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ABSTRACT

Reinforcement learning (RL) has emerged as an effective post-training paradigm
for enhancing the reasoning capabilities of multimodal large language model
(MLLM). However, current RL pipelines often suffer from training inefficiencies
caused by two underexplored issues: Advantage Collapsing, where most advan-
tages in a batch concentrate near zero, and Rollout Silencing, where the propor-
tion of rollouts contributing non-zero gradients diminishes over time. These issues
lead to suboptimal gradient updates and hinder long-term learning efficiency. To
address these issues, we propose Shuffle-R1, a simple yet principled framework
that improves RL fine-tuning efficiency by dynamically restructuring trajectory
sampling and batch composition. It introduces (1) Pairwise Trajectory Sampling,
which selects high-contrast trajectories with large advantages to improve gradient
signal quality, and (2) Advantage-based Batch Shuffle, which increases exposure
of valuable rollouts through strategic batch reshuffling. Experiments across mul-
tiple reasoning benchmarks show that our framework consistently outperforms
strong RL baselines with minimal computational overhead. These results support
the potential of data-centric adaptations for more efficient RL training for MLLM.

1 INTRODUCTION

Reinforcement learning (RL) has emerged as a powerful tool to enhance large language models
(LLMs) to plan, reflect, and generalize, enabling stronger performance in complex reasoning do-
mains such as mathematical problem solving and code generation (Guo et al., 2025; Deepmind,
2025; OpenAI, 2024; Seed, 2025). Notably, DeepSeek-R1 (Guo et al., 2025) leverages reward sig-
nals derived exclusively from verifiable outcomes to yield impressive performance gains. Beyond
textual tasks, RL has also seen increasing application in various multimodal domains (Li et al., 2025;
Liu et al., 2025c;b; Wang et al., 2025c), highlighting its potential to support generalizable reasoning
across modalities.

To better incorporate RL in LLM and Multimodal LLM (MLLM), recent studies have proposed var-
ious improvements, including better framework optimization (Yu et al., 2025; Wang et al., 2025a;
Chu et al., 2025b) and more sophisticated reward optimization (Liu et al., 2025a; Ma et al., 2025).
However, most approaches remain confined to static sampling paradigm, where trajectories are sam-
pled and treated uniformly. Such strategy overlooks a crucial insight that not all learning signals are
created equal and their informativeness varies and evolves during training. Ignoring variation in
signal quality risks the training process being overwhelmed by noisy trajectories and underusing
the truly useful signals. An ideal framework should instead concentrate updates on golden signals
while filtering out noisy ones. Consequently, it leads us to consider a fundamental question: Can
dynamically prioritizing trajectories provide richer gradient information and lead to more effective
training?

1

https://xenozlh.github.io/Shuffle-R1


Published as a conference paper at ICLR 2026

Most Advs
concentrate
near zero!

Very few
Advs with

large
magnitude!

(a) (b)

Ratio of rollouts with
nonzero gradient
consistent drop!  

Figure 1: (a) Advantage Collapsing, where most
advantages concentrate near zero. (b) Rollout
Silencing, where the ratio of rollouts with non-
zero gradient consistently drops.
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Figure 2: Pipeline comparison. (a) Static
paradigm. (b) Rule-based pre-filter paradigm.
(c) Dynamic paradigm can ‘interact’ with model
during training.

Motivated by this question, we investigate into current RL training practices and reveal two critical
yet might underexplored limitations. First, Advantage Collapsing emerges when most computed
advantages cluster excessively near zero, drowning out informative signals from trajectories with
large-magnitude advantages, resulting in extremely weak or negligible gradient updates and wiping
out decisive ones (Fig. 1(a)). Second, Rollout Silencing arises as the fraction of rollouts contribut-
ing non-zero gradients steadily declines during training (Fig. 1(b)), leading to catastrophic waste of
computation without fully utilizing informative signals. These two findings demonstrate a pressing
need for adaptive mechanisms to prioritize, reuse, and reallocate gradient exposure toward informa-
tive samples.

In this paper, we present Shuffle-R1, a framework that dynamically prioritizes and amplifies crit-
ical gradient signals during RL fine-tuning. Guided by the philosophy that what data the model
updates on is as important as how it updates, Shuffle-R1 introduces two effective modules: (1) Pair-
wise Trajectory Sampling, which selects high-contrast trajectory pairs with large advantages gaps
from an extended rollout pool, concentrating on the most discriminative learning signals to mitigate
Advantage Collapsing; and (2) Advantage-based Batch Shuffle, which adaptively reshapes train-
ing batches to emphasize informative trajectories while down-weighting unhelpful ones, alleviating
Rollout Silencing by removing noisy signals and improving computation utilization. Together, our
framework embodies the principle of dynamic data prioritization (Fig. 2), enabling adaptive interac-
tion between model and data. Experiments show that Shuffle-R1 substantially improves multimodal
reasoning performance, surpassing GPT-4o (Achiam et al., 2024) and Claude-3.7 (Anthropic, 2025)
on MathVerse (Zhang et al., 2024b) and MathVista (Lu et al., 2023), and matches GRPO (Shao et al.,
2024) with only half the training steps. In summary, our contributions are three-fold:

• We reveal two critical yet underexplored limitations that undermine training efficiency in RL fine-
tuning for MLLM, i.e., Advantage Collapsing and Rollout Silencing.

• We propose Shuffle-R1, a novel and adaptive RL framework that dynamically selects high-contrast
trajectories and reshapes training batches to emphasize informative samples.

• Extensive experiments across model scales and both in-domain and out-of-domain benchmarks
demonstrate the effectiveness and generalizability of our framework.

These results underscore the importance of rethinking which data to update on in RL post-training,
moving beyond reward design toward dynamic and adaptive data structuring for more effective
reasoning enhancement.

2 RELATED WORK

2.1 LARGE REASONING MODELS

Researchers have explored various approaches to equip LLM with reasoning ability. Some early
studies performed SFT on complex long chain-of-thought data, leading to performance gains on
reasoning tasks (Muennighoff et al., 2025; Ye et al., 2025; Guo et al., 2024). However, it has been
argued that SFT merely enables the model to memorize the format of reasoning steps and long chains
of thought, without fully grasping the ability to reason independently (Chu et al., 2025a; Kang et al.,
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2024). Some researchers control the model to generate structured chain-of-thought instead of free
generation, achieving systematic step-by-step reasoning output (Xu et al., 2025; Wu et al., 2025;
Thawakar et al., 2025) Other works attempted to use test-time scaling like Monte Carlo Tree Search
(MCTS) (Yao et al., 2023; Zhang et al., 2024a; Yao et al., 2024) to facilitate complex reasoning by
actively extending the output of the model.

Recently, models such as OpenAI o1/o3 (OpenAI, 2024), DeepSeek-R1 (Guo et al., 2025), Seed-
Thinking (Seed, 2025), and Kimi-k1.5 (Kimi, 2025) utilized RL to enable the model to explore
independently, stimulating reasoning ability. In particular, DeepSeek-R1-Zero directly conducted
RL on pre-trained model without instruction fine-tuning, with verifiable outcome reward functions
to replace reward models, achieving remarkable reasoning ability. The training algorithms for RL
are also constantly being optimized (Yu et al., 2025; Chu et al., 2025b). Our work focuses on a
deeper investigation of the efficiency of RL training and proposes an effective solution to improve
both the efficiency and performance of RL training.

