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Abstract

Under an approximate PAC-Bayesian framework, we derive an implementa-
tion efficient parameterisation invariant metric to measure generalisation.
We show that for solutions of low training loss, this metric can be ap-
proximated at the same cost as a single step of SGD. We investigate the
usefulness of this metric on pathological examples, where traditional Hes-
sian based sharpness metrics and generalisation both increase. We find
good experimental agreement with our efficient and easily implementable
metric. As a consequence of our PAC-Bayesian framework and theoretical
arguments on the sub-sampled Hessian, we include a trace of Hessian term
into our structural risk. We find that this term promotes generalisation on
a variety of experiments using Wide-Residual Networks on the CIFAR-100
and ImageNet-32 datasets.

1 Introduction

Despite their exceptional ability to generalise to unseen data, Deep Neural Networks (DNNs)
are not completely immune to the classical problem of over-fitting. Large, expressive modern
neural networks easily fit training data, including that of random labels (Zhang et al., 2016).
However, finding and encouraging solutions which generalise best to new data, measured by
their performance on a held out validation or test set, can be considerably more tricky. Put
simply, for many problems of interest, the corresponding empirical risk minimisation is much
simpler and well understood than the appropriate structural risk minimisation.

In order to ensure the greatest generalisation of their models, practitioners resort to a variety
of direct and indirect methods. Direct methods involve augmenting or altering the loss.
Examples include a penalising weight norm term, known as weight decay or L2 regularisation,
which can be shown to reduce the effect of static noise on the targets (Krogh and Hertz,
1992). Further direct methods involve collecting more training data, as in the limit of
infinite data, the empirical risk converges to the true risk. Cheaper approximations to an
increase in training data (which can often be expensive and require human annotations),
involve data augmentation, encouraging the network to learn symmetries in the data or
training on convex combinations of examples (Zhang et al., 2017). Adversarial training,
further reduces the sensitivity to small input perturbations and can also be shown to increase
generalisation. Indirect methods typically involve alterations to the optimisation procedure,
which promote generalisation, often at the expense of optimisation. Examples include
early stopping, i.e. closely monitoring the validation error/loss to find an optimal point in
training corresponding to a model with good generalisation. Other methods involve indirectly
steering the optimisation trajectory towards minima with properties considered favourable for
generalisation. One extremely prolific example of this is altering the optimisation procedure
to promote settling into "flat" minima, which are considered to generalise better under both
a Bayesian and minimum description length framework (Hochreiter and Schmidhuber, 1997).

Enter Sharpness: Sharpness is usually measured by properties of the second derivative of
the loss, the Hessian H = ∇2L(w) (Keskar et al., 2016; Jastrzebski et al., 2017b; Chaudhari
et al., 2016; Wu et al., 2017; 2018), such as the spectral norm or trace. The assumption
is that due to finite numerical precision (Hochreiter and Schmidhuber, 1997) or from a
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Bayesian perspective (MacKay, 2003), the test surface is shifted from the training surface.
The difference between train and test loss for a shift δw is given by

L(w∗+ δw)−L(w∗) ≈ δwTHδw+ ... ≈
P∑
i

λi|φTi δw|2 ≈
Tr(H)

P
||δw||2 ≤ λ1||δw||2 (1)

in which w∗ is the final training point and [λi,φi] are the eigenvalue/eigenvector pairs of
H ∈ RP×P . We have dropped the terms beyond second-order and assumed that the gradient
at training end is small. In general we have no a priori reason to assume that shift should
preferentially lie along any of the Hessian eigenvectors, which in conjunction with strong high
dimensional concentration results (Vershynin, 2018), gives |φTi δw|2 ≈ 1/P . This justifies the
trace as a measure of sharpness. In the worst case scenario the shift is completely aligned
with the eigenvector corresponding to the largest eigenvalue λ1, i.e. δwTφ1 = 1. Hence the
spectral norm λ1 of H serves as a local1 upper bound to the loss change.

