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ABSTRACT

This paper proposes a continuous volumetric rendering and a bisection sampling
utilizing the Neural Density-Distance Field (NeDDF) that can synthesize novel
views with bouncing transparency during each rendering segment. Since, unlike
the density field, the distance field retains the state of the nearby free space, effi-
cient sampling, such as sphere tracing, has been attempted by assuming a solid ob-
ject. However, distance fields struggle to represent transparency, detailed shapes,
and distant landscapes. We derive bounds on transparency in the interval in vol-
ume rendering based on NeDDF, which extends distance fields to non-solids.
Through realizing the derivation, we invent an efficient bisectional exploratory
sampling method that minimizes the maximum of the bound range. For scaling
to fit the Eikonal constraints on distance fields, Multi-resolution Hash Encoding,
which is excellent for detailed description, is used with frequency separation. We
achieve unmasked acquisition of scenes with distant scenery by introducing con-
tract coordinates and scaling the distance field so finite values can describe it.
Experiments on synthetic and real data show that the proposed rendering bounds
work reasonably.

1 INTRODUCTION

Combining a shape representation called Neural Fields (NF) (Xie et al., 2021) and differen-
tiable volume rendering leads to breakthroughs in 3D restoration from multiple viewpoint images.
NeRF (Mildenhall et al., 2020), a leading example, is a NF that regresses the density field, which
takes the 3D position as input and outputs density, and the color field. NF can acquire dense field
representations, including detailed shapes and direction-dependent colors, in much smaller models
than conventional voxel-based representations.

The distance field, another way to describe the geometry, expresses object shape by the distance
to the closest object surface from the input position. While the density field has its gradient only
inside the object, the distance field holds the distance to objects even outside them, and it has im-
plicitly holds direction as its gradient. Therefore, voxel-based distance fields like TSDF (Curless
& Levoy, 1996) have been used for shape integration(Newcombe et al., 2011) and non-rigid scene-
tracking (Newcombe et al., 2015; Li et al., 2020) applications. Due to its potential utility for these
tasks, applying NF to distance fields has been attempted (Park et al., 2019; Chibane et al., 2020;
Oechsle et al., 2021). In particular, approaches that regress distance fields on NF and provide
conversion formulas from distance to density allow both distance and density fields to be learned
similarly to NeRF. For example, NeuS (Wang et al., 2021) assumes that the density is normally
distributed around the zero level of the signed distance field and then calculates the density from
the distance and variance parameters. NeDDF (Ueda et al., 2022) introduces Density-Distance, a
non-solid extension of the unsigned distance field, and calculates the density from the distance and
its gradient.

There are two issues regarding convergence in acquiring distance field representations with NF.
(a) Due to its high spatial dependence, the shape representation using NF is difficult to regress
with local conditioning. Using local feature approaches have achieved high effectiveness in this
problem (Sun et al., 2022; Fridovich-Keil et al., 2022; Liu et al., 2020; Müller et al., 2022) for density
fields, increasing the resolution of the grid requires the differentiable compression of parameters
such as octree (Fridovich-Keil et al., 2022), tensor decomposition (Chen et al., 2022), and hash
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tables (Müller et al., 2022). However, grid-based parameterization cannot apply naively to distance
fields because grid-based methods allow large amplitude for high-frequency components and they
require sparseness. Distance field is limited the gradient strength (not high-frequency) and not sparse
in general. Another issue is that (b) the signed distance fields do not allow for the representation
of thin shapes, such as leaves or wires, because they assume watertight shapes. NeDDF eases this
problem by basing it on the unsigned distance field, but it tends to blur color textures. Since it is
difficult to smooth the density field in the distance field, general coarse-to-fine sampling is unstable
for sparse sampling to find object regions, leading to insufficient samples around object contours.