2.2 REINFORCEMENT LEARNING FOR MLLM

Following the success of DeepSeek-R1, a series of studies have transplanted RL into the training
of MLLM and downstream visual tasks, such as Open Vocabulary Object Detection (Liu et al.,
2025c), Reasoning Segmentation (Liu et al., 2025b), Video Understanding (Li et al., 2025), Video
Localization (Wang et al., 2025c), etc. These works mainly focus on the applicability of RL to
downstream tasks. Some other works focusing on improving the general reasoning ability of MLLM
have achieved performance improvements on reasoning tasks by collecting a large amount of high-
quality data (Meng et al., 2025; Huang et al., 2025; Yang et al., 2025; Zhang et al., 2025; Peng et al.,
2025; Tan et al., 2025). These works mainly focus on the organization of high-quality reasoning
data and the balance between SFT and RL in the training process.

Some researchers who conduct in-depth research on the RL mechanism have optimized the RL train-
ing process from various aspects, including adding contrastive reward mechanism (Li et al., 2025),
actively introducing reflection tokens during rollouts (Wang et al., 2025a), optimizing the RL ob-
jective function and gradient update mechanisms (Chu et al., 2025b), and introducing more diverse
rollouts (Liu et al., 2025a; Yao et al., 2025). The core objective of these works is to optimize the RL
training process. In our work, we propose a novel training framework that introduces dynamic and
adaptive selection and resampling of queries and rollouts, reshaping the data distribution for better
training efficiency and model performance.

3 METHOD

In this section, we begin by further analyzing the existing drawbacks in training. Then, as illus-
trated in Fig. 4, we introduce Shuffle-R1, which optimizes the training process through two crucial
modules: (1) Pairwise Trajectory Sampling and (2) Advantage-based Batch Shuffle.

3.1 PRELIMINARIES

Policy gradient algorithm is a widely used RL method for MLLM, aiming to maximize the ex-
pectation of return from the environment. For a given query q , N independent responses O =
{o1, o2, ..., oN} are sampled from the old policy model o ∼ πθ′(q). Each response receives cor-
responding reward R = {r1, r2, ..., rN} computed via verifiable reward functions. Advantages
Â = {Â1, Â2, ..., ÂN} are then estimated to guide policy updates. The core objective is defined as:

J (θ) = Eq∼D,{oi}Ni=1∼πθ′ (·|q)
1∑N

i=1 |oi|

N∑
i=1

|oi|∑
t=1

{
min

[
γt(θ)Âi, clip (γt(θ), 1− ϵ, 1 + ϵ) Âi

]}
, (1)

where
γt(θ) =

πθ(oi,t|q, oi,<t)

πθ′(oi,t|q, oi,<t)
, Âi =

ri −mean(R)

std(R)
(2)

and ϵ is a clipping hyperparameter to prevent training collapse.
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Despite its practicality, this static RL paradigm has notable drawbacks: advantages often concen-
trate near zero, yielding weak gradient signals, and the fraction of rollouts with non-trivial updates
diminishes as training progresses. These issues highlight the need for a more flexible, dynamic and
efficient training framework.

3.2 PROBLEM ANALYSIS

Advantage Collapsing. Our probe analysis reveals that, contrary to the ideal scenario, most roll-
outs exhibit advantages sharply concentrated around zero in standard RL paradigm, leading to the
Advantage Collapsing phenomenon. This concentrated distribution weakens gradient signals, as
only a few rollouts with high-magnitude advantages drive meaningful updates. While simply in-
creasing the number of rollouts can partially mitigate this issue by increasing the chance of sampling
valuable trajectories (Fig. 3(a)), it substantially increases computational overhead without address-
ing the root cause. These findings highlight the need for a dynamic mechanism that adaptively
selects valuable rollouts to improve training efficiency.

(a) (b)

Figure 3: (a) Model accuracy improves with
larger rollout sizes. (b) Queries with different
difficulties have varying accuracy during training,
yielding rollouts with different diversity and qual-
ities.

Rollout Silencing. We further observe a no-
table Rollout Silencing phenomenon, where the
fraction of rollouts contributing non-zero gradi-
ents notably declines during training. It arises
from factors such as zero advantages, gradient
clipping, and excessive truncation, exposing the
limits of static sampling paradigm. Tracking
accuracy of queries in different difficulty re-
veals that simple queries converge early while
difficult ones remain inaccurate (Fig. 3(b)),
both failing to generate informative rollouts.
Moreover, standard pipelines use each rollout
only once, preventing full exploitation of valu-
able data. Consequently, it is crucial to design a
dynamic strategy that discards ineffective roll-
outs while reusing informative ones.

3.3 PAIRWISE TRAJECTORY SAMPLING

To mitigate Advantage Collapsing, we seek to select trajectories that offer stronger learning sig-
nals. Inspired by the observation that a larger rollout pool increases the probability of capturing
high-advantage samples, we propose Pairwise Trajectory Sampling (PTS), a data-centric module to
selectively amplify valuable learning signals. Rather than evaluating trajectories in isolation, PTS
organizes candidate rollouts into structured contrastive pairs. This pairing mechanism captures both
high and low advantage signals jointly, forming informative “positive-negative” pairs. Only pairs
with the largest advantage contrast are then retained for training. This process ensures that limited
update bandwidth is focused on trajectories that are both diverse and gradient-rich.

Given a query q and a rollout size of 2N , the rollout trajectories group is denoted as O = {oi}2Ni=1.
The corresponding reward and advantage sets are R = {ri}2Ni=1 and A = {Âi}2Ni=1, respectively.
To identify informative trajectory pairs, our proposed pairing mechanism follows a straightforward
‘max-min’ pairing principle by matching the trajectory with the highest advantage to that with the
lowest, the second highest to the second lowest, and so on. We denote the sorted advantage values
in descending order as:

As = {Â(i)}2Ni=1, where Â(1) ≥ Â(2) ≥ · · · ≥ Â(2N). (3)

Based on this ordering, we construct the pairing set as:

P = {(o(i), o(2N−i+1))}Ni=1. (4)

In this scheme, the original 2N rollouts are easily sorted and reorganized into N pairs. The top-
ranked pairs typically consist of trajectories with high-magnitude but opposite-sign advantages,
forming contrastive pairs akin to ‘positive-negative’ samples. In contrast, the bottom-ranked pairs
involve trajectories with advantages closer to zero.
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Figure 4: Overview of our proposed Shuffle-R1. After advantage calculation, we first conduct
Pairwise Trajectory Sampling to obtain valuable trajectory pairs from original rollout pool, then
perform Advantage-based Batch Shuffle to reshape the distribution of valid trajectories in a batch.

As implied by Eq. 1, trajectories with higher absolute advantages contribute more significantly to the
gradient update, while those with near-zero advantages have negligible impact. We apply a simple
top-k sampling strategy to select a subset of valid pairs:

Pv = {(o(i), o(2N−i+1))}Mi=1, M = αN, α ∈ (0, 1). (5)

where α is a hyperparameter controlling the sampling ratio from the pairing set. Only the trajectories
within this valid set Pv are used for the subsequent gradient update.

By introducing a structured contrastive sampling scheme, PTS enables more effective trajectory
selection from a broader exploration space without increasing the gradient computation cost. The
contrastive structure not only filters out low-signal trajectories, but also sharpen the model’s policy
gradient through direct comparison. PTS shifts the focus of RL fine-tuning from uniform exploration
to gradient-informed selection, representing a principled step toward more efficient data usage in RL
training.

