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ABSTRACT

Transformer-based architectures achieved high performance in natural language
processing and computer vision, yet many studies have shown that they have not
demonstrated a clear advantage in time series forecasting and even underperform
simple linear baselines in some cases. However, most of these studies have not
thoroughly explored the reasons behind the failure of transformers. To better un-
derstand time-series transformers(TST), we designed a series of experiments, pro-
gressively modifying transformers into MLPs to investigate the impact of the at-
tention mechanism. Surprisingly, transformer blocks often degenerate into simple
MLPs in existing time-series transformers. We designed a interpretable dataset to
investigate the reasons behind the failure of the attention mechanism and revealed
that the attention mechanism is not working in the expected way. We theoretically
analyzed the reasons behind this phenomenon, demonstrating that the current em-
bedding methods fail to allow transformers to function in a well-structured latent
space, and further analyzed the deeper underlying causes of the failure of embed-
ding.

1 INTRODUCTION

Time series data are ubiquitous in today’s data-driven world. Time series forecasting based on
historical data has been a long-standing task with widespread applications across various fields,
including traffic flow prediction, energy management, and financial investment. During the past few
decades, time series forecasting methods have undergone significant development, from traditional
statistical models (Ariyo et al.l [2014) to machine learning methods (Friedman, 2001), and more
recently to deep learning-based approaches (Lai et al.,[2018; Liu et al., 2021}, |Bai et al., 2018).

Transformer (Vaswani et al.,2017) has undoubtedly become one of the most successful architectures
for sequence modeling, achieving exceptional performance in various fields such as natural language
processing (NLP), speech recognition, and computer vision. Giving the success of Transformer in
different domains, researchers have recently begun to apply it to multivariate time series forecasting,
treating each timestamp as a token embedded in the model,such as Informer (Zhou et al., [2021)),
Autoformer (Wu et al | [2021), Pyraformer (Liu et al.| 2022)) and FEDformer (Zhou et al.|[2022). Due
to the limitations of timestamp token models, researchers have subsequently proposed Crossformer
(Zhang & Yan, [2023), PatchTST (Nie et al., |2023)), which divides the sequence into patches, and
iTransformer (Liu et al.| |2024a), which directly treats entire channels as tokens.

However, despite the progress made by these Transformer-based methods, their effectiveness in time
series forecasting, particularly for long-term time series predictions, remains a subject of ongoing
debate. [Zeng et al.|(2023) found that simple linear models could outperform these transformer-based
approaches, opening new avenues for research into simpler architectural frameworks. Recent studies
by|Zhang & Yan|(2023)) andNie et al.|(2023) reveal that the approach of directly treating timestamps
as tokens hinders the attention mechanism in effectively capturing temporal patterns in time series
data.

However, these studies do not fully explain the underlying reasons for the failure of Transformers, as
they neither conduct an in-depth investigation into the intrinsic behavior of the attention mechanism
nor provide any fundamental solutions. Therefore, the goal of this work is to further examine the
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limitations of attention mechanisms in time series forecasting and to theoretically explore the root
causes of these problems.

Table 1: A straightforward instance of ablation experiment, in which the performance of both models
remains unaffected, calls into question the efficacy of the attention mechanism.

Model Dataset  Multi-Head Attetion  MSE

PatchTST ETTm2 w/ 0.277
PatchTST ETTm2 w/o 0.277

Building upon prior research, we further investigate patch-wise and channel-wise Transformers,
extensively surveying various Transformer models, including time-series foundation models. We
conduct an in-depth study of the common issues in their attention mechanisms, designing multiple
experiments from different perspectives to reveal the phenomenon of Transformers degenerating
into multilayer perceptrons(MLP).

We also compare PatchTST with the Vision Transformer (ViT) (Dosovitskiy}, 2020)and design a toy
dataset to explore the challenges faced by the attention mechanism. Through both theoretical and
experimental approaches, we argue that the current linear embedding is insufficient to provide an
appropriate latent space for the attention mechanism.
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Figure 1: Results of module perturbation experiment. The x and y axes represent the strength of
the two types of perturbations, while the z-axis corresponds to the model’s MSE on the test set.
For the FFN module, as the perturbation strength increases, the model’s performance deteriorates
significantly. In contrast, for the attention module, the impact of different perturbation strengths
on model performance is minimal. Even when the outputs of the attention module are completely
altered, the model is still able to make accurate predictions on the sequence. This raises questions
about the effectiveness of the attention module.

