables the development of unified 3D spatial
representations that function effectively across viewpoints.

5.3 EMPOWERING SPATIAL INTERACTION APPLICATION

To further validate MVSM’s spatial understanding capabilities in practical applications, we evaluated
its performance on VSI-Bench (Yang et al., 2025) in typical tasks requiring perspective transformation,
including Object Relative Direction and Route Planning subtasks. Additionally, we constructed
a small application evaluation dataset, ViewSpatial Interaction Application Dataset (VSI-App),
encompassing both indoor and outdoor scenarios, specifically designed to assess spatial orientation
recognition abilities in embodied interaction environments, with particular focus on the requirements
for dynamic scene and multi-perspective understanding during human-machine interaction.

5.3.1 TRANSFER LEARNING PERFORMANCE

As shown in Table 3, we assessed MVSM’s generalization capabilities on both VSI-Bench and
our custom VSI-App benchmark. The specific construction process and evaluation methods of the
VSI-App are shown in Appendix B.4.

VSI-Bench VSI-App

Model Rel Dir Route Plan Average Indoor Outdoor Average

GPT-4o (Hurst et al., 2024) 41.30 31.50 39.66 34.00 27.00 30.50
Qwen2.5-VL(3B) (Bai et al., 2025) 46.00 21.90 41.97 18.00 27.00 22.50
MVSM 46.93 ↑ 0.93 31.44 ↑ 9.54 44.34 ↑ 2.37 41.00 ↑ 23.00 36.00 ↑ 9.00 38.50 ↑ 16.00

Table 3: Performance comparison of our Multi-View Spatial Model against its backbone.

VSI-Bench Evaluation: We selected two representative tasks requiring perspective transformation
abilities: Object Relative Direction and Route Planning. The former requires determining spatial
relationships between objects in complex indoor scenes, while the latter involves inferring and
completing reasonable navigation paths. MVSM outperforms its backbone model in both tasks, with
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particularly significant gains in Route Planning (+9.54%). This improvement demonstrates MVSM’s
enhanced ability to model not just static spatial relationships but also dynamic trajectories through 3D
environments, which emerged from our perspective-aware training approach without explicit route
planning optimization.

A. right     B. left     C. back D. front 

A. back-right   B. front-left C. back-left D. front-right

She is crouching and facing the Corgi in front 
of her, which means her back is toward the 
direction of the second Corgi, who is slightly 
to the left in the background. The other 
Corgi is located back-left relative to the 
woman’s current position and facing direction.
Correct answer: C. back-left

To get the pillow for your nap, you should head 
to the left. In the image, the pillows are clearly 
visible on the couch situated to the left of the 
woman. So, the correct direction to go is to the 
left. 
Correct answer: B. left

Hey, besides this Corgi, I have 
another Corgi too, but I can't see it. 
Can you see where the other Corgi 
is in relation to my position?

Now I want to grab a pillow 
to take a nap. In which 
direction should I go to get it?

A. back-right   B. front-left C. back-left   D. front-right

The pressure cooker is positioned at the back-
left relative to the person in the image, 
indicating that it is located diagonally behind
she on her left-hand side. It suggests that the 
individual need to turn both slightly left and 
backward to directly face the pressure cooker.
Correct answer: C. back-left

Can you see which direction my 
pressure cooker is in relation to me?

Figure 4: The image compares spatial reasoning performance between GPT-4o and MVSM on the
VSI-App dataset, showing several examples where MVSM correctly answers perspective-taking
questions about object locations, while GPT-4o makes errors when attempting to determine spatial
relationships from another person’s viewpoint.

VSI-App Evaluation: To further approximate real-world interaction scenarios, we constructed
VSI-App, a specialized evaluation dataset of 50 scenes (25 indoor, 25 outdoor) designed to assess
human-centric spatial reasoning in embodied contexts. The benchmark requires models to perform
spatial reasoning from human first-person perspectives, generating responses that conform to human
cognitive patterns. MVSM shows substantial improvement in indoor environments (+20.00%)
and modest gains in outdoor scenarios (+4.00%). This performance pattern reveals an interesting
domain gap: indoor environments with structured spatial relationships better align with our training
distribution, while outdoor scenes pose greater challenges despite still showing improvement.

