
Under review as a conference paper at ICLR 2024

EMP-SSL: TOWARDS SELF-SUPERVISED LEARNING
IN ONE TRAINING EPOCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, self-supervised learning (SSL) has achieved tremendous success in
learning image representation. Despite the empirical success, most self-
supervised learning methods are rather “inefficient” learners, typically taking hun-
dreds of training epochs to fully converge. In this work, we show that the key
towards efficient self-supervised learning is to increase the number of crops from
each image instance. Leveraging one of the state-of-the-art SSL method, we intro-
duce a simplistic form of self-supervised learning method called Extreme-Multi-
Patch Self-Supervised-Learning (EMP-SSL) that does not rely on many heuristic
techniques for SSL such as weight sharing between the branches, feature-wise
normalization, output quantization, and stop gradient, etc, and reduces the train-
ing epochs by two orders of magnitude. We show that the proposed method is
able to converge to 85.1% on CIFAR-10, 58.5% on CIFAR-100, 38.1% on Tiny
ImageNet and 58.5% on ImageNet-100 in just one epoch. Furthermore, the pro-
posed method achieves 91.5% on CIFAR-10, 70.1% on CIFAR-100, 51.5% on
Tiny ImageNet and 78.9% on ImageNet-100 with linear probing in less than ten
training epochs. In addition, we show that EMP-SSL shows significantly better
transferability to out-of-domain datasets compared to baseline SSL methods.

1 INTRODUCTION

In the past few years, tremendous progress has been made in unsupervised and self-supervised learn-
ing (SSL) (LeCun, 2022). Classification performance of representations learned via SSL has even
caught up with supervised learning or even surpassed the latter in some cases (Grill et al., 2020;
Chen et al., 2020). This trend has opened up the possibility of large-scale data-driven unsupervised
learning for vision tasks, similar to what have taken place in the field of natural language process-
ing (Brown et al., 2020; Devlin et al., 2018).

A major branch of SSL methods is joint-embedding SSL methods (He et al., 2020; Chen et al.,
2020; Zbontar et al., 2021; Bardes et al., 2021), which try to learn a representation invariant to
augmentations of the the same image instance. These methods have two goals: (1) Representation
of two different augmentations of the same image should be close; (2) The representation space shall
not be a collapsed trivial one1, i.e., the important geometric or stochastic structure of the data must
be preserved. Many recent works (Chen et al., 2020; Grill et al., 2020; Zbontar et al., 2021; Bardes
et al., 2021) have explored various strategies and different heuristics to attain these two properties,
resulting in increasingly better performance.

Despite the good final performance of self-supervised learning, most of the SOTA SSL methods
happen to be rather “inefficient” learners. For example, on CIFAR-10 (Krizhevsky et al., 2009),
most methods would require at least 400 epochs to reach 90%, whereas supervised learning typically
can reach 90% on CIFAR-10 within less than ten training epochs. The convergence efficiency gap
is surprisingly large.

While the success of SSL has been demonstrated on a number of benchmarks, the principle or
reason behind the success of this line of methods remains largely unknown. Recently, the work
(Chen et al., 2022a) has revealed that the success of SOTA joint-embedding SSL methods can be
explained by learning distributed representation of image patches, and this discovery echos with the

1For example, all representations collapse to the same point.
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Figure 1: The pipeline of the proposed method. During the training, a image is randomly cropped
into n fixed-size image patches with overlapping. We then apply augmentation including color jitter,
greyscale, horizontal flip, gaussian blur and solarization (Bardes et al., 2021) to n fixed-size patches.
Like other SSL methods (Chen et al., 2020; Bardes et al., 2021; Zbontar et al., 2021), image patches
are then passed into the encoder F to get the representations z.

discovery of BagNet (Brendel & Bethge, 2019) in the supervised learning regime. Specifically, the
work (Chen et al., 2022a) show that joint-embedding SSL methods rely on successful learning the
co-occurrence statistics of small image patches, and linearly aggregating of the patch representation
as image representation leads to on-par or even better representation than the baseline methods.
Similarly, another work based on sparse manifold transform (SMT) of small image patches (Chen
et al., 2022b) has shown that simple white-box method can converge to close to SOTA performance
in only one epoch. Given these observations, one natural question arises:

Can we make self-supervised learning converge faster, even in one training epoch?

