Published as a conference paper at ICLR 2024

ANALYZING FEED-FORWARD BLOCKS IN TRANS-
FORMERS THROUGH THE LENS OF ATTENTION MAPS

Goro Kobayashi'-?, Tatsuki Kuribayashi?'!, Sho Yokoi'?, Kentaro Inui '3

!Tohoku University, 2MBZUALI, 3RIKEN

goro.koba@dc.tohoku.ac. jp tatsuki.kuribayashi@mbzuai.ac.ae
yokoi@tohoku.ac. jp kentaro.inui@mbzuai.ac.ae

ABSTRACT

Transformers are ubiquitous in wide tasks. Interpreting their internals is a pivotal
goal. Nevertheless, their particular components, feed-forward (FF) blocks, have
typically been less analyzed despite their substantial parameter amounts. We an-
alyze the input contextualization effects of FF blocks by rendering them in the
attention maps as a human-friendly visualization scheme. Our experiments with
both masked- and causal-language models reveal that FF networks modify the in-
put contextualization to emphasize specific types of linguistic compositions. In
addition, FF and its surrounding components tend to cancel out each other’s ef-
fects, suggesting potential redundancy in the processing of the Transformer layer.

O github.com/gorokoba560/norm—analysis—of-transformer

1 INTRODUCTION

Transformer is composed of several components (e.g., self-attention and feed-forward networks);
tracking and interpreting its component-by-component intermediate processing have been aimed to
enrich the mechanistic interpretation of the model’s inner workings (Kobayashi et al.|[2020; 2021}
Modarressi et al.|[2022; see § for more works). One straightforward yet popular approach is
to render vanilla attention weights, reflecting how strongly a particular context token contributes
to computing an output representation (§ [2), and identify in which attention head a specific type
of contextualization is performed in Transformer (Clark et al., |2019; [Kovaleva et al., 2019). Re-
cent studies have extended this approach by incorporating more components beyond Query-Key
matrix multiplication, e.g., residual connections, enabling to analyze how input-contextualization
is shaped component-by-component through the lens of attention maps (Brunner et al.[2020; |Ab-
nar & Zuidemal2020; Kobayashi et al.|[2020; 2021} [Modarressi et al.|[2022}; see § @] for more
works). Such an interpretation scheme has several advantages: (i) Attention mechanisms are spread
out in the entire Transformer architecture; thus, if one can view their surrounding component’s
processing through this “semi-transparent window,” these pictures can complete the Transformer’s
entire component-by-component internal processing, (ii) token-to-token relationships are more fa-
miliar to humans than directly observing high-dimensional, continuous intermediate representa-
tions/parameters, and (iii) input attribution is of major interest in explaining the model prediction,
and (iv) such attention map refinement approaches tend to estimate better attributions than, e.g.,
gradient-based methods (Modarressi et al., 2022; 2023)).

Nevertheless, in this attention-map refinement approach, FF networks have typically been over-
looked from the analysis scope, although there are several motivations to consider FFs. For example,
FFs account for about two-thirds of the layer parameters in typical Transformer-based models, such
as BERT and GPT series; this implies that FF has the expressive power to dominate the model’s inner
workings. In addition, there is a growing general interest in FFs with the rise of FF-focused meth-
ods such as adapters (Houlsby et al., 2019), although analyzing these specially designed models is
beyond this paper’s focus. Furthermore, it has been reported that FFs indeed perform some linguis-
tic operations, while existing studies have not explicitly focused on input contextualization (Geva
et al., 2021} [Dai et al., |2022). For example, Oba et al.|(2021) explored the relationship between FF’s
neuron activation and specific phrases;|Geva et al.| (2021), Meng et al.[(2022), and |Dai et al.| (2022])
examined the knowledge stored in FF’s parameters through viewing FF as key-value memories.
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In this study, we analyze the FF blocks in the Transformer layer, i.e., FF networks and their sur-
rounding residual and normalization layers, with respect to their impact on input contextualization
through the lens of attention maps. Notably, although the FFs are applied to each input representa-
tion independently, their transformation can inherently affect the input contextualization (§ [3)), and
our experiments show that this indeed occurs (§ [5.1). Technically, we propose a method to compute
attention maps reflecting the FF blocks’ processing by extending a norm-based analysis (Kobayashi
et al., 2020; 2021), which has several advantages: the impact of input (||x||) is considered unlike
the vanilla gradient, and that only the forward computation is required. Although the original norm-
based approach can not be simply applied to the non-linear part in the FF, this study handles this
limitation by partially applying an integrated gradient (Sundararajan et al.,[2017) and enables us to
track the input contextualization from the information geometric perspectives.

Our experiments with both masked- and causal-language models (LMs) disclosed the contextual-
ization effects of the FF blocks. Specifically, we first reveal that FF and layer normalization in
specific layers tend to largely control contextualization. We also observe typical FF effect pat-
terns, independent of the LM types, such as amplifying a specific type of lexical composition, e.g.,
subwords-to-word and words-to-multi-word-expression constructions (§ @ Furthermore, we also
first observe that the FF’s effects are weakened by surrounding residual and normalization layers
(§[6), suggesting redundancy in the Transformer’s internal processing.

2 BACKGROUND

Notation: Boldface letters such as x denote row vectors.

Transformer layer: The Transformer architecture (Vaswani et al. [2017) consists of a series
of layers, each of which updates each token representation x; € R? in input sequence X :=
[x],...,2]]T € R"¥4 to a new representation y; € R? That is, the information of context
X is added to «;, and x; is updated to y;. We call this process contextualization of ;. Each
layer is composed of four parts: multi-head attention (ATTN), feed-forward network (FF), residual
connection (RES), and layer normalization (LN) (see Fig. . Note that we use the Post-LN architec-
ture (Vaswani et al., 2017) for the following explanations, but our methods can simply be extended

to the Pre-LN variant (Xiong et al.| 2020). A single layer can be written as a composite function:
y; =Layer(z;;X)=(FFB oATB)(z;;X)=(LN2 o RES2 0o FFo LN1 0 RES1 o ATTN)(x;;X).

We call (LN1 o RES1 o ATTN)(-) attention block (ATB), and (LN2 0 RES2 o FF)(-) feed-forward
block (FFB). Each component updates the representation as follows:

ATTN(z; X) = (2, 25 of ;2 ;Wy + by )Wo + bo € R? (1)

where Oz?;j = (a:iWQ + bQ)(iBiWK + bK)T eR 2)

FF(z;) = g(z;W; + b)) Wy + by € R? 3)

(RES© f)(zi) = f(zi) + z € R “4)

IN(z) = Zi2™E) oL 4 gere, )
s(zi)

where W~ denote weight parameters, and b, 3 denote bias parameters corresponding to query
(Q), key (K), value (V), etc. f: R? — R?, g: RY — RY m: RY — R, and s: RY — R denote
an arbitrary vector-valued function, activation function in FF (e.g., GELU, Hendrycks & Gimpel,
2016), element-wise mean, and element-wise standard deviation, respectively. h denotes the head
number in the multi-head attention. See the original paper (Vaswani et al.||2017) for more details.

Attention map: Our interest lies in how strongly each input x; contributes to the computation of
a particular output y;. This is typically visualized as an n X n attention map, where the (4, j) cell
represents how strongly x; contributed to compute y;. A typical approximation of such a map is
facilitated with the attention weights (aﬁ ;or > h aﬁ IE henceforth denoted «; ;) (Clark et al., 2019}
Kovaleva et al} [2019); however, this only reflects a specific process (QK attention computation) of
the Transformer layer (Brunner et al.l 2020; Kobayashi et al., 2020; |Abnar & Zuidema, [2020).

Looking into Transformer layer through attention map: Nevertheless, an attention map is not
only for visualizing the attention weights; existing studies (Kobayashi et al.| [2020; 2021) have an-
alyzed other components through the lens of refined attention map. Specifically, Kobayashi et al.
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Figure 1: Overview of the Transformer layer for Post-LN and Pre-LN architectures, annotated with
analysis scopes, e.g., ATBFFRESLN. The right part of this figure (token-to-token attention map) il-
lustrates the component-by-component changes of the attention maps. See Appendix [Bfor concrete
examples of attention maps.

(2020) pointed out that the processing in the multi-head QKV attention mechanism can be written
as a sum of transformed vectors:

yZATTN — Zj FiATTN (il?j; X) + bATTN’ (6)
where  FAT™N(z;: X)) i= ol (x; W)W, AN = by Wo + bo. (7)

Here, input representation x; is updated to yTTN by aggregating transformed inputs
FATTN (.. X). Then, |FAT™(z;; X)|| instead of o, ; alone is regarded as refined attention
weight with the simple intuition that larger input contributes to output more in summation. This
refined weight reflects not only the original attention weight c; ;, but also the effect of surrounding
processing involved in F', such as value vector transformation. We call this strategy of decomposing
the process into the sum of transformed vectors and measuring their norms norm-based analysis,
and the obtained n X n attribution matrix is generally called attention map in this study.