5.3.2 PERSPECTIVE CONFUSION ANALYSIS

The performance improvement on our benchmarks stems directly from MVSM’s enhanced ability to
maintain consistent perspective representations. To illustrate this capability, Figure 4 contrasts MVSM
with GPT-4o on representative VSI-App examples requiring perspective transformation. While GPT-
4o demonstrates some ability to locate objects from human perspectives, it frequently defaults to
camera-centric judgments for orientation determinations, resulting in perspective confusion.

Analysis of failure modes reveals that models without perspective-aware training demonstrate incon-
sistent spatial judgments within single responses, alternating between human and camera perspectives.
This suggests they lack a coherent internal model of 3D space that can be navigated from different
viewpoints. In contrast, MVSM maintains consistent adherence to the specified perspective frame,
even in challenging cases requiring multiple spatial transformations.

6 CONCLUSIONS

In this work, we present ViewSpatial-Bench, the first comprehensive benchmark for evaluating multi-
perspective spatial localization capabilities of vision-language models across five distinct task types.
Our assessment of various advanced VLMs reveals significant limitations in their spatial reasoning
abilities. By developing an automated spatial annotation pipeline and constructing a large-scale multi-
perspective dataset, we successfully trained our Multi-View Spatial Model (MVSM), which achieves
substantial overall performance improvements on ViewSpatial-Bench tasks. Further experiments on
VSI-Bench and our custom VSI-App dataset demonstrate MVSM’s generalization capabilities to
real-world embodied interaction scenarios. Our work establishes a foundation for spatially intelligent
VLMs that better align with human cognitive patterns in embodied environments, representing an
important step toward more intuitive and effective human-machine spatial communication.
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ETHICS STATEMENT

The research presented here centers on fundamental computational challenges in spatial reasoning
for vision-language models using established computer vision datasets. Our work leverages publicly
accessible resources including ScanNet indoor scenes, MS-COCO object annotations, and Spatial-
MM spatial relationship data, all of which have been previously vetted by the research community.
The automated annotation pipeline we developed operates solely on geometric and spatial metadata
without processing personally identifiable information or requiring human subject participation.
Our approach to multi-perspective spatial training represents a technical advancement in model
capabilities rather than an application with direct societal implications. The ViewSpatial-Bench
evaluation framework addresses a core limitation in current AI systems by measuring their ability
to understand spatial relationships from different viewpoints, which has applications in robotics,
navigation, and human-computer interaction domains that ultimately serve to improve assistive
technologies and accessibility tools.

REPRODUCIBILITY STATEMENT

Our experimental methodology has been designed with reproducibility as a primary consideration
throughout the research process. The paper provides comprehensive algorithmic descriptions for
our Maximum Coverage Sampling procedure and Head-to-body Orientation Offset calculation,
following the same parameter configurations as their original implementations, while all novel
parameters introduced in our work are explicitly detailed within the main text and Appendix B.1.
Our multi-stage data construction pipeline includes detailed filtering criteria, annotation verification
procedures, and quality assurance mechanisms that enable other researchers to reconstruct comparable
datasets. Training procedures specify exact hyperparameters, learning rates, batch sizes, and hardware
configurations used across all experiments, as detailed in Appendix C.1. The evaluation protocol
documents model selection criteria, inference settings, and statistical analysis methods with sufficient
granularity to ensure consistent replication, as specified in Appendix C.2. Beyond methodological
transparency, we have structured our work to support the broader research community by preparing
our codebase, annotation tools, and benchmark datasets for public release, thereby enabling both
direct replication of our results and extension of our methods to new domains and applications.
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A LIMITATIONS

While ViewSpatial-Bench represents a significant step forward in evaluating multi-perspective spatial
reasoning in VLMs, several limitations merit acknowledgment:

Annotation Challenges for Human-Perspective Tasks. The Person-perspective Relative Direc-
tion task presented substantial annotation challenges. The inherent complexity of human spatial
coordinates and environmental contexts in natural images prevented full automation of the annotation
process. This necessitated manual labeling, which introduces both scaling constraints and potential
annotator biases. Future work could explore semi-supervised approaches that might reduce the
reliance on manual annotation while maintaining data quality.

Domain Constraints in Environmental Coverage. Our Camera-perspective Relative Direction
tasks utilize exclusively indoor environments from ScanNet (Dai et al., 2017), potentially limiting
generalizability to outdoor settings. As our transfer learning experiments on VSI-App suggest,
there exists a substantial domain gap between indoor and outdoor spatial reasoning tasks. Outdoor
environments present different spatial scales, object densities, and visual characteristics that may
require specialized training approaches beyond those presented in this work.