In this work, we answer this question by leveraging the observation in (Chen et al., 2022a) and by
pushing the number of crops in joint-embedding SSL methods to an extreme. We offer a new train-
ing paradigm called Extreme-Multi-Patch Self-Supervised Learning (EMP-SSL). With a simplis-
tic formulation of joint-embedding self-supervised learning, we demonstrate that the SSL training
epochs can be reduced by about two orders of magnitude. In particular, we show that EMP-SSL
can achieve 85.1% on CIFAR-10, 58.5% on CIFAR-100, 38.1% on Tiny ImageNet and 58.5% on
ImageNet-100 in just one training epoch. Moreover, with linear probing and a standard ResNet-18
backbone (He et al., 2016), EMP-SSL achieves 91.5% accuracy on CIFAR-10, 70.1% on CIFAR-
100, 51.5% on Tiny ImageNet, and 78.9% on ImageNet-100 in less than ten training epochs. Re-
markably, EMP-SSL achieves benchmark performance similar to that of SOTA methods, with more
than two orders of magnitude less training epochs.

2 THE EXTREME-MULTI-PATCH SSL FORMULATION

The Overall Pipeline. Like other methods in SSL (Chen et al., 2020; 2022a; Bardes et al., 2021;
Zbontar et al., 2021), EMP-SSL operates on a joint embedding of augmented views of images.
Inspired by the observation in (Chen et al., 2022a), the augmented views in EMP-SSL are fixed-
size image patches with augmentation. As discussed in the previous section, the purpose of joint-
embedding self-supervised learning is to enforce different image patches from the same image to be
close while avoiding collapsed representation. The success of these methods comes from learning
patch co-occurrence (Chen et al., 2022a). In order to learn the patch co-occurrence more efficiently,
we increase the number of patches in self-supervised learning to an extreme.

For a given image x, we divide it into n fixed-size patches using random crops with overlap. Each
of these cropped patches undergoes standard augmentation same as those in VICReg (Bardes et al.,
2021), resulting in augmented image patches x1, ..., xn. We denote xi as the i-th augmented image
patch from x. For an augmented image patch xi, we get embedding hi and projection zi, where
hi = f(xi; θ) and zi = g(hi; η). At last, we normalize the projection zi learned. The parameter
function f(·; θ) is a deep neural network (ResNet-18 for example) with parameters θ and g(·; η) is
a much simpler neural network with only two fully connected layers. We define our encoder F as
F = g(f(·; θ); η). The pipeline is illustrated as Figure 1.

During the training, for a batch of b images we denote as X = [x1, ..., xb], where xj is the j-
th image in the batch. We first augment the images as described above to get X1, .., Xn where
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Xi = [x1
i , .., x

b
i ]. Then, we pass the augmented image patches into the encoder to get the features

Zi = F (Xi) and concatenate them into Z = [Z1, ..., Zn].

In this work, we adopt Total Coding Rate (TCR) (Ma et al., 2007; Li et al., 2022; Yu et al., 2020;
Dai et al., 2022), which is a covariance regularization technique, to avoid collapsed representation:

R(Z) =
1

2
log det

(
I +

d

bϵ2
ZZ⊤

)
, (1)

where b is the batch size, ϵ is a chosen size of distortion with ϵ > 0, and d is the dimension of
projection vectors. It can be seen as a soft-constrained regularization of covariance term in VI-
CReg (Bardes et al., 2021), where the covariance regularization is achieved by maximizing the Total
Coding Rate (TCR).

We aim for representations of different patches from the same image to be consistent, ensuring
they’re close in the representation space. This involves reducing the distance between the represen-
tation of augmented images and their mean patch representations. The training objective is:

max
1

n

∑
i=1,...,n

(
R(Zi) + λD(Zi, Z̄)

)
, (2)

where λ is the weight for invariance loss and Z̄ = 1
n

∑
i=1,..,n Zi is the mean of representations of

different augmented patches. In this work, we choose Cosine Similarity to implement the Distance
function D, where D(Z1, Z2) = Tr(ZT

1 Z2) Hence, the larger value of D, the more similar Zi is to
Z̄. The pseudocode for EMP-SSL is shown as Algorithm 1 in the Appendix.