The key contributions of our work are summarized as follows:

* We discovered the phenomenon of transformers degenerating into MLPs, and designed a
series of experiments from various angles to validate this phenomenon on multiple time-
series transformer models including time series foundation models.

* We designed a toy time series dataset to study the attention mechanism in a more inter-
pretable way, proposing that the attention mechanism is not working in the expected way.

* We proposed that current linear embeddings are neither effective nor necessary and vali-
dated this hypothesis through ablation experiments. We found that the rough linear embed-
ding leaves the transformer blocks to perform their own representation learning, and further
analyzed the deeper underlying causes of the failure of embedding.
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2 RELATED WORK

Time-series Transformer Models Time-stamps as Tokens: Early Transformer models treated
each timestamp as a token. Informer (Zhou et al. |2021) aimed to model the temporal depen-
dence between individual time steps in the time series sequence. Autoformer (Wu et al. [2021)
drew inspiration from traditional time series analysis, such as decomposition and autocorrelation,
to enhance the model’s ability to capture periodicity and trends. FEDformer (Zhou et al.| [2022)
incorporated a Fourier-enhanced structure, making it linearized. Patches as Tokens: To address the
limitations of timestamp-level tokenization, patch-based time-series transformer architectures have
gradually gained attention. Crossformer introduced a cross-dimension interaction mechanism, cap-
turing dependencies through a patching and aggregation strategy. PatchTST divided time series into
patches and treats patches as tokens to capture higher-level temporal features. Channels as Tokens:
iTransformer (Liu et al.} [2024a)) treated each channel as an independent token, which has achieved
significant success in enhancing multivariate time series modeling. Time series foundation models:
Recently, there have been many time series foundation models trained on new large datasets, which
predict sequences with high accuracy in a zero-shot setting. Relevant models include Moirai (Woo
et al.| 2024)), TimesFM (Das et al.,[2024), and lag-llama (Rasul et al., 2023)).

Different Voices about Time-series Transformer Models Although the temporal Transformer
has become very popular, [Zeng et al.| (2023)) discovered that linear networks can be comparable to
or even outperform Transformers in multivariate long-term forecasting. SAMformer (Ilbert et al.,
2024) suggests that attention is the main reason for Transformer models’ poor generalization abil-
ity, causing them to converge to sharp local minima. PITS (Lee et al.| 2024)) achieves performance
beyond traditional Transformers through the simple patch-wise MLP that embeds each patch inde-
pendently. [Kim et al.[(2024) reevaluated the effectiveness of self-attention for time series forecasting
by eliminating self-attention and utilizing a cross-attention mechanism. Existing research predom-
inantly focused on timestamp token models or merely highlighted the performance limitations of
Transformers. In contrast, this paper delves deeper into the underlying causes of this phenomenon,
providing a more comprehensive analysis.

Computer Vision Model Vision Transformer (ViT) introduced a Transformer architecture to pro-
cess images by splitting the image into patches, and has achieved breakthrough results in image
classification tasks. It inspired the research of PatchTST which shares almost the same architecture
as ViT, whereas PatchTST encounters the problem of degeneration. To investigate the difference,
we performed a comparative analysis of them in the following sections.

3 THE DEGENERATION OF TRANSFORMERS INTO MLPS

Since many studies have shown that the performance of transformers may not outperform linear
models, we aim to design experiments to investigate the specific role of the attention mechanism in
the model. We approximated the attention module through various methods, reducing it to simple
summation or a token-wise linear layer, and observed no significant change in the model’s perfor-
mance. Furthermore, by progressively increasing the patch length, we approximated the model to
a single token input, effectively reducing the model to just the FFN layers, and once again, the
model performance remained unchanged! This indicates that the current attention mechanism fails
to effectively capture and analyze contextual relationships and does not play a significant role; its
contribution to the model’s performance is minimal. Its sole function appears to be mixing different
tokens together, but it does not learn meaningful mixing weights. The contribution of multi-head
attention to the overall model performance is negligible, and the transformer block is essen-
tially only the FFN module at work, causing the model backbone to degrade into an MLP.