Static vs. Dynamic Spatial Reasoning. ViewSpatial-Bench evaluates only static spatial orientation
comprehension without addressing dynamic spatial reasoning scenarios where objects or observers
move through environments. Such dynamic reasoning represents an important aspect of embodied
spatial cognition relevant to many practical applications, including robot navigation and interactive
systems (Li et al., 2025b). Extending our benchmark to incorporate temporal sequences and motion-
based spatial reasoning would provide a more comprehensive evaluation framework for embodied AI
systems.

These limitations point to promising directions for future research that could build upon the foundation
established by ViewSpatial-Bench while addressing its current constraints.

B DATA DETAILS

B.1 DATASET COLLECTION AND UNIFICATION

Figure 5: Wordcloud of object categories.

ScanNet Data Collection. We employ a three-
stage video frame sampling strategy to opti-
mize benchmark data quality: first extracting
all video frames, then uniformly sampling ev-
ery 10th frame, and finally applying maximum
frame sampling to select the minimal yet com-
prehensive set of consecutive frames that capture
complete scene information.

For 3D bounding box visibility analysis, we
utilize a depth-aware projection technique that
transforms 3D bounding boxes from world coor-
dinates to camera view while accounting for oc-
clusions. Our implementation aligns depth and
color frames using scale factors (1000.0 mm to
m) and handles resolution differences through
proportional coordinate mapping. The occlusion detection compares the computed depth of 3D
bounding box vertices against the measured depth from sensor data with a 0.1m threshold, enabling
accurate determination of vertex visibility. This approach generates precise visibility annotations
by requiring at least 1% of vertices to be visible for an object to be considered present in a frame,
enhancing the fidelity of our object detection and 3D reasoning benchmarks.

MS-CoCo Data Collection. Based on MS-CoCo (Lin et al., 2014) dataset annotations, we filter
samples containing biological objects that occupy at least 20% of the image area to ensure sufficient
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visual salience of target objects. We subsequently employ manual annotation to filter out samples
where gaze direction significantly deviates from head orientation, ensuring consistency in spatial
orientation labeling. The filtered samples are then processed by the Orient-Anything-Large model for
automatic head and body orientation angle annotation. Given that this model exhibits labeling errors
when processing low-resolution images or objects with ambiguous directional tendencies, we conduct
focused manual verification and data correction on extreme angle samples (excessively large or small
angles). This quality assurance mechanism ensures the annotation accuracy of the final dataset.

QA Pair Generation. We extract object information and corresponding angle annotations from
metadata for each sample. Object names are filled into predefined question templates, with computed
angles serving as ground truth answers to construct multiple-choice questions. The question templates
used are detailed in Table 4.

Task Question Template

Cam-Rel. Dir.

• Can you describe the position of the {object1} relative to the {object2}?
• Could you tell me the location of the {object1} in comparison to the {object2}?
• Where is the {object1} in relation to the {object2}?
• Where is the {object1} located compared to the {object2} from the camera’s
perspective?
• How is the {object1} positioned with respect to the {object2}?
• If you’re looking at the {object2}, where would you find the {object1}?

Cam-Obj. Dir.

• With the camera’s viewpoint as the front, which direction is {object} facing in
the image?
• Taking the camera lens as the front, what direction is {object} looking toward?
• Taking the camera’s viewpoint as the front, which way is {object} facing in the
image?
• Considering the camera’s perspective as the front, what direction is {object}
facing within the picture?

Per-Obj. Dir.

• Imagine you’re {object} in this image — which direction are you facing?
• Suppose you are in {object}’s position, what direction are you facing?
• Picture yourself as {object}; which way are you looking in the scene?
• As {object} in the photo, in which direction are you facing?

Per-Sce. Sim.

• Imagine standing at {object1} looking towards {object2}, where is {object3}?
• When positioned at {object1} facing {object2}, where can you find {object3}?
• If you stand at {object1} facing {object2}, where is {object3}?
• Standing at {object1}, gazing at {object2}, where should {object3} be?

Table 4: Prompt templates used to generate spatial reasoning questions across four tasks. Object
names are inserted into the templates to form natural language questions, which are later paired with
direction-based multiple-choice answers derived from scene metadata.