The objective equation 2 can be seen as a variant to the maximal rate reduction objective (Yu et al.,
2020), or a generalized version of many covariance-based SSL methods such as VICReg (Bardes
et al., 2021), I2-VICReg (Chen et al., 2022a), TCR (Li et al., 2022) and Barlow Twins (Zbontar
et al., 2021), in which n is set to 2 for the common 2-view self-supervised learning methods. In
this work, we choose n to be much larger in order to learn the co-occurrence between patches much
faster. Details can be found in Section 3.

Bag-of-Feature Model. Similar to (Chen et al., 2022a; Li et al., 2022), we define the representa-
tion of a given image x to be the average of the embedding h1, ..., hn of all the image patches. It is
argued by (Chen et al., 2022a; Appalaraju et al., 2020) that the representation on the embedding hi

contains more equivariance and locality that lead to better performance, whereas the projection zi is
more invariant. An experimental justification can be found in (Appalaraju et al., 2020; Chen et al.,
2022a), while a rigorous justification remains an open problem.

Architecture. In this work, we adopt the simplistic form of network architecture used in self-
supervised learning. Specifically, EMP-SSL does not require prediction networks, momentum en-
coders, non-differentiable operators, or stop gradients. While these methods have been shown to
be effective in some self-supervised learning approaches, we leave their exploration to future work.
Our focus in this work is to demonstrate the effectiveness of a simplistic yet powerful approach to
self-supervised learning.

3 EMPIRICAL RESULTS

In this section, we first verify the efficiency of the proposed objective in terms of convergence speed
on standard datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009),
Tiny ImageNet (Le & Yang, 2015) and ImageNet-100 (Deng et al., 2009). We then use t-SNE maps
to show that, despite only a few epochs, EMP-SSL already learns meaningful representations. Next,
we provide an ablation study on the number of patches n in the objective equation 2 to justify the
significance of patches in the convergence of our method. Finally, we present some empirical obser-
vations that the proposed method enjoys much better transferability to out-of-distribution datasets
compared with other SOTA SSL methods.

Experiment Settings and Datasets. We provide empirical results on the standard CIFAR-
10(Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), Tiny ImageNet (Le & Yang,
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2015) and ImageNet-100 (Deng et al., 2009) datasets, which contains 10, 100, 200 and 100 classes
respectively. Both CIFAR-10 and CIFAR-100 contain 50000 training images and 10000 test images,
size 32 × 32 × 3. Tiny ImageNet contains 200 classes, 100000 training images and 10000 test im-
ages. Image size of Tiny ImageNet is 64× 64× 3. ImageNet-100 is a common subset of ImageNet
with 100 classes 2, containing around 126600 training images and 5000 test images, size 224× 224.

For all the experiments, we use a ResNet-18 (He et al., 2016) as the backbone and train for at most
30 epochs. We use a batch size of 100, the LARS optimizer (You et al., 2017) with η set to 0.005,
and a weight decay of 1e-4. The learning rate is set to 0.3 and follows a cosine decay schedule with
a final value 0. In the TCR loss, λ is set to 200.0 and ϵ2 is set to 0.2. The projector network consists
of 2 linear layers with respectively 4096 hidden units and 512 output units. The data augmentations
used are identical to those of VICReg (Bardes et al., 2021). For the number of image patches, we
have set n to 200 unless specified otherwise. For both CIFAR-10 and CIFAR-100, we use fixed-size
image patches 16 × 16 and upsample to 32 × 32. For Tiny ImageNet, we use a fixed patch size of
32×32 and upsample to 64×64 for the convenience of using ResNet-18. For ImageNet-100, we use
a fixed patch size of 112× 112 and upsample to 224× 224. We train an additional linear classifier
to evaluate the performance of the learned representation. The additional classifier is trained with
100 epochs, optimized by SGD optimizer (Robbins & Monro, 1951) with a learning rate of 0.03.

A Note on Reproducing Results of SOTA Methods. We have selected five representative SOTA
SSL methods (Chen et al., 2020; Grill et al., 2020; Bardes et al., 2021; Li et al., 2021; Caron et al.,
2020) as baselines. For reproduction of other methods, we use sololearn (da Costa et al., 2022),
which is one of the best SSL libraries on github. For CIFAR-10 and CIFAR-100, we run each method
3 times for 1000 epochs with their optimal parameters provided. For Tiny ImageNet, We notice that
sololearn (da Costa et al., 2022) does not contain code to reproduce results on Tiny ImageNet and
nearly all SOTA methods does not have official github code on Tiny ImageNet. So for fairness
comparison, we adopt result from other peer-reviewed works (Ermolov et al., 2021; Zheng et al.,
2021), in which SOTA methods are trained to 1000 epochs on ResNet-18. For ImageNet-100, we
adopt results from sololearn (da Costa et al., 2022). All baseline methods run for 400 epochs, which
is commonly used for these SSL methods.