3.1 ATTENTION REPLACEMENT EXPERIMENT

Our first experiment is an ablation study of the attention mechanism. The central idea is to replace
the attention matrix in the transformer blocks with certain matrices and assess the impact of attention
by observing the changes in model performance. Four distinct strategies are employed: setting the
attention matrix to a zero matrix, an identity matrix, an average matrix, or a fixed but trainable
attention matrix. Zero attention is actually an ablation experiment for the attention mechanism. And
other matrices are the transition between the zero matrix and the original matrix.
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Figure 2: Experimental setup. This figure illustrates the four experiments conducted in this section.

In the Transformer architecture, Multi-Head Attention first projects the input tokens through three
linear layers to obtain the queries (Q), keys (K), and values (V). These are then used to compute
the attention via the Scaled Dot-Product Attention mechanism.

Attention(Q K \/) = AV = softmax ( ) V (l)
b b
vV dk

When the attention matrix A is set to zero, the matrix on the right-hand side of Equation (I) es-
sentially becomes a zero matrix. Since Multi-Head Attention is followed by a residual connection,
the Transformer block essentially consists only of the Feed-Forward Network (FFN) module. As a
result, the model backbone is effectively reduced to an MLP. The FFN operates on individual tokens,
causing each block to lose its ability to aggregate information across tokens. For PatchTST, different
tokens remain in an independent state until the final flatten and linear layers aggregate them. In the
case of iTransformer, zero attention is equivalent to a channel-independent MLP, where there is no
information exchange between channels.

Since the ablation study is conducted on the same model architecture, setting attention to zero leads
to the failure of the three linear layers in the multi-head attention module, resulting in a significant
reduction in the model size. Using an identity attention matrix mitigates this issue while ensuring
that the tokens remain mutually invisible. Additionally, average attention refers to setting each
element of the attention matrix to a constant value of 1/T, where T is the number of tokens. Average
attention does not utilize any contextual information; it simply combines all the value (V) vectors,
makes tokens visible to each other, and this visibility is not derived from analyzing context. In
addition to this, we also conducted experiments with fixed but trainable attention, which behaves
like an extra linear layer after the V matrix at the token-wise level, whose weights are priors and
context-independent, similar to the approach used in TSMixer (Chen et al., [2023)).

We conducted our experiments on PatchTST and iTransformer, with the results shown in the figure
above. Detailed result tables and parameter information are provided in the appendix. Remarkably,
the model’s performance remained unaffected even after the replacement of the context-aware
attention mechanism.. For all attention variants, the model’s performance remained largely un-
changed across most datasets, with performance even improving on certain datasets. On the ECL
and Traffic datasets, the zero-attention model experienced a slight performance drop, but average
and trainable fixed attention maintained stable performance. These results undoubtedly raise ques-
tions regarding the effectiveness and necessity of the attention module. We conducted the same
experiment across multiple models including time series foundation models, and the results were
consistent with those of the aforementioned experiments; further details can be found in the ap-
pendix.
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3.2 ATTENTION PERTURBATION EXPERIMENT

To further investigate the impact of the attention module on the performance of the network, we
conducted a perturbation experiment on a trained model. We applied identical perturbations to both
the multi-head attention module and the feed-forward neural network (FFN) module and analyzed
the resulting changes in network performance. The perturbation formula is as follows:

KT
A = (1 — «) - softmax ((‘-’3/a + €T><T> + % “lpxr 2
€ ~ N(0,07T) 3)

), QK
= ((T)) @

In these equations, « represents the attenuation coefficient, and 7 denotes the relative noise scale.
A is the resulting attention matrix. To ensure numerical stability, we utilize « to balance between
the mean attention and the original attention, and noise is introduced prior to the application of the
softmax function. The perturbations due to attenuation and noise disrupt the attention mechanism in
distinct ways: when o = 1, the attention mechanism reduces to a simple mean summation; and when
the noise level is excessively high, the attention mechanism degenerates into a random combination
of tokens. For the FFN perturbation, noise is introduced before the activation layer, controlled by 7,
and the output is subsequently smoothed by the parameter a.