B.2 DATA STATISCS

As shown in the word cloud analysis in Figure 5, our dataset is primarily constructed around two
major categories: humans and objects, which aligns with our dual spatial localization task design
targeting both camera and human perspectives. Table 5 provides a detailed breakdown of sample
distributions across different task types in ViewSpatial-Bench.

Figure 6 shows the frequency distribution of spatial prepositions and objects in ViewSpatial-Bench.
As illustrated in Figure 4(a), our benchmark incorporates a comprehensive set of directional terms,
with primary directions ("front", "right", "left") showing higher frequency than compound directions
("front-left", "back-right", "above-left"). This diverse coverage ensures thorough evaluation of VLMs’
ability to process complex spatial relationships from multiple perspectives, reflecting the natural
usage patterns of spatial language.

Figure 6(b) depicts the distribution of the top 20 objects in ViewSpatial-Bench. The object distribution
reflects common entities encountered in everyday environments, with furniture items (chair, table,
sofa, desk) and personal objects well represented. This ensures practical relevance of the benchmark
to real-world spatial reasoning scenarios, particularly for embodied AI applications that must navigate
and interact with common objects.
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Figure 6: Frequency distributions in ViewSpatial-Bench. (a) Distribution of spatial prepositions,
showing comprehensive coverage of directional relationships. (b) Frequency of the top 20 objects,
demonstrating the benchmark’s focus on common entities encountered in everyday environments.

B.3 DATA CASES

Figures 7–9 illustrates response examples from different models across various question types in
ViewSpatial-Bench.

B.4 VSI-APP DATASET CONSTRUCTION

For the ViewSpatial Interaction Application Dataset (VSI-App), we employ a three-stage human
curation approach to construct a dataset specifically designed to evaluate multi-view spatial models
(MVSM) capabilities in spatial reasoning for human-computer interaction under Out-of-Distribution
scenarios. Initially, two professional annotators carefully screened and downloaded 200 high-
quality scene images from professional online image platforms, with 100 indoor and 100 outdoor
scenes respectively. Image selection strictly adheres to the following criteria: scenes must be
highly consistent with indoor/outdoor themes, contain rich three-dimensional spatial hierarchical
information, include clearly identifiable human subjects as viewpoint references, and demonstrate
explicit spatial relationships and potential interaction possibilities between humans and other objects
in the scene. This meticulous scene selection ensures that the dataset can adequately simulate the
complex spatial environments of real-world human-computer interactions.

In the question annotation phase, two annotators conduct in-depth spatial analysis of the primary
human subjects in each image, focusing on two core interaction scenarios: first, spatial cognition
questions where human subjects inquire about the relative positions of other objects from their
first-person perspective, and second, path planning and navigation orientation questions from the
human’s current position to target locations. The annotators completely abandon template-based QA
generation methods, directly employing natural language that closely resembles daily communication
for question descriptions, while meticulously designing accurate ground truth answers and plausible
distractors for each question. This natural language annotation approach not only enhances question
diversity and authenticity, but more importantly captures the linguistic expression habits and cognitive
patterns of humans in actual spatial interactions.

VSI-App aims to verify whether MVSM can accurately understand and respond to spatial reasoning
inquiries from human perspectives when confronted with realistic human-computer interaction
scenarios, thereby evaluating the model’s generalization capability and practical utility. Evaluation
follows a multiple-choice format, with specific examples shown in Figure 4.
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Camera Person Overall
Rel. Dir. Obj. Dir. Sum. Obj. Dir. Rel. Dir. Sce. Sim. Sum.

Test 1773 996 2769 996 842 1105 2943 5712
Train 13644 8954 22598 8954 1014 10309 20277 42875

Table 5: Sample counts for different tasks in ViewSpatial-Bench evaluation and MVSM training data.

C EXPERIMENTS

C.1 IMPLEMENTATION DETAILS

We select Qwen2.5-VL-3B (Bai et al., 2025) as the base model for supervised fine-tuning. The
Cam-Rel. Dir., Cam-Obj. Ori., Per-Obj. Ori., and Per-Sce. Sim. tasks in the training dataset are
generated through our automated construction pipeline using unified QA templates. The Per-Rel.
Dir. task is constructed based on the Spatial-MM Shiri et al. (2024) dataset, with language models
employed to polish questions and enhance sample diversity. The distribution of training samples
across tasks is detailed in Table 5.