3.4 ADVANTAGE-BASED BATCH SHUFFLE

While PTS mitigates Advantage Collapsing and improve RL training performance, the Rollout Si-
lencing issue remains unresolved. To overcome this issue, we propose Advantage-based Batch Shuf-
fle (ABS) module that dynamically reshapes training batches to prioritize and reinforce high-value
samples. Rather than relying on static data flow, ABS adaptively redistributes trajectories within
each training batch, enabling more frequent updates to trajectories with high learning utility. Built
on top of PTS, it serves to magnify the gradient exposure of informative samples, reshaping the
training data distribution to achieve better data utilization and training efficiency.

Denote a data batch provided by PTS:

B = {pgi : (ogi,1, Â
g
i,1, o

g
i,2, Â

g
i,2, q

g)}i=1∼M,g=1∼G, (6)

with batch size of M ×G, In the standard gradient update process, B is sequentially divided into K
mini-batches, each contains MG/K samples.

In our ABS module, we first assign an importance weight to each pair pj ∈ B based on the sum of
the absolute advantages:

W (pj) = |Âj,1|+ |Âj,2|. (7)
These weights are then normalized to form a sampling distribution Φ over the entire batch B:

Φ(pj) =
W (pj)∑|B|
k=1W (pk)

. (8)

Based on the sampling distribution, we perform S sub-sampling from original batch B, each sub-
sampling has a capacity of T pairs (2T trajectories):

Bs = {ps,t}Tt=1, s.t. ps,t ̸= ps,t′ ,∀ t ̸= t′. (9)

All the sub-sampling batches are sequentially combined to form the reshuffled batch B′ =
⋃S

s=1 Bs.
During the ABS process, we set |B′| = |B|, i.e., S × T = MG to ensure the reshuffled batch
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Table 1: Performance of Shuffle-R1 trained on
Geometry3K dataset.

Method Geo3K Math Avg. HallBench ChartQA

Qwen-3B 25.79 41.71 59.83 73.08
+ GRPO 42.64 46.74 63.09 76.20
+ DAPO 45.09 48.08 63.24 76.70
+ GSPO 43.22 47.26 63.67 75.12
+ Ours 47.88(+22.09) 48.70(+6.99) 63.19(+3.36) 77.04(+3.06)

Qwen-7B 38.12 49.82 65.19 79.84
+ GRPO 52.60 53.13 68.56 80.84
+ DAPO 54.43 54.19 69.29 81.20
+ GSPO 52.83 54.27 69.48 80.96
+ Ours 55.89(+17.77) 54.63(+4.81) 69.51(+4.32) 81.64(+1.80)

Table 2: Performance of Shuffle-R1 trained on
K12 dataset.

Method K12 Math Avg. HallBench ChartQA

Qwen-3B 42.42 41.71 59.83 73.08
+ GRPO 59.19 48.71 64.14 77.12
+ DAPO 61.42 49.75 65.08 77.00
+ GSPO 60.44 48.76 64.14 77.56
+ Ours 62.22(+19.80) 50.05(+8.34) 65.72(+5.89) 78.28(+5.20)

Qwen-7B 52.13 49.82 65.19 79.84
+ GRPO 66.15 54.47 67.75 82.48
+ DAPO 68.35 54.52 68.66 82.52
+ GSPO 67.44 54.77 69.13 82.04
+ Ours 68.78(+16.65) 55.02(+5.20) 69.87(+4.68) 82.60(+2.76)

matches the same size as the original batch. The reshuffled batch will maintain the gradient update
paradigm of the original method.

The ABS module optimizes the learning process through Advantage-aware Shuffling and Sub-batch
Resampling. It increases the update frequency of trajectories with higher advantages, maintains
diversity while reinforcing high-value samples through repeated exposure. Together, these designs
transform each batch into a soft-prioritized structure that better reflects training signal utility.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. We first conduct our experiments on Geometry3K dataset (Lu et al.,
2021) (2.1k training samples, ‘Geo3K’ for short) and a subset of MMK12 dataset (Meng et al.,
2025) containing the same amount of data (‘K12’ for short), to investigate model performance on
limited training resources. To assess the scalability and effectiveness on a larger corpus, we then
conduct experiments with MM-Eureka dataset (Meng et al., 2025). Specifically, we construct a 30k-
sample training set by combining the full Geo3K dataset with 27k randomly selected samples from
MM-Eureka. All training samples are in free-form format.

We first perform evaluation on in-domain test set of Geometry3K and MMK12. Further, as RL
is famous for its strong generalizability, we evaluate our model’s performance on the following
representative visual reasoning benchmarks: MathVerse (Zhang et al., 2024b), MathVision (Wang
et al., 2024), WeMath (Qiao et al., 2024), MathVista (Lu et al., 2023), HallusionBench (Guan et al.,
2024) and ChartQA (Masry et al., 2022). These benchmarks span across math reasoning, visual
perception, and chart understanding. We use MathRuler to evaluate questions with free-form ground
truths and Gemini-2.0-Flash-001 (Deepmind, 2025) to evaluate questions with multi-choice ground
truths. More information in Appendix E.

Implementation Details. We use EasyR1 (Yaowei et al., 2025) as our training codebase. We
employ Qwen2.5-VL-3B/7B-Instruct (Bai et al., 2025) as base model to verify our method’s gener-
alizability on model scales. Parameters of vision encoder are kept frozen. We set update batch size
to 128 and rollout batch size (G) to 512. Rollout temperature is set to 1.0 and learning rate is set to
1e − 6. All experiments are conducted on 8× 80G GPUs. For each query, we generate 2N = 16
rollouts. For PTS, we construct N = 8 pairs and select the top M = 4 pairs, corresponding to a
retention ratio of α = 0.5, striking a balance between training cost and exploration space. For ABS,
we set T = 256 pairs (512 query-response trajectories) for each sub-sampling batch. We construct
shuffled batch by performing S = 8 rounds of shuffle. Decoding temperature for evaluation is set to
0.5, and we report average pass@1 accuracy of 8 tests to reduce randomness.

4.2 MAIN RESULTS

Comparison with Representative Algorithms. We compare our method with GRPO (Shao et al.,
2024) and DAPO (Yu et al., 2025). On Geometry3K (Tab. 1), our 3B model reaches 47.88% accu-
racy, outperforming GRPO by 5.2% and DAPO by 2.7%.; the 7B model achieves 55.89%, with
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Table 3: Model performance on representative visual reasoning benchmarks. Models marked with
‘∗’ are evaluated using our own evaluation scripts with vLLM. †Vision-R1-7B used WeMath and
MathVision as training data, its performance on these benchmarks are omitted. Best performance of
RL-only models marked with Bold, second best with underline.

Model MathVerse MathVision MathVista WeMath HallBench ChartQA Avg.