We propose solutions to these problems based on NeDDF. (a) To acquire the high-frequency compo-
nents of the distance field, we take the approach of separating the features by frequency bands and
adapting the scale of the high-frequency components to the distance field representation. The pro-
posed method obtains features separated by frequency bands using Multi-resolution Hash Encoding.
Restricting the amplitude of the features in the high-frequency band enables the learning of grids
compatible with the constraints of the distance gradient. Since the amplitude is more restricted for
higher resolution grids, the features of the higher resolution grids have less influence on the density
of NeDDF in regions where the distance outside the object is significant, and the effect of hash ta-
ble collision is unlikely to occur. Therefore, our approach can apply the grid-based architecture to
NeDDF, which is distance-field based. (b) To recover thin objects, we take the approach of using
the properties of NeDDF to infer the conditions between two points on a ray. We derive the max-
imum and minimum light transmittance values at a given interval on the ray, considering that the
maximum value of the gradient amplitude is 1 in NeDDF. The proposed method places the sampling
points recursively using the bound of the influence on the rendering color. With an assumption on
the gradient of the distance field at each sampling point, we tightly bound the transmittance of each
interval from above and below, even with a small number of sampling points.

Our contributions are as follows. (i) We derive a lower bound on the transmittance that can guarantee
an upper bound on the color weights of the interval from sampling on distance field information. We
also provide a sampling method that optimally divides the color weights. (ii) Using an assumption
on the gradient of the distance field, we bound the transmittance from above and below to achieve
volume rendering that does not require discretization of the density. (iii) We propose a fast architec-
ture that adapts to both color and distance fields with different frequency characteristics by acquiring
feature frequencies separately using Multi-resolution Hash Encoding and a small MLP with masks.

2 RELATED WORK

In recent years, the methods called Neural Fields (NF) (Xie et al., 2021) which directly represent
continuous signals has been attracting significant interest in the research community. Given suf-
ficient parameters, fully connected neural networks can describe continuous signals over arbitrary
dimensions, as the representative method Neural Radiance Fields (NeRF) (Mildenhall et al., 2020).

2.1 NEURAL DISTANCE FIELD

A distance field is a shape representation that takes a 3D position as input and outputs the distance
to the nearest neighbor boundary. In contrast to density fields, they are helpful for shape integration
and camera pose estimation tasks, as they retain information about the direction and distance of the
object, even outside the object. In addition, as it is based on level set functions, boundary surfaces
can be easily extracted using like the Marching Cubes method. On the other hand, the distance field
assumes a boundary surface, which restricts the subject to solid objects. In addition, distance fields
need to satisfy complex constraints (called Eikonal) but it is difficult to integrate to training (Sharp
& Jacobson, 2022).

A model that addresses these challenges while maintaining the usefulness of distance-field-based
methods is the NeDDF, which extends the Unsigned Distance Field to semi-transparent scenes
by linking distances and their gradients to densities. Specifically, significant minima of Density-
Distance and gradients smaller than one are interpreted as small densities. This makes it possible to
use the system even for scenes containing semi-transparent or spatially high-frequency objects and
solid scenes, as the learning process that does not satisfy the Eikonal constraint can be interpreted
as a blurred density distribution, which provides stability training. On the other hand, NeDDF has a
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problem with applying methods such as the sphere tracing, which focuses on sampling points near
the boundary surface, to low-density objects. In this study, we clarify that transmittance bounds can
be established from sampled points in NeDDF without discretizing the density.

2.2 GRID-BASED NEURAL FIELDS

Many NF, including NeRF, have used a coordinate-based MLP that combines Positional Encoding
and MLP to incorporate high-frequency components. Despite using Positional Encoding to capture
high-frequency components, it is slow to acquire local features and takes a long time to learn a
scene. Hybrid approaches that combine MLP with a 3D grid representation so that local features
can be conditioned are being worked on for faster learning (Hedman et al., 2021; Liu et al., 2020;
Sun et al., 2022).