This norm-based analysis has been further generalized to a broader component of the Transformer
layer. Specifically, Kobayashi et al.[(2021]) showed that the operation of attention block (ATB) could
also be rewritten into the sum of transformed inputs and a bias term:

Y P = ATB(i; X) = 33, BT (@5 X) + b1, ®)

Then, the norm || FATB(z;; X)|| was analyzed to quantify how much the input ; impacted the
computation of the output y\™® through the ATBs. See Appendix|Cfor details of FATP and b*T5,

7

3  PROPOSAL: ANALYZING FFBS THROUGH REFINED ATTENTION MAP

The transformer layer is not only an ATB; it consists of an ATB and FFB (Figs. [T] and 2). Thus,
this study broadens the analysis scope to include the entire FF block consisting of feed-forward,
residual, and normalization layers, in addition to the ATB. Note that FFBs do not involve token-
wise interaction among the inputs X; thus, the layer output y}ayer can be written as transformed

ylATB. Then, our aim is to decompose the entire layer processing as follows:

y; ™" = FFB(3,; FA™ (25 X) + b*'P) ©)
_ Ej FiLayer(:Bj; X) 4 bLa,yer. (]0)
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Here, the norm || F;"*" (z;; X )|| can render the up- ylaver
dated attention map reflecting the processing in the 37’ yLaver
entire layer. This attention map computation can Flaver(x) 3

also be performed component-by-component; we
can track each FFB component’s effect.

( Feed-Forward Block (FFB) |

Why FFBs can control contextualization pat- \yg”f ¢ yATB

terns: While FFBs are applied independently to

each input representation, FFB’s each input already

contains mixed information from multiple token rep- (L _Attention Block (ATB) |
resentations due to the ATB’s process, and the FFBs ,Icl ;\Icz ,ICS ,|c4 ,IC .
can freely modify these weights through a nonlinear

transformation (see Fig. [2)). Figure 2: An illustration of possible con-

textualization effects by FFB. The FFB does
not have the function of mixing input to-
kens together; however, its input already con-
tain mixed information from multiple tokens,
and the FFB is capable of altering these
weights. Here, output ys is computed based
on [x1,--- ,xs5]. Based on the vector norm,
) ) the most influential input seems to be x3 be-
Q(Zj F(z; )) #2590 F)(x;). (n fore FF; however, afteF; the FF’s transforma-
This inequality matters in the transformation from tion, €5 becomes the most influential input.
Eq.[|to Eq.[I0] That is, simply measuring the norm
(g o F)(x;)]| is not mathematically valid. Indeed,
the FF component has been excluded from previous norm-based analyses. Note that the other com-
ponents in FFBs, residual connection and layer normalization, can be analyzed in the same way
proposed in |Kobayashi et al.|(2021)).

Difficulty to incorporate FF: While FFBs have
the potential to significantly impact contextualiza-
tion patterns, incorporating the FF component into
norm-based analysis is challenging due to its non-
linear activation function, g (Eq. , which cannot
be decomposed additively by the distributive law:

Integrated Gradients (IG): The IG (Sundararajan et al., | 2017) is a technique for interpreting deep
learning models by using integral and gradient calculations. It measures the contribution of each
input feature to the output of a neural model. Given a function f: R®™ — R and certain input

!/ /

' = (zf,...,2),) € R", IG calculates the contribution (attribution) score (€ R) of each input

feature ; € R to the output f(z’) € R:

1 8f
=0 ox;

f&') =Y 1G;(@'; £,b) + f(b), TGi(a'; f,b) = (x} —b;) / da. (12)
j=1 @

z=b+ a(z’ —b)

Here, b € R™ denotes a baseline vector used to estimate the contribution. At least in this study, it is
set to a zero vector, which makes zero output when given into the activation function (g(0) = 0), to
satisfy desirable property for the decomposition (see Appendix [D.2]for details).

Expansion to FF: We explain how to use IG for the decomposition of FF output. As aforemen-
tioned, the problem lies in the nonlinear part, thus we focus on the decomposition around the non-
linear activation. Let us define F}™(x;) == FATB(x;; X)W, € R? as the decomposed vector
prior to the nonlinear activation g: RY — RY. The activated token representation y’ € R is
written as follows:

y =g (z;%_l E.Pfeg(mj)> =30 ki (F (@), F " %(2,);5,0). (13)
T

hi(F™%(z1),...,F,"%(x,);3,0) = : . (14)
16, (F(@)[d) .., FF™?(,)[d')3,0)

1G, (B (@) 1]...... F*(@,)[1]:5.0)

where the transformation g: R” — R is defined as g(z1,...,2,) = g(z1 + --- + z,), which
adds up the inputs into a single scalar and then applies the element-level activation g: R — R.

The function h; : R*4 5 RY yields how strongly a particular input FiPre 9(;) contributed to the

output y/. Each element h[k] indicates the contribution of the k-th element of input F 9 (x;)[k]
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to the k-th element of output y;[k]. Note that contribution can be calculated element-level because
the activation g is applied independently to each element.

Notably, the sum of contributions across inputs matches the output (Eq. [I3), achieved by the de-
sirable property of IG—completeness Sundararajan et al.| (2017). This should be satisfied in the
norm-based analysis and ensures that the output vector and the sum of decomposed vectors are the
same. The norm [|h;(F/™%(x,), ..., F,™9(x,);3,0)| is interpreted as the contribution of input

7
x; to the output y/ of the activation in FF.

Expansion to entire layer: Expanding on this, the contribution of a layer input x; to the ¢-th FF
output is exactly calculated as ||h;(F™%(x1),..., F"%(x,);§,0)Ws]||. Then, combined with

the exact decomposition of ATTN, RES, and LN showr; by |[Kobayashi et al.|(2020; |2021)), the entire
Transformer layer can be written as the sum of vector-valued functions with each input vector x; €
X as an argument as written in Eq. This allows us to render the updated attention map reflecting

the processing in the entire layer by measuring the norm of each decomposed vector.

4 GENERAL EXPERIMENTAL SETTINGS

Estimating refined attention map: To elucidate the input contextualization effect of each compo-
nent in FFBs, we computed attention maps by each of the following four scopes (Fig. [T):
* ATB (Kobayashi et al.,[2021): Analyzing the attention block (i.e., ATTN, RES1, and LN1)
using vector norms as introduced in Eq. [§]
* ATBFF (proposed): Analyzing components up to FF using vector norms and IG.
* ATBFFRES (proposed): Analyzing components up to RES2 using vector norms and IG.
* ATBFFRESLN (proposed): Analyzing the whole layer (all components) using vector
norms and IG.
We will compare the attention maps from different scopes to separately analyze the contextualization
effect. Note that if the model adopts the Pre-LN architecture, the scopes will be expanded from ATB
to ATBLN, ATBLNFF, and ATBLNFFRES (see the Pre-LN part in Fig. E])

Models: We analyzed 11 variants of the masked language models: six BERTs (uncased) with dif-
ferent sizes (large, base, medium, small, mini, and tiny) (Devlin et al., 2019; Turc et al., |2019),
three BERTSs-base with different seeds (Sellam et al.| [2022), plus two RoBERTas with different
sizes (large and base) (Liu et al., 2019). We also analyzed two causal language models: GPT-2
with 117M parameters and OPT (Zhang et al.| 2022)) with 125M parameters. Note that the masked
language models adopt the Post-LN architecture, and the causal language models adopts the Pre-LN
architecture.

Data: We used two datasets with different domains: Wikipedia excerpts (992 sequences) (Clark
et al.l 2019ﬂ and the Stanford Sentiment Treebank v2 dataset (872 sequences from validation
set) (SST-2, Socher et al., [2013). The input was segmented by each model’s pre-trained tokeniz-
ers; analysis was conducted at the subword level

5 EXPERIMENT 1: CONTEXTUALIZATION CHANGE

Does each component in FFBs indeed modify the token-to-token contextualization? We analyze the
contextualization change through each component in FFBs.

5.1 MACRO CONTEXTUALIZATION CHANGE

Calculating contextualization change: Given two analysis scopes (e.g., before and after FF; ATB
<> ATBFF), their contextualization pattern change was quantified following some procedures of
representational similarity analysis (Kriegeskorte et al., 2008)). Formally, given an input sequence of
length n, two different attention maps from the two scopes are obtained. Then, each attention map

(R™*™) was flattened into a vector (R”Q), and the Spearman’s rank correlation coefficient p between

'https://github.com/clarkkev/attention-analysis
?For masked language models, each sequence was fed into the models with masking 12% tokens as done in
the case of the BERT training procedure.
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the two vectors were calculated. We report the average contextualization change 1 — p across input
sequences. We will report the results of the BERT-base and GPT-2 on the Wikipedia dataset in this
section; other models (including OPT) and datasets also yielded similar results (see Appendix[G.I).