Avoiding sharp minima can be done indirectly by using learning rate schedules with initially
large learning rates (Berrada et al., 2018; Granziol et al., 2020; Jastrzebski et al., 2020;
Wu et al., 2017; 2018). Although there is no guarantee that when the learning rate is
dropped later in training (required for the convergence of SGD (Nesterov, 2013)) that it
will not fall into a minimum of even greater sharpness. Alternative procedures thought to
promote flatness include the use of Polyak averaging in conjunction with large learning rates
(Izmailov et al., 2018) and alternative optimisers, such as Entropy-SGD (Chaudhari et al.,
2016). In contrast to direct methods, indirect methods require significantly more effort on
the part of the experimenter. Ideally we would directly optimise a structural risk faithfully
corresponding to the true risk.

2 Motivation

Despite the development of more advanced tools to calculate the Hessian of DNNs (Granziol
et al., 2019; Ghorbani et al., 2019; Papyan, 2018; Yao et al., 2018), extensive investigations
into the nature of the Hessian (Papyan, 2020; Granziol et al., 2020; Choromanska et al., 2015;
Pennington and Bahri, 2017), there have been limited practical developments in explicitly
using the Hessian to help practitioners generalise better.

Implicit measures to promote flatness have included: Keskar et al. (2016); Ranga-
mani et al. (2019), who consider how large batch vs small batch stochastic gradient descent
(SGD) alters the sharpness of solutions, with smaller batches leading to convergence to flatter
solutions, leading to better generalisation. Jastrzebski et al. (2017a) look at the importance
of the ratio learning rate and batch size in terms of generalisation, finding that large ratios
lead to flatter minima (as measured by the spectral norm) and better generalisation. However
the prescription of using of a small batch size (or large learning rate to batch size ratio) to
generalise better, is still indirect and hence comes at significant financial and environmental
expense. Small batch training fails to take advantage of the parallelisation potential of large
batch training (Goyal et al., 2017). Determining an effective learning rate schedule requires
many optimisation runs, which is expensive and the solutions further need to be evaluated
on a held out validation set. This reduces the amount of data used for training and can hurt
the model performance at test time.

In this paper we bridge the gap between theory and practice by:

• Adding to the case against Hessian based metrics of generalisation by showing that
weight decay, which is known to increase generalisation, increases sharpness. We
derive this theoretically for the MLP with ReLU activations and extensively showcase
this experimentally.

• Deriving a parameterisation invariant generalisation measure under a PAC-Bayes
framework, which combines both the weight norm and properties of the Hessian.

1we use the word local here because the largest eigenvalue/eigenvector pair may change along
the path taken
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• Providing a cheap approximation to the generalisation measure, which can be
consistently estimated at the cost of one mini-batch gradient descent step. This
could serve as a drop in replacement for evaluating the generalisation of a solution
on a held out validation set, allowing for all the training data to be used.

• Showing that both these generalisation measures, work well even on pathological
examples exposed by our theoretical contribution.

• Inspired by our PAC-Bayes generalisation bound, introduce a trace of the Hessian
regularisation term into the loss, which whilst only increasing training time by a
constant factor, we show to improve generalisation WideResNet-28x10 on CIFAR-100
& ImageNet-32.

3 Flatness is a False Friend

Dinh et al. (2017) show that by exploiting ReLUs (Rectified Linear Units) positive homogene-
ity property f(αx) = αf(x), any flat minima can be mapped into a sharp minimum, without
altering the loss. As these measures can be arbitrarily distorted, this implies they serve
little value as generalisation measures. However such transformations alter other properties,
such as the weight norm. In practice the use of L2 regularisation, which penalises weight
norm means that such manipulations do alter the loss in practice. It can even be shown that
unregularised SGD converges to the minimum norm solution for simple problems (Wilson
et al., 2017).