Grid-based methods are limited in resolution because the number of parameters requires a memory
capacity of O(N3) for resolution of each dimension N . For models that deal with density fields,
approaches that use differenciable compression methods, such as octree-based methods (Fridovich-
Keil et al., 2022), tensor decomposition methods (Chen et al., 2022), and wavelet transform meth-
ods (Rho et al., 2022), have been proposed to handle high resolution with small memory footprints.
However, these compression methods take advantage of the sparseness of density fields, and it is
difficult to compress information in the distance field, which retains information even outside the
object. We focus on Multi-resolution Hash Encoding (Müller et al., 2022) as a grid-based repre-
sentation that can be expected to provide sufficient compression even for distance fields. It uses
concatenated L features that spatially interpolated features from each resolutions [N1, ..., NL]. In
this method, the reference for each grid is determined by a Hash Table of table size T . When describ-
ing a density field, the low-resolution grid can hold values densely because the number of elements
is less than T , and the high-resolution grid is sparse except at object boundaries, so Hash collisions
are unlikely to occur. When using distance fields, the amplitude of high-frequency components is
suppressed due to the limitation of the magnitude of the gradient of the distance field. In particular,
in NeDDF, the effect of high-frequency components with small amplitudes is reduced in the areas
where the distance outside of the object is large. In other words, Multi-resolution Hash Encoding
is effective for NeDDF compression because sparsity is practically valid for high-resolution grids if
the grids with small resolution can adequately represent low-frequency components.

3 METHODOLOGY

3.1 PRELIMINARY: NEURAL DENSITY DISTANCE FIELD

This method is based on NeDDF to improve quality and latency of learning and inference. There-
after, we consider the ray r(t) = p + tv from point p into the direction v. NeDDF introduces the
following Density-Distance D(p), which is a non-solid extension of the unsigned distance field:

D (p) := min
v∈S2

(
tn +

∫ tf

tn

tT (t)σ (r (t)) dt

)
. (1)

From the density distance and its gradient, the density information is obtained by follow:

σ (p) =
1− ∥∇D (p) ∥2

D (p)
. (2)

In the volume rendering, NeRF (Mildenhall et al., 2020) aggregates color information as following
equation.

ĉ =

∫ tn

t0

T (t)σ (t) c (t) dt, T (t) = exp

(
−
∫ t

t0

σ (s) ds

)
. (3)

In NeDDF, like other density-based methods, volume rendering assumes that the density is constant
in each interval and aggregates colors as following discretization (Mildenhall et al., 2020):

ĉ ≃
n∑

i=0

Ti (1− exp (−σ (ri) (ti+1 − ti))) c (ri, v) . (4)
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Figure 1: (Left) Trajectory D1 with an interval with strictly monotonically increasing and strictly
monotonically increasing transmittance has a trajectory D2 with a smaller transmittance. (Right)
Minimum transmittance trajectory D3

Let t = t0, . . . , tn on ray r(t) with n+1 sampling points r0, . . . , rn on t = t0, . . . , tn. Hereafter, to
deal with the model on rays, we define the distance field for the scalar t by D(t) = D(r(t)). Also,
we let a component of ∇D(r(t)) in the v direction as g(t) = ∂D(r(t))

∂t and a vertical component as
h(t) which satisfies |∇D(r(t))|2 =

√
h(t)2 − g(t)2.

3.2 CONTINUOUS VOLUMETRIC RENDERING

This section describes a rendering method that uses distance field information. In volumetric ren-
dering, the transmittance T (t) is essential in determining the color blending factors. However, since
the true T (t) is unavailable, previous methods discretize it with the inappropriate assumption that
the density is constant between sampling points. We consider bounding T (t) from above and below
based on the sampled information, utilizing the property that the trajectory of the distance field can
be limited.

Transmittance Bound Constraints on the norm of the distance gradient can limit the trajectory
between two sampled points. We derive the trajectory between the two sampled points that mini-
mizes the transmittance. As shown in Fig.1, we consider the case that two sampled points at t = t1
and t = t2 on the ray give distances d1 and d2. The transmission of light T1 in the interval [t1, t2] is
calculated as follows.