Following standard practice in efficient adaptation, we freeze the vision encoder and multi-modal
projector while keeping the language model trainable. The model is trained for 3 epoch with an
effective batch size of 16, achieved through gradient accumulation (4 steps with per-device batch size
of 1) across 4 NVIDIA A100 (40GB) GPUs. The entire training process requires approximately 8.5
GPU hours, making our approach computationally efficient and accessible.

C.2 EVALUATION DETAILS

ViewSpatial-Bench evaluation. We evaluate all models under zero-shot settings, where models
must directly predict the correct option based on given images and questions. For API-based models,
we used their standard online interfaces with default parameters. For open-source models, we
employed their default generation settings through the Transformers (Wolf et al., 2020) library. To
ensure consistency and reliability in our results, each model was evaluated five times. The results
reported in the manuscript represent the average performance across these multiple runs. Accuracy is
calculated by comparing model predictions with ground truth answers. The prompt template used for
evaluation is shown below.

Zero-shot Evaluation Prompt

Question:{question}
Choices:{choices}
Reply only to the corresponding option.
Answer:

VSI-Bench evaluation. We follow the original paper’s experimental settings for VSI-Bench (Yang
et al., 2025) evaluation. We employ the lmms-eval framework to conduct zero-shot testing with
a batch size of 1 and maximum frame count set to 32. All models are evaluated on a single GPU
environment (A6000 48G) using the accelerate launcher.

VSI-App dataset evaluation. Since VSI-App is a small-scale test benchmark designed for Out-
of-Distribution scenarios, we adopt a repeated testing strategy to enhance evaluation reliability.
Specifically, we generate 5 different option orderings for each question sample and conduct 5
independent tests for each model on these reordered samples. The final answer is determined through
a voting mechanism, selecting the option with the highest frequency across the 5 tests for the same
question as the prediction result. This method effectively reduces the potential impact of option
ordering on model predictions.

C.3 ANALYSIS EXPERIMENT

Training Format and Shortcut Learning Analysis. To verify that our Multi-View Spatial Model’s
performance improvements stem from genuine spatial reasoning rather than shortcut learning, we
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Experiment Backbone Model Original MVSM Improvement

Training Format Qwen2.5-VL (3B) 35.85%
82.09% (MC) +46.24%

79.34% (DA) +43.49%

Multi-Backbone
Qwen2.5-VL (3B) 35.85% 82.09% +46.24%

Qwen2.5-VL (7B) 36.85% 83.01% +46.16%

InternVL2.5 (2B) 34.98% 76.45% +41.47%

Table 6: Comprehensive analysis of MVSM training robustness across different question formats and
model architectures. MC denotes Multiple Choice format, DA denotes Direct Answer format.

conducted controlled experiments comparing different training formats. We used the same multi-
perspective spatial dataset described in Section 4, containing approximately 43K samples across all
five task categories. To eliminate potential shortcut learning through option elimination strategies,
we converted the original multiple-choice format into a direct answer format where models generate
spatial directions without candidate options.

Following identical experimental settings as described in Section 5.1, we trained Qwen2.5-VL(3B)
on both formats. As shown in table 6, both approaches yielded substantial improvements over the
baseline, with multiple-choice format achieving 82.09% overall accuracy compared to 79.34% for
direct answer format. The minimal performance difference between formats confirms that MVSM’s
gains result from enhanced spatial understanding rather than exploitation of multiple-choice structural
patterns, validating that our approach teaches robust spatial reasoning capabilities that generalize
across different response formats.

Multi-Backbone Generalization Validation. To demonstrate the broader applicability of our
training methodology, we evaluated MVSM training procedures across multiple vision-language
model architectures using the same multi-perspective spatial dataset described in Section 4 and
the training configurations specified in Section 5.1. As shown in the table 6, results across three
representative backbones show consistent substantial improvements: Qwen2.5-VL(3B) improved
from 35.85% to 82.09% (+46.24%), InternVL-2B improved from 34.98% to 76.45% (+41.47%),
and Qwen2.5-VL(7B) improved from 36.85% to 83.01% (+46.16%). The consistent performance
gains across different model families and parameter scales demonstrate the architecture-agnostic
effectiveness of our perspective-aware training approach. These results establish that the benefits of
multi-perspective spatial training extend beyond specific model implementations, indicating robust
transferability of our methodology across diverse vision-language architectures.