Because our models are trained only on fixed-size image patches, we use bag-of-feature as the
representation as described in Section 2. Following (Chen et al., 2022a), we choose 128 as the
number of patches in the bag-of-feature. The other reproduced models follow the routine in (Chen
et al., 2020; He et al., 2020; Bardes et al., 2021) and evaluate on the whole image. We acknowledge
that this may give a slight advantage to EMP-SSL. But as shown in Table 1, 2, 3 in (Chen et al.,
2022a), the difference between bag-of-feature and whole image evaluation in (Chen et al., 2020; He
et al., 2020; Bardes et al., 2021) is at most 1.5%. We consider it negligible since this is a work about
data efficiency of SSL methods, not about advancing the SOTA performance.

CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet-100
Methods 1000 Epoch 1000 Epoch 1000 epochs 400 epochs

SimCLR 0.910 0.662 0.488 0.776
BYOL 0.926 0.708 0.510 0.802
VICReg 0.921 0.685 - 0.792
SwAV 0.923 0.658 - 0.740
ReSSL 0.914 0.674 - 0.769
EMP-SSL (1 Epoch) 0.851 0.585 0.381 0.585

Table 1: Performance of EMP-SSL with 1 epoch vs standard self-supervised SOTA methods
converged. Accuracy is measured by linear probing.

3.1 SELF-SUPERVISED LEARNING IN ONE EPOCH

We conducted an experiment for one epoch and set the learning rate weight decay to one epoch,
while keeping all other experiment settings the same. Table 1 shows the results of our method, as

2The selection of 100 classes can be found in (da Costa et al., 2022).
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well as some representative state-of-the-art (SOTA) SSL methods. From the Table, we observe that,
even only seen the data once, the method is able to converge to a result close to the fully converged
SOTA performance. This demonstrates great potential not only in improving the convergence of
current SSL methods, but also in other fields where the data can only be seen once, such as in online
learning, incremental learning and robot learning.

3.2 FAST CONVERGENCE ON STANDARD DATASETS

CIFAR-10 CIFAR-100
Methods 1 Epoch10 Epochs30 Epochs1000 Epochs1 Epoch10 Epochs30 Epochs1000 Epochs

SimCLR 0.282 0.565 0.663 0.910 0.054 0.185 0.341 0.662
BYOL 0.249 0.489 0.684 0.926 0.043 0.150 0.349 0.708
VICReg 0.406 0.697 0.781 0.921 0.079 0.319 0.479 0.685
SwAV 0.245 0.532 0.767 0.923 0.028 0.208 0.294 0.658
ReSSL 0.245 0.256 0.525 0.914 0.033 0.122 0.247 0.674
EMP-SSL (20 patches) 0.806 0.907 0.931 - 0.551 0.678 0.724 -
EMP-SSL (200 patches) 0.826 0.915 0.934 - 0.577 0.701 0.733 -

Table 2: Performance on CIFAR-10 and CIFAR-100 of EMP-SSL and standard self-supervised
SOTA methods in different epochs. Accuracy is measured by training linear classifier on learned
embedding representation. Since EMP-SSL already converges with 10 epochs, we do not run it to
1000 epochs like other SOTA methods. Best are marked in bold.

Comparisons with Other SSL Methods on CIFAR-10 and CIFAR-100. In Table 2, we present
results of EMP-SSL trained up to 30 epochs and other SOTA methods trained up to 1000 epochs
following the routine in (Chen et al., 2020; Bardes et al., 2021; Zbontar et al., 2021). On CIFAR-
10, EMP-SSL is observed to converge much faster than traditional SSL methods. After just one
epoch, it achieves 80.6% accuracy with 20 patches and 82.6% accuracy with 200 patches. In only
ten epochs, it converges to more than 90%, which is considered as the state-of-the-art result for self-
supervised learning methods on CIFAR-10. By 30 epochs, EMP-SSL surpasses all current methods,
achieving over 93% accuracy as shown in the 1000 epochs column in Table 2. Similarly, EMP-SSL
also converges very quickly on more complex datasets like CIFAR-100. In Table 2, with just 10
epochs, EMP-SSL is able to converge to 70.1% accuracy. The method further surpasses current
SOTA methods with 30 epochs of training.