T1 = exp

(
−
∫ t2

t1

1−
√

h(t)2 + g(t)2

D(t)
dt

)
(5)

Let Dmin be the trajectory of D in which the transmittance of T1 in the interval is minimal. We
can consider h(t) = 0 in Dmin, since the density is maximum when the gradient of the distance
field has no ray and vertical components. We first show that Dmin follows a monotonically de-
creasing then monotonically increasing trajectory in the interval. In trajectories that do not satisfy
the above, such as D1 in Fig.1(left), there are intervals with strictly monotonically increasing and
strictly monotonically increasing transmittance. There are trajectories such as D2 that horizontally
connect such intervals, which always holds D1(t) ≥ D2(t),

∂D1(t)
∂t ≥ ∂D2(t)

∂t . From the equation 2,
there are trajectories D2 with smaller transmittance in D1, as the density is always below D2 in D1.
Therefore, as shown in Fig.1(right), Dmin is broadly minor decreasing at t < tp and broadly minor
increasing at tp < t, for tp ∈ argmint D(t). The T1 is the following calculation:

T1 = exp

(
−
∫ tp

t1

1 + g(t)

D(t)
dt−

∫ t2

tp

1− g(t)

D(t)
dt

)
= exp

(
−
∫ t2

t1

1

D(t)
dt

)
+

d1d2
D(tp)2

. (6)

Since T1 becomes smaller as D(t) becomes smaller, Dmin(t) always takes the smallest value within
the constraint. Therefore, Dmin consists of a straight line with slope -1,1 from both ends and a
straight line with D(t) = D(tp), like D3 in Fig.1. The minimum transmittance is calculated as
follows:

T1 = exp

(
−
∫ t2−d2+D(tp)

t1+d1−D(tp)

1

D(tp)
dt

)
= exp

(
− t2 − t1 − d2 − d1

D(tp)
− 2

)
(7)
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Figure 2: The trajectory of maximum (orange) and minimum (green) transmittance through the two
points.

As shown in Fig.2, D(tp) in which T1 is minimized is divided into the following three cases de-
pending on the sign of T2 − T1 −D2 −D1, i.e., the trajectory D(t) can take touching the t axis.

D(tp) = min(d1, d2) (t2 − t1 − d2 − d1 > 0)

D(tp) ∈ [ϵ,min(d1, d2)] (t2 − t1 − d2 − d1 = 0)

D(tp) = ϵ (t2 − t1 − d2 − d1 < 0)

(8)

Note that ϵ is a very small scalar representing the minimum distance field.

Sampling This section describes a bisection approach that recursively divides the sampling in-
terval using lower bounds of transmittance. Our important insight is that volume rendering can
efficiently select sample points by introducing a divide-and-conquer manner.

Figure 3: Distance fields (left) and transmittance (right) that maximize the respective transmittance
when the interval is splitted by Tc. The green and orange trajectories maximize T1 − Tc, Tc − T2.

We consider the partitioning of the sampling interval t1, t2 at tc. Since there is no limitation on
the color field, aggregating colors for volume rendering requires the assumption that the color is
constant in sampling intervals. Sampling t = t1, tc, t2 yields the colors c1, cc, c2. From equation 3,
the rendered color ĉ is as follows:

ĉ = (T (tc)− T (t1))c1 + (T (t2)− T (tc))cc. (9)

In practice, errors occur since colors are not constant in the interval. Reducing the color coefficients
T (tc) − T (t1), T (t2) − T (tc) leads to smaller errors. Since the coefficients cannot be minimized
directly in tc, we minimize respective upper bounds. To decrease both coefficients, tc lies in the flat
range of Fig.2. Therefore, the trajectory of the distance field and the transmittance that maximizes
each coefficient are determined as shown in Fig.3. The green trajectory with the minimum transmit-
tance maximizes T (tc)− T (t1), as shown in Fig.2. The orange trajectory that makes T (tc)− T (t1)
take 0 maximizes T (t2)− T (tc).