The experimental results are shown in Figure[T] Even after the model had been trained, the experi-
ment still demonstrated that the degeneration of the attention mechanism did not cause any notice-
able disruption to the model. In contrast, perturbing the FFN module led to a substantial decrease
in model performance. This suggests that the model’s performance is concentrated in the FFN, and
that the attention mechanism fails to play its intended role.

3.3 VARYING PATCH LENGTH EXPERIMENT
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Figure 3: Left (a) Results of attention replacement experiments. The legend represents different
types of attention. Right (b) Varying patch length experiment. We conducted the experiment on
PatchTST with the stride equal to the patch length, minimizing the model size deduction due to
growing patch length.

In this subsection, we also examined the effect of varying patch lengths on model performance.
As the patch length increases, the number of tokens gradually decreases, and the scope of the at-
tention mechanism narrows. When the patch length equals the length of the output sequence, the
input reduces to a single token, causing PatchTST backbone to degenerate into a simple MLP. The
experimental results in Figure [3b]indicate that the performance is almost unaffected by changes in
patch length. Even when the patch length is equal to the input length, and the model backbone is
effectively equivalent to an MLP, there is no significant decrease in performance, which calls into
question the role of the attention mechanism.

3.4 POSITIONAL ENCODING ZEROING OUT EXPERIMENT

Since the attention mechanism is permutation-invariant, it is crucial for patch-wise models to use
positional encoding to preserve the temporal positional information between tokens. If this posi-
tional information is lost, the model will be unable to handle temporal dependencies, except for
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the final flatten and linear layers. We studied and compared PatchTST and ViT, and found that the
importance of positional encoding varies significantly between the two models. By zeroing out the
positional encodings in both trained models, we observed a sharp performance degradation in ViT,
while PatchTST’s performance remained unchanged. PatchTST adds a flatten layer and a linear layer
after the transformer blocks, where the relative positions of the linear layer weights corresponding
to different tokens are fixed. As a result, the model is able to recognize the relative positions of the
tokens even in the absence of positional encoding.

Table 2: Positional encoding zeroing out experiment.

Model Metric PosEnc  Zero PosEnc

ViT Accuracy  89.8% 32.4%
PatchTST MSE 0.142 0.142

We quantified the similarity between encodings at different positions and found that, for ViT, the
similarity between adjacent positional encodings was higher. In contrast, for PatchTST, there was
no such correlation between position and similarity. This suggests that, for PatchTST, the attention
mechanism does not utilize any positional information, which is especially critical for time series
data.

PatchTST VIiT

Token Cosine Similarity
Token Cosine Similarity

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Token Distance Token Distance

Figure 4: Relationship between token similarity and token distance. Overall, ViT exhibits a down-
ward trend. An outlier is observed at a distance of 14, likely caused by the limited number of samples
at this distance, as only two pairs of patches have a distance of 14.

4 FAILURE TO CAPTURE INTER-PATCH DEPENDENCY

To further analyze the attention mechanism and explore the underlying causes of the degradation,
we study the attention to dependencies between different patches. We designed a more interpretable
toy dataset and performed experiments on it, finding that the attention mechanism is not working
in the expected way and fails to capture inter-token dependency due to the poorly structured latent
space.

The core idea of the attention mechanism is to dynamically assign different “weights” or “attentions”
according to the interaction between different tokens. This mechanism enables the model to be more
efficient when processing long sequences, focusing on key parts, and preventing information loss.
For time series data, the attention mechanism can capture relationships between different patches,
model the context, and make final predictions based on prior knowledge and posterior attention.

4.1 A MORE INTERPRETABLE TOY DATASET
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Figure 5: The state machine used in our toy

dataset. Figure 6: Toy dataset composition.
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Figure 7: Toy dataset attention visualization. The figure depicts the attention distribution of patch
[336-351] over the input sequence, with weights quantified by color intensity. The attention on
the actual event patches is surprisingly low, with the attention on the most recent event patch with
So = 0 being almost zero! This results in the model failing to successfully predict the next event
with S5 = 2, erroneously estimating it as Sy = 1.