In conjunction with the numerous positive empirical results relating sharpness and gener-
alisation, it is hence questionable whether reparameterisation arguments alone are enough
to discard Hessian based measures of generalisation in the wild. To further add to the case
against Hessian based measures of generalisation, we show that for an unregularised network,
in the limit of zero loss (complete fitting of the training data which we intuitively expect to
over-fit), Hessian based measures of sharpness become exactly zero.

3.1 Theoretical Argument for an MLP with ReLU

Consider a neural network with a dx dimensional input x. Our network has H − 1 hidden
layers and we refer to the output as the H’th layer and the input as the 0’th layer. We
denote the ReLU activation function as f(x) where f(x) = max(0, x). Let Wi be the matrix
of weights between the (i − 1)’th and i’th layer. For a dy dimensional output our q’th
component of the output can be written as

z(xi;w)q = f(W T
Hf(W T

H−1....f(W1x))) =

dx∑
i=1

γ∑
j=1

xiAi,j

H∏
k=1

w
(k)
i,j (2)

where the indices i, j denote the sum over network inputs and paths respectively and γ is
the number of paths. Ai,j ∈ [0, 1] denotes whether the path is active or not and w(q)

i,j denotes
the the weight of the path segment which connects node i in layer q − 1 with node j in layer
q. layer i has ni nodes and γ =

∏H−1
q nq.

Theorem 1. For any feed forward neural network with ReLU output activation functions
f(x) = max(0, x), coupled a softmax output in the final layer and cross entropy loss, in the
limit that the training loss L(w) → 0 the spectral norm λ1(H) of the empirical Hessian
H = ∇2L(w) ∈ RP×P also tends to 0.
Remark. The proof (given in the Supp Matt) can be extended trivially to both the trace and
Frobenius norm. It relies on the weights needing to become large to drive the cross entropy
loss to zero.
Remark. By continuity we expect small training loss solutions to have larger spectral norms.
This implies that the spectral norm (along with other Hessian based measures of sharpness)
should increase in the case where the weights are bounded and the loss cannot go to zero,
i.e. when we use L2 regularisation. We demonstrate this on the WideResNet-28x10 on
the CIFAR-100 dataset in Figure 1. Note that the increase in sharpness corresponds to an
decrease in weight norm, indicating that both might play a part in generalisation.
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Figure 1: Hessian spectrum for WideResNet28×10 after 300 epochs of SGD on the CIFAR-100
dataset, for various L2 regularisation co-efficients λ, batch norm evaluation mode

4 A PAC Bayesian Approach to Generalisation and Flatness

For an input, output pair [xi,yi] ∈ [Rdx ,Rdy ], i ∈ [1, N ] and a given prediction function
h(·; ·) : Rdx × RP → Rdy , we consider the family of prediction functions parameterised by
a weight vector w, i.e., H := {h(·;w) : w ∈ RP } with a given loss function `(h(x;w),y) :
Rdy × Rdy → R. Optimizing the PAC-Bayesian generalization bound Germain et al. (2016)
is equivalent to optimizing∫ N∑

i=1

log p(yi|xi,w)q(w)dw −KL(q(w)||p(w)), (3)

where p can be a categorical distribution, whose likelihood corresponds to a softmax loss
function l. p(w)/q(w) are the prior/posterior of the weights respectively. For example, a
random initialized weight can be seen as a sample from the prior and a trained weight can
be seen as a sample from the posterior. Notice that, this objective is the lower bound of the
log-volume, see Barber (2012, section 28.3.1)

logZ ≥
∫ N∑

i=1

log p(yi|xi,w)q(w)dw −KL(q(w)||p(w)) (4)

where Z =
∫
p̃(y|x,w)p(w)dw. The volume interpretation extends the flatness concept

discussed in Section 3, and the KL divergence is invariant to any invertible transformations
(Cover, 1999). This property makes the volume a reparameterization invariant measure
whereas the flatness is not invariant to reparameterization (Dinh et al., 2017).