The optimal tc gives max(T (tc) − T (t1)) = max(T (t2) − T (tc)). From Fig.2, we obtain tc =
1
2 (t1 + t2 + d1 − d2) for all conditions. Therefore, our sampling method recursively splits the
sampling interval in such a way as shown in Fig.4. Note that we use a tighter bound with assumptions
to determine the end of sampling, which will be discussed later.

Tighter Bound of Transmittance with Assumption For rendering and determining the end of
sampling, we derive a tighter bound of the interval transmittance. The maximum transmittance in the
interval is 1 on trajectories that always have a gradient of 1, such as in Fig.2, which is inconvenient

5



Under review as a conference paper at ICLR 2024

Figure 4: Sampling Method. (left) We divide intervals at each sampling step using the intersection
of two ends of the interval extended by the gradient -1,1 for the distance field as indicated by the
red dots. The obtained sampling points restrict paths to the purple area. The path with the green
line takes the minimum transmittance value, and the orange line takes the maximum. (Right) Upper
bound (orange) and lower bound (green) of the transmittance for each interval.

for determining the end of sampling. Assuming that the second derivative of the distance field
∂g(t)
∂t , ∂h(t)

∂t does not cross zero in the interval allows the useful upper bound of transmittance. This
assumption holds well when both sides of the interval refer to the same object, and fits better as the
number of sampling points increases.

Due to equation 2, only the density depends on h(t), and the density is monotonically increasing
concerning h(t). To calculate the maximum and minimum transmittance values, we can fix h(t)
at the minimum and maximum values of h(t1), h(t2), respectively. The trajectory of the distance
field in the ray direction is bounded by the trajectory Dα extended at both ends by the gradients
g(t1) and g(t2) and the trajectory Dβ directly connected at both ends, as shown in Fig.5. The Dγ is
a similar trajectory to the minimum transmittance in Fig.2, and becomes a candidate for bounding
of transmittance when it is within the above range. Transmittance maxima and minima appear in
Dα, Dβ , Dγ . We determine the end of sampling by whether supremum of the difference between
the maximum and minimum transmittance values obtained from these exceed a threshold value.
When rendering, we assume the bounding range is sufficiently tight and use the trajectory with the
maximum transmittance.

Figure 5: The assumption of a range of gradients restricts the distance field to the purple area. The
maximum and minimum transmittance values appear in Dα, Dβ , Dγ .(left)g1g2 > 0. (right)g1g2 ≤
0.

3.3 MULTI-RESOLUTION HASH ENCODING

In this section, we describe how to induce the acquisition of frequency band-separated features from
Multi-resolution Hash EncodingMüller et al. (2022) and adapt them to the representation of distance
fields. Unlike density and color fields, distance fields have the restriction that the gradient norm is
less than 1. Therefore, true distance fields allow smaller amplitudes for high-frequency components.
To fit features to distance and color fields requires separating them by frequency bands. We focus on
the fact that features obtained from Multi-resolution Hash Encoding have different Nyquist frequen-
cies for each resolution. A small MLP with masked weight matrices produces features obtained from
grids that are separated by frequency bands such that only features derived from lower-frequency
grids are captured. The specific architecture is shown in Fig.6. Multi-resolution Hash Encoding
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Figure 6: Architecture of Multi-resolution Hash Encoding and network

Figure 7: Example of transmittance bounds for pixels indicated by the green box. (Top) Graph of
distance field values on a ray for dense sampling. The colors are the color field values for each
sampling point. (Bottom) Graph of transmittance on a ray. Each colored area shows the range of
transmittance bounds for each threshold value. The red line is the transmittance calculated from
dense sampling.

parameterizes F -dimensional features in L grids with a resolution of N1, · · · , NL(N1 < · · · < NL)
on each axis. Multi-resolution Hash Encoding outputs a vector of L · F -dimensions ordered by
resolution. The linear combination layer keeps the Nyquist frequency of each feature component by
masking the upper triangular elements of the weight matrix with zeros, as shown in Fig.6.