Common public datasets in time series are highly specialized, with too much complexity and vari-
ability, making it difficult to quantify the relationships between patches. To address this, we designed
a toy dataset based on state machines. We trained PatchTST on it and analyzed the attention results.
The dataset consists of three parts: the carrier wave, the event signal, and the noise. The carrier wave
is a simple sine wave. The event signal is a periodic triangular hat waveform whose amplitude is
controlled by a state machine. Within each cycle, the system is in a state .S, and the signal waveform
for that cycle is controlled by .S. The state of the next cycle is determined solely by the current cycle.
Figure [3]illustrates the state machine used in the experiment.

4.2 ToY DATASET ATTENTION EXPERIMENT

An ideal transformer model should allocate sufficient attention to the patch where the event occurs,
especially the most recent event. It should then predict the state of the next event using the most
recent event state and the learned state machine model.

We performed experiments on PatchTST, with the experimental details provided in Section [C.2]
However, the result provided in Figure [/| showed that the model did not learn the state machine
model, nor did it focus on the event patches. This indicates that in current time-series transformers,
the attention mechanism may not effectively understand the information contained in the tokens, nor
does it analyze their relationships based on the token data. In our toy dataset, during representation
learning process, the model did not express the concept of “events,” making it difficult for the at-
tention mechanism to function properly. This also explains why, in previous attention replacement
experiments, we found that context-dependent real-time attention was dispensable for the model.
This leads us to reconsider how the model embeds time series data into the latent space. More
detailed experimental results and discussions are provided in Section[C.2]

5 INEFFECTIVENESS OF LINEAR EMBEDDING

Based on the previous analysis, the degradation may result from suboptimal representation learning,
and representation learning in Transformers is initially carried out by the embedding layer. Current
time series Transformers primarily employ linear layers as embedding layers. In this section, we
study the effectiveness of linear embedding and prove experimentally that the current linear em-
bedding method fails to offer a well-structured latent space for transformer blocks to function in,
making itself neither effective nor necessary for time series data.

5.1 THEORETICAL ANALYSIS

Transformers operate within a latent space, where the attention mechanism captures the relation-
ships among latent vectors corresponding to different tokens. These relationships are then leveraged
to refine and optimize the latent vectors, enabling them to encapsulate richer and more global in-
formation. The role of the embedding layer is to project the input data into this latent space, which
encodes the inherent properties of the input and provides prior information. For time series data, the
embedding layer is responsible for mapping the time series into an appropriate latent space. This
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space characterizes the relevant attributes of the waveform and may also include representations of
the physical phenomena underlying the temporal data.

From the simplest perspective, in a simplified scenario, as a commonly used implementation of
embedding layers in time series Transformers, a full-rank linear layer with the same input and output
dimensions is an isomorphic linear transformation. However, the latent space, which may encode
high-level data such as semantic, structural, or dependency-related information, cannot be
isomorphic to the time series space.

In transformers used for natural language processing (NLP), the embedding layer serves to map
discrete tokens into a continuous dense latent vector space, enabling the originally discrete inputs
to be processed and learned within a continuous domain. Through training, the embedding vectors
are optimized according to the task requirements, resulting in more meaningful representations in
the high-dimensional space. Positional encoding is typically added to the embedding vectors and
provides information about the position in the sequence. These combined embeddings are then fed
into the self-attention mechanism for further processing.

In NLP, the embedding layer is typically implemented as a linear layer, with the input represented in
a one-hot encoded form that performs as a table lookup operation. Each token corresponds to a sub-
vector in the weight matrix. Many Transformer models in the time series domain have adopted this
approach. Table[7] presents the embedding implementations of important time series models. Most
non-large models and some large models use either linear or convolutional layers for embedding,
with convolutional neural networks serving as a form of weight-sharing linear layer.

In time-series transformers, the embedding layer is used to map the input time series into a contin-
uous dense latent vector space. This latent space captures various characteristics of the time series
waveform and may also include information relevant to the physical phenomena underlying the se-
quence. However, as a linear transformation, a linear layer may struggle to project the time series
onto a high-dimensional manifold, thereby failing to produce a meaningful latent representation.

The inputs of NLP and time series forecasting are fundamentally different. In NLP, the input consists
of one-hot vectors, while the input of time series is a continuous sequence of data over time. Directly
adopting the linear embedding approach from NLP transformers without thorough investigation and
consideration raises concerns about its validity.