The optimal q∗(w) is the Gibbs distribution q∗(w) ∝ p̃(y|x,w)p(w). However, this may not
be achievable in practice. We can only access to some local minima of

w∗l ∈ w∗l = arg localminw log(p̃(y|x,w)p(w)). (5)

We now need to compare which w∗l is better. Taking q(w∗l ) as Gaussian distribution
N(w∗, H−1w∗

l
), which corresponds to the Laplace approximation around the minimum (MacKay,

2003). Further assuming an isotropic zero mean Gaussian prior N(0, σ2
pID), which corresponds

to a maximum entropy Jaynes (1957a; 1967; 1957b) prior. This encodes a state of maximal
initial ignorance about the distribution of plausible weight distributions under the constraint
of an existence in mean and variance. In this case the KL divergence has a closed form:

KL(q||p) =
1

2

[
log
|σ2
pI|

|H−1|
+

1

σ2
p

Tr(H) +
1

σ2
||w∗p||x22

]
=

1

2σ2
l

[Tr(H) + ||w∗l ||2] +
1

2
log |H|,

(6)

where we drop constant factors. A trivial bound for log |H| ≤ Tr(H − ID). Further assuming
σ2
p = 1, we have

KL(q||p) ∝ Tr(H) +
1

2
||w∗l ||22. (7)

We can also approximate the term corresponding to the empirical risk by making a Lapalace
approximation around the posterior and using the concavity of the logarithm function along
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with Jensens inequality.∫ N∑
i=1

log p(yi|xi,w)q(w)dθ /
N∑
i=1

log p(yi|xi,w∗) +
P

2
log 2π − 1

2
log |H|. (8)

The above is for a stochastic classifier q(θ),we can also build the link between stochastic
classifier to deterministic classifier, e.g. the deterministic classifier is a sample from q(θ).
For further discussion on this technicality see Tsuzuku et al. (2020). We note that the total
constant term is P (N log 2π

2 + log σ − 1), but since it is constant for a given prior, it can be
ignored when comparing solutions of the same network. Given that DNNs are known to
be rank-degenrate in their Hessians (Granziol et al., 2020; Papyan, 2018; Ghorbani et al.,
2019) and that the a bound on rank degeneracy can be shown to increase with network
size (Granziol et al., 2020), future work could investigate the effective dimension P ∗, when
comparing the full PAC-Bayesian generalisation bound of different networks. Hence for
comparing the generalisation of solutions of the same network and dropping constant terms
we consider:

N∑
i=1

log p(yi|xi,w∗)−
1

2
log |H|(1 +

1

N
)− 1

2σ2N
[TrH + ||w||2]. (9)

4.1 Implications

Equation 9 implies that an objective measure of generalisation is given by the combination
of log likelihood, sharpness (a weighted combination of the trace and log determinant) and
weight norm. This is pleasantly unsurprising, given that arguments of our motivational
section 3 hinged on the importance of large weights, known to give poor generalisation
(Krogh and Hertz, 1992), yet small Hessian based measures of sharpness.

An obvious implication of this formula is that increasing weight decay decreases the generali-
sation gap. This has already known and common experimental practice. However its origin
from our derivation, namely the assumption of a uniform prior over the weights, gives a
natural explanation for the efficacy of decoupled weight decay (Loshchilov and Hutter, 2018)
in Adam (Kingma and Ba, 2014) in terms of increased generalisation. Quite specifically,
decreasing the weights corresponds to a maximally entropic (Jaynes, 1957b) i.i.d Gaussian
prior assumption on the weights, as opposed to a prior of lower entropy of (1 − γB−1)w
where γ,B are the learning rates and implied curvature matrices respectively. Given that
lower entropy priors correspond to increased information in the form of constraints (Jaynes,
1957a; Granziol and Roberts, 2017), we expect poorer performance with the use of such
priors unless the constraints correspond to our knowledge about the system.

Another implication is that by aurgmenting the empirical loss with L2 regularisation, we
are leaving certain generalisation gains on the table by ignoring the other terms related to
Hessian sharpness. Based on this insight, we integrate an explicit trace of Hessian term into
the loss, which we evaluate extensively in Section 6.

