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Abstract
Large language models (e.g., GPT-4) are
uniquely capable of producing highly rated text
simplification, yet current human evaluation
methods fail to provide a clear understanding
of systems’ specific strengths and weaknesses.
To address this limitation, we introduce SALSA,
an edit-based human annotation framework that
enables holistic and fine-grained text simplifi-
cation evaluation. We develop twenty one lin-
guistically grounded edit types, covering the
full spectrum of success and failure across di-
mensions of conceptual, syntactic and lexical
simplicity. Using SALSA, we collect 19K edit
annotations on 840 simplifications, revealing
discrepancies in the distribution of simplifica-
tion strategies performed by fine-tuned models,
prompted LLMs and humans, and find GPT-3.5
performs more quality edits than humans, but
still exhibits frequent errors. Using our fine-
grained annotations, we develop LENS-SALSA,
a reference-free automatic simplification met-
ric, trained to predict sentence- and word-level
quality simultaneously. Additionally, we intro-
duce word-level quality estimation for simpli-
fication and report promising baseline results.
Our data, new metric, and annotation toolkit
are available at https://salsa-eval.com.

1 Introduction

Text simplification aims to improve a text’s read-
ability or content accessibility while preserving its
fundamental meaning (Stajner, 2021; Chandrasekar
et al., 1996). Traditional human evaluation for text
simplification often relies on individual, shallow
sentence-level ratings (Sulem et al., 2018c; Alva-
Manchego et al., 2021), easily affected by the an-
notator’s preference or bias. Maddela et al. (2023)
recently proposes a more reliable and consistent
human evaluation method by ranking and rating
multiple simplifications altogether. However, as
text simplification involves performing a series of
transformations, or edits, such as paraphrasing, re-
moving irrelevant details, or splitting a long sen-
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Figure 1: Simplification generated by GPT-4. Our edit-
level SALSA reveals LLMs succeed across many edit
types, but often fail to paraphrase and generalize.

tence into multiple shorter ones (Xu et al., 2012),
sentence-level scoring remains difficult to interpret
since it is not reflective of detailed information
about the types of edits being performed.

Fine-grained human evaluation through span se-
lection has been explored for machine translation
(Lommel et al., 2014) and open-ended text gen-
eration (Dou et al., 2022). Yet, these evaluation
methods are error-driven – i.e., focusing solely on
evaluating failure – which punishes creative and
diverse generations with minor errors in favor of
generic ones. Additionally, machine translation and
open-ended generation tasks usually retain none of
the input words, while text simplification must bal-
ance the editing and preservation of words in the
original input (Xu et al., 2016). We thus evalu-
ate simplification quality as the aggregation of edit
successes and failures, as depicted in Figure 1.

We introduce SALSA – Success and FAilure-
driven Linguistic Simplification Annotation – an

https://salsa-eval.com


edit-level human evaluation framework capturing
a broad range of simplification transformations.
SALSA is built on a comprehensive typology (§2)
containing 21 quality and error edit types. Using
SALSA, we develop an interactive interface and
collect 19K edit annotations of 840 simplifications
written by eleven state-of-the-art language models
and two humans. With these annotations, we con-
duct a large-scale analysis of model and automatic
metric performance, and further introduce the au-
tomatic word-level quality estimation task for text
simplification. Our main findings are as follows:

• Few-shot GPT-3.5 far surpasses existing models,
particularly in making syntax and content edits.
However, its simplifications are not aligned to the
types of operations performed by human. (§4)

• Some fine-tuned models such as the MUSS (Mar-
tin et al., 2022) produce more diverse edits than
GPT-3.5, yet suffer from incredibly high errors,
while others (T5, Raffel et al., 2020) learn to
minimize loss by making very few changes. (§4)

• Open-source instruction fine-tuned models such
as Alpaca (Taori et al., 2023) and Vicuna (Chiang
et al., 2023) perform a similar number of edits as
GPT-3.5, but at a cost of more conceptual errors
due to the inherent limits of model imitation. (§4)

• Fine-tuned on SALSA annotations, our reference-
free metric, LENS-SALSA, captures the subtleties
of specific simplification approaches beyond ex-
isting automatic evaluation metrics. (§5)

• Leveraging our data, we present the automatic
word-level quality estimation task for text simpli-
fication and establish several baseline approaches
for future modeling efforts. (§6)

Our results demonstrate that SALSA provides
an interpretable and exhaustive evaluation of text
simplification.

2 SALSA Framework

We introduce SALSA, an edit-based human evalu-
ation framework for text simplification. SALSA is
defined by a typology of 21 linguistically-grounded
edit types with the aim of capturing both successes
and failures (i.e., quality changes and errors, see
Figure 1). The annotation methodology of SALSA

is structured as a decision tree and implemented
via an easy-to-use interface, illustrated in Figure 2.
Our interface is designed with Thresh (Heineman
et al., 2023), and we release our configuration to
encourage adaptation to other text rewriting tasks
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Figure 2: The SALSA annotation process consists of (1)
selecting edits, (2) identifying information change, (3)
classifying edit type and (4) rating efficacy/severity.

(Du et al., 2022) or collecting fine-grained human
feedback (Wu et al., 2023)1. In the following, we
describe each step of the annotation process.

2.1 Edit Selection
Annotation begins with edit selection, where an-
notators identify the edits performed by the sim-
plification and select the corresponding spans for
each edit. We define six types of edit operations:
single-operation insertion, deletion, substitution,
word-/clause-reorder, and multi-operation sentence
split and structure changes. An insertion or deletion
edit exclusively modifies content, while a substi-
tution either modifies or paraphrases content. Re-
order, split, or structure edits perform a context-
free syntax transformation. As split and structure
edits are multi-operation (i.e., require a combina-
tion of single operations), they are defined by a
set of underlying single-operation constituent edits.
For example, this structure change from passive to
active voice made by zero-shot GPT-3.5 involves
multiple constituent edits:

EXAMPLE Zero-shot GPT-3.5
On 14 November, an interview with journalist Piers
Morgan was published, where Ronaldo said ...
On 14 November, Piers Morgan interviewed Ronaldo,
who expressed ...

1https://thresh.tools/salsa

https://thresh.tools/salsa


2.2 Categorizing by Information Change

Each selected edit is then labeled with its impact
on the underlying sentence information: less, same,
more or different information. Given the type of op-
eration and change to information, we subsequently
organize each edit into three linguistic families as
defined by Siddharthan (2014):

Lexical edits perform simple changes in “word-
ing”. This includes paraphrasing (i.e., substitution
that keeps the same information) and inconsequen-
tial trivial changes (e.g., inserting ‘the’).

Syntax edits capture transformations to the distri-
bution of information, rather than substance. A
split converts a candidate sentence to two sen-
tences, a re-order edit re-arranges clauses or word-
ing within a clause, and a structural edit modifies
the voice, tense or clausal structure. Examples of
structural edit sub-types are in Appendix B.

Conceptual edits modify underlying ideas con-
veyed by the text. A conceptual edit requires elab-
oration to add clarifying information or generaliza-
tion to delete unnecessary/complicated ideas.

2.3 Edit Type Classification

After being categorized into lexical, syntax, or con-
ceptual edit families, we further classify each edit
operation into 21 fine-grained success (quality),
failure (error), or trivial edit types as listed in Fig-
ure 3. Successful edits simplify through diverse
approaches, from paraphrasing complex spans, gen-
eralization of unnecessary information, or elabora-
tion to add clarity and background context. E.g.,

EXAMPLE (elaboration) Vicuna 7B
... can be fitted to an exponentially decaying curve.

... can be represented by a curve that gets smaller and
smaller over time.

Often small edits, particularly to syntactic structure,
can improve clarity, such as this addition of a clear
subject-verb structure through the inclusion of the
relative pronoun ‘who’:

EXAMPLE (structure change) GPT-4
Paltrow in turn claims he was the one crashing rather
than the other way around.
Paltrow says he was the one who crashed, not her.

Or this conversion of the participial phrase to a
relative clause to help explain significance:

EXAMPLE (structure change) ChatGPT
... for the first time since 2006, ending their 17-year
playoff drought ...
... for the first time in 2006, which means they have
ended their 17-year playoff drought.
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Figure 3: The multi-stage SALSA edit evaluation frame-
work. Spans are classified into twenty one success and
failure types (trivial change counts as one type) using
the interface shown in Figure 2.

Sentence splitting or reordering information may
clarify a sequence of events:

EXAMPLE (component reorder) ChatGPT
Poland announces the closure of a major border cross-
ing with Belarus "until further notice" amid height-
ened tensions between the two countries.
Poland has closed a big border crossing with Belarus
due to increased tensions between the two countries.
The closure will remain in effect until further notice.

Failure edits include any ablation from minor
readability issues to hallucinations or deletions to
sentence meaning. In the following example, the
coreference error captures the deleted reference be-
tween the ‘ICJ’ and ‘US’ acronyms to their original
definitions, useful contextual information:

EXAMPLE (coreference error) ChatGPT
The International Court of Justice (ICJ) rules that the
United States violated its ...

The ICJ said that the US broke its ...

And often multiple edits overlap, such as this infor-
mation rewrite which successfully adds clarity via
reordering, but botches the author’s sarcasm:

EXAMPLE (information rewrite) Alpaca 7B
... justifies a runtime nearing 3 hours (with a post-
credits scene, no less), and it already opened to over
$100 million worldwide.
.. takes up almost 3 hours of the movie. The movie
opened to over $100 million worldwide. A post-cred-
its scene completes the story.

We also separately ask annotators to identify if
the edit contains a grammar error. Appendix A
provides an exhaustive description and examples
for each edit type.