Therefore, linear embedding may not be an effective method for embedding time series data into a
well-structured latent space. However, time series input vectors do not reside in a linear space, and
the latent space is not necessarily a linear space either. Generally speaking, we can approximate the
latent vectors as lying on a high-dimensional manifold, while the time series itself can be viewed as
a window sampling from a function determined by hyperparameters and noise.

5.2 EXPERIMENTAL EVIDENCE

Linear transformation is also an unnecessary embedding. In most models, once the input is embed-
ded, it proceeds directly to the attention module, where the QKV matrices are computed through
linear layers. This means the linear layers of attention follow immediately after the linear embed-
ding layer. However, the simple stacking of multiple linear layers is equivalent to a single linear
layer, implying that the linear embedding is unnecessary or, at best, replaceable.

Nevertheless, due to the existence of positional encoding and the dimensional transformation re-
quirements, the embedding layer cannot be simply removed. We provide an experimental demon-
stration that linear embedding does not significantly contribute to model performance improvement.
We conducted experiments on several models, where we froze the initialized embedding layer to
prevent it from training and compared the results with the original model.

As shown in Table[25]and Table[24] when the weights of the embedding layer are fixed and excluded
from training, the model’s performance remains unaffected. This demonstrates that the linear layer,
when used as an embedding layer, contributes negligibly to the model’s performance, and its role in
representation learning is not significant.
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5.3 VIT AS AN EXCEPTION

Although we have theoretically and experimentally confirmed that using a linear layer as the em-
bedding layer is ineffective and unnecessary, ViT achieves impressive performance using linear
embeddings. To explain this discrepancy, we designed a simple experiment.

We applied attention smoothing to a trained ViT model with 8 blocks, setting attention to the mean
matrix, and observed the change in model performance. We found that smoothing in the first four
blocks had a minimal effect on performance, whereas smoothing in the last four blocks led to a
significant performance drop. The attention modules in the first few blocks contribute less to the
update of the hidden vectors. In other words, the first four blocks primarily use the FFN for repre-
sentation learning, and attention only starts to play a significant role in the latter four blocks, where
the representation learning has been completed.

To check this in time series models, we gradually increased the number of blocks in PatchTST and
iTransformer, hoping that the additional blocks could assist with representation learning. However,
as shown in Figure [9) and Figure 20} the model performance did not improve significantly; and
overfitting occurred in some models and datasets. The representation learning strategy for time
series data remains a critical issue.

Table 3: Results of ViT attention smoothing. We smooth the attention instead of setting it to zero
in order to maintain the numerical stability of the model. In fact, experiments with zero attention
exhibit the same trend as those with smoothing, with the only difference being a lower accuracy.

Smoothed Block ID  Accuracy  Degradation

None 89.8% -
0,1 88.8% -1.0%
2,3 84.4% -5.4%
4,5 73.2% -16.6%
6,7 75.0% -14.8%
0,1,2,3 82.1% -7.7%
4,5,6,7 44.2% -45.6%
0,1,2,3,4,5,6,7 33.4% -56.4%

s Ly &y

6 DISCUSSION

Conclusion In this study, we unveil the phenomenon of time-series forecasting Transformers de-
generating into MLPs and substantiate its prevalence across various models and datasets through
extensive experimentation. By designing an interpretable toy dataset and leveraging visualization
analyses, we reveal that the attention mechanism fails to effectively capture the critical dependencies
within time-series data. Furthermore, we provide both theoretical and empirical evidence demon-
strating that the current linear embedding approach is neither effective nor necessary. These findings
suggest that existing time-series Transformer architectures require advancements in representation
learning to construct a more expressive latent space, thereby enabling the attention mechanism to
function as intended. In Section [A] we further discuss the challenges in representation learning for
Time Series Transformers. While our findings do not imply that Transformers are inherently unsuit-
able for time series forecasting, based on the comprehensive and solid analysis above, we remain
cautiously skeptical about their potential in this domain.