Close-source

GPT-4o (Achiam et al., 2024) 50.8 30.4 63.8 68.8 55.0 - -
o1 (OpenAI, 2024) 57.0 60.3 73.9 - - - -
Gemini-2.0 pro (Deepmind, 2025) 67.3 48.1 71.3 - 49.8 - -
Claude-3.7-Sonnet (Anthropic, 2025) 52.0 41.3 66.8 72.6 55.4 - -

Open-Source SFT

InternVL-2.5-8B (Chen et al., 2025b) 39.5 17.0 64.5 - 50.1 79.1 -
InternVL-3-8B (Zhu et al., 2025) - 29.3 71.6 - 49.9 86.6 -
Qwen2.5-VL-3B∗ (Bai et al., 2025) 34.8 21.9 58.4 51.7 59.8 73.1 49.9
Qwen2.5-VL-7B∗ (Bai et al., 2025) 42.6 25.8 67.4 63.5 65.2 79.8 57.4

Cold-Start + RL

R1-VL-7B∗ (Zhang et al., 2025) 40.1 24.3 62.3 59.8 60.9 76.1 53.9
Vision-R1-7B∗† (Huang et al., 2025) 46.1 - 70.8 - 57.8 83.1 -
R1-OneVision-7B∗ (Yang et al., 2025) 43.0 24.8 61.2 60.6 66.4 77.8 55.2
OpenVLThinker-7B∗ (Deng et al., 2025) 46.4 24.8 69.7 67.2 59.1 78.4 57.6
VLAA-Thinker-7B∗ (Chen et al., 2025a) 48.9 26.3 69.9 67.7 67.5 80.1 60.1

Zero RL

MM-Eureka-Qwen-7B∗ (Meng et al., 2025) 49.6 27.4 70.6 67.4 66.7 79.0 60.1
MMR1-Math-7B∗ (Leng et al., 2025) 39.2 31.9 71.5 70.7 69.6 82.0 60.8
ThinkLite-VL-7B∗ (Wang et al., 2025b) 45.2 28.0 72.4 69.3 70.2 82.0 61.2
VL-Rethinker-7B∗ (Wang et al., 2025a) 51.7 29.7 72.0 70.1 69.9 79.0 62.1
NoisyRollout-7B-K12∗ (Liu et al., 2025a) 50.1 28.0 70.9 70.8 70.1 81.4 62.1

Shuffle-R1-Qwen-3B (Ours) 44.2 26.8 70.4 66.5 69.2 79.9 59.5
Shuffle-R1-Qwen-7B (Ours) 53.9 30.0 77.0 72.3 71.0 84.1 64.7

gains of 3.3% and 1.4%, respectively. On out-of-domain math reasoning tasks, our method further
improves average accuracy by 1.96% (3B) and 1.5% (7B) over GRPO, also surpassing DAPO. Con-
sistent gains are observed on HallusionBench and ChartQA, where data distribution diverges more
from training. Similar trends hold on the K12 experiments (Tab. 2), with improvements in both in-
domain and out-of-domain settings, underscoring the robustness of our framework across tasks and
distributions. Compared with the latest GSPO (Zheng et al., 2025), which replaces token-level im-
portance sampling with sequence-level importance sampling, our method also demonstrates superior
performance on both in-domain and out-of-domain tasks. All the performance results above indicate
our framework’s generalizability on different data distributions and model scales, highlighting the
effectiveness of dynamic RL training paradigm. More results in Appendix C.

Original w. PTS w. PTS + ABS

Figure 5: Advantage distribution in a training
batch of GRPO and our framework.

Comparison with RL-based models. We
conduct larger scale experiments on MM-
Eureka dataset. As shown in Tab. 3, trained
with 30k selected data from diverse sources for
150 steps, our 7B model exhibits a substantial
accuracy gain over the base model (Qwen2.5-
VL-7B). Moreover, it outperforms a series of
open-source 7B competitors who also adopt RL
training strategies, e.g. MM-Eureka with direct
RL and VLAA-Thinker with RL after cold-start
SFT. Notably, our model achieves competitive
or superior performance on several benchmarks
compared to leading close-source models, for
instance, Claude-3.7-Sonnet (Anthropic, 2025) and GPT-4o (Achiam et al., 2024). Under the same
setting, our 3B variant also demonstrates strong performance, even outperforming several 7B models
on certain benchmarks. These results highlight the superiority of our proposed approach in boosting
the training efficiency in reinforcement learning.
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Figure 6: (a) Training accuracy of Shuffle-R1 on Geo3K. (b) Validation accuracy of Shuffle-R1 on
Geo3K. (c) Token utilization rate of Shuffle-R1 on Geo3K. (d) Shuffle-R1 achieves better perfor-
mance with minimal extra time cost.

Figure 7: Wall-Clock Training Curve of Shuffle-R1 compared with GRPO.

Efficiency Analysis. The improvement in model performance mainly stems from better training
efficiency. Advantage distribution analysis in Fig. 5 confirms that, PTS effectively mitigates Advan-
tage Collapsing by increasing the proportion of large-magnitude advantages. ABS further optimizes
the batch composition, enabling the model to focus on more informative trajectories.

Fig. 6(a) and (b) further probe into training dynamics and demonstrate that our framework consis-
tently achieves higher training and validation accuracy, reaching comparable performance as GRPO
with as little as half the training steps. Moreover, our framework effectively mitigates the issue of
“Rollout Silencing” shown in Fig. 6(c), maintaining a high token utilization rate across all training
stages. Fig. 6(d) further illustrates the favorable trade-off between training scale and computational
cost of our approach, uplifting training performance by a large margin.

Fig. 7 illustrates the actual wall-clock GPU time between GRPO and Shuffle-R1. Under the same
update size and total training steps, Shuffle-R1 achieves substantially higher train/val accuracy than
GRPO in the early training stage. More importantly, the total GPU time of Shuffle-R1 only increases
by 4% ∼ 7.7% relative to GRPO. When targeting the same accuracy as GRPO, Shuffle-R1 requires
roughly half the number of training steps and approximately 60% of the total wall-clock time.

4.3 ABLATION STUDY

We conduct ablation experiments on Qwen2.5-VL-3B-Instruct using Geometry3K, focusing on two
objectives: (1) assessing the contribution of each component in our framework, and (2) validating
the impact of key designs. More detailed results are reported in Appendix C.

8



Published as a conference paper at ICLR 2026

Component-wise Contribution. We evaluate the effectiveness of PTS and ABS by incrementally
adding them to the baseline. As shown in Tab. 4, On in-domain Geometry3K test set, PTS lifts
accuracy from 42.64% to 46.21% (+3.57). Adding ABS yields a further +1.67, reaching 47.88%.
Similar improvement trends appear on out-of-domain benchmarks: on the math reasoning set, the
full setting (PTS + ABS) attains 48.70% vs. 46.74% with GRPO (41.71% before RL training); on
ChartQA, we also observe effective performance gain (77.04% vs. 76.20%, with 73.08% before RL
training) despite larger distribution shift. Our method also demonstrates improved performance in
HallusionBench. To isolate the contribution of ABS, we conducted an experiment where ABS is
applied to trajectory pairs formed by uniform random sampling instead of PTS. This setting (Tab. 4
line 4) also demonstrates notable improvement over the baseline, confirming its effectiveness.

Table 4: Ablation on effectiveness of PTS and ABS.

GRPO PTS ABS Geo3k Math Avg. HallBench ChartQA

25.79 41.71 59.83 73.08
✓ 42.64 46.74 63.09 76.20
✓ ✓ 46.21 47.64 63.40 76.52
✓ ✓ 46.82 47.79 62.77 75.12
✓ ✓ ✓ 47.88 48.70 63.19 77.04

Table 5: Ablation on rationality of PTS and ABS.

Setting Geo3k Math Avg. HallBench ChartQA

Qwen2.5-VL-3B 25.79 41.71 59.83 73.08
+ GRPO 42.64 46.74 63.09 76.20

Ablation on PTS

+ only max 41.26 44.77 63.30 75.64
+ only min 23.36 41.52 60.98 74.36
+ random pick 43.53 46.62 63.19 76.00
+ PTS 46.21 47.64 63.40 76.52

Ablation on ABS

+ random shuffle 46.05 47.40 63.19 76.60
+ reorder 46.28 47.64 63.09 76.64
+ ABS 47.88 48.80 63.19 77.04

Analysis of Pairwise Trajectory Sam-
pling. One core mechanism of the PTS
lies in the structured contrastive sampling
scheme. To validate the effectiveness
of our bidirectional, contrastive sampling
scheme, we compare PTS against three
alternative strategies: (1) One-way Posi-
tive Sampling (only select trajectories with
highest advantage); (2) One-way Nega-
tive Sampling (only select trajectories with
lowest advantage); and (3) Unbiased Ran-
dom Sampling. All settings maintained a
consistent sampling ratio (8 valid trajecto-
ries from 16 rollouts) to ensure fairness.
We disable ABS since it relies on the pair-
ing result of PTS. As shown in Tab. 5,
model trained with PTS receives a consis-
tent performance gain on both in-domain
and out-of-domain tasks, while both one-
way positive and negative sampling result
in a performance decline even below the
GRPO baseline, demonstrating the effec-
tiveness and rationality of our design. Un-
biased random sampling only receives mi-
nor improvement over baseline, far behind the effectiveness of PTS.