The contextualization changes through each component in FFBs are shown in Fig.[3] A higher score
indicates that the targeted component more drastically updates the contextualization patterns. Note
that we explicitly distinguish the pre- and post-layer normalization (PRELN and POSTLN) in this
section, and the component order in Fig. [3]is the same as the corresponding layer architecture.
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z S 050 0.501 0.50 1
R | | |
& Ooazs 0.25 0.25
& poolemlllna_=llln D 0.004 0.00 DDDDDDDDD ALl D
5 12345678 9101112Avg. 12345678 9101112Avg. 12345678 9101112Avg.
) Layer Layer Layer

(a) +FF (b) +RES (c) +LN
(ATB <+ ATBFF) (ATBFF <> ATBFFRES) (ATBFFRES <> ATBFFRESLN)

1.00 1.00 1.00
2 %0.75— 0.75 1 0.75 1
= Soso 0.501 0.50+
5 © li
< O 0251 H 0.25 1 H 0.251
S 0.00 e LILILIL LI ILIL UL 5 0.00 L EALALAL TP -1l 0.00-
oy 12345678 9101112Avg. 1234567 89101112Avg. 12345678 9101112Avg.
) Layer Layer Layer

(d) +LN (e) +FF (f) +RES

(ATB <> ATBLN) (ATBLN <+ ATBLNFF) (ATBLNFF <+ ATBLNFFRES)

Figure 3: Contextualization changes between before and after each component in FFBs (FF, RES2,
and LN2) of BERT and GPT-2. The higher the bar, the more drastically the token-to-token contex-
tualization (attention maps) changes due to the target component.

We generally observed that each component did modify the input contextualization, especially in
particular layers. For example, in the BERT-base, the FF in 3rd and 9th—11th layers and normaliza-
tion in 10th—11th layers incurred relatively large contextualization change. Comparing the BERT-
base and GPT-2, the by-layer average of contextualization change by FF and LN was similar across
these LMs: 0.21 and 0.15 for FF in BERT and GPT-2 and 0.27 and 0.38 for LN in BERT and GPT-2,
respectively. In contrast, there seem mainly two differences between BERT and GPT-2: (i) the effect
of RES, and (ii) the layers at which the high-impact FFs are located. At least for the FFs of GPT-2,
the shallow layer’s high impact is consistent with some existing studies (Meng et al., |2022; |Geva
et al., [2023; |Gromov et al., 2024), but revealing the cause of such gaps between BERT and GPT-2
would be future work. Note that Figs. [T4] to [I8]in Appendix [G] show the results for other model
variants, yielding somewhat consistent trends that FFs and LN in particular layers especially incur
contextualization changes.

5.2 LINGUISTIC PATTERNS IN FF’S CONTEXTUALIZATION EFFECTS

The FF network is a completely new scope in the norm-based analysis, while residual and normal-
ization layers have been analyzed in|Kobayashi et al.| (2021); [Modarressi et al.|(2022). Thus, we fur-
ther investigate how FF modified contextualization, using BERT-base and GPT-2 on the Wikipedia
dataset as a case study.

Micro contextualization change: We compared the attention maps before and after FF. Specifically,
we subtract a pre-FF attention map from a post-FF map (Fig. d); we call the resulting diff-map FF-
amp matrix and the values in each cell FF-amp score}’| A larger FF-amp score of the (¢, ) cell

3Before the subtraction, the two maps were normalized so that the sum of the values of each column was 1;
this normalization facilitates the inter-method comparison.
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presents that the contribution of input ; to output y; is

more amplified by FF. Our question is which kind of to- A FF-amp
ken pairs gain a higher FF-amp scoreﬂ jBiF ‘2 s
FFs amplify particular linguistic compositions: Based . . — .*' — :

on the preliminary observations of high FF-amp token
pairs, we set 7 linguistic categories typically amplified by Figure 4: FF-amp matrix is computed
FFBs. This includes, for example, token pairs consisting  py gubtracting the attention map before
of the same words but different positions in the input. Ta-  Ff (ATB) from that after FF (ATBFF).
ble [T] shows the top two token pairs w.r.t. the amp score

in some layers and their token pair category. Fig. [5|summarizes the ratio of each category in the top
50 token pairs with the highest FF-amp scoref’| Compared to the categories for randomly sampled
token pairs (FR; the second rightmost bar in Fig. [5) and adjacent token pairs (AR; the rightmost
bar in Fig. [3)), the amplified pairs in each layer have unique characteristics; for example, in the for-
mer layers, subword pairs consisting the same token are highly contextualized by FFs. Note that
this phenomenon of processing somewhat shallow morphological information in the former layers
can be consistent with the view of BERT as a pipeline perspective, with gradually more advanced
processing from the former to the latter layers [Tenney et al.|(2019).

Table 1: Token pairs sampled from the top 10 most-amplified subword pairs by FF in each layer
of BERT (left) and GPT-2 (right). See Tables [2]and [3]in Appendix [G.2]for the full pairs. The text
colors are aligned with word pair categories, and the same colors are used in Fig. E}

Layer amplified pairs by BERT’s FF Layer amplified pairs by GPT-2’s FF Subword
1 , (##night, week) 1 (ies, stud), (ning, begin)
3 (toys, ##hop), 3 s Same token
6 , (fleming, colin) 6 (_del, del), (_route, route) Named entity
9 (but, difﬁculty), (She, teacher) 8 (708, ,2007), (,]4, ,density) Semantical connection
11 (tiny, tiny), (highway, highway) 12 (_operational, _not), (_daring, _has) Others
wZ subword frequent expression #7774 named entity others
compound noun W same token NN semantical connection
100 =z 100
80 ! m’m 80
wn 7 0 N\
-% 60{ v’ N -% oo Y@— = -'
o - % S ON a A v’—
S 40 S 40
g E e .
20 SN 20 '
ZAN XXX NN e
O123456789101112FRAR 0123456789101112FRAR
BERT Layer GPT-2 Layer

Figure 5: Breakdown of the category labels we manually assigned to top 50 pairs having the largest
FF-amp score in each layer of BERT and GPT-2. We also assigned the labels to fully random 50
pairs (“FR”) and adjacent random 50 pairs (“AR”).

Simple word co-occurrence does not explain the FF’s amplification: Do FFs simply amplify
the interactions between frequently co-occurring words? We additionally investigated the relation-
ship between the FF’s amplification and word co-occurrence. Specifically, we calculated PMI for
each subword pair on the Wikipedia dump and then calculated the Spearman’s rank correlation coef-
ficient between FF-amp scores of each pair (w;, w;) from BERT-base and PMI valuesﬂ We observed
that the correlation scores were fairly low in any layer (coefficient values were 0.06—0.14). Thus, we
found that the FF does not simply modify the contextualization based on the word co-occurrence.

*We aggregated the average FF-amp score for each subword type pair (w;, w;). Pairs consisting of the same
position’s token (w;, w;) and pairs occurring only once in the dataset were excluded.

5One of the authors of this paper has conducted the annotation.

SWe defined three types of co-occurrences in calculating PMI: the simultaneous occurrence of two subwords
(i) in an article, (ii) in a sentence, and (iii) in a chunk of 512 tokens. No correlation was observed for either
type of co-occurrence. Pairs including special tokens and pairs consisting of the same subword were excluded.
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To sum up, these findings indicate that FF did amplify the contextualization aligned with particular
types of linguistic compositions in various granularity (i.e., word and NE phrase levels).

6 EXPERIMENT 2: DYNAMICS OF CONTEXTUALIZATION CHANGE

We analyze the relationship between the contextualization performed by FF and other components,
such as RES, given the previous observation that contextualization changes in a particular compo-
nent are sometimes overwritten by other components (Kobayashi et al., [2021). We will report the
results of the BERT-base and GPT-2 on the Wikipedia dataset in this section; other models/datasets
also yielded similar results (see Appendix [H).

3 +FF
B +FF+RES
1 +FF+RES + LN (Next layer’s PreLN)

3 +FF
B +FF+RES
1 +FF+RES + LN (Same layer’s PostLN)

1.00 1.00
(0] 4 (0]
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e e
O 0.25- O 0.25
0.00 - 0.00
1234567 8 9101112 Avg. 123456 7 8 9101112 Avg.
Layer Layer
(a) BERT. (b) GPT-2.

Figure 6: Contextualization changes through FF, RES, and LN relative to the contextualization
performed before FF. The higher the bar, the more the contextualization changes.