Future Work Our findings have profound implications for the future development of Transformer-
based models in time-series analysis, particularly for foundational models that require substantial
computational resources. We advocate that foundational models should prioritize improving repre-
sentation learning before focusing on refinements to the attention mechanism itself. Moreover, the
degradation phenomenon we have identified is not limited to time-series forecasting but may also
extend to other domains, such as classification and imputation, necessitating further investigation.
Finally, we advocate for the development of a novel metric or benchmark to assess the extent of
attention’s influence, as time series data, unlike those in the domains of image and language, are not
as easily comprehensible to humans, rendering the interpretation of attention weights significantly
more intricate.
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REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. An anonymous imple-
mentation of our proposed methods is available at https://anonymous.4open.science/
r/TST-Degeneration-1050. The appendix provides detailed descriptions of the experimental
setups, hyperparameters, and additional results that support the findings in the main text.
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A ADDITIONAL DISCUSSION

In the main body of this paper, we argue that the commonly used linear embedding layer in current
time series forecasting Transformers is not an effective embedding mechanism. We focus on linear
layers because they represent the most prevalent form of embedding implementation. However, fur-
ther experiments shown in Table d}—which essentially covers all embedding layers currently adopted
in time series Transformers—demonstrate that various embedding strategies, including linear lay-
ers, fail to avoid the issue of attention degradation. In other words, the challenges in representation
learning for time series Transformers are not solely caused by the linear embedding layer, but instead
stem from deeper, more fundamental issues.

Table 4: Attention replacement carried on PatchTST with different embedding layers. The dataset
is weather; prediction length = 96.

| ATTENTION TYPE | LINEAR EMB | CONV EMB | MLP EMB | RESIDUAL EMB |

RAW 0.157 0.153 0.154 0.158
MEAN 0.154 0.159 0.155 0.155

In Section[5.3] we discuss the ViT model, where representation learning is jointly accomplished by
the linear embedding layer and the early Transformer blocks. However, as shown in Section
simply increasing the number of blocks does not reproduce this behavior in time series scenarios.
In some cases, it even leads to overfitting. This discrepancy may be attributed to the substantial
differences between input data in computer vision (CV) and time series (TS) domains. In CV, an
image is divided into multiple patches, each of which still contains a relatively large amount of data.
This makes representation learning a process of dimensionality reduction and data compression. As
long as sufficient information exists within the input, it can potentially be effectively encoded. By
contrast, in time series data, each patch corresponds to only a small amount of information.

For example, in the official implementation of iTransformer, the embedding layer projects input data
of length 96 into a 512-dimensional latent space—effectively a 5.3x dimensional expansion. For
PatchTST, the embedding layer projects 16-dimensional input data into a 128-dimensional token
space, yielding an 8x increase. Even when auxiliary techniques such as contrastive learning are
introduced to help shape the latent space, such a high dimensional uplift makes it inherently difficult
for the model to capture intrinsic patterns in time series data.

Table 5: Input data and latent space size across different domains.

| Model | Input Size per Token | Hidden Size | Remark |
BERT 1x30522 = 30522 768 bert-base-uncased, vocabulary size=30522, one-hot
ViT 3x16x16 =768 768 vit-base-patch16-224, patch size=16
PatchTST | 1x16=16 128 patch size=16, channel independent

In other models, this issue might be alleviated by reducing the dimensionality of the latent space.
However, in Transformers, since the QK product involves vector multiplication, the latent space must
be sufficiently large to accommodate a sufficient number of approximately orthogonal semantics.
Compared to the CV domain, the actual input volume of time series data is quite small. Whether
such data inherently contains—or even requires—so many semantic dimensions remains an open
question.

Moreover, the “smallness” of time series data goes beyond individual input size—it also manifests
in the heterogeneity of distributions across different datasets. In CV or NLP, although datasets
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may vary in focus, the underlying world knowledge they reflect is often consistent. For instance,
datasets composed of academic papers versus novels may differ in terms of rigor, subject matter, and
factual density, but they share consistent grammar and world knowledge. Even datasets in different
languages tend to offer coherent representations of the world. In computer vision, despite differences
between datasets like automobiles and pets, the underlying physics of texture, lighting and geometry
remain consistent.

In contrast, time series datasets often exhibit completely divergent distributions. For example, finan-
cial time series and seismic activity series have fundamentally different characteristics. As a result,
even for large time series models trained on diverse datasets, representation learning remains diffi-
cult due to distributional inconsistency, and attention degradation still occurs (see Table[23] Table[22]
and Table 20).