(a) (b)

Figure 8: Ablation on key hyper parameters. (a)
Effect of different sampling ratio α. (b) Effect of
different shuffle times S.

Analysis of Advantage-based Batch Shuf-
fle. ABS introduces Advantage-aware shuf-
fling and Inter-sub-batch resampling to reshape
the training batch. To validate their effec-
tiveness, we designed two contrastive experi-
ments: (1) Unbiased Shuffle: using uniformly
distributed sampling weights to perform shuffle
strategy. and (2) Static Reorder: randomly re-
order the training batch without sub-sampling,
maintaining the original data distribution. We
enable PTS during training as ABS relies on
its pairing result. As shown in Tab. 5, model
trained with ABS significantly outperforms the
contrastive settings. The unbiased shuffle set-
ting even performs worse compared to the PTS-
only setting, demonstrating significance of advantage-weighting. The static reorder setting has no
improvement compared to PTS-only setting, as they have the same data distribution.

Hyperparameters. We investigate the impact of two key hyperparameters in our framework: (1)
the sampling ratio (α) in PTS, and (2) the shuffle times (S) in ABS. For α, we fix S = 8 and test
values of 0.25, 0.5, and 0.75 (i.e., selecting 4, 8, and 12 samples from 16 rollouts). As shown in
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Table 6: Extension experiments on Qwen2.5-VL-32B.

Model MathVerse MathVision MathVista WeMath HallBench ChartQA Avg.
Qwen2.5-32B 57.0 38.2 75.4 72.9 71.3 80.7 65.9
+ GRPO 58.4 39.3 77.3 75.9 70.3 83.8 67.4
+ Ours 59.0 41.2 79.5 77.9 72.2 84.9 69.1

Table 7: Extension experiments on Referring Expression Comprehension task.

Model RefCOCO(testA) RefCOCO(testB) RefCOCO+(testA) RefCOCO+(testB) RefCOCOg(test)

Qwen2.5-3B 86.09 75.64 81.71 66.93 72.39
+GRPO 89.90 81.33 85.94 70.97 81.45
+Ours 91.83 84.31 87.84 76.27 86.07

Fig. 8(a), both α = 0.75 and α = 0.5 yield strong performance, while α = 0.25 lags behind. We
attribute this to over-pruning, where filtering out rollouts too aggressively may reduce data diversity.
We choose α = 0.5 for a balance between signal quality and computational efficiency. For S, we
fix α = 0.5 and vary the shuffle times as 4, 8, and 16. Fig. 8(b) shows that performance improves
with increasing S, but saturates beyond S = 8. This suggests that moderate resampling enhances
data exposure, but too many shuffles may offer diminishing returns. More details in Appendix C.

4.4 EXTENSION EXPERIMENTAL RESULTS

Scaling to 32B Model We conduct experiments on Qwen2.5-VL-32B to inveritage the scalability
and generalizability of Shuffle-R1 on larger models. We train the 32B variant on the selected 30k
data for 50 steps (to save training resources cost). Results in Tab. 6 demonstrate that Shuffle-R1 also
performs well on 32B scale.

Referring Expression Comprehension For tasks beyond math/visual reasoning, we conduct an
experiment on Referring Expression Comprehension (REC). We train Qwen2.5-VL-3B on 60K data
randomly selected from RefCOCO/RefCOCOg/RefCOCO+ using a IoU-based soft reward. Results
in Tab. 7 show that Shuffle-R1 can be well adapted to soft-reward tasks and beyond.

Table 8: Extension experiments on LLM.

Setting Math12K AIME24 MATH500 GSM8K GPQA Olymp.

Qwen2.5-Math-1.5B-Base

+ GRPO 67.6 10.0 66.0 74.0 25.7 33.3
+ Ours 70.4 16.6 71.0 79.6 30.8 36.8

Qwen2.5-Math-7B-Base

+ GRPO 74.6 20.0 76.4 84.8 36.3 39.7
+ Ours 78.2 23.3 79.4 89.5 37.3 41.4

Language-only Reasoning While our
initial analysis focused on the RL train-
ing dynamics of MLLMs, we conduct
an early extension experiment to val-
idate the feasibility of Shuffle-R1 on
LLMs. We train Qwen2.5-Math-1.5B/7B-
Base (Yang et al., 2024) on Open-S1
dataset (Dang & Ngo, 2025) for 150
steps and evaluate model performance
on Math12K (Hendrycks et al., 2021),
AIME24, MATH500 (Lightman et al.,
2023), GSM8K (Cobbe et al., 2021), GPQA-Diamond (Rein et al., 2023) and OlympiadBench (He
et al., 2024). As shown in Tab. 8, our framework delivers significant improvements on all the bench-
marks compared to GRPO, demonstrating its potential effectiveness on text-only LLMs.

5 CONCLUSION

In this paper, we introduce Shuffle-R1, a simple but effective framework designed to improve the
training efficiency of reinforcement learning of multimodal large language models. Through Pair-
wise Trajectory Sampling and Advantage-based Batch Shuffle, our framework significantly outper-
forms representative algorithms and models in both in-domain and out-of-domain tasks, demonstrat-
ing the value of data-centric adaptive design. We hope that our motivations, method, and findings
are helpful for further research.
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A PSEUDO CODE

Here, we provide the pseudo code of Shuffle-R1 for readers to better understand the pipeline flow,
and for better transparency in algorithm understanding and reproducibility.

Algorithm 1 Shuffle-R1 Workflow
1: Input: Q (queries), πθ (policy), 2N (rollouts per query), α (sampling ratio), S (shuffle rounds)
2: Output: Optimized batch B′ for gradient update
3: Initialize global batch B ← ∅
4: for each q ∈ Q do ▷ PTS Phase
5: Generate {oi}2Ni=1 ∼ πθ(q)

6: Compute {Âi} via R = RewardFunc({oi}, q)
7: Sort pairs: {(o(i), o(2N−i+1))}Ni=1 ← MaxMinPair({Âi})
8: Retain top-⌊αN⌋ pairs: Bq ← {(o(k), o(2N−k+1))}⌊αN⌋

k=1
9: Aggregate: B ← B ∪ Bq

10: end for
11: Compute Wj = |Âp|+ |Âq| ∀(op, oq) ∈ B ▷ ABS Phase
12: Calculate Pj = Wj/

∑
Wk for weighted sampling

13: B′ ← ShuffleSample(B, Pj , S) with S × T = |B|
14: return B′ ▷ Jointly optimized training data

B PROMPT DESIGN

We use a “Thinking prompt” to explicitly control the output format of the model, which requires the
model to output its thinking process within special tokens <think> and </think>, and mark the
final answer with \boxed{}. In practice, we keep the system prompt of Qwen2.5-VL (Bai et al.,
2025), and insert the “Thinking prompt” at the beginning of user message. We keep the training and
evaluation prompt in the same format. The full structure of instruction prompt is as follows:

Prompt Example

SYSTEM:
You are a helpful assistant.
USER:
You FIRST think about the reasoning process as an internal monologue and then provide
the final answer. The reasoning process MUST BE enclosed within <think> </think>
tags. The final answer MUST BE put in \boxed{}. <QUESTION>

C MORE EXPERIMENTAL RESULTS

Detailed Model Performance. We provide a more detailed performance of models trained on Ge-
ometry3K and K12 dataset in Tab. 9, reporting model performance on each out-of-domain bench-
marks as a supplement to “Math Avg.” columns in main paper. Trained with only 2.1k data, both
the 3B and 7B model demonstrate significant performance gains.