4.2 On the Unique Practical Value of the Trace:

In this sub-section we argue using both known results from linear algebra and a novel
application for an additive noise model for the Hessian (Granziol et al., 2020), that Equation
6 (and by the same token Equation equation 9) is significantly less practical than Equation
7.

The Problem with the Log Determinant: A naive implementation of Equation 6
using SVD would involve an impractical computational cost of O(P 3N) computational cost,
where P,N denote the model/dataset size respectively. Using more advanced stochastic
Lanczos quadrature algorithms, the computational cost of the prohibitive log determinant
term can be reduced to O(mdPN), where m denotes the number of moments used and d the
number of stochastic trace vectors. The key concept behind this efficient implementation is
known as stochastic trace estimation Hutchinson (1990); Fitzsimons et al. (2017); Granziol
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(a) Tr(H) (b) Tr(G) (c) Tr(H2) (d) Tr(G2)

Figure 2: The Trace of the Hessian can be accurately estimated with sub-sampling,
the higher order moments (such as the Frobenius norm) cannot be. Trace of the
Full/Batch Hessian Tr(H)/GGN Tr(G) and of the Full/Batch Hessian/GGN Frobenius
Norm.

and Roberts (2017). This asserts that TrH = 1
n

∑n
i v

T
i Hvi as n → 0 for zero mean unit

variance vectors vi. Whilst there exist probabilistic bounds on the number of moments and
trace vectors needed to guarantee an estimation error (Han et al., 2015; Roosta-Khorasani
and Ascher, 2015), these bounds are very loose. As shown in Granziol et al. (2018); Granziol
and Roberts (2017); Fitzsimons et al. (2017) they require hundreds of thousands of trace
vectors, when in practice small numbers in the tens suffice. Furthermore the number of
moments needed to estimate the log determinant accurately depends on the square root
of the condition number (Ubaru et al., 2017), whereas that of the trace does not. Neural
network Hessia have been shown to have large outliers and a large spectral peak near the
origin (Ghorbani et al., 2019; Granziol et al., 2020; Papyan, 2020) and hence we expect
the condition number to be large. Even ignoring the constant factors of d,m required to
get a good estimate, the factor N means that even in the best case the cost of estimating
Equations 6,7 would be as costly as several epochs of SGD, making them impractical.

Why we can sub-sample the Trace and not the Log Determinant: Let us consider
the simplest framework to measure the effect of sub-sampling on the Hessian. Following the
framework from Granziol et al. (2020), we consider the additive perturbation model of the
batch Hessian,

Hbatch(w) = Hemp(w) + ε(w). (10)

In expectation the trace of the batch Hessian is given by:

ETr[Hbatch] = ETr[Hemp(w) + ε(w)] = Tr[Hemp(w)] (11)

and for the trace of the batch Hessian squared:

ETr[H2
batch] = ETr[H2

emp(w) + ε2(w) + 2ε(w)Hemp(w)] = Tr[H2
emp(w)] + Pσ2 (12)

Hence, under the assumptions of our model, we expect the batch trace to be equal to that of
the empirical, but the Frobenius norm (or its square as defined above) to be larger. This
is shown in Figure 2, where we show the difference between a full dataset Hessian trace
and Frobenius norm and that of a subsample B = 128. We see both that the Trace can be
accurately estimated with the sub-sample, whilst the Frobenius norm cannot be. We show
that this holds also for common positive semi-definite approximations to the Hessian, such
as the Generalised Gauss Newton. Note that since we measure the log-determinant using
a moment matched approximation to the spectrum, the moments must match accurately.
Since higher order moments are perturbed by sub-sampling, it is not possible to calculate
the log determinant using a sub-sample of the Hessian. Whilst it may be possible to use the
framework of Granziol et al. (2020) to calculate the required corrections to the moments
to allow sub-sampling, which we leave to future work, their method requires the variance
of the Hessian, which is expensive to compute. Note that since the trace of the Hessian is
invariant to sub-sampling, Equation 7 can be accurately estimated at the cost of a single
SGD step. Since the empirical risk dependent term also depends on the log-determinant, for
this approximation to be useful we need the empirical loss of the solutions being compared
to be very close to each other.
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5 Experiments on Pathological Examples