We also present EMP-SSL’s plot of convergence on CIFAR-10 in Figure 2 and on CIFAR-100 in
Figure 3, showcasing that EMP-SSL indeed converges very quickly. In particular, it only takes at
most 5 epochs for the method to achieve over 90% on CIFAR-10 and over 65% on CIFAR-100
with 200 patches and at most 8 epochs with 20 patches. More importantly, it is evident EMP-SSL
converges after 15 epochs on both datatsets, around 93% on CIFAR-10 and 72% on CIFAR-100.

A Note on Time Efficiency. It is admittedly true that increasing number of patches in joint-
embedding self-supervised learning could lead to increased training time. Here, we compare the
time needed for each method to reach a prescribed performance on CIFAR, 90% on CIFAR-10
and 65% on CIFAR-10. Results are in Table 3. On CIFAR-10, EMP-SSL not only requires far
fewer training epochs to converge, but also less runtime. This advantage becomes more evident on
more complicated CIFAR-100 dataset. While previous methods require more epochs and, therefore,
longer time to converge, EMP-SSL uses a few epochs to reach a good result. This result provides
empirical evidence that the proposed method would enjoy the faster speed of training, especially
with the setting with 20 patches. Beyond advantage in efficiency, one may wonder how the model
learned with a few epochs is different from previous methods learned with 1000 epochs. As we will
further show in section 3.3 and 3.5, the so learned model possess its unique benefits.

Comparisons with Other SSL Methods on Tiny ImageNet and ImageNet-100 We evaluated
the performance of EMP-SSL on larger datasets, namely Tiny ImageNet and ImageNet-100. Table
4 presents the results of EMP-SSL trained for 10 epochs on these two datasets. Even on the more
challenging dataset Tiny ImageNet, EMP-SSL is still able to achieve 51.5%, which is slightly better
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CIFAR-10 CIFAR-100
Methods Time Epochs Time Epochs
SimCLR 385 842 453 907
BYOL 142 310 171 320
VICReg 308 587 430 642
SwAV 162 150 264 241
ReSSL 194 447 211 488
EMP-SSL (20 patches) 35 8 30 7
EMP-SSL (200 patches) 142 5 112 4

Table 3: Amount of time and epochs each method takes to reach 90% on CIFAR-10 and 65%
on CIFAR-100. Time is measured in minutes and best are marked in bold.
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Figure 2: The convergence plot of EMP-SSL
trained on CIFAR-10 for 30 epochs. The Ac-
curacy is measured by linear probing. Each
method runs 3 random seeds and standard de-
viation is displayed by shadows.
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Figure 3: The convergence plot of EMP-SSL
trained on CIFAR-100 for 30 epochs. The
Accuracy is measured by linear probing. Each
method runs 3 random seeds and standard devi-
ation is displayed by shadows.

than SOTA methods trained with 1000 epochs. A similar result is observed on ImageNet-100. The
method converges to the range SOTA performance within 10 epochs. The result shows the potential
of our method in applying to data sets of larger scales.

3.3 VISUALIZING THE LEARNED REPRESENTATION

To further understand the representations learned by EMP-SSL with a few epochs, we visualize the
features learned using t-SNE (Van der Maaten & Hinton, 2008). In Figure 4, we visualize the learned
representations of the training set of CIFAR-10 by t-SNE. EMP-SSL is trained up to 10 epochs with
200 patches and other SOTA methods are trained up to 1000 epochs. All t-SNEs are produced
with the same set of parameters. Each color represents one class in CIFAR-10. As shown in the
figure, EMP-SSL learns much more separated and structured representations for different classes.
Comparing to other SOTA methods, the features learned by EMP-SSL show more refined low-dim
structures. For a number of classes, such as the pink, purple, and green classes, the method even
learns well-structured representation inside each class. Moreover, the most amazing part is that all
such structures are learned from training with just 10 epochs!