Full Setting Comparison. Improved training algorithm leads to improved performance. To better
reveal the model performance beyond the limited data scale of Geo3K, we conduct full 30k-sample
150-step experiment on Qwen2.5-VL-7B. As shown in Tab. 10, Shuffle-R1 achieves clear and con-
sistent gains over strong baselines across all six evaluation benchmarks. This result further proven
the robustness and scalability of Shuffle-R1.

Comparison with more RL algorithms. We provide additional comparisons with more repre-
sentative RL algorithms, i.e. RLOO (Ahmadian et al., 2024) and REINFORCE++ (Hu, 2025). We
conduct experiments on Qwen2.5-VL-3B-Instruct with Geometry3K dataset. All the experiment
settings are kept the same as GRPO/DAPO/GSPO in main paper. The final model performance is
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Table 9: Detailed performance on out-of-domain benchmarks of models trained on Geometry3K
and K12 data. Highest accuracy marked in Bold.

Method MathVerse MathVision MathVista WeMath HallBench ChartQA Total Avg.

Qwen2.5-VL-3B 34.77 21.94 58.40 51.72 59.83 73.08 49.96
+ Ours (Geo3K) 43.55 25.30 61.80 64.14 63.19 77.04 55.84
+ Ours (K12) 44.06 26.48 64.90 64.77 65.72 78.28 57.37

Qwen2.5-VL-7B 42.59 25.76 67.40 63.51 65.19 79.84 57.38
+ Ours (Geo3K) 50.96 27.47 70.90 69.19 69.51 81.64 61.61
+ Ours (K12) 48.59 28.61 73.20 69.71 69.87 82.60 62.09

Table 10: Full 30k experiment on Qwen2.5-VL-7B. Highest accuracy marked in Bold.

Method MathVerse MathVision MathVista WeMath HallBench ChartQA Total Avg.

Qwen2.5-VL-7B 42.6 25.8 67.4 63.5 65.2 79.8 57.4
+ GRPO 50.6 28.3 74.5 69.7 70.7 81.4 62.5
+ DAPO 51.4 28.8 75.3 71.5 71.0 82.8 63.4
+ GSPO 50.8 28.2 75.3 70.1 69.7 82.9 62.8
+ Ours 53.9 30.0 77.0 72.3 71.0 84.1 64.7

shown in Tab. 11. Our framework outperform these algorithms by a large margin in both in-domain
and out-of-domain tasks.

Comparison with Prioritize Experience Replay. We conduct a comparative study by replacing
ABS with a prioritized experience replay mechanism. Experience replay maintains a decoupled
buffer of past samples, whereas ABS adopts an online, in-place shuffle strategy to dynamically
reshape the data distribution. As shown in Fig. 9(a) and (b), in the later stages, the experience replay
setting exhibits a plateau in training accuracy and even a drop in validation accuracy, indicating
potential overfitting to stale samples. This suggests that prioritized experience replay may overly
emphasize historical trajectories, leading to suboptimal convergence. Moreover, ABS proves to be
more effective in mitigating the Rollout Silencing.

Detailed Impact of Hyperparameters. Here, we provide detailed model performance compari-
son under different hyperparameter settings in Fig. 12, as supplementary information to correspond-
ing ablation experiments in main paper. For sampling ratio (α), both the in-domain and out-of-
domain accuracy improves as we increase α from 0.25 to 0.5. The model performance shows a mild
decrease when α is further raised to 0.75. This result demonstrates again that not all the rollouts
contribute equally positive to RL training. For shuffle times (S), the model performance receives a
consistent gain when S is increased from 4 to 8, but declines when S is set to 16. This result sug-

(a) (b) (c)

Figure 9: Performance of Shuffle-R1 compared with directly applying Prioritized Experience Re-
play.
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Table 11: Performance of Shuffle-R1 on Geometry3K dataset compared with RLOO and REIN-
FORCE++. Highest accuracy marked in Bold.

Method Geo3K MathVerse MathVision MathVista WeMath HallBench ChartQA

Qwen2.5-VL-3B 25.79 34.77 21.94 58.40 51.72 59.83 73.08
+ RLOO 42.09 39.94 22.96 58.90 59.48 64.24 76.68
+ REINFORCE++ 41.76 41.70 24.86 60.90 63.51 62.99 76.20
+ Ours 47.88 43.55 25.30 61.80 64.14 63.19 77.04

Table 12: Performance of Shuffle-R1 under different hyperparameter settings. Highest accuracy
marked in Bold.

Setting Geo3K MathVerse MathVision MathVista WeMath HallBench ChartQA

Ablation on sampling ratio α (S = 8)

α = 0.25 45.75 42.43 23.05 60.20 63.62 63.09 75.36
α = 0.50 47.88 43.55 25.30 61.80 64.14 63.19 77.04
α = 0.75 47.41 41.70 25.62 60.90 64.54 62.99 73.36

Ablation on shuffle times S (α = 0.5)

S = 4 45.92 42.21 24.78 62.30 64.08 62.25 75.60
S = 8 47.88 43.55 25.30 61.80 64.14 63.19 77.04
S = 16 47.23 43.70 24.86 60.90 62.64 62.20 74.84

gests that appropriate repeated training on high-quality samples can enhance the model’s reasoning
ability without affecting data diversity.

D EXPERIMENT SETTINGS

We report details of our training and evaluation settings here, including reward function design, main
hyperparameters and computing resources.

Table 13: Hyperparameter settings.

Hyperparameters Value

max pixels 1000000
min pixels 262144
max prompt length 2048
max response length 2048
rollout batch size 512
global batch size 128
learning rate 1e-6
optimizer AdamW
rollout temperature 1.0
rollout top p 0.99
evaluation temperature 0.5
rollout group number 16
PTS sampling ratio (α) 0.5
ABS shuffle times (S) 8
KL coefficient 0.0
vision encoder frozen

Reward Calculation. We adopt a combination of for-
mat reward and accuracy reward as the final reward in
reinforcement learning. The format reward and accuracy
reward are calculated as follows:

rformat =

{
1, if format is correct
0, if format is incorrect

(10)

racc =

{
1, if answer = ground truth
0, if answer ̸= ground truth

(11)

The final reward is the weighted sum of above rewards:

roverall = 0.1× rformat + 0.9× racc (12)

Format reward is assigned to a smaller weight since re-
sponse formatting is easy to learn.

Hyperparameters. We use EasyR1 (Yaowei et al.,
2025) as our training framework. Full hyperparameter
settings during training is shown in Tab. 13. For experi-
ments on Geometry3K and K12 with ∼ 2.1k training samples, we set the training steps to 80. For
the joint training experiments (∼ 30k training samples), we increase the training steps to 150 due
to extended data size. Other hyperparameters that are not mentioned are kept to default values of
EasyR1.