In order to test the usefulness our framework from Section 4 in the specific setting where
we increase the weight decay coefficient (and expect an increase in generalisation and
sharpness), we run experiments with increasing weight decay coefficients on a 1-Layer Multi-
Layer Perceptron, a simple Convolutional Neural Network, Pre-Residual and Wide-Residual
Networks on the MNIST and CIFAR-100 datasets. For each experiment we present the results
for the difference in Error ∆E, loss diference δL, along with the Hessian trace, Frobenius
Norm, Spectral norm |H|, along with approximation of the PAC-Bayesian risk difference a.
We use m = 100 moments to compute an approximate moment matched spectral density
using the entire dataset.

Experimental Setup: We use the deep visualisation suite (Granziol et al., 2019) package
to visualise the spectrum of the Hessian and calculate the largest eigenvalues. We train all
networks using SGD with momentum ρ = 0.9 and varying levels of L2 regularisation γ

2 ||w||
2,

γ ∈ [0, 0.0001, 0.0005]. For further experimental details, such as the learning rate schedule
( we a linear decay schedule with a terminal learning rate of 0.01 the initial) employed
and the finer details of the spectral visualisation method see Appendix C. Since adding L2
regularisation naturally adds γ to each eigenvalue, as H →H + γI, in our results we do not
calculate the Hessian on the regularised loss.

MLP: We now consider a single hidden layer MLP on the MNIST dataset, with a hidden
layer of 100 units, parameter count 9960, trained for 50 epochs with an identical schedule and
a learning rate of 0.01. We similarly find that the addition of weight decay both increases
the generalisation accuracy (from 94.4 → 96.46 → 96.7 as we increase the regularisation
coefficient γ from 0→ 0.0001→ 0.0005). This also increases the spectral norm as shown in
Appendix. The training accuracy increases slightly with the introduction of regularisation,
but decreases over the unregularised network when the regularisation is increased to 0.0005.
We plot the results in Table 1.

CNN: We consider a 9 layer simple convolutional neural network on the CIFAR-100 dataset
(Dangel et al., 2019), with parameter count 1, 387, 108 and a learning rate of α = 0.01 for
300 epochs. We also observe that adding weight decay increases the spectral norm, as shown
in the Appendix. For this network, training is also improved by the addition of a little L2
regularisation, but performance decreases for over regularisation, i.e. as the weight decay
parameter increases from [0, 10−4, 5×10−4] the training performance is [86.3%, 87.9%, 86.0%].
In this particular example the training accuracy is quite low, but there is still a generalisation
gap. We plot the results in 2. For both the MLP and the simple CNN, we find that there is

Model γ ∆E ∆L TrH TrH2 |H| a

MLP 0.0 0.48 0.024 1.82e-2 1.20e-1 1.44e1 7.6
MLP 1e-4 0.51 0.022 1.67e-2 1.04e-1 1.50e1 7.2
MLP 5e-4 -0.05 0.007 1.76e-2 1.63e-1 1.78e1 6.1

Table 1: MLP MNIST

Model γ ∆E ∆L TrH TrH2 |H| a

CNN 0.0 32.40 2.506 1.82e-3 1.35e-2 4.9e1 45.2
CNN 1e-4 32.50 2.463 2.20e-3 1.68e-2 6.6e1 35.8
CNN 5e-4 31.14 2.144 4.62e-3 1.17e-1 1.3e2 23.0

Table 2: CNN CIFAR-100

Table 3: Accuracy and Loss do not always correspond. The derived metrics serve
as a measure of the difference between the empirical and true risk. This does not always
correspond to the difference in accuracy.

not perfect alignment in terms of error difference and loss difference. But given that our
analysis is performed on the loss, it is encouraging to see that both metrics predict a decrease
in loss difference between as we increase weight decay. In contrast we find that the spectral
norm grows with the regularisation predicting worse not better performance and that neither
the trace nor the Frobenius norm, serve as reliable indicators of generalisation difference.