2.4 Rating Edit Efficacy / Severity
As each edit has a varying degree of impact on
overall simplification quality, we finally ask anno-
tators to rate the efficacy of quality edits or severity
of error edits. We define three levels: 1 – minor,
2 – somewhat, and 3 – major. Examples of each
severity level are included in Appendix A.3.

3 Data Collection

We describe our use of SALSA to collect 19K edit
annotations covering 11.6K spans on 840 model-
generated and human-written simplifications.

3.1 Simplification Data
Data collection is performed on an extended ver-
sion of SIMPEVAL2022 (Maddela et al., 2023), in-
cluding a train set covering state-of-the-art simplifi-
cation systems and held-out test set of recent LLMs.
We include a full description of each system in Ap-
pendix C.1.
SALSA Train. We first extend the 360 simplifica-
tions from SIMPEVAL2022 to 700 simplifications
based on 100 complex sentences from Wikipedia
articles dated between Oct 2022 and Dec 2022. The
complex sentences are unseen during the training
of the LLMs and were selected to be intention-
ally difficult (avg. length of 37.3 words) to enable
an evaluation of the models’ full capabilities in
performing diverse simplification edits. Simpli-
fications are generated by five models including
fine-tuned T5-3B and T5-11B (Raffel et al., 2020),
MUSS (Martin et al., 2022), a controllable BART-
large model trained with unsupervised, mined para-
phrases, zero- and few-shot GPT-3.5 (Ouyang et al.,
2022), and two human-written references. For mod-
eling experiments in §5 and §6, we divide the initial
700 simplifications by the complex sentence with a
70/30% train/dev split.
SALSA Test. We further gather 20 more complex
sentences from Wikipedia articles published in Mar
2023 and generate 140 simplifications using re-
cent LLMs including GPT-3.5, ChatGPT, GPT-4,
Alpaca-7B (Touvron et al., 2023) and Vicuna-7B
(Chiang et al., 2023), along with T5-3B and T5-
11B fine-tuned with control tokens.

3.2 Annotation
As crowd-sourced annotators have shown to have
inconsistent quality (Shmueli et al., 2021), we hire
6 undergraduate students from a US university. An-
notators were trained with an in-depth tutorial con-

Edit Sub-type Kripp. α 3 Agree% 2 Agree%

Insertion More Information 0.45 14% 40%
Deletion Less Information 0.75 42% 65%
Substitution More Information 0.15 1% 11%

Less Information 0.31 7% 26%

Reorder Word-level 0.12 0% 13%
Component-level 0.41 11% 38%

Split Sentence Split 0.66 32% 55%
Structure Structure 0.25 5% 25%

Substitution Same Information 0.53 21% 51%

Table 1: Edit selection inter-annotator agreement mea-
sured per token. As Krippendorff’s α (2018) includes
unlabeled tokens, we also report the percentage of an-
notated tokens where at least 2 and 3 annotators agree.

sisting of broad explanations of simplification con-
cepts, over 100 examples covering each of the 21
SALSA edit types and interactive exercises, com-
pleted two rounds of onboarding annotations and
were provided continuous feedback by the authors.
To concretely measure agreement for each stage of
the SALSA framework, we collect annotations in
three stages: (1) we have three annotators select
edits, (2) a fourth annotator adjudicates the edits
into a single selection and (3) the initial three anno-
tators classify and rate the adjudicated edits. Figure
2 illustrates our annotation interface, with further
screenshots of our tutorial included in Appendix G.

3.3 Inter-Annotator Agreement

We calculate edit selection agreement (i.e. agree-
ment prior to adjudication) by each token, with
Table 1 reporting agreement per edit, further bro-
ken down by their type of information change. We
observe edit agreement is highly dependent on the
edit type and type of information change being
performed. High agreements are seen for deletion
(α=0.75), paraphrase (substitution with the same
information, α=0.53), and sentence splits (α=0.66).
Substitution that introduces more information, how-
ever, exhibits lower agreement (α=0.15), due to
the subjectivity among annotators on determining
whether new tokens contain ‘novel’ information,
as was often mixed up with insertion. Reorder-
ing (α=0.12) and structure edits (α=0.25) also re-
port lower agreements. We fully explore the phe-
nomenon of annotator disagreement in Appendix
C.2, and find overlapping syntactic and content
edits often have multiple correct interpretations,
leading to an inherent disagreement. Additionally,
we find our % rates for annotator agreement are
similar to fine-grained evaluation frameworks in
other text generation tasks (Dou et al., 2022).
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Figure 5: Failure edits per-model, organized by edit type. Compared to humans, both GPT-3.5 setups make more
syntax and lexical errors. Although humans perform bad deletion errors at a higher frequency than GPT-3.5, this
is reflective of the inherent ambiguity in judging the relevancy of the deleted content.

4 Key Analysis

We use SALSA to evaluate state-of-the-art sim-
plification by collecting annotations on our ex-
tended version of the SIMPEVAL corpus (Maddela
et al., 2023), which includes fine-tuned, LLM- and
human-written simplifications. Our resulting data
collection includes 19K edit annotations across 840
simplifications.

We present our primary results in Figures 4, 5,
and 6. Figures 4 and 5 illustrate the frequency of
quality and error edit types. As edits vary in length,
we calculate edit coverage: the length of each edit
in proportion to the total length of the simplification
and report the average edit coverage for different
efficacy and severity ratings in 6, showing a view
of edit ratings adjusted for length. Additionally, we
include Figure 7, which compares simplifications
generated by recent instruction fine-tuned language
models. The following are our key findings:
Models primarily write good edits, but still trail
humans (Fig. 4, 5). We observe that 16% of model-
generated edits are errors, with the best-performing
model, few-shot GPT-3.5, producing errors in only
9% of edits. We find this still trails human simplifi-
cations, which have an error rate of 6%. MUSS and
GPT-3.5 have a median count of 1 error per simpli-
fication and 63% of their simplifications contain at
least one error, showing these errors are not con-
centrated in a few ‘bad’ simplifications but instead

often occur among many good edits.

Language models elaborate, while humans gen-
eralize (Fig. 4). When simplifying content, all
models (excluding T5) tend to elaborate at a higher
ratio than humans, for example, GPT-3.5 attempts
to insert content 17% more often. As LLMs have
shown to encode world knowledge in their parame-
ters (Petroni et al., 2019; Brown et al., 2020), GPT-
3.5 elaboration is far more effective than MUSS,
for example:

EXAMPLE Few-shot GPT-3.5
After defeating PSD candidate Viorica Dăncilă by a
landslide in 2019, his second term..

In 2019, Klaus Iohannis defeated PSD candidate Vior-
ica Dăncilă by a large margin. His second term..

GPT-3.5 writes quality edits at a higher fre-
quency than humans, but human edits are
longer and more effective (Fig. 4, 6). Both zero-
shot and few-shot GPT-3.5 produce a larger number
of edits, but human edits are more substantial, as
demonstrated by the higher edit coverage across all
efficacy levels, particularly for syntax and lexical
edits. Human simplification typically deletes, para-
phrases, or reorders entire clauses, while GPT-3.5
often edits single modifiers or words.

Fine-tuned T5-3B and T5-11B generate conser-
vative simplifications (Fig. 4, 5, 6). Compared to
all other systems, both T5 models make minimal
changes in terms of frequency and edit coverage,
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while still exhibiting high rates of error. This is
likely due to their training data, Wiki-Auto (Jiang
et al., 2020), containing shorter sentences, usually
requiring simpler simplification techniques, mak-
ing it difficult for models to generalize on longer
and more complex sentences. Later in Appendix D,
we show using control tokens (Martin et al., 2020)
during training, as done by MUSS, can improve
diversity but at the expense of increasing deletion
and hallucination errors.
Split edits are straightforward, Structure edits
are far more complex (Fig. 4, 5). Surprisingly,
sentence splitting is shown to be the easiest edit for
all models to accomplish, with a similar number
made by MUSS, GPT-3.5, and humans, with even
the conservative T5 models making a comparable
number of split edits. However, structure change
and re-ordering edits are rarely seen in fine-tuned
models. We speculate this may be attributed to (i)
these types of edits are infrequent in the training
data and (ii) GPT-3.5 has a unique ability to per-
form complicated syntax rewriting, echo with the
findings in abstractive summarization (Goyal et al.,
2022). Despite GPT-3.5’s improvement, the struc-
ture error rate demonstrates it has not yet reached
human-level ability. Additionally, we observe zero-
shot GPT-3.5 produces structure errors (see below
example) at a 19% rate higher than few-shot.

EXAMPLE Zero-shot GPT-3.5
The sentence included a fine of $400...
You will receive a fine of $400...

We find human simplifications are more conserva-
tive with re-ordering than models, yet attempts to
simplify with re-ordering often appear arbitrary:

EXAMPLE Human written
On 3 November 2022, the British Secretary...
On November 3rd, 2022, the British Secretary...

Humans appear to produce bad deletion errors,
but these are often subjective (Fig. 5). Bad dele-

tion constitutes 35% of error edits made by hu-
mans, compared to 8% by few-shot GPT-3.5. The
anomaly of the bad deletion errors reveals an inher-
ent subjectivity in assessing deletion:

EXAMPLE Human written
Unlike the first film adaptation, in which director
Samuel Fuller removed...
Unlike the first film adaptation, Samuel Fuller re-
moved...

In this example, some annotators marked the edit as
a bad deletion while others consider it appropriate.
As the sentence discusses a book adaptation into a
film, the description of ‘Samuel Fuller’ is helpful
depending on the reader, which underscores the
need for adaptive levels of simplification to accom-
modate each reader’s needs.