Computing Resources. All experiments are conducted on 8× 80G GPUs.
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E DATASET COLLECTION

Question:
Which one best approximates the
relationship between y and t? A. y = 
; B. y = ; C. y = ; D. y = .
Answer:
D

Question:
The graph of the function f(x) is the
line segment ABC. The coordinates of
points A,B, and C are (0,4), (2,0), and
(6,4), respectively. Then f(f(f(2)))= ?
Answer:
2

Question:
Find the measure of  if .
Answer:
32

Question:
Find x.
Answer:
4

Figure 10: Top: Examples of Geometry3K.
Bottom: Examples of MMK12.

Question:
Assume that both boxes are identical in
size. The middle cylinder has radius of
6 and height of 11. Find the surface
area of the solid.
Answer:
8128.50

Question:
Write the equation of 
Answer:

Question:
Based on the map, did the Democratic
Party win Texas in the 2020 elections?
Answer:
No

Question:
For the given image, are the colors on
tiles A and B the same?
Answer:
Yes

Question:
What was the 4th most popular
emotion?
Answer:
Inspired

Question:
what is the sum favourable value in the
year 2014 and 2015?
Answer:
95

Figure 11: Top: Examples of math reason-
ing tasks. Middle: Examples of visual per-
ception tasks. Bottom: Examples of chart
understanding tasks.

For training dataset, we choose Geometry3K (Lu
et al., 2021) and MMK12 dataset. Geometry3K
dataset is a high quality real-world geometry prob-
lem solving dataset, containing 2.1K training sam-
ples and 601 test samples. It contains a wide range
of geometry problems with varying levels of dif-
ficulty. The text problems are very compact with
most of the geometric conditions represented in im-
ages, making it suitable for our training. MMK12
dataset is introduced by MM-Eureka (Meng et al.,
2025), which contains 16k math reasoning training
samples. The training samples have both geomet-
ric and non-geometric problems and have been care-
fully examined and manually filtered to ensure qual-
ity. The test set of MMK12 further includes other
STEM problems such as physics, biology and chem-
istry. During our training, we used a randomly se-
lected subset of MMK12 provided by NoisyRoll-
out (Liu et al., 2025a) (referred to as ‘K12’ in the pa-
per to distinguish it from full set of MMK12), which
has 2.1k samples with the same size as Geometry3K.
All the training samples are in free-form format. Ex-
amples of training data shown in Fig. 10.

To fully evaluate model’s reasoning ability, apart
from in-domain test set from training dataset, we
select several representative benchmarks to exam-
ine model’s performance on math reasoning, vi-
sual perception, and chart understanding tasks. For
math reasoning task, we choose MathVerse (Zhang
et al., 2024b), MathVision (Wang et al., 2024), We-
Math (Qiao et al., 2024) and MathVista (Lu et al.,
2023). We choose HallusionBench (Guan et al.,
2024) and ChartQA (Masry et al., 2022) for vi-
sual perception and chart understanding tasks re-
spectively. We believe that a good RL algorithm can
not only improve in-domain performance, but also
have the potential to promote robust generalization
to out-of-domain tasks. Examples of evaluation data
shown in Fig. 11.

F EVALUATION METRICS

We adopt pass@1 accuracy as evaluation metric.
During evaluation, we set the decoding temperature
to 0.5 and perform 8 independent runs, reporting
the average pass@1 accuracy as final metric. The
choice of temperature doesn’t degrade model perfor-
mance, and the averaged accuracy reduces the ran-
domness, resulting in a more stable and reliable eval-
uation. Prompt format for evaluation is kept identi-
cal to training prompt. Evaluation settings of our model and all the reproduced results in main paper
are kept the same to ensure a fair comparison.

For evaluation of MathVerse, MathVision, WeMath, MathVista and ChartQA, we employ Gemini-
2.0-Flash-001 (Deepmind, 2025) to first extract the predicted answer from model response then
compare it with ground truth. Fig. 12 and Fig. 13 demonstrate the extraction and verification prompt

19



Published as a conference paper at ICLR 2026

Please read the following example.
Then output the answer extracted from the model response directly. No "Extracted answer:" in your
answer.

Hint: Please answer the question requiring an integer answer and provide the final value,
e.g., 1, 2, 3, at the end.
Question: Which number is missing?
Model response: The number missing in the sequence is 14.
Extracted answer: 14

Hint: Please answer the question requiring a floating-point number with one decimal place and provide
the final value,
e.g., 1.2, 1.3, 1.4, at the end.
Question: What is the fraction of females facing the camera?
Model response: The fraction of females facing the camera is 0.6,
which means that six out of ten females in the group are facing the camera.
Extracted answer: 0.6

Hint: Please answer the question requiring a floating-point number with two decimal places and provide
the final value,
e.g., 1.23, 1.34, 1.45, at the end.
Question: How much money does Luca need to buy a sour apple candy and a butter-scotch candy?
(Unit: $)
Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.
Extracted answer: 1.45

Hint: Please answer the question requiring a Python list as an answer and provide the final list,
e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.
Question: Between which two years does the line graph saw its maximum peak?
Model response: The line graph saw its maximum peak between 2007 and 2008.
Extracted answer: [2007, 2008]

Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
Question: What fraction of the shape is blue?
Choices: (A) 3/11 (B) 8/11 (C) 6/11 (D) 3/5
Model response: The correct answer is (B) 8/11.
Extracted answer: B

QUESTION
Model response: PREDICTION
Extracted answer:

Figure 12: Extraction prompt for Gemini.

Below are two answers to a math question/chart understanding question. Question is [Question],
[Standard Answer] is the standard answer to the question, and [Model_answer] is the answer extracted
from a model's output to this question.  Determine whether these two answers are consistent.
Please note that only when the [Model_answer] completely matches the [Standard Answer] means they
are consistent. For non-multiple-choice questions, if the meaning is expressed in the same way, it is also
considered consistent, for example, 0.5m and 50cm.
If they are consistent, Judgement is 1; if they are different, Judgement is 0.

[Question]: Write the set of numbers represented on the number line in interval notation.
[Standard Answer]: (-2,1]
[Model_answer]: Extracted Answer: \((-2, 1)\)
Judgement: 0

[Question]: As shown in the figure, circle O has a radius 1.0, if angle BAC = 60.0, then the length of BC
is ()
Choices:
A:2 B:2√{{3}} C:√{{3}} D:2√{{2}}
[Standard Answer]: C
[Model_answer]: B:2√{{3}}
Judgement: 0

[Question]: Find the domain and range of the function f using interval notation.
[Standard Answer]: domain: [-4, 0) and range: (-3, 1]
[Model_answer]: Range: \((-4, 1]\)
Judgement: 0

[Question]: As shown in the figure, circle O has a radius 1.0, if angle BAC = 60.0, then the length of BC
is ()
Choices:
(A):2 (B):2√{{3}} (C):√{{3}} (D):2√{{2}}
[Standard Answer]: (C)
[Model_answer]: C
Judgement: 1

Please output the judgement score directly with no explanation.
[Question]: QUESTION
[Standard Answer]: ANSWER
[Model_answer]: PREDICTION
Judgement:

Figure 13: Score prompt for Gemini.

for Gemini. Specifically, we report accuracy on WeMath under loose mode, and overall accuracy
on MathVerse (including all sub categories: Text Dominant, Text Lite, Vision Intensive, Vision
Dominant and Vision Only).

G CASE STUDY

Here we provide some qualitative case study of Shuffle-R1’s reasoning outputs.

Fig. 14 and Fig. 15 show two improved cases on math related tasks. In case 1, the base model has
an error in visual information parsing, referring to angles not existed in the figure, resulting in a
reasoning fault. The RL model correctly parsed and solved the geometry problem. In case 2, the
base model misused a geometric theorem, leading to wrong answer, while the RL model correctly
solved the problem with accurate theorem.