3.4 ABLATION STUDIES OF EMP-SSL

We provide ablation studies on the number of patches n to illustrate the importance of patch number
in joint-embedding SSL. All experiments on done on CIFAR-10, with training details same with
the ones in 3. Figure 5 shows the effect that the number of patches n has on the convergence and
performance of EMP-SSL. As the number n increases, the accuracy clearly rises sharply. Increasing
number of patches n used in training will facilitate the models to learn patch representation and the
co-occurrence, and therefore accelerate the convergence of our model.
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Tiny ImageNet ImageNet-100
Methods Epochs Accuracy Epochs Accuracy

SimCLR 1000 0.488 400 0.776
BYOL 1000 0.510 400 0.802
VICReg - - 400 0.792
SwAV - - 400 0.740
ReSSL - - 400 0.769
EMP-SSL (ours) 10 0.515 10 0.789

Table 4: Performance on Tiny ImageNet and ImageNet-100 of EMP-SSL vs SOTA SSL meth-
ods at different epochs. Best results are marked in bold.

(a) EMP-SSL (b) BYOL (c) VICReg (d) SwAV

Figure 4: t-SNE of learned representation on CIFAR-10. We use projection vectors to generate
the t-SNE graph.

3.5 TRANSFERABILITY TO OUT OF DOMAIN DATA

Aside from converging with much fewer epochs, we are interested in whether EMP-SSL can bring
additional benefits comparing to standard 2-view self-supervised learning methods trained to 1000
epochs. In this section, we provide an interesting empirical observation: the method’s better trans-
ferability to out of domain data. We conduct two sets of experiments: (1) models pretrained on
CIFAR-10 and linearly evaluated on CIFAR-100 (2) models pretrained on CIFAR-100 and linearly
evaluated on CIFAR-10. We present the results of these two sets of experiments in Table 5. EMP-
SSL is trained for 30 epochs and other self-supervised methods are trained for 1000 epochs like
previous subsections. Note that despite similar names, CIFAR-10 and CIFAR-100 have very little
overlap hence they are suitable for testing model’s transferability.

Methods CIFAR-10 to CIFAR-100 CIFAR-100 to CIFAR-10
In Domain Out of Domain In Domain Out of Domain

SimCLR 0.910 0.517 0.662 0.783
BYOL 0.926 0.552 0.708 0.813
VICReg 0.921 0.515 0.685 0.791
SwAV 0.923 0.508 0.658 0.771
ReSSL 0.914 0.529 0.674 0.780
EMP-SSL (20 patch) 0.931 0.645 0.724 0.857
EMP-SSL (200 patch) 0.934 0.648 0.733 0.859

Table 5: Transfer to out-of-domain data: We evaluate the model’s transferability to out-of-domain
data. Best results are in bold.

In Table 5, EMP-SSL clearly demonstrates better transferability to out of domain data comparing to
models trained in 1000 epochs. Since the main goal of self-supervised learning is to develop data-
driven machine learning on wide ranges of vision tasks, it is crucial for the self-supervised learning
methods to generalize well to out-of-domain data instead of overfitting the training data. From the
result shown in the table, we believe this work will help advance SSL methods in such a direction.

A potential reason for this phenomenon is that more training epochs lead to model overfitting. EMP-
SSL, converging in fewer epochs, better avoids this issue. A detailed explanation is reserved for
future studies.
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Figure 5: Ablation Study on the number of patches n. Experiments are conducted on CIFAR-10.

4 MORE RELATED WORKS

There are several intertwined quests closely related to this work. Here, we touch them briefly.

Joint-Embedding Self-Supervised Learning. Our work is mostly related to joint-embedding self-
supervised learning. The idea of instance contrastive learning was first proposed in Wu et al. (2018)
The method relies on a joint-embedding architecture in which two networks are trained to produce
similar embeddings for different views of the same image. The idea can trace back to Siamese
network architecture which was proposed in (Bromley et al., 1993). The main challenge to these
methods is collapse where all representations are identical, ignoring the input. To overcome this
issue, there are mainly two approaches: contrastive and information maximization. On the branch
of contrastive learning, methods search for dissimilar samples from the current branch (Chen et al.,
2020) or memory bank (He et al., 2020). More recently, a few methods jump out of the constraint of
using contrastive samples. They exploit several tricks, such as the parameter vector of one branch be-
ing a low-pass-filtered version of the parameter vector of the other (Grill et al., 2020), stop-gradient
operation in one branch (Chen & He, 2021) and batch normalization (Richemond et al., 2020).