We consider the scale to match the distance field of a feature fi output by a grid i with a resolution
of Ni per axis. Note that although we treat it in one dimension for the sake of explanation below, in
practice, interpolation is performed by multiplying the coefficients of each axis in three dimensions.
During inference of the grid, smoothstep function(Müller et al., 2022) interpolates the first-order
derivatives of the features to make them continuous with input positions. The smoothstep function
gives the mixing factor of the features at the grid vertices by S1(x) = x2(3− 2x) using the fraction
x ∈ [0, 1] within grid i containing the input point p. This coefficient gives the interpolated feature
fi and gradient dfi

dx . Since the size of one grid in the original coordinate space is 1/Ni, thus dx
dp =

Ni,
dfi
dp = Ni

dfi
dx . Suppose the value ranges of the parameters in each grid are close. In that case,

the norm of the feature gradient is proportionate to Ni since the smoothstep function is independent
of the grid resolution. For example, the features output by grids with resolutions of 16 and 512
will have x32 scale differences. In the distance field description, both features should have high
expressivity in the range of gradients below 1, so we prefer a scale that multiplies fi to 1/Ni. On the
other hand, the color field has no restriction on high-frequency components. Thus, it is ideal to treat
it on an equal scale. A single network can stably handle the distance and color fields by applying
such a scale to the output of the MLP, as shown in Fig.6.

This frequency separation also allows the use of distance fields in unbounded (360 degrees around
a point) scenes. For example, when using the contract coordinate system, we scale distance field
value d into dscaled to fit the scale of the gradient as follows for the input position p:

dscaled =

{
d (∥p∥ <= 1)

∥p∥2d (∥p∥ > 1)
(10)
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Table 1: Quantitative evaluation on synthetic dataset. We report PSNR (higher is better).
Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

NeRF(hours) 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
iNGP(5 min) 35.00 26.02 33.51 37.40 36.39 29.78 36.22 31.10 33.18

NeuS(hours) 27.69 22.14 21.67 32.14 27.18 25.64 27.52 23.47 25.93
NeDDF(hours) 29.11 23.96 25.72 30.85 27.93 25.52 29.34 23.69 27.02
Ours(10 min) 30.14 25.78 27.33 33.24 29.75 28.86 31.57 26.55 29.15

Table 2: Quantitative evaluation on Mip-NeRF 360 dataset.
Method PSNR(↑) SSIM(↑) LIPIS(↓)

Mip-NeRF 360+iNGP 25.58 0.804 0.160
Zip-NeRF 32.52 0.954 0.037
Ours 26.72 0.861 0.103

4 EXPERIMENTS

4.1 EVALUATION OF IMAGE QUALITY

Experimental setup. We quantitatively evaluate the video generation quality of our method using
the NeRF synthetic, mip-nerf360 dataset. We compare NeRF (Mildenhall et al., 2020), iNGP(Müller
et al., 2022), NeuS(Wang et al., 2021), and NeDDF(Ueda et al., 2022) as baselines for synthetic data.
For the 360 data set(Barron et al., 2022), we use the grid-based Mip-NeRF 360+iNGP and Zip-NeRF
as baselines. We refer to the values in the Zip-NeRF paper(Barron et al., 2023). NeuS, NeuS2, and
NeDDF are omitted because they did not converge for the unmasked 360 scenes.