PreResNet-164 We use a pre-activated residual network on the CIFAR-100 dataset with
parameter count 1, 726, 388. Our training performance decreases with increased level of
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regularisation [0, 10−4, 5×10−4] from [99.987%, 99.985%, 99.87%] but our testing performance
increases significantly. We show the results in Table 4.

WideResNet-28× 10: We use a wide residual network on the CIFAR-100 dataset, with
parameter count 36, 546, 980, we observe the training accuracy remains roughly constant
[99.984%, 99.984%, 99.982%] as we increase the regularisation from [0, 10−4, 5× 10−4] . We
are now in the regime where the optimisation benefit of regularisation is negligible, but the
generalisation benefit is significant. We show the results in Table 4.

For these large neural networks, perhaps due to the capacity to fit the training set, we
see a large generalisation difference and furthermore we see a complete alignment between
generalisation in terms of measurement in loss and accuracy. For these networks we find
that all Hessian based measures of sharpness grow with the increased coefficient of L2

regularisation γ, despite the generalisation difference decreasing with such regularisation.
However for our approximate metric we find good agreement with the observed phenomena.
Both of them decrease in tandem with the increase in regularisation and the decrease in
generalisation difference.

Model γ ∆E ∆L TrH TrH2 |H| a

P164 0 27.2 2.24 5.5e-5 1.1e-5 2.52 160
P164 1e-4 24.4 1.16 6.7e-4 6e-4 11.49 36.9
P164 5e-4 23.11 0.92 2.1e-3 3.1e-3 23.03 22.06

Table 4: PreResNet-164 CIFAR-100

Model γ ∆E ∆L TrH TrH2 |H| a

Wrn 0 24.92 2.08 9.4e-7 2.3e-7 1.69 101
Wrn 1e-4 20.68 0.85 6.7e-5 1.3e-4 39.13 21.9
Wrn 5e-4 19.6 0.79 1.1e-4 3e-4 40 15.8

Table 5: WideResNet-28× 10 CIFAR-100

Table 6: Generalisation and Sharpness both increase with greater L2 regularis-
taion. For typical neural networks trained on well known datasets commonly used Hessian
metrics, the trace, frobenius and spectral norms all increase as we increase the weight decay
coefficient γ. However our general g and approximate a metrics both indicate decreased
generalistaion difference.

6 Spectral Regulariser

Following from Equation 7 and our arguments on the trace invariance to sub-sampling, we
consider whether it is possible to directly encourage flatness in the loss surface by augmenting
the loss with the trace of the Hessian.

L(w)→ L(w) + γ|w|2 + ηTrH(w). (13)
Since TrH(w) = Evv

T∇2L(w)v, where v are random vectors with zero mean and unit
variance. We use a monte-carlo approximation of the expectation with a single random
vector. For a single random vector, this increases the computational cost of SGD over that of
SGD with weight decay by a factor2 of 3. We leave the investigation of efficient sub-sampling
to future work. We provide open-source implementations of both our generalisation measure
and spectral regularisation method.

On the Positive Definite Approximation of the Hessian: We note that in Equations
6 and the approximate form 7 that the Hessian was assumed to be positive definite. Whilst
zero eigenvalues do not cause problems for the trace approximation of the log determinant,
for significant large negative spectral mass, note that the regularising term in Equation
13 becomes negative. Hence large portions of negative eigenvalues actually decrease the
objective. It is known, that residual architectures have significant negative spectral mass a
the start of training (Granziol et al., 2020). This implies intuitively that increasing the weight
of directions of negative curvature, i.e going to areas which are local maxima in the loss is
beneficial to reducing the regularised objective. We find empirically that for Wide-Residual
Networks this is the case, with training diverging on CIFAR-10 and hovvering around 10%
for CIFAR-100. As a proposed fix, we use the generalised Gauss-Newton approximation to
the loss, which is positive semi-definite. Hence forth TrH → TrG.