Paraphrasing is a crucial, but tricky mechanism
(Fig. 4, 5). MUSS, GPT-3.5, and humans all para-
phrase in at least 75% of sentences. Despite low
performance in conceptual and syntactic simpli-
fication, MUSS paraphrases at a human-like rate
likely due to its training on over one million para-
phrase sentence pairs mined from web crawl data.
Although zero-/few-shot GPT-3.5 paraphrases at a
higher rate than humans, these edits are often are
unnecessary. For instance:

EXAMPLE Few-shot GPT-3.5
The club said on social media that customers subdued
the gunman...
The club reported on social media that customers were
able...

Open-source LLMs are approaching GPT-3.5
simplifications, or are they (Fig. 7)? Given re-
cent attention to ChatGPT (OpenAI, 2022), GPT-4
(OpenAI, 2023), and the emergence of instruction
fine-tuning smaller language models on outputs
from proprietary LLMs, we perform a supplemen-
tary evaluation on these systems. The open-source
Alpaca (Taori et al., 2023) and Vicuna (Chiang
et al., 2023) appear to perform a similar number of
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Figure 7: Success and failure edits on simplifications by
five recent instruction fine-tuned language models.

quality and error edits to GPT-3.5. However, these
systems tend to write far more bad elaboration er-
rors such as factual errors or contradictions:

EXAMPLE Alpaca 7B
... a controversial "angel tax" provision seeking to
capture some of the income entering the country from
foreign investors funding India’s start-ups.
... a controversial "angel tax" provision, which is
aimed at stopping foreign investors from funneling
money into India’s startups.

This behavior suggests open-source instruction fine-
tuned models mimic the style of their larger coun-
terparts, but not their knowledge, a phenomenon
observed by Gudibande et al. (2023). GPT-4 ex-
hibits the best performance by making fewer con-
tent errors while producing a high number of qual-
ity edits, but still exhibits errors particularly when
paraphrasing individual spans without considering
the broader sentence meaning:

EXAMPLE GPT-4
Grocery inflation in the United Kingdom reaches a
record high of 17.1% ...
The cost of groceries in the United Kingdom has
increased to a record 17.1% ...

While GPT-4 successfully paraphrases inflation by
relating to cost, it fails to recognize the sentence is
discussing inflation rate, rather than exact prices.

We include further analysis, discussion, and
dataset statistics in Appendix D.

5 Evaluating Metric Edit Sensitivity

While automatic metrics are traditionally evaluated
using correlation with sentence-level, Likert scale
human ratings on dimensions of adequacy, fluency
and simplicity, this fails to understand the ability of
automatic metrics to capture the subtleties of lexi-
cal, syntactic, and conceptual simplification. With
our SALSA annotations, we study how well cur-
rent automatic metrics capture these distinct sim-
plification approaches. Additionally, we introduce
LENS-SALSA, a reference-free metric fine-tuned
on SALSA annotations.

BLEU
SARI

BERTSCORE

COMET-MQM
LENS

LENS-SALSA

Q
ua

lit
y Lexical -0.167 0.126 0.025 0.120 0.407 0.443

Syntax 0.013 0.204 0.147 0.122 0.306 0.356
Conceptual 0.043 0.149 0.097 0.038 0.144 0.202

E
rr

or

Lexical -0.147 -0.026 -0.093 -0.068 -0.041 0.054
Syntax -0.104 -0.013 -0.043 -0.017 0.019 0.086
Conceptual 0.047 0.150 0.279 0.228 0.207 0.107

A
ll

All Error -0.121 0.067 0.117 0.127 0.161 0.169
All Quality -0.095 0.179 0.027 0.074 0.336 0.459
All Edits -0.116 0.170 0.056 0.092 0.334 0.446

Table 2: Pearson correlation between automatic metrics
and SALSA sub-scores (§A.4) on the SALSA test set.
All reference-based metrics use two human-written ref-
erences. Best; Second Best.

Existing Automatic Metrics. We consider five
automatic metrics: BLEU (Papineni et al., 2002),
SARI (Xu et al., 2016), the most widely-used text
simplification metric, BERTSCORE (Zhang et al.,
2020), COMET-MQM, a machine translation metric
(Rei et al., 2020) trained on MQM ratings (Freitag
et al., 2021), and LENS (Maddela et al., 2023), a
recently proposed text simplification metric fine-
tuned on SIMPEVAL that contains rank-based hu-
man ratings of simplifications from 24 systems.

LENS-SALSA. The automatic simplification met-
rics mentioned above require human-written refer-
ences, which may not be available in every eval-
uation setting. To this end, we introduce LENS-
SALSA, a reference-free simplification metric en-
abled by edit-level information. Based on the
COMETKIWI machine translation metric design
(Rei et al., 2022), we first pre-train LENS-SALSA

on the sentence-level human ratings from SIMPE-
VAL using UniTE (Wan et al., 2022), a multi-task
learning method. Specifically, the metric is trained
on the same score but from three input formats:
Simp:Ref, Simp:Complex, and Simp:Complex:Ref,
where “:” denotes concatenation. Then, we fine-
tune LENS-SALSA on SALSA annotations using
a dual-objective to predict both the sentence-level
score (calculated by LENS) and a word-level qual-
ity score ŵi ∈ [−3, 3], corresponding to the ef-
ficacy or severity rating (§2.4) of each word wi

in the complex and simplified sentences. We
use RoBERTa-large as the base model for LENS-
SALSA, and 490, 210, and 140 sentence pairs for
train, validation, and test, respectively. Implemen-
tation details are provided in Appendix F.2.

Results. As fine-grained MQM annotations in ma-
chine translation are considered a gold-standard in
metric evaluation (Freitag et al., 2021), we adapt
their method (detailed in §A.4) to collapse edit-



level ratings to a single score, and calculate sub-
scores by only considering certain edit types. Table
2 reports the Pearson correlation between metric
scores and human sub-scores across each SALSA di-
mension. LENS-SALSA achieves the highest corre-
lation in nearly all edit approaches, showing its ca-
pability to capture all forms of simplification. Over-
all, only LENS and LENS-SALSA obtain substantial
correlation with the overall human SALSA scores
(0.33 and 0.45 respectively), while other metrics
have spurious and even negative correlations with
human judgments. Interestingly, COMET-MQM,
intended for machine translation, performs better
than BLEU and BERTScore, which further under-
lines the value of span-based ratings for trained
metrics. Despite strong performance, we find LENS

mainly evaluates lexical and syntactic edits, rather
than conceptual ones, which may be attributed to
its training data consisting of shorter, paraphrase-
based simplifications. Lastly, all metrics have sub-
stantially higher correlation with quality than error
edits. We posit this is primarily due to the sparsity
and wide range of errors exhibited in the genera-
tions of current high-performing systems.

6 Word-Level Quality Estimation

Word-level quality estimation (QE) is the task of
predicting the quality of each token in a genera-
tion, and has substantial downstream application to
evaluating and refining text simplification. Despite
word-level QE being a well understood task in ma-
chine translation (Basu et al., 2018; Zerva et al.,
2022), it has not yet been studied for text simpli-
fication due to a lack of appropriately annotated
data. In this section, we use SALSA annotations
to demonstrate baseline approaches and highlight
potential for future work.
Task. We define word-level simplification QE as
classifying each token in the complex and simpli-
fied sentences as quality, error, or ok. To adapt
SALSA for the QE task, we label each token by
the average efficacy/severity rating of its associ-
ated edit: < 0 as error, =0 as ok, and > 0 as
quality. Words that are not part of any edits de-
fault to the ok label. We deconstruct split and
structure edits into their constituent edits, only la-
bel the simplified spans for substitution edits, and
exclude reorder edits due to their low frequency.
The final label counts for our train, validation,
test splits are: 6.8K/1.8K/27K, 2.7K/627/11K, and
1.7K/484/6.9K for quality/error/ok respectively.

Method Quality Error Ok Average

End-to-end
Tag 67.00 28.24 92.88 62.71
Tag-ML 70.73 30.06 93.09 64.62

Two-stage (use word aligner to get edit information)
Tag-EI 69.09 30.37 93.04 64.17
Ec-Sep 64.87 36.15 91.56 64.20
Ec-One 68.77 39.50 91.91 66.73
Oracle (Ec-One) 88.31 69.44 98.35 85.47

Table 3: Word-level F1 scores of different methods on
SALSA test set. Oracle uses annotated edit information.

Methods. We propose two approaches: End-to-
end, where a single model labels each token di-
rectly; and Two-stage, where a word aligner first
identifies edits, then the model labels each token us-
ing the identified edit information. For end-to-end,
we implement the following two methods:

Tagging (Tag) is a native sequence tagging
model with a classification head.

Tagging with Multi-task Loss (Tag-ML) is sim-
ilar to the tagging method except trained with a
multi-task loss function: L = Ltag + Lec. Lec is
an additional objective that classifies each token
into none, deletion, substitution, or insertion.

For two-stage methods, we first apply a QA-
based word aligner (Nagata et al., 2020) to the
sentence pair and use a set of rules to convert word
alignments to edits: consecutive non-aligned words
in the original sentence are labeled as a deletion
edit; consecutive non-aligned words in the simpli-
fied sentence are labeled as an insertion edit; and
aligned words or spans that differ are labeled as a
substitution edit. Here are three two-stage methods:

Tagging with Edit Information (Tag-EI) is a se-
quence tagging model with a classification head
that takes the concatenation of the hidden states of
both edit type and token as the input. The hidden
states of the edit type are obtained via a linear layer.

Edit Classification with Separate Classifiers (Ec-
Sep) contains one classifier for each of the three
edit operations. Each classifier is an encoder model
with a feedforward neural network (FNN). The
inputs to these FNNs are the hidden states of the
[CLS] token and the max-pooled tokens from the
edit spans (i.e., for substitution edit, one from the
original span, and one from the simplified span).

Edit Classification with One Classifier (Ec-One)
is one classifier with three FNNs mentioned above.
The difference is the encoder is trained collectively.