Fig. [6] shows the contextualization change scores (1 — p described in § [5.1) by FF and subsequent
components: FF (+FF), FF and RES (FF+RES), and FF, RES and LN (FF+RES+LN). Note that we
analyzed the next-layer’s LN1 in the case of GPT2 (Pre-LN architecture) to analyze the BERTs and
GPTs from the same perspective—whether the other components overwrite the contextualization
performed in the FF network. If a score is zero, the resulting contextualization map is the same as
that computed before FF (after ATBs in BERT or after LN2 in GPT-2). The notable point is that
through the FF and subsequent RES and LN, the score once becomes large but finally converges to
be small; that is, the contextualization by FFs tends to be canceled by the following components.
We look into this cancellation phenomenon with a specific focus on each component.

6.1 FF AND RES

The residual connection bypasses the feed-forward layer as Eq. ] Here, the interest lies in how
dominant the bypassed representation ; is relative to FF(z}). For example, if the representation @
has a much larger L2 norm than FF (), the final output through the RES2 o FF will be similar to
the original input «/; that is, the contextualization change performed in the FF would be diminished.
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Figure 7: Averaged norm of the output vectors from FF and the bypassed vectors via RES2, calcu-
lated on the Wikipedia data for BERT and GPT-2.

RES2 adds a large vector: We observe that the vectors bypassed via RES2 are more than twice as
large as output vectors from FF in the L2 norm in most layers (Fig.[7). That is, the representation
(contextualization) updated by the FF tends to be overwritten/canceled by the original one. This
observation is consistent with that of RES1 (Kobayashi et al., 2021). Notably, this cancellation is
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weakened in the 10th—11th layers in BERT and former layers in GPT2s, where FFs’ contextualiza-
tion was relatively large (Figs.[3a and [3¢).

6.2 FF AND LN

We also analyzed the relationship between the contextualization performed in FF and LN. Note that
the layer normalization first normalizes the input representation, then multiplies a weight vector ~y
element-wise, and adds a bias vector 3 (Eq. @)

Cancellation mechanism: Again, as shown in Fig. [6] the contextualization change after the LN
(+FF+RES+LN) is much lower than in preceding scopes (+FF and +FF+RES). That is, the LNs
substantially canceled out the contextualization performed in the preceding components of FF and
RES. Then, we specifically tackle the question, how did LN cancel the FF’s effect?

We first found that the FF output representation has outliers in some specific dimensions (green lines
in Fig. [8), and that the weight -y of LN tends to shrink these special dimensions (red lines in Fig.[g).
In the layers where FF incurs a relatively large impact on contextualizationm the Pearson correlation
coefficient between LN’s «v and mean absolute value of FF output by dimension was from —0.45
to —0.78 in BERTSs and from —0.22 to —0.59 in GPT-2 across layers. Thus, we suspect that such
specific outlier dimensions in the FF outputs encoded “flags” for potential contextualization change,
and LN typically declines such FF’s suggestions by erasing the outliers.
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Figure 8: Mean absolute value in each dimension of the input/output vectors of FF across the
Wikipedia data and the LN weight values at the certain layer.

Indeed, we observed that ignoring such special outlier dimensions (bottom 1% with the lowest value
of ) in calculating FF’s contextualization makes the change score quite small; contextualization
changes by FF went from 0.21 to 0.09 in BERT and from 0.15 to 0.02 in GPT-2 on a layer average.
Thus, FF’s contextualization effect is realized using very specific dimensions, and LN2 cancels
the effect by shrinking these special dimensions. Note that a related phenomenon was discovered
by Modarressi et al.| (2022): LN2 and LN1 cancel each other out by outliers in their weights in
BERT (see other related works in[A3). The observed cancellation mechanism over feed-forward
and normalization layers also suggests redundant contextualization processing in Transformer (A.4).
Further investigation is an important future work.

7 CONCLUSIONS AND FUTURE WORK

We have analyzed the FF blocks w.r.t. input contextualization through the lens of a refined attention
map by leveraging the existing norm-based analysis and the integrated gradient method having an
ideal property—completeness. Our experiments using masked- and causal-language models have
shown that FFs indeed modify the input contextualization by amplifying specific types of linguistic
compositions (e.g., subword pairs forming one word). We have also found that FF and its sur-
rounding components tend to cancel out each other’s contextualization effects and clarified their
mechanism, implying the redundancy of the processing within the Transformer layer. Applying our
analysis to other model variants, such as Mistral (model with local attention, [Jiang et al., 2023)) and
Mixtral (model with mixture of experts, Jiang et al., |2024) will be our future work. In addition,
focusing on inter-layer contextualization dynamics could also be fascinating future directions.

"FFs in BERT’s 3rd and 10th—11th layers and GPT-2’s 1st-11th layers
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A RELATED WORKS

This section supplements the studies directly related to the methods or experimental results of this
paper, which are not fully discussed in the main body.

A.1 MECHANISTIC INTERPRETABILITY FOR TRANSFORMER LMS

Mechanistic interpretability seeks to reverse engineer neural networks, similar
to how one might reverse engineer a compiled binary computer program. (Olah,
2022))

In the past decade, as deep learning has become the predominant approach for classification and rep-
resentation learning, interpreting and understanding high-dimensional, nonlinear language models
has emerged as a significant challenge for the NLP community. The NLP and closely related ma-
chine learning communities have amassed a vast array of scientific and engineering insights into the
interpretation of deep learning models under the banners of interpretability, explainability, XAl, and
probing. Meanwhile, in a diverging line of research, researchers from organizations such as Google,
Anthropic, and OpenAl have published compelling research under the banner of mechanistic inter-
pretability, focusing on the interpretation of internal parameters of deep learning models. Although
these two approaches share many technical commonalities, the exchange between them is not yet as
active as it could be. In this section, we will overview the trend of mechanistic interpretability for
the NLP/ML community and specifically highlight research that is closely related to this paper.

Mechanistic interpretability begins with the analysis of toy or small-scale language models, aiming
for a thorough and comprehensive understanding of internal phenomena and mechanisms, interpret-
ing parameters and activations, and providing tools for the analysis. The interest in mechanistic
interpretability for Transformer language models (LMs) has been growing, particularly with An-
thropic’s Transformer Circuits Threacﬂ Our study, the analysis of attention maps (mixing between
tokens), focuses on how information from specific tokens propagates to surrounding tokens in the
model. Therefore, our study may be seen as operations similar to the assembler’s MOV and ADD
commands from the perspective of mechanistic interpretability.

Additionally, the attention map is used as an analytical tool in mechanistic interpretability. |Elhage
et al.| (2022c)) discovered specific attention heads (called Induction heads) through the observation
of attention maps calculated with norm-based analysis. |Catherine Olsson et al.| (2022) revealed that
the induction heads contribute to the in-context learning of large-scale language models.

In mechanistic interpretability, several studies have attempt to interpret FF (MLP) layers, but chal-
lenges in understanding and interpretation have been raised (Elhage et al.,[2022bza). We believe that
our method or results for understanding FF through the lens of attention maps can be beneficial to
the field of mechanistic interpretability.

$https://transformer-circuits.pub/
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A.2 ATTENTION MAP (ANALYSIS OF MIXING BETWEEN TOKENS)

The core component of the Transformer is the self-Attention mechanism, and focusing on the inter-
actions between tokens (attention maps) has become one of the mainstream analytical approaches.
The computation of attention maps starts with attention weights and has been improved or ex-
tended (Clark et al.|[2019] Kovaleva et al.,|2019; Brunner et al., |2020; Kobayashi et al., 2020; 202 1.

One of the key extension strategies is the norm-based analysis, which can consider the effects
of all surrounding matrices, vectors, and modules without approximation, and also satisfies the
axiom of the additive feature attribution methods (Lundberg & Leel,|2017). Initially,Kobayashi et al.
(2020) proposed a norm-based computation method that considers the entire attention block, ATTN;
subsequently, Kobayashi et al.|(2021) expanded this approach to include the effects of the RES1 and
LN1. For technical details, please refer to § 2] The norm-based analysis provides insights into the
internal mechanisms of models; for example, attention maps computed with norm-based analysis are
used to measure similarities between language models and human behavior, e.g., reading time (Oh
& Schuler, 2022).

This paper proposes and analyzes a method for calculating attention maps across an entire layer.
However, as related research or future work, it is also possible to calculate attention maps across
the entire Transformer architecture. |[Abnar & Zuidemal (2020) computed an attention map at each
layer by adding an identity matrix to the attention weights matrix (accounting for ATTN and RES1),
and then integrated these maps (all the layers) in two ways: (i) Attention rollout uses recursive
matrix multiplication and (ii) Attention flow uses a maximum flow algorithm. [Ferrando et al.|(2022)
proposed ALTI, which uses norm-based analysis to compute attention maps at each layer considering
the Attention block (ATTN, RES1, LN1), and integrates them using Attention rollout. Modarressi
et al.| (2022)) proposed GlobEnc, which uses norm-based analysis to compute Attention maps at each
layer considering all modules except FF (i.e., ATTN, RES1, LN1, RES2, and LN2), and integrates
them using Attention rollout. Modarressi et al.| (2023)) proposed DecompX, which decomposes the
processes of the entire model similarly to the norm-based analysis and calculates an attention map
for the entire model relative to the model’s prediction (logit).