On the other line of anti-collapse methods, several simpler non-constrastive methods are proposed
to avoid the collapsed representation problem. TCR (Li et al., 2022), Barlow Twins (Zbontar
et al., 2021), and VICReg (Bardes et al., 2021) propose covariance regularization to enforce a non-
collapsing solution. Our work is constructed on the basis of covariance regularization to avoid
collapsed representation.

Besides exploring ways to achieve anti-collapsing solution, SwAV (Caron et al., 2020) explores
multi-crop in self-supervised learning. The work uses a mix of views with different resolutions in
place of two full-resolution views. It is the first work to demonstrate that multi-view augmentation
improves the performance of SSL learning. Our work simplifies and generalizes this approach and
takes it to an extreme.

Aside from the empirical success of SSL learning, work like I2-VICReg (Chen et al., 2022a) digs
into the principle behind these methods. The work argues that success largely comes from learning
a representation of image patches based on their co-occurrence statistics in the images. In this work,
we adopt this observation and demonstrate that learning the co-occurrence statistics of image patches
can lead to fundamental change in the efficiency of self-supervised learning as shown in Section 3.

Patch-Based Representation Learning. Our work is also closely related to representation learning
on fixed-size patches in images. The idea of exploiting patch-level representation is first raised
in the supervised setting. Bagnet (Brendel & Bethge, 2019) classifies an image based on the co-
occurrences of small local image features without taking the spatial ordering into consideration.
Note, this philosophy strongly echoes with the principle raised in (Chen et al., 2022a). The paper
demonstrates that this “bag-of-feature” approach works very well on supervised classification tasks.
Many follow-up works like SimplePatch (Thiry et al., 2021) and ConvMixer (Trockman & Kolter,
2022) have all demonstrated the power of patch representation in supervised learning.

In unsupervised learning, some early work like Jigsaw puzzle (Noroozi & Favaro, 2016) learns patch
representation via solving a patch-wise jigsaw puzzle task and implicitly uses patch representation in
self-supervised learning. Gidaris (Gidaris et al., 2020) takes the “bag-of-words” concept from NLP
and applies it into the image self-supervision task. The work raises the concept of ”bag-of-patches”
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and demonstrates that this image discretization approach can be a very powerful self-supervision
in the image domain. In the recent joint-embedding self-supervised domain, I2-VICReg (Chen
et al., 2022a) is the first work to highlight the importance of patch representation in self-supervised
learning. There’s another line of self-supervised learning work (Bao et al., 2021; He et al., 2022)
based on vision transformers, which naturally uses fixed-size patch level representation due to the
structure of the vision transformers.

SSL Methods Not Based on Deep Learning. Our work has also been inspired by the classical
approaches before deep learning, especially sparse modeling and manifold learning. Some earlier
works approach unsupervised learning mainly from the perspective of sparsity (Yu et al., 2009;
Lazebnik et al., 2006; Perronnin et al., 2010). In particular, a work focuses on lossy coding (Ma et al.,
2007) has inspired many of the recent SSL learning methods (Li et al., 2022; Chen et al., 2022a),
as well as our work to promote covariance in the representation of data through maximizing the
coding rate. Manifold learning (Hadsell et al., 2006; Roweis & Saul, 2000) and spectral clustering
(Schiebinger et al., 2015; Meilă & Shi, 2001) propose to model the geometric structure of high
dimensional objects in the signal space. In 2018, a work called sparse manifold transform (Chen
et al., 2018) builds upon the above two areas. The work proposes to use sparsity to handle locality
in the data space to build support and construct representations that assign similar values to similar
points on the support. One may note that this work already shares a similar idea with the current
joint-embedding self-supervised learning in the deep-learning community.

5 DISCUSSION

This paper seeks to solve the long-standing inefficient problem in self-supervised learning. We
demonstrated that with an increased number of patches during training, the method of joint-
embedding self-supervised can achieve a prescribed level of performance on various datasets, such
as CIFAR-10, CIFAR-100, Tiny ImageNet, and ImageNet-100, in just one epoch. We show that the
method further converges to the state-of-the-art performance in about ten epochs on these datasets.
Despite converged with much fewer epochs, EMP-SSL not only learns meaningful representations
but also shows advantages in tasks like transferring to out-of-domain datasets.