LLM USAGE

We acknowledge the use of large language models exclusively for writing assistance and linguistic
refinement in preparing this manuscript. These tools enhanced clarity, grammatical accuracy, and
academic style while preserving all original research contributions, methodological approaches, and
scientific insights developed by the authors. The language models served solely as writing aids
to improve sentence structure, readability of technical content, academic terminology refinement,
and writing style consistency throughout the manuscript. Importantly, LLMs were not employed
for research ideation, conceptual development, literature review, citation discovery, data analysis,
experimental design, or generation of research hypotheses and conclusions. All research ideas,
experimental work, data analysis, and scientific conclusions presented originate entirely from the
authors’ independent intellectual work. The authors take full responsibility for all content, including
any text refined with LLM assistance, ensuring that the core intellectual contributions and scientific
merit remain wholly attributable to the listed authors.
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Question:  Imagine standing at 
nightstand looking towards shelves, 
where is lamp?
A. left B. right
C. front D. back

Question: Could you tell me the 
location of the the shelves in 
comparison to the lamp? 
A. right B. above-right
C. back-left D. front

Question: Taking the camera lens as 
the front, what direction is the man 
looking toward?
A. front-left B. left
C. back-right D. front-right

Question: From the perspective of the 
man in blue-green clothes, where is the 
woman in purple clothes?
A. front-right B. left
C. back-right D. back

Question: Suppose you are in the 
woman’s position, what direction 
are you facing?
A. back-left B. front-left
C. right D. front-right

Scene Simulation Relative Direction Relative Direction Object View Orientation Object View OrientationRelative Direction

Answer: A. left Answer: D. front Answer: C. back-right Answer: B. left Answer: A. back-left

Answer: A. left Answer: D. front Answer: C. back-right Answer: B. left Answer: B. front-left

Answer: C. front Answer: D. front Answer: C. back-right Answer: A. front-right Answer: B. front-left

Figure 7: ViewSpatial-Bench Examples (Part1). Performance comparison of three models (Qwen2.5-
VL(3B), GPT-4o, and MVSM) on five spatial reasoning tasks from camera perspective ( ) and
person perspective ( ).

Question:  When positioned at 
refrigerator facing counter, where 
can you find window ?
A. back-left B. front-left
C. front-right D. back-right

Question: How is the refrigerator 
positioned with respect to the 
window? 
A. front-up B. right
C. above D. back-up

Question: Taking the camera's 
viewpoint as the front, which way is 
the girl facing in the image?
A. front B. left
C. right D. back

Question: From the perspective of the 
blonde woman, where is the man in 
black positioned?
A. left B. front-right
C. front D. right 

Question: Imagine you're the man 
in this image — which direction 
are you facing?
A. back-right B. back-left
C. left D. front

Scene Simulation Relative Direction Relative Direction Object View Orientation Object View OrientationRelative Direction

Answer: B. front-left Answer: B. right Answer: A. front Answer: D. right Answer: D. front

Answer: B. front-left Answer: B. right Answer: A. front Answer: D. right Answer: D. front

Answer: D. back-right Answer: B. right Answer: D. back Answer: A. left Answer: D. front

Figure 8: ViewSpatial-Bench Examples (Part2).

Question:  Standing at table, 
gazing at chair, where should 
books be?
A. front B. back-left
C. right D. back

Question: If you're looking at the 
chair, where would you find the 
table? 
A. back-down B. back-up
C. right D. back-left

Question: With the camera’s view-
point as the front, which direction is 
the man facing in the image?
A. front B. right
C. back D. left

Question: From the perspective of the 
woman in blue clothes, where is the 
woman in white clothes located?
A. left B. right
C. front D. front-right 

Question: Suppose you are in the 
boy’s position, what direction are 
you facing?
A. back-left B. back-right
C. left D. front-right

Scene Simulation Relative Direction Relative Direction Object View Orientation Object View OrientationRelative Direction

Answer: A. front Answer: C. right Answer: B. right Answer: B. right Answer: B. back-right

Answer: A. front Answer: C. right Answer: A. front Answer: B. right Answer: D. front-right

Answer: A. front Answer: C. right Answer: B. right Answer: A. left Answer: D. front-right

Figure 9: ViewSpatial-Bench Examples (Part3).
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