All methods (including the word aligner) use
RoBERTa-large. Further implementation details
and results are included in Appendix F.



Results. Table 3 shows the test set performance for
each label. Among the end-to-end methods, train-
ing with multi-task loss results in improvement on
all three label F1 scores, achieving the second-best
average F1 score overall. We find edit classifica-
tion approaches detect error tokens more accurately
than tagging approaches. Within edit classification
methods, using one classifier outperforms multiple
ones due to the benefit of joint encoder training.
Overall, the edit classification with one classifier
method performs the best with a gain of over 11
points on error F1 and a 4-point increase in average
F1, compared to the base tagging model.

7 Related Work

Model Evaluation. Simplification work broadly
agrees some typology of simplification operations
exists (Siddharthan, 2014), starting with early rule-
based systems which explicitly defined specific syn-
tax operations (Dras, 1999). Past work has experi-
mented with designing models to control the extent
of each operation by using a pipeline to perform
simplification operations independently (Maddela
et al., 2021; Raffel et al., 2020), predicting edit
operations (Dong et al., 2019) or augmenting fine-
tuned models with learned control tokens (Martin
et al., 2020, 2022). However, evaluation only con-
siders a sentence in its entirety rather than rating
individual operations, either by automatic metrics
(Kriz et al., 2020), shown to be an inadequate rep-
resentation of quality (Alva-Manchego et al., 2021;
Sulem et al., 2018a), or by surface-level Likert rat-
ings, typically asking crowd-sourced annotators
to rate on scales of fluency, adequacy, and sim-
plicity. These scores are difficult to interpret and
capture no detail into the type of simplification be-
ing written (Briakou et al., 2021; Hashimoto et al.,
2019). Additionally, despite current systems’ of-
ten producing simplification errors (Choshen and
Abend, 2018), annotating error has primarily been
performed through inspection, and has not been
incorporated into human or automatic evaluation
(Gooding, 2022).
Linguistic Inspection. Manual inspection attempts
to understand the behavior of simplification mod-
els or datasets, characterized by detailed typolo-
gies and often conducted by authors or domain
experts. Cardon et al. (2022) performs detailed
inspection of the ASSET simplification test cor-
pus (Alva-Manchego et al., 2020a) to study the be-
havior of automatic metrics and Cumbicus-Pineda

et al. (2021a) propose a framework for evaluating
success and failure by answering a series of check-
list items, with sentences given a capability score
based on the number of requirements fulfilled. Ya-
maguchi et al. (2023) annotates simplifications of
earlier models such as DRESS (Zhang and Lapata,
2017) and SUC (Sun et al., 2020) using a taxonomy
of 62 error categories, but do not analyze the SOTA,
MUSS, or LLMs. Stodden and Kallmeyer (2022)
proposes an interactive linguistic inspection inter-
face, but this interface is not designed for human
evaluation of model outputs and does not provide
ratings for measuring performance.

Fine-grained Human Evaluation. Human eval-
uation performed on a span-level has been pre-
viously proposed for a variety of NLP tasks. In
translation, the Multidimensional Quality Metrics
(MQM) (Lommel et al., 2014), categorizes error
into accuracy and fluency sub-types and is later
extended by Freitag et al. (2021) to weight errors
by severity and combine into a single quality score.
Dou et al. (2022) proposes SCARECROW to cap-
ture errors appearing in open-ended text generation.
However, as these span-based evaluation schemes
exclusively annotate error, they encourage generic
outputs and punish interesting or diverse genera-
tions. For summarization, the FRANK typology
(Pagnoni et al., 2021) aggregates errors into broader
categories to benchmark metrics that measure fac-
tuality. Inspired by FRANK, Devaraj et al. (2022)
introduces a framework to evaluate factuality for
text simplification.

8 Conclusion

In this work, we introduce SALSA, a novel edit-
based evaluation framework incorporating error
and quality evaluation, and dimensions of lexical,
syntax and conceptual simplification and demon-
strate SALSA benefits in granularity, accuracy, and
consistency. We employ SALSA to collect a 19K
edit annotation dataset and analyze the strengths
and limitations of fine-tuned models, prompted
LLMs, and human simplifications. Finally, we
use SALSA annotations to develop a reference-free
automatic metric for text simplification and demon-
strate strong baselines for word-level quality esti-
mation, showing promising avenues for the devel-
opment of fine-grained human evaluation.



Limitations

Our annotation only represents a single use case
of text simplification and we encourage an ex-
tension of SALSA to domain-specific simplifica-
tion, such as medical (Joseph et al., 2023), legal
(Garimella et al., 2022), or multi-lingual text (Ryan
et al., 2023), and annotations by groups of spe-
cific downstream users (Stajner, 2021). The LENS-
SALSA reference-free metric is trained exclusively
on Wikipedia simplification, and we do not con-
sider its cross-domain generalization or its ability
to capture the simplification need to specific target
communities. Additionally, while we demonstrate
promising results on sentence-level evaluation, sim-
plification is often a document-level task (Laban
et al., 2021; Sun et al., 2021). Incorporating higher-
level operations such as sentence fusion, paragraph
compression, and reordering would require an ex-
tension to SALSA and presents unique analytical
challenges. Finally, detailed human evaluation in-
herently requires greater resources to produce a
high granularity of annotations. While we show
this process can be streamlined with a robust anno-
tator training, SALSA requires a similar amount of
resources as widely used fine-grained evaluation in
other tasks such as MQM (Lommel et al., 2014) or
FRANK (Pagnoni et al., 2021).

Ethics Statement

Our annotations were performed using the SIMPE-
VAL2022 corpus, originally collected from publicly
available Wikipedia articles (Maddela et al., 2023)
and we further extend the dataset with complex
sentences collecting using the same methodology
from publicly available Wikipedia articles. As dis-
cussed in §3.2, we perform data collection with
in-house annotators from a US university. Anno-
tators were all native English speakers and paid
$15-$18/hour. We took care to manually review
all data prior to annotation as to exclude any trig-
gering or sensitive material from our annotation
data. Annotators were informed that any data they
felt uncomfortable with was not required to anno-
tate. Our interface was built using the open-source
Vue.js2 library, and training of our added T5-11B
system was implemented using the open-source
Hugging Face Transformers3 library.

2https://vuejs.org/
3https://huggingface.co/
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A Defining the SALSA Framework

We provide detail into the SALSA framework, in-
cluding qualitative examples which helped guide
design decisions when building the typology. Table
4 illustrates each final edit type, as organized by
Figure 3. During development, we adjusted our
scheme based on preliminary annotations with the
final goal of SALSA’s ability to evenly represent all
modes of simplification and the full space of errors.

A.1 Quality Evaluation

We organize quality edits by their approach to sim-
plification, as real-world application and models’
capability to simplify falls into tiers of concep-
tual, syntactic and lexical simplification (Stajner,
2021). An ideal simplification system demonstrates
a balance of these ‘tiers’ and incorporates different
techniques depending on the original text, context
and users (Gooding and Tragut, 2022). Automatic
simplification research initially focused on lexical
paraphrasing (Siddharthan, 2014), but has since
evolved to emphasize the importance of syntac-
tic and conceptual editing (Alva-Manchego et al.,
2020b).

A.1.1 Conceptual Simplification
These edits modify the underlying sentence infor-
mation or ideas, a prerequisite for simplifying com-
plex domains. We consider ‘conceptual simplifica-
tion’ to be interchangeable with ‘semantic simpli-
fication’ as used in some literature (Sulem et al.,
2018b; Jiang et al., 2022).
Elaboration. An addition of meaningful, relevant
and correct information (Siddharthan, 2006), such
as clarifying vague terminology, providing back-
ground information on an entity or subject, or ex-
plicating general world knowledge unknown to the
audience. Elaboration has been shown as a rare, but
helpful mechanism in text generation (Cao et al.,
2022) and we observe its careful use in human
simplifications.
Generalization. A deletion of unnecessary, irrel-
evant or complicated concepts. Although we ask
annotators to rate the quality of elaboration by how
it improves the readability of a sentence, we ask
annotators to rate the quality of a generalization
by the relevancy of the deleted information to the
main idea of the sentence. As ‘relevancy’ is inher-
ently subjective to the user, domain and annotator,
determining the threshold for ‘necessary informa-
tion’ is crucial to standardize (Devaraj et al., 2022).

Deleting information will, by nature, contain some
amount of information and SALSA instead focuses
on ensuring the deleted information is not impor-
tant sentence, context or users. Consider two can-
didate deletions:

EXAMPLE
Like so many hyped books before it, The Midnight
Library excited me and gave me pause.
Like so many hyped books before it, The Midnight
Library excited me and gave me pause.

Although the deletion of Midnight is shorter, it
changed the subject of the sentence, and it is rated
higher than the second deletion, which is not cen-
tral to the main idea. Generalization using para-
phrase is more often preferred than deleting full
clauses.

We observe successful conceptual edits are of-
ten performed on the clause level. For example,
adjunct removal via deletion:

EXAMPLE
Born into slavery in 1856, Booker T. Washington
became an influential African American leader.
Booker T. Washington became an influential African
American leader.

Or information insertion through an appositive or
relative clause, although the prior is typically more
common for the SIMPEVAL domain as it implies
objective information:

EXAMPLE
Éric Gauthier is also a novella author...
Éric Gauthier, famous for his soloist dancing career,
is also a novella author...