While the proposed method is simple and intuitive, it is unclear if it will work. Using many corre-
lated patches may lead to catastrophic forgetting, as in continual learning. We show that it works
nicely. This work makes one step towards efficient and online SSL. Our work does not propose
another “new” SSL method per se, and it serves to show the key to efficiency is to leverage co-
occurrence sufficiently.

This discovery opens the doors to many potential research, such as uncovering the mystery behind
networks used in self-supervised learning and designing more interpretable and efficient ”white-
box” networks for learning in an unsupervised setting. This can potentially lead to more transparent
and understandable models and advance the field of self-supervised learning in various applications.
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A IMPLEMENTATION DETAILS

Due to the limited space in the main paragraph, we include a more detailed implementation of our
method and reproduction of other methods in here.

A.1 TRAINING DETAILS OF EMP-SSL

The augmentation used follows VICReg (Bardes et al., 2021). A pytorch stype pseudo code is listed
below:

• transforms.RandomHorizontalFlip(p=0.5)

• transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.2)], p=0.8)

• transforms.RandomGrayscale(p=0.2)

• GBlur(p=0.1)

• transforms.RandomApply([Solarization()], p=0.1)

All experiments are trained with at most 4 A100 GPUs.

A note on reproducing our results. We think we have included very detailed descriptions to
reproduce results of our method. Additionally, we are happy to share code with reviewer by request.

A.2 TRAINING DETAILS OF OTHER METHODS

When reproducing methods of other work, we have adopted solo-Learn (da Costa et al., 2022) as
described in the main paragraph. We followed the optimal parameters and augmentation provided
by solo-learn. A special note is that we followed the default batch size, which is 256 because it
is studied in many SSL methods (Chen et al., 2020; Bardes et al., 2021) that larger batch size will
produce better performance.

B PSEUDO CODE FOR EMP-SSL

Algorithm 1: EMP-SSL PyTorch Pseudocode
# F: encoder network
# lambda: weight on the invariance term
# n: number of augmented fixed-size image patches
# m: number of pairs to calculate invariance
# R: function to calculate total coding rate
# D: function to calculate cosine similarity
for X in loader:

# augment n fixed-size image patches
X1 . . . Xn = extract patches & augment(X)

# calculate projection
Z1 . . . Zn = F (X1). . .F (Xn)

# calculate total coding rate and invariance loss
tcr loss = average([R(Zi) for i in range(n)]
inv loss = average([D(Z̄, Zi) for i in range(n)])

# calculate loss
loss = tcr loss + lambda*inv loss

# optimization step
loss.backward()
optimizer.step()
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Figure 6: Ablation Study on Batch Size Experiments are conducted on CIFAR-10.

C MORE ABLATION STUDIES

In this section, we present more ablation studies of EMP-SSL.

C.1 ABLATION ON BATCH SIZE

In this subsection, we verify if our method is applicable to different batch sizes. Again, we use
CIFAR-10 to conduct ablation study and training details same in 3. We choose batch size of 50,
100, and 200 to conduct our ablation study. In all experiments, we use 200 patches and all the
parameters are kept the same, in other words, we have not searched different hyperparameters for
different batch sizes. We visualize the results of ablation study in Figure 6. One may observe that
batch size has little impact on the convergence of EMP-SSL. The result is very important because
different batch size leads to different iteration the method has run in the same epochs. It shows that,
even without changing hyperparameters, the proposed method helps the convergence of SSL method
under different batch sizes.

D T-SNE COMPARISON WITH OTHER METHODS

Due to limited space in the main text, we present the t-SNE of all of the SOTA SSL methods we have
chosen to compare in here. We present the result of all t-SNE graphs in Figure 7. Here, we draw a
similar conclusion as the main paragraph, that EMP-SSL learns highly structured representation in
just 10 epochs.
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(a) t-SNE of EMP-SSL (b) t-SNE of BYOL (c) t-SNE of VICReg

(d) t-SNE of SwAV (e) t-SNE of SimCLR (f) t-SNE of ReSSL

Figure 7: t-SNE of learned representation on CIFAR-10. We use projection vectors trained on
CIFAR-10 to generate the t-SNE graph.
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