DecompX (Modarressi et al., |2023) is the only method among those previously mentioned that
considers the nonlinear activation functions in the FF layers. Therefore, from this perspective, De-
compX can be considered a competitor to our proposed approach. We will discuss the differences
in greater detail in the following. DecompX uses a coarse linear approximation for decomposing
the non-linear function in FF. Our study differs from DecompX in two aspects: (i) the scope of the
study (visualization tool for model-wide behavior vs. analysis of module function) and (ii) the de-
composition of FF (with vs. without approximation). Investigating the impact of the approximation
in the decomposition of FF on our analysis is an important future work.

A.3 OUTLIERS IN TRANSFORMERS

§ [6.2] demonstrated that FF and LN2 exhibit unique behaviors concerning outliers. It is well-known
that the internal representations of Transformer LMs tend to have outliers (Luo et al., 2021} Kovaleva
et al.} 2021). It has also been revealed that FF generates outliers in certain dimensions (Ferrando
et al., 2023; |Bondarenko et al., |2023)), and that the parameters of LN contains outliers (Modarressi
et al.| 2022} |[Puccetti et al., [2022). However, to our knowledge, our finding that FF and LN2 cancel
out each other through these outliers is novel and suggests significant insights into the redundancy
of the model.

A.4 REDUNDANCY OF TRANSFORMERS

As mentioned above, our results (§[6.2)) suggest redundancy in the Transformer architecture. Redun-
dancy of Transformer has also been uncovered from the success of parameter reduction. Successful
pruning has been achieved for the ATTN (Michel et al.,2019; Kovaleva et al.,|2019), FF (Santacroce
et al |2023), and both of them (Gromov et al., [2024; [Tao et al.| 2023)). Additionally, attempts have
been made to reduce learned parameters through low-rank approximations (Sharma et al.|[2023) and
to construct lightweight models using knowledge distillation (Sanh et al.,|2020; | Xu et al., 2024).
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B CONCRETE EXAMPLES OF OUR ANALYSIS

Figs. [0 and [T0] show concrete examples of the attention maps calculated using our analysis method
for BERT and GPT-2. Fig. [0 shows that FF in the 12th layer of BERT amplifies the mixing from
“Tokyo” to “[MASK]” for the input “[CLS] Tokyo is the capital of [MASK] . [SEP]”. Fig. @l
shows that FF in the 3rd layer of GPT-2 amplifies the mixing from “rather” to “than” for the input
“She loves math rather than engaging in”.
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Figure 9: Attention maps computed with our analysis method for 12th layer in BERT-base.

ATB +LN +LN+FF +LN+FF+RES

Figure 10: Attention maps computed with our analysis method for 3rd layer in GPT-2 small.

C DETAILED FORMULAS FOR EACH ANALYSIS METHOD
We describe the mathematical details of the norm-based analysis methods adopted in this paper.

C.1 ATB

As described in § [2] [Kobayashi et al.| (2021) rewrite the operation of the attention block (ATB) into
the sum of transformed inputs and a bias term:

y B — ATB(z;; X) (15)
= LN1oRES1 0 ATTN (16)
= ZFiATB(wj;X) + bATB, (17)

=1

First, the multi-head attention mechanism (ATTN; Eq. m) can be decomposed into a sum of trans-
formed vectors as Eq.[6]and Eq.[7}

ATTN(z; X) =Y Y ol j(a; W)W + by Wo + bo (18)
j h
_ ZEATTN(m]’X) + bATTN (19)
J
FM™N(zj; X) = of j(x,WH W (20)
bATTN — b, Wo + bo. (21)
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Second, the residual connection (RES; Eq. E]) just performs the vector addition. So, ATTN and RES
also can be decomposed into a sum of transformed vectors collectively:

(RES1 0 ATTN)(x;; X) = ATTN(z;; X) + x; (22)
=Y FMM™N(z;; X) + a4+ bATN (23)
J#i
_ Z EATTN+RES (:Bj, X) + bATTN (24)
J
FAT™ (g X | #J

Third, the layer normalization (LN; Eq. [5) performs a normalization and element-wise affine trans-
formation. Suppose the input to LN is a sum of vectors z = ) ; %> LN’s operation is decomposed
as follows:

LN(z) = z;(TZ)(Z) Ov+0 (26)
_ Z_clzgf)lzm O~ + B (27)
EpULA %(Zz_)1 LI Oy+8 (28)
SDIE 5522)_1 A 29)

J
-5 st oy (30)
=S F™(z)+ 6 @D

J
F™N(z)) = zf;{:)(zf) o, 32)

where z(*) denotes the k-th element of vector z. By exploiting this decomposition, attention block
(ATB; ATTN, RES, and LN) can be decomposed into a sum of transformer vectors:

(LN1o RESL o ATTN) (; X) = LN (37 FATTNRES (5 X) 4 pATTY ) (33)

j
_ ZFLN (EATTN+RES(mj;X)) L pIN (bATTN) 18 34

J
=D FMP(z; X) + 0P (35)

J
F)5 (@ X) = FYN (FATTN RS (g, X)) (36)
pATB _ pLN (bATTN) 18 (37)

Then, the ATB method quantifies how much the input x; impacted the computation of the output
y;*'" by the norm [|FP (255 X))

C.2 ATBFF

The feed-forward network (FF) via a two-layered fully connected network (Eq. [3). By exploiting
the decomposition of an activation function g (§ , ATB and FF can be decomposed into a sum of
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transformed vectors collectively:

(FF o ATB)(z;; X) g(ATB(mi;X)Wlebl)Wngbg (38)
:g<<i FATB(x;: X) +bATB) w, +b1> Wa + by (39)
=g <§n: FATB(x;: X)W, + b°TBW, + b1> Wy + by (40)
—g (Z FPe9(z;) + bPreq) Wa + by (41)

= (Zhj (Epreg(m),m,ﬂpreg( n); bP‘”,g,O)
j=1
+hb<F‘¢Preg(fB1)a-~-7EPreg( n), b5 g, >>W2+b2 (42)
:Zh] (EPreg(ml)’“.’I;iPreg( ) bPreq )W2 (43)

+h ( Preg(w1)7"-aﬂpreg(wn)7bpreg;§ao>w2+b2 (44)

_ ZFATB+FF(%; X)) + bATBHIF (45)
F{™ (a5 X)]— FTP (s X)W1 (46)
b9 = bATBW, + by (47)
EATBJrFF(:L,j;X) —h, (Fipreg(%), 3 -7FiPre<J( ), bP’eg,g, )W2 48)
pATB+FF _ hs <ﬂpreg(w1), o F;f’reg( o), pPre 9.7, )W2 + bs. 49)

Then the ATBFF method quantifies how much the input x; impacted the computation of the output

y X TBTFT by the norm || FATBTFF (25; X)) |. Detailed decomposition of the activation function g is
described in Appendix |D

C.3 ATBFFRES

The residual connection (RES; Eq.4) just performs the vector addition. So, ATB, FF, and RES2 also
can be decomposed into a sum of transformed vectors collectively:

(RES2 o FF 0 ATB)(z;; X) = (FF 0 ATB)(2; X) + ATB(z;; X) (50)
— Z FiATB+FF($.j; X) + EATB(xi; X) _|_ bATB+FF (51)

J#i
— Z F_ATB+FF+RES (33] X) _|_ bATB+FF (52)

J
FATB+FF T ,X . .
EATB+FF+RES (w]7 X) = { FATB+FF(w] X)) + FATB(m X) g:; i Z))

(53)

Then, the ATBFFRES method quantifies how much the input x; impacted the computation of the
output gy TBFFIHRES by the norm || FATBHFFFRES (2 X)),
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C.4 ATBFFRESLN

By exploiting the decomposition of LN (Eq.[31]and Eq.[32), entire Transformer layer (ATTN, RESI,
LNI1, FF, RES2, and LN2) can be decomposed into a sum of transformer vectors:

Layer(z;; X) = LN (Z FATBAFFFRES (0 x) 4 bATB+FF> (54)
J
— ZFLN (FiATBJrFFJrRES(wj; X)) 4 pWN (bATB+FF) e (55)
J
— Z ‘FiLayer<wj; X) + bLayer (56)
J
ELayer(wj; X) = FLN (FiATB+FF+RES(:Bj; X)) 57)
plaver _ pLN (bATB+FF) + 8. 58)

Then, the ATBFFRESLN method quantifies how much the input x; impacted the computation of the
layer output y; by the norm || F"" (; X))
D DETAILS OF DECOMPOSITION IN §

D.1 FEATURE ATTRIBUTION METHODS

One of the major ways to interpret black-box deep learning models is measuring how much each
input feature contributes to the output. Given a model f: R” — R;x — f(x) and a certain input

x' = (x),...,x}), this approach decomposes the output f(z’) into the sum of the contributions ¢;
corresponding to each input feature x7:
f@) =ci(@s f) + -+ enl(@'s f). (59)

Interpretation methods with this approach are called feature attribution methods (Carvalho et al.,
2019; Burkart & Huber, 2021)), and typical methods include Integrated Gradients (Sundararajan
et al., [2017) and Shapley value (Lloyd S., [1953). Comparison between Integrated Gradients and
Shapley value are described in Appendix [E]

D.2 INTEGRATED GRADIENTS (IG)

IG is an excellent feature attribution method in that it has several desirable properties such as com-
pleteness (§ . Specifically, IG calculates the contribution of each input feature = by attributing
the output at the input ' € R™ relative to a baseline input b € R™:

da. (60)
z=b+ a(x’ —b)

1
(Gi(a' £.6) = (o ~b) [ £

—o 0z;

This contribution IG; (z'; f, b) satisfies equation [59%
f(&') = f(b) + 377_, 1G;(='; £, b). 61)
The first term f(b) can be eliminated by selecting a baseline b for which f(b) = 0 (see[D.3).