A.1.2 Syntactic Simplification
Syntax is a crucial mechanism for fluent, highly
modified simplification (Štajner, 2016). Given re-
cent attention in automatic simplification to syntax-
aware datasets and systems (Cumbicus-Pineda
et al., 2021b; Kumar et al., 2020; Alva-Manchego
et al., 2020a; Scarton et al., 2017), SALSA stan-
dardizes the first explicit evaluation accounting for
these operations.
Information Reorder. We classify two levels of
reorder, word-level reorder, which reorganizes mod-
ifiers within a phrase, and component-level reorder
which moves clauses or content across a sentence
(Siddharthan, 2006). A component-level re-order
typically may be accompanied by a broader struc-
ture change or both re-order types may overlap, as
in:

EXAMPLE
The emergence of huge radio conglomerates is a di-
rect consequence of the ’96 Act.



Type Description Example

Quality Evaluation

C
on

ce
pt

ua
l

Elaboration Meaningful and correct information which enu-
merates the main idea

Many volatile organic chemicals, which harm our environment,
are increasing in abundance in the lower troposphere.

Generalization Removes unnecessary, irrelevant or complicated
information

Many volatile organic chemicals are increasing in the lower tro-
posphere. (in abundance was removed)

Sy
nt

ax

Word-level Re-
order

Order of words within a phrase is swapped Many organic volatile chemicals are increasing in abundance in
the lower troposphere.

Component-
level Reorder

Order of phrases within a sentence is swapped In the lower troposphere, many volatile organic chemicals are
increasing in abundance.

Sentence Split Independent information converted to two sepa-
rate sentences.

Many volatile organic chemicals are increasing. They are found
in abundance in the lower troposphere.

Structure
Change

Rewrites voice, tense or structure. See Ap-
pendix B for details and sub-types

The abundance of many volatile organic chemicals is increasing
in the lower troposphere.

L
ex

ic
al Paraphrase Lexical complexity of the phrase decreases,

while the meaning is unchanged
Many volatile organic chemicals are being seen more in the lower
troposphere.

Trivial Change Adds clarity or removes verbosity, while the
lexical complexity and meaning is unchanged

Many volatile organic chemicals are currently increasing in abun-
dance in the lower troposphere.

Error Evaluation

C
on

ce
pt

ua
l

Bad Deletion Deleted necessary and relevant content Many chemicals are increasing in abundance in the lower tropo-
sphere. (volatile organic was removed)

Coreference A reference to a named entity critical to under-
standing the main idea is removed

They are increasing in abundance in the lower troposphere.

Repetition Phrase added or changed but fail to contain
novel information or insight

Many volatile organic chemicals, which are chemicals, are in-
creasing in abundance in the lower troposphere.

Contradiction Phrase added or changed but clearly contradicts
information presented in the original sentence

Many volatile organic chemicals, which are decreasing in our tro-
posphere, are increasing in abundance in the lower troposphere.

Factual Error Externally verifiable incorrect claim is made by
the phrase

Many volatile organic chemicals are increasing in abundance in
the lower troposphere when they decide to.

Irrelevant New information is introduced which is unre-
lated to the main idea

Many volatile organic chemicals, unlike low vapor pressure chem-
icals, are increasing in abundance in the lower troposphere.

Sy
nt

ax

Bad Word-level
Reorder

Presented a new word order with less clarity
within a clause

Many volatile organic chemicals are having their abundance in-
creasing in the lower troposphere.

Bad Compo-
nent Reorder

Presented a new clausal order with less clarity In abundance in the lower troposphere, many volatile organic
chemicals are increasing.

Bad Structure A failed attempt to modify the voice, tense or
structure

Many volatile organic chemicals have been increasing in abun-
dance in the lower troposphere.

Bad Split Split at an inappropriate location or interrupted
the flow of ideas

Many volatile organic chemicals are increasing. They are increas-
ing in abundance in the lower troposphere.

Complex Word-
ing

Lexical complexity of the phrase increases,
while the meaning is retained

Many volatile organic chemicals are proliferating throughout the
lower troposphere.

L
ex

ic
al Information

Rewrite
All information was removed from the phrase
and replaced with new information

Many volatile organic chemicals are decreasing in abundance in
the lower troposphere.

Grammar Violation of conventional grammar Many volatile organic chemicals which are increasing in abun-
dance in the lower troposphere.

Table 4: Overview of the SALSA edit-level evaluation typology. Original text for the examples: Many volatile
organic chemicals are increasing in abundance in the lower troposphere.

The ’96 Act had a direct consequence of the emer-
gence of huge radio conglomerates.

When faced with two equivalent phrases (e.g.
‘A and B’ → ‘B and A’), SALSA classifies the re-
ordered span as the phrase more significant to the
main idea of the sentence. In practice, we found
this to be a helpful guideline, although annotators
often simply selected the phrase appearing first in
the candidate sentence.

Structural Change. As this syntax modification
necessarily includes some discourse preserving ed-
its (Gooding, 2022), they are defined w.r.t. some
combination of constituent edits (i.e. insertion,

deletion, substitution, reorder). Further discussion
of structure changes in §B, with examples of struc-
tural change sub-types used for manual inspection
in Table 5.

Sentence Split. A sub-type of a structural edit. We
automatically identify split changes prior to anno-
tation, but annotators must first select constituent
spans and then associate those spans with the corre-
sponding sentence split. We find the importance of
this edit is highly domain-dependent (Figure 13).



A.1.3 Lexical Simplification
Paraphrase. Swapping complex spans with equiv-
alent, simpler alternatives, is the most primitive,
yet important, approach to simplification (Qiang
et al., 2020) (also referred to as a hypernym, e.g.
Štajner, 2016). These are exclusively defined by
substitutions marked as same information and posi-
tive impact.
Trivial Change. Captures any minor modifications
to wording, either through a synonym replacement,
or inconsequential change in wording (e.g. the, a).
Trivial changes are identified as trivial insertion,
trivial deletion or trivial substitution. These edits
differ from a content or syntax modification in that
they adds no new or major modification to the pre-
sentation of information. However, Meister et al.
(2020) exemplifies trivial changes should not be
ignored as they may modify the information den-
sity and verbosity of a sentence. An example is
famously shown by Jaeger and Levy (2006):

EXAMPLE
How big is the family you cook for?
How big is the family that you cook for?

The relativizer ‘that’ creates no syntactic or concep-
tual simplicity, but adds clarity as to the identify of
the subject. Trivial changes have previously been
described with finer granularity, including subcat-
egories like abbreviation, filler words, compound
segmentation, anaphora (Stodden and Kallmeyer,
2022) or even changes in number/date formatting
(Cardon et al., 2022) but we exclude these groups
due to their sparsity and our focus on evaluating
performance.

A.2 Error Evaluation
We describe the SALSA error typology, with ex-
amples of each type in Table 4. Although despite
their sparsity, errors have a far greater impact on
fluency and adequacy than individual quality edits
(Chen et al., 2023). We refined our definition of
errors by focusing on minimizing the amount of
error types while retaining the ability to capture
the full possibility of simplification ablations. No-
tably, we specifically exclude a hallucination due
to its ambiguous definition in related work (Ji et al.,
2023), and instead define our error categories to
capture any possible hallucination.

A.2.1 Conceptual Errors
We identify six types of errors in content, with
errors primarily being related to information inser-
tion.

Bad deletion. As the overwhelmingly most com-
mon error, a bad deletion removes necessary and
relevant content to the main idea of the sentence.
As discussed in §A.1.1, the threshold for ‘rele-
vancy’ is ambiguous.
Coreference. More precisely a failure in corefer-
ence or anaphora resolution (Maddela et al., 2021),
this determines whether an explicit entity reference
is removed. This error is only observed on a dele-
tion of information.

EXAMPLE
Herbert Spencer’s book makes the first...

His book makes the first. . .

Repetition. Some trivially additional information
which simply repeats knowledge already previously
contained in the candidate sentence.

EXAMPLE
... the New York City Police Department is a law
enforcement agency ...

... the New York City Police Department is a police
department ...

Despite successfully paraphrasing, police depart-
ment, simply copies content from earlier in the
sentence, instead of generating unique information.

Contradiction. A negation of the meaning of the
original sentence. This notably includes modify-
ing an existing phrase to contradict the original
sentence:

EXAMPLE
... the Watergate burglars were convicted ...
... the Watergate burglars were not convicted ...

or generating new information making the sentence
contradict itself:

EXAMPLE
Dextrose adds flavor and texture to dishes, although
its consumption is known for negative consequences.
Dextrose adds flavor, texture and nutrition to dishes,
although its consumption is known for negative con-
sequences.

Factual Error. We asked annotators to use their
commonsense knowledge and limited research to
evaluate factuality in edits. Unlike contradiction,
these claims introduce information which must be
externally verified beyond the sentence context. Al-
though factual content is an established focus for
summarization evaluation (Pagnoni et al., 2021;
Maynez et al., 2020), adequately retaining informa-
tion (i.e. minimizing bad deletion) is a far greater
concern for simplification (Devaraj et al., 2022).

EXAMPLE
Hilary Clinton was born in 1947.



Hilary Clinton was born in 1947 outside the United
States.

In the context of work studying hallucination in
LLMs, our contradiction and factual error cate-
gories can be interpreted as intrinsic and extrinsic
hallucination respectively (Ji et al., 2023).

Irrelevant. A sub-type of a hallucination failing to
insert information related to the main idea of the
sentence, recognizing the threshold for ‘relevancy’
is ambiguous (§A.1.1). For simplicity, we report
irrelevancy alongside hallucination, as information
insertion is generally a rare technique.

A.2.2 Syntactic Errors

Because syntactic edits are identified by the impact
of information distribution, they do not need a fine-
grained error typology like conceptual edits, which
make a diverse set of modifications. We simply
observe each type as a failed attempted at their
respective transformations.

Bad Reorder. Uses the same word-/phrase-level
specification as quality reorder. We also observe
that phrase-level reorder errors are almost exclu-
sively observed to introduce a discontinuity to the
syntax tree structure (Paetzold and Specia, 2013).