Result. Table 1 shows the PSNR for each scene and each method for evaluating the quality of
the generated images. Table 1 shows the image generation quality of each method. Our method
improves the image quality for all scenes from the conventional distance-field-based methods, NeuS
and NeDDF. Fig.8 shows a comparison of the rendering results in areas that are difficult to recover
with the distance field-based methods. It is challenging for distance-field-based methods to describe
complex topological shapes with fine holes, such as in Lego and Mic. Therefore, in NeuS, the shape
is smoothed to fill the holes, and in NeDDF, the density near the contour is smoothed. In contrast, our
method improves the quality of the generated image in the area of the fine holes. We consider that
using grids has enabled local conditioning of the details, which is effective. In addition, NeDDF had
difficulty capturing fine color changes in scenes with strong specular reflection, such as the curved
face of Mic and the water in Ship. NeDDF reduces high-frequency components in the entire network
to suit the distance field. Our method achieves detailed color representation by frequency separation
of features and varying the intensity of each frequency band between the distance and color fields.
Moreover, distance field-based conventional methods have difficulty acquiring thin shapes such as
legs of drums, leaves of ficus, and wires of ships. Our proposed method greatly improves the quality
of such details. We suppose that the proposed sampling and rendering interpolated from the distance
field improved the quality of the image because it provided sufficient resolution for optimizing the
distance field. Table 2 also shows the video quality in 360 real scenes. The proposed method
can provide effective gradients even when the object exterior is wide due to the improved sampling
method. The proposed method performs comparably to iNGP even in 360 scenes without foreground
masks, which is difficult to obtain with conventional distance-field-based methods.

4.2 EVALUATION OF SAMPLING

Experimental setup. We confirm that the proposed sampling can bound the transmittance and
confirm the convergence of the bounds. The experiment uses 1024 rays randomly selected from a
test camera viewpoint for a model already trained on the Lego scene. For the ground truth value
of transmittance, we use the value computed by volume rendering from a sufficiently dense 2048
equally spaced sampling, assuming constant density at each interval. For a resolution threshold of
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Figure 8: Rendering results of each method in areas that are challenging to restore with distance-field
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Figure 9: The plot of the number of samplings satisfying the resolution of transmittance M .

M ∈ [2, 4, 8, 16, 32] of transmittance, divide until the difference between UpperBound and Lower-
Bound is 1/M . We verify that the UpperBound and LowerBound of the transparency are between
the true values. Also, measure the average number of samplings where the range of bounds is below
the threshold for each M.

Result. The true transmittance values ranged within the bounds for all the lays used in the verifi-
cation. An example of a ray is visualized in Fig.7 It can be seen that even for high densities, i.e.,
rapid transmittance changes, as in a solid scene, a segmentation is achieved such that the bounds are
below the threshold. In addition, the distance field in the sampling interval is in the form of multiple
increases and decreases, and the assumption that the two derivatives of the distance do not cross
zero is not satisfied in the initial segmentation, but the segmentation succeeds in correctly bouncing
the transmittance because it is divided into intervals that satisfy the assumption faster than the con-
vergence of the bouncing range. The Fig.9 also shows the relationship between the resolution M
of the transmittance and the number of samplings when the section is divided until it satisfies the
assumption.

5 DISCUSSION

The proposed method has excellent performance in generating new viewpoints among the methods
using distance fields. On the other hand, compared to models using density fields, the proposed
method is slightly inferior to iNGP, which uses the same Multi-resolution Hash Encoding, in terms
of accuracy, and convergence takes about twice as long. This is due to the limitation of the distance
field, which provides the distance and direction to nearby objects outside the object, compared to the
density field, which provides only the presence or absence of objects. Unlike density fields, where
it is sufficient to place sampling points only at object boundaries, learning distance fields requires
sampling points outside the object as well. The consideration of the gradient of the distance field
with respect to its 3D location not only increases the complexity of the parameter space, but also
increases the inference time of the network. In implementation, the need to provide continuous
and smooth first-order derivatives makes it difficult to use fast activation functions such as ReLU or
low-precision parameters such as FP16.

This paper introduces a lower bound on transmittance for sampling and a tighter bound that requires
assumptions for rendering and determining the end of sampling. Frequency separation and scaling
also allow for fast and stable use of distance fields with a bound on the gradient norm.
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