D.3 DEcoMPOSITION OF GELU wiTH IG

This paper aims to expand the norm-based analysis (Kobayashi et al., |2020), the interpretation
method for Transformer, into the entire Transformer layer. However, a simple approach to decom-
pose the network in closed form as in|Kobayashi et al.[(2020;/2021)) cannot incorporate the activation
function (GELU, Hendrycks & Gimpel,|2016) contained in F This paper solves this problem by
decomposing GELU with IG (Sundararajan et al., 2017).

“Many recent Transformers, including BERT and RoBERTa, employ GELU as their activation function.
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GELU: R — R is defined as follows:

GELU(z) = g (1 + % /0 v e‘tzdt>. (62)

Considering that in the Transformer layer, the input z € R of GELU can be decomposed into a sum
of z; terms that rely on each token representation of layer inputs (x = 1 + - -- + 25,), GELU can

be viewed as a multivariable function GELU:

GELU(z1,...,x,) = GELU(Y}_, ;). (63)

Given a certain input ' = z} + --- + z/,, the contribution of each input feature =,

GELU(a") is calculated by decomposing GELU (..., 2) with IG (Eq. and:

rYn

to the output

GELU(z') = GELU(}, ..., 2,)

) n

=" 1Gy(a}, ..., ),; GELU,0), (64)
where b = 0 was chosen. Note that (?]‘EJ\L/U (b) = 0 and the last term in equationis eliminated.

Decomposition of broadcasted GELU In a practical neural network implementation, the GELU
layer is passed a vector 1 + - - - + x,, € R instead of a scalar z1 + -+ x, € Rand the GELU

function is applied (broadcasted) element-wise. Let GELU : RY — R be defined as the function
that broadcasts the element-level activation GELU: R — R. The contribution of each input vector

x) = [z[1],...,2}[d']] to the output vector GELU(x] + - -+ + x;,) is as follows:

[ GELU(2/[1] + - + 2,[1])
GELU(z} +---+a}) = : (65)
|GELU(z [d'] + - + @, [d])

r —_—~— T
> i1 1G (=4 [1], ..., 2, [1]; GELU, 0)

- : (66)

S 1G (a4 [d), ... @, [d'); GELU, 0)
&

.16, 2, [1); GELU, 0)

= Z : . (67)

=1 1G(z1[d'], ..., za[d]; G/F?IFJ,O)

The above decomposition is applicable to any activation function g that passes through the origin and
is differentiable in practice, and covers all activation functions currently employed in Transformers,
such as ReLU (Nair & Hinton, [2010), SiLU (Elfwing et al.,2018)), and SwiGLU (Shazeer} 2020).

E COMPARISON BETWEEN FEATURE ATTRIBUTION METHODS

We decomposed the nonlinear activation function using Integrated Gradients (IG), a feature attribu-
tion method (see § 3] and Appendix [D), which is motivated by its desirable property completeness
to be combined with norm-based analysis (§ [3). Nevertheless, there is another typical attribution
method, Shapley Value (Lloyd S.L{1953) (SV), that satisfies this property as well. In this section, we
compare IG with SV in the context of our norm-based analysis.

E.1 SHAPLEY VALUE

Shapley Value (SV) was originally introduced in cooperative game theory, and this concept has
been imported into the machine learning field to compute specific input attribution. In our specific
setting (Eq. @, the sum of elements x = x; + ... + z, is fed into a nonlinear function (e.g.,
GELU). Each element x;[k] can be considered as a player in a cooperative game, and SV can
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calculates its contribution to output. A well-known XAI method based on SV is SHapley Additive
exPlanation (SHAP, |[Lundberg & Lee, |2017), which extends SV to apply to neural models. In our
setting, SV and SHAP are equivalent (strictly speaking, SV is equivalent to SHAP with zero inputs
as a reference input) because the target process can be viewed as a cooperative game as well as a
neural model (since it starts with a sum of inputs).

E.2 IMPLEMENTATION OF SV AND IG

SV: SV computation in Python can be achieved in several ways using the shap library (Lundberg
& Lee, 2017 We used three SV methods: (i) Exact, (ii) Sampling, and (iii) Kernel methods. (i)
Exact method is an exact computation of the Shapley value, computing the output of a nonlinear
function for all combinations (O(2")) of input elements (z1[], ..., z,[k]) to compute the expected
change in output with or without each element. (ii) Sampling method (gtrumbelj & Kononenkol
2010) approximates the computation with only the sampled combinations instead of all combina-
tions. shap library samples 2 x n+ 2048 combinations by default. (iii) Kernel method (Lundberg &
Leel |2017) formulates the SV calculation as a regression problem and approximates its calculation
by sampling. It also samples 2 x n + 2048 combinations by default.

IG: Our IG computation was achieved in Python using Captum library (Kokhlikyan et al.,
2020 In particular, the Gauss-Legendre quadrature method was used as the method of integral
calculation (selectable argument).

E.3 COMPARISON BETWEEN IG AND SV

We use IG and SV (three methods above) with our methods and compare the obtained performance
and results. We experimented on NVIDIA GeForce RTX 2080 Ti and Intel Xeon Silver 4112.

First, we compared their speed (execution time) using BERT-tiny and three inputs of length n =
5,10,15. Any of the three SV methods required more time for longer input; specifically, these
required more than 15 minutes to process the input of length n = 15, which is a typical (or shorter)
length of a subword-segmented single sentence. On the other hand, IG required less than 1 second
for any input of them (see Appendix [F| for detailed calculation cost). Hence, SV requires huge
execution time for longer inputs and larger models, then SV could not be employed in this study.

Next, we compared their yielding results using BERT-tiny and 10 input of length n < 15 sampled
from the validation set of SST-2 dataset. Fig. |l 1| shows results of macro contextualization change
by FF, RES2, and LN2 (§ [5.1) for IG and SV. We can see that IG and SV (three methods) yielded
similar results. This result suggests that the results and claims in this paper are not be significantly
affected by the choice of attribution methods.
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Layer Layer Layer
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Figure 11: Contextualization changes between before and after each component in FFBs (FF,
RES2, and LN2) of BERT-tiny calclulated with IG and SV (Exact, Sampling, and Kernel methods).
The higher the bar, the more drastically the token-to-token contextualization (attention maps)
changes due to the target component.

Ohttps://github.com/shap/shap
"https://github.com/pytorch/captum
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F COMPUTATIONAL COST OF OUR ANALYSIS

We test the computational costs of our method against inputs of various lengths in six BERT variants
of different sizes. We fed each sample of the Wikipedia dataset into each BERT model and measured
the time to run our analysis. We experimented on NVIDIA GeForce RTX 2080 Ti and Intel Xeon
Silver 4112. Fig.[12]shows that the cost increase (running time) against input length becomes sharper
when using larger models (hidden dimension and number of layers). That is, the cost increases
interactively with the length of the input and the size of the model. This means that our method
would be costly to apply to billion-scale LLMs, and lightening the computation is an important
future work.
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Figure 12: Running times of our analysis method for six BERT variants of different sizes and inputs
of various lengths.

G SUPPLEMENTAL RESULTS OF CONTEXTUALIZATION CHANGE

We reported the contextualization change through each component in FFBs of BERT-base and GPT-
2 on the Wikipedia dataset in § [5] We will report the results of the other models/datasets in this
section. In addition, we provide full results of linguistic patterns in FF’s contextualization effects
that could not be included in the main body.