Bad Structure. We manually inspect structural
errors according to the same sub-type specification
as quality edits (§B).

Bad Sentence Split. Although sentence splitting
is rarely rated as unhelpful, simplifications may
unnecessarily segment ideas, or interrupt the flow
of information.

A.2.3 Lexical Errors

Unrelated to information change, lexical errors
evaluate primitive issues in fluency or wording.

Complex Wording. An attempted paraphrase
where the exact meaning is retained, but the replace-
ment uses more complex semantics (also referred to
as a hyponym, e.g. Stodden and Kallmeyer, 2022).

EXAMPLE
The researchers conducted an investigation.

The researchers conducted an assay.

Information Rewrite. Some substituted span
whose content concerns the same subject, but fails
to substitute the wording correctly, either through
misrepresenting or falsely interpreting the informa-
tion. Although similar to a combination of infor-
mation deletion and information insertion, the edit
is still attempting to represent the same content.

Grammar Error. The edit violates grammatical
convention. Past error analysis combines fluency
and grammar into the same error type (Maddela
et al., 2021) as the two are interrelated. Gram-
mar errors are unique as they can co-occur with
other errors, or occur alongside a high quality edit,
as sentence fluency is independent from adequacy
(Siddharthan, 2014).

A.3 Edit Severity / Efficacy Levels

We provide examples of each severity level, which
are also included as part of annotator training:

EXAMPLE Severity: 1 - minor
Like so many hyped books before it The Midnight
Library excited me and gave me pause
The Midnight Library excited me and gave me pause

The introductory clause ‘Like so many hyped books
before it,’ situates the sentence within the context
of ‘hyped books.’ However, it does not relate to the
main idea of the sentence (the author’s opinion on
‘The Midnight Library’).

EXAMPLE Severity: 2 - somewhat
Two security flaws, dubbed Meltdown and Spectre by
researchers, were made public on 29 January 2018.
Two security flaws, dubbed Meltdown and Spectre by
researchers, were made public.

Although the sentence retains its core meaning
without ‘on 29 January 2018’, the specific reference
of when ‘Meltdown’ and ‘Spectre’ were ‘made pub-
lic’ is lost.

EXAMPLE Severity: 3 - major
If glycolysis evolved relatively late, it likely would
not be as universal in organisms as it is.
It likely would not be as universal in organisms as it
is.

Since the entity ‘glycolysis’ has been deleted, the
coreference corresponding to the subject ‘it’ is lost.

A.4 Overall simplification score

Similar to MQM (Lommel et al., 2014), we col-
lapse edit annotations into a simplification score to
allow for direct system comparison. We calculate
the sentence-level score as a weighted sum of edit
ratings:

∑
e∈E

exp

(
len(eC) + len(eS)

len(C) + len(S)

)
· w(e) · r(e)

where S is the simplification of complex sentence
C, E is the set of edits, eC and eS are the parts of
edit e performed on C and S respectively, w(e) is
the edit weight, r(e) is the edit rating (severity /



Sub-type Definition Examples Original Simplification

Voice
Change

Change the
subject &
receiver of an
action

active voice →
passive voice

Her book makes the first thorough anal-
ysis of this rural society.

The first thorough analysis of this rural
society is made by her book.

passive voice →
active voice

Elevation is not primarily considered
by the system.

The system does not primarily consider
elevation.

Part-of-
Speech
Change

Modifies
words’
derivation or
inflection

nominalisation
(verb → noun)

The ability to capture nature scenes has
been improving...

The ability to capture nature scenes has
seen improvement...

denominalisation
(adjective → verb)

The protesters turned violent when... The violent protesters...

Tense
Change

Modifies verb
modality or
tense

past perfect →
past simple

The governor told reporters he had
overseen a productive conversation.

The governor oversaw a productive
conversation.

present → past We compute the Pearson correlation to
asses annotation quality.

We computed the Pearson correlation
when we assessed annotation quality.

Grammatical
Number

Distinction of
count changes

singular → plural Victor had scored that goal against the
US in 2011, and another in 2012.

Victor had scored those goals in 2011
and 2012.

generic → specific The spokesperson for the university
called for...

A spokesperson for the university
called for...

Clausal
Change

Modifies pred-
icate structure

coordinate clause
→ relative clause

Donaldson attempted to speak clearly
and he was successful.

Donaldson attempted to speak clearly
and successfully.

subordinate clause
→ coordinate
clause

Although it was raining outside, Jobs
continued work in his garage.

Outside it was raining and Jobs contin-
ued work in his garage.

Table 5: Examples of structural modification sub-types used for annotation.

efficacy), and len denotes character length.4 For
weight scheme w(e), we fit a linear regression by
considering the sentence-level human ratings gath-
ered in SIMPEVAL2022 (Maddela et al., 2023) as
a gold standard. As the type of simplification de-
pends on the needs of each particular user group
(Stajner, 2021), weights may be adjusted according
to the simplification domain (Cemri et al., 2022;
Basu et al., 2023; Joseph et al., 2023) or use case
(Trienes et al., 2022).

B Structural Edit Examples

Examples of each structural edit sub-type are listed
in Table 5. We find training annotators to label
structure change sub-type improved their ability to
identify structure changes. We include morpholog-
ical changes (e.g., tense change) as structure edits
since these typically require multiple disconnected
edits to perform and impact sentence-level mean-
ing. Additionally, other work (Barancikova and
Bojar, 2020), specifically Stodden and Kallmeyer
(2022) annotate with a larger array of structural
changes, notably including separate directions as
distinct categories (e.g. singular → plural and plu-
ral → singular) and including change in sentiment
and personal/impersonal form. We exclude these
types as they almost never occur in the entirety of
the ASSET corpus (Cardon et al., 2022). However,

4We normalize the edit length and use exp to add weight
for longer edits.

a case study in Italian simplification (Brunato et al.,
2022) shows this structural edit distribution may
vary when adapted to the needs of other languages.
Similarly, German simplification often converts
genitive to dative noun cases, a feature not seen
in English simplification (Stodden and Kallmeyer,
2022).

C Data Collection Details

C.1 Simplification Systems

Our main corpus of 700 simplifications are from
the following diverse simplification approaches:
MUSS (Martin et al., 2022), a BART-large model
conditioned on explicit parameter tokens from Mar-
tin et al. (2020), fine-tuned on Wiki-Large (Zhang
and Lapata, 2017) and mined paraphrase data.
MUSS is the SOTA model before GPT-3.5.
T5 (Raffel et al., 2020), an encoder-decoder trans-
former pre-trained on 745 GB of web text. We
use T5-3B and T5-11B variants and fine-tune on
the aligned Wiki-Auto dataset (Jiang et al., 2020),
shown to be higher quality than Wiki-Large.
GPT-3.5, a series of GPT-3 models pre-trained on
text and code dated before Q4 2021. We use the
best available text-davinci-003 model, based on
InstructGPT (Ouyang et al., 2022), fine-tuned with
human demonstrations and reinforcement learn-
ing with human feedback. We include both zero-
and few-shot (5-shot) generation, using the same



prompt setup as SIMPEVAL2022 (Maddela et al.,
2023).

Humans. We ask two in-house annotators to write
simplifications for the 40 newly selected sentences,
replicating instructions used in SIMPEVAL2022. We
average the annotations of both human simplifica-
tions for dataset analysis.

Our test set of 140 simplifications are from recent
approaches, including open-source LLMs:

T5 with ACCESS Tokens, we use the same train-
ing setup as our fine-tuned T5 model, but prepend
the input with ACCESS control tokens (Martin
et al., 2020): character length ratio, dependency
tree depth ratio, character-level Levenshtein sim-
ilarity, and inverse frequency ratio. During infer-
ence, we use 0.9 for the length ratio, and 0.75 for
the other three control tokens, following the setup
in (Maddela et al., 2023).

Alpaca-7B (Taori et al., 2023), a fine-tuned
LLaMA model (Touvron et al., 2023) on 52K GPT-
3.5 outputs generated using the Self-Instruct tech-
nique (Wang et al., 2023). As we find the prompt
used for GPT-3.5 is too complex for Alpaca, we
use the following prompt:

“Rewrite the following complex sentence in or-
der to make it easier to understand by non-native
speakers of English.”

Vicuna-7B (Chiang et al., 2023), a fine-tuned
LLaMA model on 70K publicly shared ChatGPT
conversations. As the training data for Vicuna in-
cludes prompts that are more diverse and complex
than those used by Alpaca, Vicuna can manage
longer prompts, but not at the level of GPT-3.5, so
we use the following prompt:

“Rewrite the following complex sentence in or-
der to make it easier to understand by non-native
speakers of English. The final simplified sentence
needs to be grammatical, fluent, and retain the
main ideas of its original counterpart without al-
tering its meaning.”

ChatGPT, an optimized chat variant of GPT-3.5, the
model we use is gpt-3.5-turbo-0301.
GPT-4, a large multimodal model that performs
better than GPT-3.5 models. We use the version of
gpt-4-0314.

For ChatGPT and GPT-4, we use the same
prompt as GPT-3.5:

“Rewrite the following complex sentence in or-
der to make it easier to understand by non-native
speakers of English. You can do so by replacing

Fleiss kappa (κ) 2⁄3 Agree% % sentences

Bad Deletion 0.51 64 35
Complex Wording 0.26 32 20
Information Rewrite 0.27 26 10
Grammar Error 0.17 18 10
Bad Structure 0.02 6 10
Bad Reorder 0.14 19 9
Irrelevant 0.22 26 8
Bad Split 0.13 17 4
Repetition 0.33 30 4
Contradiction 0.19 25 1
Coreference 0 0 0

Table 6: Fleiss kappa error identification agreement
measured per-sentence alongside error frequencies. As
errors were far more rare, we observe a strong relation-
ship between frequency and expected agreement.

complex words with simpler synonyms (i.e. para-
phrasing), deleting unimportant information (i.e.
compression), and/or splitting a long complex sen-
tence into several simpler ones. The final simpli-
fied sentence needs to be grammatical, fluent, and
retain the main ideas of its original counterpart
without altering its meaning.”
Humans. As existing automatic simplification evalu-
ation metrics rely on human references, we include
two human-written simplifications to use for metric
evaluation, but do not collect annotations on these
references.