2If we take the cost of multiplication to be m and that of a gradient operation as g, then we
need to take two extra gradients and multiplications over the typical operation
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Experimental Procedure: We run the Wide-Residual Network (Zagoruyko and Ko-
modakis, 2016) on both the CIFAR-100 and ImageNet-32 datasets. We show the results
in Table 9. We use a linear schedule as detailed in the Appendix, which we find outper-
forms the step schedule on these experiments. In order to set the initial learning rate and
weight decay coefficients α0, γ for the CIFAR-100 experiment we grid search over the values
[0.05, 0.075, 0.1, 0.125] and [0, 0.0001, 0.0003, 0.0005] respectively and choose the maximal
performing combinations. For the trace regularising coefficient η we also look over the set of
[0.0001, 0.0003, 0.0005] for a single seed and choose the best performing solution. We run all
experiments with the SGD optimiser, using a momentum of 0.9. Due to the computational
cost of running ImageNet-32 we choose the best learning rate for CIFAR-100 and experiment
for the best weight decay (without the trace regulariser enabled) and set that as our default
values. We only try one value 0.0001 of the trace regulariser. For CIFAR-100 we run
the experiment with 4 random seeds, whereas ImageNet is single shot. Given the lack of
hyper-parameter tuning done for the trace-regulariser, it is encouraging to note that for both
datasets we see a small but significant improvement in the validation accuracy.

γ η α0 Train Acc Val Acc

5e-4 1e-4 0.1 99.992 ± 0.002 80.75 ± 0.19
5e-4 0 0.1 99.992 +/- 0.001 80.48 ± 0.26

Table 7: WideResNet-28× 10 CIFAR-100

γ η α0 Train Acc Val Acc

1e-4 0 0.1 81.05 62.89
1e-4 1e-4 0.1 80.95 62.66

Table 8: WideResNet-28×10 ImageNet-32

Table 9: Explicitly including a flatness term into the loss function improves
Generalisation. We the classical Wide-Residual-Network on CIFAR-100 and ImageNet-32
both with and without a trace regularisation term, given by η. Whilst we report a single
shot result for ImageNet-32 due to the computational expense, the result is statistically
significant for CIFAR-100, where we run 4 seeds.

7 Related Work

Tsuzuku et al. (2020) similarly also consider a PAC-Bayesian approach to measuring general-
isation. However, their resulting generalisation measure is significantly more complicated to
compute. requiring an inner (convex) optimisation loop for each weight matrix, for which
there remains no open source implementation. In contrast, our measure simply requires
the calculation of the weight norm and a Hessian vector product with one mini-batch of
data. This is easily implementable and available in many Hessian based packages (Granziol
et al., 2019; Yao et al., 2018; Ghorbani et al., 2019; Papyan, 2018). Dziugaite and Roy (2017)
similarly also compute a PAC-Bayes genneralisation bound using SGD on an MNIST MLP
example, using an expensive inner optimisation loop that is not implemented in traditional
frameworks.

8 Conclusion

In this paper, we add against the case of using vanilla Hessian based arguments for gener-
alisation by showing that networks trained with the cross entropy loss, with large weights
required to drive the loss to zero, have flat Hessian based sharpness metrics. We demonstrate
this empirically and propose a simple PAC-Bayesian inspired metric, which can be calculated
at the cost of a single step of SGD and is easily implementable in state of the art open-source
deep learning software. We release a PyTorch version. We show that this metric is reliable
on a set of pathological experiments. We further in conjunction with considerations on the
effect of sub-sampling on the Hessian spectrum, consider an unbiased flatness regularisation
term into the loss, which we show for ImageNet and CIFAR-100 gives some promising inital
results on Wide Residual Networks.
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