G.1 MACRO CONTEXTUALIZATION CHANGE

The contextualization changes through each component in FFBs of six variants of BERT models
with different sizes are shown in Fig. The results for four variants of BERT-base models trained
with different seeds are shown in Fig. [I5] The results for two variants of RoOBERTa models with
different sizes are shown in Fig. [I6] The results for OPT 125M model are shown in Fig. The
results for BERT-base and GPT-2 on the SST-2 dataset are shown in Fig. These different settings
with other models/datasets also yield similar results reported in § [5.1} each component did modify
the input contextualization, especially in particular layers. The mask language models showed a
consistent trend of larger changes by FF and LN in the middle to late layers. On the other hand, the
causal language models showed a trend of larger changes by FF in the early layers.

G.2 LINGUISTIC PATTERNS IN FF’S CONTEXTUALIZATION EFFECTS

Tables [2] and 3] are the extended versions of Table [I] showing the top ten word-word pairs with the
highest FF-amp scores in each layer of GPT-2 and BERT.

Fig.[13] shows the distribution of word-word pair types (e.g., composing the same word) in the top
50 token pairs with the highest FF-amp score, which is measured on the SST-2 dataset. While the
overall trend is similar to the results on Wikipedia dataset (Fig. ), there are some minor differences
(e.g., subword and same token categories). These differences can be attributed to differences in the
datasets. The Wikipedia dataset is composed of excerpts from Wikipedia articles, while the SST-2
dataset is composed of movie reviews. Experimenting with other datasets and models is future work.
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Figure 13: Breakdown of the category labels we manually assigned to top 50 pairs having the largest
FF-amp score in each layer of BERT and GPT-2 with SST-2 dataset. We also assigned the labels to
fully random 50 pairs (“FR”) and adjacent random 50 pairs (“AR”).

H SUPPLEMENTAL RESULTS OF DYNAMICS OF CONTEXTUALIZATION
CHANGE

We reported the dynamics of contextualization change of BERT-base and GPT-2 on the Wikipedia
dataset in § [6] We will report the results of the other models/datasets in this section.

H.1 CONTEXTUALIZATION CHANGE THROUGH FF AND SUBSEQUENT COMPONENTS

The contextualization changes through by FF and subsequent components, RES and LN, in six
variants of BERT models with different sizes are shown in Fig. The results for four variants of
BERT-base models trained with different seeds are shown in Fign_?lm The results for two variants
of RoBERTa models with different sizes are shown in Fig. 21} The results for OPT 125M model
are shown in Fig. 22] The results for BERT-base and GPT-2 on the SST-2 dataset are shown in
Fig.23] These different settings with other models/datasets also yield similar results reported in § 6}
through the FF and subsequent RES and LN, the contextualization change score once becomes large
but finally converges to be small; that is, the contextualization by FFs tends to be canceled by the
following components.

H.2 FF AND RES

The L2 norm of the output vectors from FF and the vectors bypassed via RES2, in six variants of
BERT models with different sizes are shown in Fig. The results for four variants of BERT-base
models trained with different seeds are shown in Fig% The results for two variants of ROBERTa
models with different sizes are shown in Fig. 26] The results for BERT-base and GPT-2 on the
SST-2 dataset are shown in Fig.[27] These different settings with other models/datasets also yield
similar results reported in § [6.1} the vectors bypassed via RES2 are more than twice as large as
output vectors from FF in the L2 norm in more than half of the layers. That is, the representation
(contextualization) updated by the FF tends to be overwritten/canceled by the original one.

H.3 FF AND LN

Mean absolute value in each dimension of the input/output vectors of FF and the weight parameter ~y
of LN at the layer where FF’s contextualization effects are strongly cancelled by LN, in six variants
of BERT models with different sizes are shown in Fig. The results for four variants of BERT-base
models trained with different seeds are shown in Fig.% The results for two variants of ROBERTa
models with different sizes are shown in Fig.[30} The results for BERT-base and GPT-2 on the SST-2
dataset are shown in Fig.[31] These different settings with other models/datasets also yield similar
results reported in §[6.2} the FF output representation has outliers in some specific dimensions (green
lines in the figures), and the weight « of LN tends to shrink these special dimensions (red lines in
the figures). In the layers where FF incurs a relatively large impact on contextualization, the Pearson
correlation coefficient between LN’ s v and mean absolute value of FF output by dimension was
from —0.38 to —0.93 in BERT-large, from —0.32 to —0.47 in BERT-medium, from —0.56 to —0.76
in BERT-small, from —0.55 to —0.73 in BERT-mini, —0.71 in BERT-tiny, from —0.69 to —0.74
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in BERT-base (seed 0), from —0.48 to —0.74 in BERT-base (seed 10), from —0.50 to —0.68 in
BERT-base (seed 20). In these layers of RoOBERTa models, the Pearson’s r was small: from —0.02
to —0.28 in RoBERTa-large and from 0.01 to —0.14 in RoBERT-base. However, the Spearman’s p

was large: from —0.46 to —0.56 in RoBERTa-large and from 0.80 to —0.94 in RoBERT-base.

In §[6.2] we also observed that ignoring such special outlier dimensions (bottom 1% with the low-
est value of ) in calculating FF' s contextualization makes the change score quite small. The

contextualization changes by FF when ignoring the dimensions are shown in Fig.[32]

Table 2: Word pairs for which FF amplified the interaction the most in BERT. The text colors are
aligned with word pair categories: subword, compound noun,

named entity, and others.

Layer Top amplified token-pairs
1 (##our, det), (##iques, ##mun), (##cend, trans), (outer, space), (##ili, res),
(##ific, honor), (##nate, ##imi), (opera, soap), (deco, art), (##night, week)
2 (##roy, con), (guard, national), (america, latin), , (##oy, 1),
(marshall, islands), (##ite, rec), (channel, english), (finance, finance), (##ert, rev)
3 , (##mel, ##ons), (hut, ##chin), (water, ##man), (paso, ##k),
(avoid, ##ant), (toys, ##hop), (competitive, ##ness), (##la, ##p), (##tree, ##t)
4 (##1, ds), (##, #i#tera), (##cz, #i#ave), (#r, #i#lea), (##e, beth),
(##ent, ##ili), (##er, ##burn), (##et, mn), (##ve, wai), (##rana, ke)
5 (##ent, ##il1), (##ious, ##car), (##on, ##ath), (##1, ds), (##r, #iense),
(##ence, ##ili), (res, ##ili), (##rative, ##j0), (##ci, ##pres), (##able, ##vor)
6 (on, clay), , (#ici, ##pres), (be, considers), R
(fleming, colin), (##r, #i#lea), (-, clock), (##ur, nam),
7 (##ons, ##mel), (vi, saint), (vi, st), (##l, ##ife), (##ti, jon),
(#4#i, wil), (##en, ##chel), (##son, bis), (vessels, among), (##her, ##rn)
8 (##ano, ##1z), (bo, ##l1z), (nathan, or), (arabia, against), (sant, ##ini),
(previous, unlike), (saudi, against), (##ia, ##uring), (he, gave), (tnt, equivalent)
9 , (##ek, czech), (according, situation), (decided, year), (v, classification),
(eventually, year), (but, difficulty), (##ference, track), (she, teacher), (might, concerned)
10 (jan, ##nen), (hee, ## 1), (primary, stellar), (crete, crete), (nuclear, 1991),
(inspector, police), (##tu, ##nen), (quote, quote), (f, stellar), (v, stellar)
11 (tiny, tiny), (##water, ##water), (hem, hem), (suddenly, suddenly), (fine, singer),
(henley, henley), (highway, highway), (moving, moving), (dug, dug), (farmers, agricultural)
12 (luis, luis), (tong, [A]), (board, judicial), (##, index), (—, —),

(four, fifty), (cloud, thunder), (located, transmitter), (##ota, ##0), (##ss, analysis)
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Table 3: Word pairs for which FF amplified the interaction the most in GPT-2.

are aligned with word pair categories: subword, compound noun,
named entity, and others.