C.2 Interpreting Annotator Agreement

As the SIMPEVAL challenge dataset contains more
edits than past simplification corpora, edit anno-
tation becomes significantly more challenging as
multiple groups of edits often overlap and simpli-
fications contain more compression and sentence-
level transformations. Additionally, error-prone
systems like MUSS make it challenging to disam-
biguate error and quality edits. Figure 8 illustrates
an example of this disagreement, showing many of
the same tokens are annotated, but with different
edit spans. For example, observe the last clause in
the sentence, which performs a rewrite:

EXAMPLE
that the fort stood out for its defenders’ heroic resis-
tance.
and the defenders of the fort gave their lives to save
the city.

We see three different, but valid understandings of
this phrase:
1. Information was replaced - The information

about the defenders’ resistance is inherently dif-
ferent then the defenders’ giving their lives to
save the city and is therefore an add/deletion
pair.



Figure 8: Edit selection between three annotators on a MUSS simplification. For complex examples, multiple valid
interpretations for span labeling may exist, however we find annotator’s overall judgements are consistent.
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Figure 9: Edit-level confusion of annotated tokens. The
vertical and horizontal axes represents the class of major-
ity agreement and minority decision between annotators
respectively. The left includes all edits, while the right
calculates agreement using the underlying constituent
spans selected for structure and split edits.

2. Information was retained, but paraphrased - The
phrase heroic resistance being equivalent in
meaning to gave their lives.

3. Subject was modified and information was re-
placed - The subject swap between the subject
of the clause being the fort to being the defend-
ers. The rest being an add/deletion pair.

Varying interpretations of the same edit leads
to natural disagreement. However, often a clear
annotation exists and is not captured. For example,
although we instructed annotators to create sepa-
rate edits for overlapping syntax and conceptual
edits, this occurred inconsistently in practice:

EXAMPLE
it was during the siege of the city of Elvas
Don Luis de Haro attacked the city of Elvas

1. Identified the edit as a structural change, be-
cause the noun siege was replaced with a verb,
modifying the voice of the sentence

2. Identified a paraphrase, annotating siege as a
more complex word than attacked

3. Correctly identified both edits occurred simulta-
neously

We find the largest source of disagreement comes
from overlapping edits of multiple types, most of-
ten between structural changes and other types, be-
cause they often co-occur. Figure 9 demonstrates
structural edits explain a significant portion of dis-
agreement. Additionally, because structural edits
are a composite edit, the same spans are captured
by the structural edits’ constituent spans and re-
calculating agreement using these spans, disagree-
ment instead focuses on whether tokens are substi-
tuted.

Within individual sentences, we often observe
multiple valid interpretations for span labeling,
highlighting the inherit ambiguity in the task. De-
spite this, annotators still successfully communi-
cated edit performance. All three annotators identi-
fied both the bad deletion and hallucination errors
contained in the sentence. For the full SIMPEVAL

dataset, we report error identification agreement
in Table 6, finding syntax errors (e.g., bad struc-
ture, bad reorder) are far more difficult to identify
than content or lexical errors. Particularly, complex
wording and grammar errors exhibit both high fre-
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Figure 10: Average sentence-level score across error sentences for each system.
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Figure 11: Average edit coverage of edit types and
specific error types with 95% confidence interval. Edit
coverage, the ratio of the simplification being edited, is
formalized in §A.4.

quency and high agreement, as the definitions of
these errors are unambiguous. Broadly, we find that
high span-level agreement is not necessary for cap-
turing overall, or even fine-grained sentence-level
performance, a clear trade-off exists between the
granularity of annotations and expected agreement.

D Further Analysis

Here, we report additional findings on the SIM-
PEVAL dataset and model performance, alongside
observations about edit-level evaluation as a task.
Figure 11 reports the average edit coverage by
each edit operation and error type. We find para-
phrases are typically annotated as pairs of a few
words, while conceptual edits typically occur on
the clause level and are annotated together. Sur-
prisingly, structure changes often occurred as a few
words:

EXAMPLE MUSS
... Corbin has expanded his business to include agri-
tourism, using his farm to host weddings ...
... Corbin’s business also offers agritourism and he
uses his farm to host weddings ...

The edit converts the beginning subordinate clause
to a coordinate clause, yet only requires substitut-
ing a single word. Errors exhibited a significantly
higher variance in size, which may be attributed to
their sparsity, as no error except bad deletion occurs

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526
Number of Edits

0

50

100

150

200

250

Ed
it 

Di
st

an
ce

SimpEval
ASSET

Figure 12: Edit distance and number of annotated edits
for 300 randomly sampled sentences from ASSET and
SIMPEVAL. While past work found no relationship, by
extending ASSET to more complex sentences we see a
clear correlation arise.

in more than 20% of outputs (Table 6). However,
error sizes display the same trend as their quality
counterparts, with conceptual errors typically being
seen on the clause level. We also found single-word
conceptual errors such as:

EXAMPLE Zero-shot GPT-3.5
... Arroyo released a statement that acted as an infor-
mal concession of sorts ...

... Arroyo released a statement that was like a formal
concession.

EXAMPLE Few-shot GPT-3.5
The sentence included a fine of $400...

They imposed a fine of $400...

Were less frequent than hallucinating entirely new
phrasing or ideas. This may be promising for error
detection as it implies error spans are often clausal
and occur among many adjacent tokens.
Quality and Error Are Interrelated. Figure 10
displays sentence-level scores for our error typol-
ogy across systems on SIMPEVAL. We find the
existence of an error to be a consistent predictor
of a lower quality sentence, even in human simpli-
fications. However, we find some errors correlate
with a higher score (e.g. bad structure, information
rewrite), but this may be attributed to the multi-
clause complex sentences in SIMPEVAL having a



Lexical Syntax Conceptual Error Quality Overall
µ σ µ σ µ σ µ σ µ σ µ σ

MUSS 0.81 1.23 0.45 0.64 0.97 1.73 0.66 1.03 1.00 1.04 1.77 1.66
T5 3B 0.24 0.56 0.18 0.38 0.65 1.92 0.34 0.97 0.39 0.62 0.76 1.15
T5 11B 0.22 0.44 0.17 0.92 0.61 1.78 0.36 1.30 0.32 0.71 0.71 1.51
Zero-shot GPT-3.5 1.32 1.40 0.67 0.65 0.17 0.38 0.34 0.53 1.75 1.55 2.10 1.60
Few-shot GPT-3.5 1.41 1.43 0.57 0.53 0.15 0.39 0.25 0.46 1.80 1.49 2.11 1.60
Human 1.25 1.85 0.60 0.86 0.32 0.83 0.25 0.62 1.67 1.64 2.04 2.16

Table 7: Mean (µ) and std. deviation (σ) of average sentence-level SALSA sub-scores across systems. Human
simplification may be interpreted as highly simplified (µ = 2.04) and highly diverse (σ = 2.16).

a far greater number of positive edits when these
corresponding errors occur. Broadly, we observe
an inverse relationship between error and quality.
As the error score increases (a function of the sever-
ity, frequency and size of errors), the quality must
decrease.
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Figure 13: Proportion of sentences containing at least
a single split. Although ASSET has a much lower fre-
quency of sentence splits (32%), a longer input sentence
implies a sentence split is more likely to occur.

Increased Edits Enables, But Does Not Guar-
antee Performance. Table 7 reports the mean
and variance of sub-scores for the sentence-level
SALSA score across each system. Edit-level scor-
ing addresses the frequent evaluation concern that
conservative systems may maximize their score by
performing a minimal number of safe edits (Alva-
Manchego et al., 2021). The qualitatively conser-
vative simplifications of T5 and zero-shot GPT-3.5
often score low because they fail to make many
edits. SALSA distinguishes the MUSS simplifica-
tions with many successes, but more failures than
other systems. We find the extent of sentence edit-
ing is not heuristic, but is a prerequisite for high

performance and that overall simplification perfor-
mance is often determined by a small number of
high-impact edits.

Sentence Length Impacts Edit Frequency. Pre-
vious linguistic annotation of the ASSET corpus
(Cardon et al., 2022) reports that the number of
modifications to a sentence does not correlate with
input size. In Figure 13, we observe the same re-
lationship on ASSET, however – because ASSET
only represents simplifications of simpler sentences
typically containing a single idea – when we ex-
tend the analysis to the more complex SIMPEVAL

dataset, we see a clear relationship between the
edit distance and the number of transformations in
simplifications across all systems. This is also best
exemplified by the split edit, which often signifies
too many ideas are being contained within a single
sentence. Figure 12 demonstrates the proportion
of simplifications which exhibit a split across sen-
tence lengths and edit distance. While split edits
within ASSET were generally low, the much longer
SIMPEVAL simplifications almost guaranteed all
systems performed a sentence split. These find-
ings highlight that performance measures should
be length-agnostic, as to guarantee simplifications
which simply contain more transformations due to
a longer original sentence length are not arbitrarily
rated as higher quality.

Composite Edits. We report the breakdown of con-
stituent edits in structure and split edits in Figure
15. Split edits typically need to rewrite the conjunc-
tion through inserting & deleting discourse tokens,
while structure edits are typically performed some
syntax transformation to the existing sentence tree,
more often requiring substituted or reordered to-
kens.