Fig. 16 demonstrates improved reasoning ability in RL model, where the base model has accurate
perception about the chart but has reasoning error in CoT. The RL model can not only accurately
parse the visual information, but also perform correct reasoning to finally reach the right answer.

Case 4 in Fig. 17 further demonstrates that RL model also has better visual perception ability com-
pared to base model. The figure from HallusionBench has been artificially inserted with an image of
a hen, which only occupies a very small region of the original image. This modification has resulted
in a perception error and in base model, but the RL model can accurately identify the inserted image.

H THEORETICAL ANALYSIS OF SHUFFLE-R1

In this section, we provide an intuitive analysis on how the adaptive selection & resampling improve
the training dynamics, and discuss the bias introduced by this process. We begin by assuming the
Advantage(A) follows a Gaussian distribution, A ∼ N (0, σ2), which matches the observation of
our probe analysis.

We define the original expectation of |A| as:

Eorig = E[|A|]. (13)
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We simplify the PTS as a truncate process with a threshold τ > 0, and define the kept set SPTS =
{|A| > τ}, the corresponding conditional expectation is:

EPTS = E[|A| | |A| ≥ τ ]. (14)

On the truncated set, we sample with weights w(a) ∝ |a|, and the resulting expectation is denoted
as:

Enew = E[w(a)|a| | |a| ∈ SPTS]. (15)

H.1 INTUITIVE ANALYSIS ON TRAINING DYNAMICS

Proposition 1 (Amplification on expectation of Advantage).

Proof. Define X = |A| on the SPTS, the weighted sampling probability density can be expressed as:

pnew(x) =
x · p(x | SPTS)

E[X | SPTS]
=

x · p(x | SPTS)

EPTS
. (16)

Thus the weighted sampling expectation can be calculated as:

Enew =

∫
x · x · p(x | S

PTS)

EPTS
dx =

E[X2|SPTS]

E[X|SPTS]
=

E
(2)
PTS

EPTS
. (17)

Based on Cauchy–Schwarz inequality, we can derive that:

E[X2] ≥ (E[X])2 =⇒ Enew ≥ EPTS (18)

Further, the original expectation can be decomposed as:

Eorig = (1− pτ )E[|A| | |A| < τ ] + pτE[|A| | |A| ≥ τ ], where pτ = P(|A| ≥ τ). (19)

Since
E[|A| | |A| < τ ] < τ < E[|A| | |A| ≥ τ ]. (20)

we have EPTS > Eorig =⇒ Enew > Eorig. □

Proposition 2 (Amplification on gradient norm).
Proof. In the policy gradient training, the per-sample gradient can be expressed as:

g = A · u. u = ∇θlogπθ(o). (21)

||g|| = |A| ||u||. (22)
Derived from the standard assumptions of policy gradient that ||u|| is approximately independent
from |A|, we have:

E[||gnew||] ∝ Enew[|A|] · E[||u||] > Eorig[|A|] · E[||u||] = E[||gorig||]. (23)

which in turn yields larger update magnitudes per optimization step. □

H.2 BIAS UNDER SELECTIVE SAMPLING

Proposition 3 (Adaptive sampling introduce positive bias).
Proof. Under the Gaussian distribution assumption, the expectation can be calculated as:

Enew[A] =
1

Z
(

∫ −τ

−∞
a|a|p(a)da+

∫ ∞

τ

a|a|p(a)da)

=
2

Z

∫ ∞

τ

a2p(a)da > 0

where the normalized factor Z is defined as:

Z =

∫ ∞

−∞
|a|p(a)I(|a| > τ)da

= 2

∫ ∞

τ

a · p(a)da

The positive bias indicates that the gradient update is systematically tend to trajectories that has
higher advantage. □
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In the figure below,   is
intersected by parallel lines 
and . What is the measure of 

? Express your answer in
degrees.

<think>Since lines  and  are parallel, 
 can be found by considering the angles

formed by the intersection of the transversal
 with the parallel lines  and .

Specifically,  is the included angle
between the two lines, and it can be calculated
by adding the adjacent angles on either side of
the vertex . Here,  is the included
angle between the two lines, and it can be
calculated by adding the adjacent angles on
either side of the vertex . Since  is the
included angle between the two lines, and it
can be calculated by adding the adjacent
angles on either side of the vertex . Thus, the
measure of  is the sum of the two given
angles: </think>

<think>To solve for the measure of  ,
we need to use the properties of angles formed
by a transversal intersecting parallel lines. 1.
Identify the given information: ;

; The lines  and  are parallel.
2. Recall that the sum of the angles in a
triangle is always . 3. Therefore, we can
write the equation for the sum of the angles in
triangle :   

 4.
Substitute the given values into the equation:

 5. Simplify the
equation:  6. Solve for

:  Thus,
the measure of  is .

Base Model RL ModelUSER Input

Figure 14: A case study on math related task.

Find the value of 

<think>The sum of the interior angles of a
quadrilateral is 360 degrees. We can set up an
equation using the given expressions for the
angles:

. Simplifying the left side:
, i.e.

. Subtracting 64 from both
sides:  -> . Dividing
both sides by 4: , so that .
Thus, the value of  is 74.\n</think>

To find the value of , we need to use the fact
that the sum of the interior angles of a pentagon
is . The pentagon is divided into three
triangles, and we can use the fact that the sum
of the angles in each triangle is . First, let's
label the angles in the pentagon: One angle is

. Another angle is . Another angle is
. Another angle is . The remaining

angle is . The sum of the interior
angles of the pentagon is:

. Simplify the left side:
, i.e.

. Subtract 64 from both sides:
. Divide by 4: . So, the value

of  is .

Base Model RL ModelUSER Input

Figure 15: Another case study on math related task.

From 2001 to 2010, Is 2005
exported the most value of bread,
biscuits, wafers, cakes and pastries
from the UK? You final answer can
only be yes or no.

<think>From the graph, the export value in
2005 appears to be higher than in 2001 but
lower than in 2010. The graph shows a general
upward trend, and while 2005 is higher than
2001, it is not the peak value between 2001
and 2010. The peak value in this interval
seems to be around 2010.</think>

<think>To determine if 2005 had the highest
export value of bread, biscuits, wafers, cakes,
and pastries from the UK from 2001 to 2010,
we need to analyze the trend of the export
value over this period. From the graph: The
export value starts at around 400,000 GBP in
2001; It increases steadily until 2005. After
2005, the export value continues to increase
but at a slower rate compared to the period
before 2005. Since the export value is
continuously increasing from 2001 to 2005
and then continues to increase but at a slower
rate, it is reasonable to conclude that the
highest value was reached in 2005.Final
answer: yes.</think>

Base Model RL ModelUSER Input

Figure 16: A case study on chart understanding task.

Are there any hens in this figure?
You final answer can only be yes
or no.

<think>The image is a diagram of various
dinosaurs and their evolutionary relationships.
It includes a timeline showing the timeline of
dinosaur evolution and a visual representation
of different dinosaur species. There is also a
chicken depicted at the bottom right corner of
the image, which is not a dinosaur but a
modern bird.</think>

<think>The image is a diagram of various
dinosaurs, including both herbivores and
carnivores, as well as a small bird-like
creature. The bird-like creature is labeled as
"Archaeopteryx" which is a transitional fossil
between dinosaurs and birds. There are no
hens depicted in the image. Hens are
domesticated chickens, which are not shown in
this diagram.</think>
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Figure 17: A case study on visual perception task.
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