The text colors
, same token,

Layer

Top amplified token-pairs

1

(ies, stud), (ning, begin), (ever, how), (ents, stud), (ited, rec),
(une, j), (al, sever), (itions, cond), (ang, p), (ree, c)

(al, sever), (itions, cond), (z, jan), (ning, begin), (-was, this),
(er, care), (ies, stud), (une, j), (s, 1990), (ents, stud)

, (z, jan), , (bin, ro), ,
(ting, _rever), (une, j), , (arks, _cl),

(-same, _multiple), (ouri, _miss), (jjung, lex), (_b, _strength),
(-based, _".), (adesh, hra), (_top, _among), (t, _give), (bin, ro)

(ol, _brist), (ol, ink), (gal, _man), (ac, _pens), (op, _link),
(_whit, _&), (ant, _avoid), (_people, _important), (un, _bra), (_.1995, _1994)

(ol, ink), (_del, del), (o, _dec), (ist, oh), (it, _me),
(_route, route), (thel, in), (ord, m), (adier, division), (we, ob)

(_ve, _las), (che, ro), (43, _aGf), (_green, _mark), (_cer, _family),
(jack, eter), (orses, *), (_kilometres, _lies), (,, _disappointed), (umer, in)

(-ar, _goddess), (-d, ight), (33, _density), (_cer, _family), (_08, -2007),
(bid, _family), (_14, _density), (-e, _family), (_50, _yield), (_15, _density)

(_ray, _french), (_11, uly), (_one, _score), (on, _french), (-41, -%),
(=37, _%), (—equipped, _another), (bc, _;), (ad, en), (.,, te)

10

(ho, ind), (_by, ashi), (_bra, _von), (_and, _317), (ad, en),
(_loves, ashi), (_u, asaki), (_he, ner), (_land, ines), (_de, die)

11

(it, *), (uman, _when), (ave, _daughters), (_bird, _:), (ic, there),
(ia, _counties), (bc, _;), (_and, had), (_2010, _us), (, :)

12

(_operational, _not), (_answered, _therefore), (_degrees, _having), (_varying, _having),
(k, rant), (_supplied, _also), (_daring, _has), (_prominent, ’s), (a, ually), (_stress, _:)
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Figure 14: Contextualization changes between before and after each component in FFBs (FF,
RES2, and LN2) of six variants of BERT models with different sizes (large, base, medium, small,
mini, and tiny). The higher the bar, the more drastically the token-to-token contextualization
(attention maps) changes due to the target component.
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Figure 15: Contextualization changes between before and after each component in FFBs (FF,
RES2, and LN2) of four variants of BERT-base models trained with different seeds (original, 0, 10,
and 20). The higher the bar, the more drastically the token-to-token contextualization (attention
maps) changes due to the target component.

28



Published as a conference paper at ICLR 2024

1.00 1.00 1.00
]
80 © 0.754 0.759 0.75
= ()]
=~ 50504 0.50 1 0.50 1
S c
E Coa2s 025 0.251
= lieclln__al | I I
B .00 fea-llaalloaln LR L 0.00 Lr=m—x ‘ el - 0.00 lr—{10=an. ; ; ‘
% 1 5 10 15 20 Avg. 1 5 10 15 20 Avg. 1 5 10 15 20 Avg.
~ Layer Layer Layer
(a) +FF (b) +RES (c) +LN
(ATB <+ ATBFF) (ATBFF <> ATBFFRES) (ATBFFRES +» ATBFFRESLN)
1.00 1.00 1.00
% D 0.75 0.751 0.751
s O
2 5 o504 0.50 0.50
é‘ <
Q 0.254 0.251 0.254
= ] [
= 0.00lsmm— E":'DD AL D ; D ) — ‘ 0.00 Lo rnmaca (I I L D
% 1234567 8 9101112Avg. 1234567 8 9101112Avg. 1234567 8 9101112Avg.
~ Layer Layer Layer
(d) +FF (e) +RES (f) +LN

(ATB <> ATBFF)

(ATBFF ¢+ ATBFFRES)

(ATBFFRES <> ATBFFRESLN)

Figure 16: Contextualization changes between before and after each component in FFBs (FF,
RES2, and LN2) of two variants of ROBERTa models with different sizes (large and base). The
higher the bar, the more drastically the token-to-token contextualization (attention maps) changes

due to the

target component.

1.00 1.00 1.00
= Q 075 0.75 { 0.751
GG 050y 0501 0.50
e
: O 0.251 0.25 HH D 0.251
& .00 LA AL I AL ‘ 0.00 LA e en e e e L L
0.00
@) 12345678 9101112Avg. 12345678 9101112Avg. 12345678 9101112Avg.
Layer Layer Layer
(a) +LN (b) +FF (c) +RES

(ATB <> ATBLN)

(ATBLN <> ATBLNFF)

(ATBLNFF <+ ATBLNFFRES)

Figure 17: Contextualization changes between before and after each component in FFBs (FF,
RES2, and LN2) of OPT 125M model. The higher the bar, the more drastically the token-to-token
contextualization (attention maps) changes due to the target component.
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Figure 18: Contextualization changes between before and after each component in FFBs (FF,
RES2, and LN2) of BERT-base and GPT-2 on SST-2 dataset. The higher the bar, the more
drastically the token-to-token contextualization (attention maps) changes due to the target
component.

30



Published as a conference paper at ICLR 2024

3 +FF
B3 +FF+RES
I +FF+RES + LN (Same layer’s PostLN)

= +FF
= +FF+RES
3 +FF+RES + LN (Same layer’s PostLN)

1.00 1.00
o) 0.751
g
S 0.50
e
©o2s
0.00 -
123456 7 8 9101112 Avg.
Layer Layer
(a) BERT-large. (b) BERT-base.
— +FF — +FF
E= +FF+RES E= +FF+RES
1 +FF+RES + LN (Same layer’s PostLN) 1 +FF+RES + LN (Same layer’s PostLN)
1.00 1.00
o 0.75 1 o 0.751
2 2
o 0.504 S 0.50-
< <
“ 0.251 O 525
0.00 - 0.00 -
1 2 3 4 5 6 7 8 Avg. 1 2 3 4 Avg.
Layer Layer
(¢) BERT-medium. (d) BERT-small.
— +FrF — +Fr
E= +FF+RES E= +FF+RES
[ +FF+RES + LN (Same layer’s PostLN) [ +FF+RES + LN (Same layer’s PostLN)
1.00 1.00
© 0751 0 0751
2 2
S 0.50 S 0.50 1
< <
© .25 © 0251
0.00 - 0.00 —= = =
1 2 3 4 Avg. 1 2 Avg.
Layer Layer

(e) BERT-mini.

(f) BERT-tiny.

Figure 19: Contextualization changes through processing each component (FF, RES, and LN) from
just before FF (ATB) in six variants of BERT models with different sizes (large, base, medium,
small, mini, and tiny). The higher the bar, the more the contextualization (attention map) changes

from just before FF.
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Figure 20: Contextualization changes through processing each component (FF, RES, and LN) from
just before FF (ATB) in four variants of BERT-base models trained with different seeds (original,
0, 10, and 20). The higher the bar, the more the contextualization (attention map) changes from just

before FF.
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Figure 21: Contextualization changes through processing each component (FF, RES, and LN) from
just before FF (ATB) in two variants of RoOBERTa models with different sizes (large and base). The
higher the bar, the more the contextualization (attention map) changes from just before FF.
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Figure 22: Contextualization changes through processing each component (FF, RES, and LN) from
just before FF (ATBLN) in OPT 125M model. The higher the bar, the more the contextualization

(attention map) changes from just before FF.
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Figure 23: Contextualization changes through processing each component (FF, RES, and LN) from

just before FF (ATB) in BERT-base and GPT-2 on SST-2 dataset. The higher the bar, the more the
contextualization (attention map) changes from just before FF.
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Figure 24: Averaged norm of the output vectors from FF and the bypassed vectors via RES2, cal-
culated on the Wikipedia data for six variants of BERT models with different sizes (large, base,

medium, small, mini, and tiny).
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Figure 25: Averaged norm of the output vectors from FF and the bypassed vectors via RES2, cal-
culated on the Wikipedia data for four variants of BERT-base models trained with different seeds

(original, 0, 10, and 20).
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Figure 26: Averaged norm of the output vectors from FF and the bypassed vectors via RES2, cal-
culated on the Wikipedia data for two variants of RoOBERTa models with different sizes (large and

base).
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Figure 27: Averaged norm of the output vectors from FF and the bypassed vectors via RES2, calcu-

lated on the SST-2 dataset for BERT-base and GPT-2.
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Figure 28: Mean absolute value in each dimension of the input/output vectors of FF across the
Wikipedia data and the LN weight values at the certain layer of six variants of BERT models with
different sizes (large, base, medium, small, mini, and tiny).
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Figure 29: Mean absolute value in each dimension of the input/output vectors of FF across the
Wikipedia data and the LN weight values at the certain layer of four variants of BERT-base models
trained with different seeds (original, 0, 10, and 20).
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Figure 30: Mean absolute value in each dimension of the input/output vectors of FF across the
Wikipedia data and the LN weight values at the certain layer of two variants of RoOBERTa with
different sizes (large and base).
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Figure 31: Mean absolute value in each dimension of the input/output vectors of FF across the SST-2
dataset and the LN weight values at the certain layer.

1.00 1.00
@ 0.751 L 0.751
2 2
@ 0507 & 0.50
< <
O 0.25- O 0.251
0.00 LRRARAOOARAANGm 0.0 lrrmmmm e =
1234567 8 9101112Avg. 2 56 7 8 9101112 Avg.
Layer Layer
(a) ATB +> ATBFF in BERT-base. (b) ATBFF <> ATBFFRES in GPT-2

Figure 32: Contextualization changes by FF of BERT-base and GPT-2 on Wikipedia dataset when
the 1% (seven) dimensions with the smallest LN weights ~ values is ignored in the norm calcula-
tion. The higher the bar, the more drastically the token-to-token contextualization (attention maps)
changes due to the target component.
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