SALSA Test Set. Figure 16 reports the frequency
of quality and error edits on the novel SALSA test
set systems. While adding control tokens to T5
substantially improves the frequency of edits, we
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Figure 14: Distribution of ratings of edits on SIMPEVAL per-model. Compared to edit coverage distributions
(Fig. 6), we see the same underlying relationship, but the difference in error and GPT vs. human quality is less
exaggerated. This figure does not reflect the typically much longer human simplification spans and fine-tuned
models’ error spans.
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Figure 15: Breakdown of composite edits by the %
makeup of their constituent tokens.

Edit Type # Edits # Tokens Avg. Rating
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Elaboration 1947 4996 0.25
Generalization 2644 10650 0.52
Word Reorder 67 744 0.55
Component Reorder 823 7273 0.62
Sentence Split 1605 6759 0.71
Structure Change 2013 10614 0.48
Paraphrase 4394 18278 0.7
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Bad Deletion 771 5019 -0.66
Coreference 9 42 -0.89
Repetition 107 572 -0.53
Contradiction 4 22 -1.75
Factual Error 75 421 -1.15
Irrelevant 64 347 -0.67
Bad Word Reorder 18 160 -0.61
Bad Component Reorder 243 2512 -0.81
Bad Structure Change 291 1808 -0.49
Bad Sentence Split 143 749 -0.94
Complex Wording 597 2412 -0.45
Information Rewrite 159 877 -0.65
Grammar Error 71 372 -0.96

Trivial Change 2983 8876 0

Table 8: Basic collected statistics on our edit-level
SALSA annotations of SIMPEVAL. # tokens indicates
tokens highlighted within each edit’s spans.

find it still underperforms both MUSS and LLMs.
Additionally, T5-11B makes a surprising increase
in error frequency relative to the increase in the
number of edits it performs relative to T5-3B. Lan-
guage models demonstrate a smooth increase in

edits, with the exception of GPT-4 making signif-
icantly less conceptual edits. Manual analysis re-
veals its conceptual edits are often sentence-level
operations, which are not reflected in edit counts.
The LLaMA-based Alpaca and Vicuna demonstrate
surprisingly strong performance despite their rel-
atively small size and training setup, even outper-
forming the fine-tuned simplification models.

SALSA Dataset Statistics. We report full statistics
on all 840 simplifications in Table 8. Similar to
FRANK (Pagnoni et al., 2021), we asked annota-
tors to note edits that could not be annotated, and
we observe less than 0.5% of edits were not cap-
tured by one of our edit types. We consider the
SALSA framework complete.

E Further Word-level QE Results

We include test set word-level F1 score on words in
the original sentence, simplified sentence, and both
sentences (same as Table 3) in Table 9. In the orig-
inal sentence, only deletion edits are labeled. Thus,
the performance in the original sentence column
indicates the model’s ability to identify quality or
error deletion edits. The best-performing method,
Ec-One, achieves over 50% in both quality and er-
ror F1. For the simplified sentence, which contains
substitution and insertion edits, the model delivers
better quality F1 but experiences a drop in error F1.
This could be due to the higher proportion of error
edits in deletion compared to substitution and in-
sertion. In addition, the edit classification approach
significantly improves the error F1 on the simpli-
fied sentence, compared to the tagging approaches,
which reflects that tagging methods fail to capture
multiple types of edits and those spanning both
sentences like substitutions.
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Figure 16: Overview of success and failure edits on the SIMPEVAL test set, collected using held-out simplification
models as detailed in §C.1.

Method Original Sentence Simplified Sentence Overall
Quality Error Ok Quality Error Ok Quality Error Ok

End-to-end
Tag 36.53 52.20 94.79 73.83 13.85 90.18 67.00 28.24 92.88
Tag-ML 42.17 46.88 95.22 76.86 20.61 90.03 70.73 30.06 93.09

Two-stage (use word aligner to get edit information)
Tag-EI 33.06 46.04 94.76 76.75 20.00 90.66 69.09 30.37 93.04
Ec-Sep 45.70 49.18 93.19 71.50 25.66 89.43 64.87 36.15 91.56
Ec-One 50.53 54.63 93.30 74.97 28.15 90.04 68.77 39.50 91.91
Oracle (Ec-One) 84.51 75.88 99.33 89.45 65.26 97.03 88.31 69.44 98.35

Table 9: Word-level F1 scores of different methods on SALSA test set, organized by the edit belonging to the original
or simplified sentence.

F Implementation Details

F.1 Generating Simplifications (§3.1)

For all prompted models, we follow the hyperpa-
rameters of SIMPEVAL2022 (Maddela et al., 2023),
using temperature=1.0 and top-p=0.95. For all
T5 variants, we train them on the Wiki-Auto corpus
(Jiang et al., 2020) using 8 A40 GPUs for 8 epochs
with a batch size of 64. We use a learning rate of
3e-4 and AdamW (Loshchilov and Hutter, 2019) as
the optimizer. For MUSS, we replicate the original
setup (Martin et al., 2022). We use beam search
with a beam size of 10 for these fine-tuned models.

F.2 Automatic Metrics (§5)

Baseline Automatic Metrics. We use
RoBERTa-large as the base model for
BERTSCORE and the best available
wmt21-comet-mqm as COMET-MQM.
LENS-SALSA. Our implementation is based on

the reference-less COMETKIWI metric for machine
translation (Rei et al., 2022). We modify their task
setup of predicting binary quality labels for each
output word ŷi ∈ {OK, BAD} to a regression task
using labels ŷi ∈ [−3, 3], corresponding to each
word rating in their SALSA annotations, as we find
it performs better than using binary or three class
labels in our preliminary study. Our regression
task optimizes MSE loss on the word rating objec-
tive, rather than Cross Entropy Loss. The training
objective can be formalized as:

Lsent(θ) =
1

2
(y − ŷ(θ))2

Lword(θ) = − 1

n

n∑
i=1

1

2
(yi − ŷi(θ))

2

L(θ) = λsLsent(θ) + λwLword(θ)



BLEU
SARI

BERTSCORE

COMET-MQM

LENS
LENS-SALSA

Q
ua

lit
y Lexical -0.185 0.030 0.015 0.086 0.289 0.284

Syntax -0.117 0.097 0.008 0.024 0.206 0.244
Conceptual -0.240 -0.147 -0.325 -0.187 -0.006 0.173

E
rr

or

Lexical -0.259 -0.162 -0.134 -0.004 -0.059 0.015
Syntax -0.147 -0.094 -0.136 -0.073 -0.042 -0.013
Conceptual -0.128 -0.099 -0.293 -0.169 -0.016 0.062

A
ll

All Error -0.263 -0.190 -0.329 -0.170 -0.035 0.046
All Quality -0.201 0.056 -0.018 0.033 0.304 0.318
All Edits -0.286 -0.035 -0.235 -0.129 0.266 0.336

Table 10: Pearson correlation between automatic met-
rics and SALSA sub-scores on the validation set, with
test set performance reported in Table 2.

where λs and λw weight word- and sentence-level
losses. We experimented with custom weighting
for edit ratings, but did not fine performance im-
provements. For fine-tuning, we set λw = 0.9.

The COMETKIWI design aggregates hidden
states using a scalar mix module, and uses two
feed forward networks for sentence- and word-
level training. For pre-training, we optimize a
RoBERTa-large model on the sentence-level SIM-
PEVAL training data used to train LENS (Maddela
et al., 2023), with the training setup using only a
single MSE loss to predict the sentence-level score
(i.e., λs = 1, λw = 0). We follow COMETKIWI

and freeze parameter updates for the RoBERTa en-
coder for the first epoch and use a learning rate of
1e-5 and 3e-5 for pre-training and fine-tuning re-
spectively. We pre-train and fine-tune for 5 epochs,
using the model with the highest validation set per-
formance. We report the corresponding validation
performance in Table 10.

F.3 Edit Classification (§6).

All experiments are conducted using 2 A40 GPUs.
We use the AdamW optimizer with a weight decay
= 0.01, and implement our models using the Hug-
ging Face Transformers. Learning rate are swept
over 1e-5, 2e-5, 5e-5, 8e-5 for each method. Each
run is trained for eight epochs with a batch of 32.
This results in training times of less than five min-
utes per run for tagging methods and less than 20
minutes per run for the edit classification methods.
We perform an evaluation of the validation set at
each training step and use the model that achieved
the highest validation performance on the test set.

For the word alignment model used in the two-
stage approach, we adopt the QA-based word
aligner (Nagata et al., 2020), which formulates
the task in a SQUAD style (Rajpurkar et al.,

2018). We use RoBERTa-Large as the base model.
We first pre-train it on monolingual word align-
ment datasets MultiMWA-Wiki and MultiMWA-
Newsela from (Lan et al., 2021), and then fine-tune
it on the SALSA annotations in the training set.
During both pre-training and fine-tuning stages, we
perform a learning rate sweep over {1e-5, 2e-5, 5e-
5, 8e-5} and train for 5 epochs, and save checkpoint
at the end of every epoch. The highest evaluated
checkpoint (pre-train for 2 epochs and fine-tune for
2 epochs) is selected for testing, achieving 81.03
F1 on the validation set.

On a side note, for the word that is tokenized
into multiple tokens, we use its first token for pre-
diction.

G Annotation Tutorial

We include screenshots to highlight the diversity of
exercises and interactive elements in our detailed
interface tutorial.



Figure 17: Landing page introducing annotators to each part of the task. The 10 stages organize different concepts
in the SALSA typology.



Figure 18: Example interactive allowing annotators to see different spans to understand different amounts of
relevancy to the main idea of the sentence.



Figure 19: One of the 100 sentence examples provided to annotators, highlighting different types of structure edits
existing within the same sentence.