Table 6: Ratio of Input to Hidden across different models.

| Model | Input Size per Token | Hidden Size | Ratio of Input to Hidden |
iTransformer | 96 512 0.1875
PatchTST 16 128 0.125
TimesFM 32 1280 0.025
Pathformer 2-16 8 0.25-2
SAMformer | 336 16 21
ViT 3x16x16 = 768 768 1
SwinV2 3x4x4 =48 768 16

In summary, this section highlights key difficulties in the representation learning process of time
series Transformers, in the hope that future research can address and improve embedding strate-
gies. While our findings do not imply that Transformers are inherently unsuitable for time series
forecasting, we remain cautiously skeptical about their potential in this domain.

B SURVEY RESULTS

Table 7: Embedding strategy investigation.

MODEL EMBEDDING STRATEGY
AUTOFORMER CNN
FEDFORMER CNN
ITRANSFORMER LINEAR
PATCHTST LINEAR
LEDDAM (Yu et al.}[2024) LINEAR
CARD (Wang et al.|[2024) LINEAR
PATHFORMER (Chen et al.||2024) LINEAR
TIMER (Liu et al.|[2024b) LINEAR
LAG-LLAMA LINEAR
MOIRAI MULTIINSIZELINEAR
TIMESFM MLP
CHRONOS (Ansari et al.|[2024) RESIDUALBLOCK

C EXPERIMENTAL DETAILS

C.1 A SAMPLE OF ATTENTION REPLACEMENT
C.2 ToYy DATASET ATTENTION EXPERIMENT

In Figure [0] Figure[I0] Figure[T1] Figure[I2]and Figure[I3] we can observe the model’s prediction
distributions across different states, which are derived from 51,200 samples. The x-axis represents
the amplitude of the predicted triangular hat event wave, obtained by subtracting the original carrier
wave from the output waveform and integrating the residual signal.

Since the transition from State O to State 1 is random, the poor prediction performance for these
states is expected. However, even though the occurrence of State 2 is deterministic, the model
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Figure 8: Comparison of time series predicted by different attention replacement methods. The
legend represents different types of attention.

still exhibits a small probability of misclassification. The performance for State 3 is even worse.
According to Figure[T2] the predicted amplitude of State 3 is often biased toward 1. Additionally, in
some cases, the model seems to oscillate between 1 and 2, leading to a final prediction fluctuating
around 1.75. These statistical findings strongly indicate that the model fails to learn the underlying
state machine and does not effectively leverage contextual information to predict the next event state.
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In Figure [T4] Figure [I5]and Figure [I6] we can observe the attention value distributions across dif-
ferent patches. The toy dataset has an input sequence length of 336, with a patch length of 16 and a
stride of 16, while the event period is 80. As a result, the input sequence corresponds to 21 patches

175 State 3 =2

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0
Predicted Event State

Figure 12: Prob density of predicted event state 3
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Figure 13: Prob density of predicted event state O after 3

(tokens), with 4-5 patches containing event-related information (Event Patches).

From these figures, we can see that the attention distributions of event patches and non-event patches
are nearly identical. In a Transformer-based model, this is highly unreasonable. Ideally, the model
should focus on the last one or two event patches to predict the next event patch, meaning their
attention scores should be significantly higher than those of other patches. However, our statistical
analysis clearly demonstrates that the attention mechanism fails to capture meaningful contextual
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Figure 16: Block 2 attention value to patches in the input sequence

Additionally, the visualization of multi-head attention is overly complex, making it difficult to ex-
tract meaningful and convincing insights. We observed that, on the toy dataset, the performance dif-
ference between the 16-head attention model and the single-head attention model is minimal, with
both models predicting S=2 as S=1. Therefore, for attention visualization, we only use the single-
head attention model. In fact, for multi-head attention models, the attention distribution across most
heads tends to resemble a uniform distribution, with little focus given to the event patch.

For PatchTST, we visualized the original model with no padding or with padding set to 1, and
the experimental results were consistent with those presented in the main text. However, since the
output depends on all tokens, the attention is not solely dominated by the event patch. We modified
the model architecture by padding the 96 output points with 8 new tokens and then observed the
attention of specific event-related tokens with respect to the input sequence.

C.3 ATTENTION REPLACEMENT EXPERIMENT

We present the attention replacement experiment results for different models across various datasets.
The findings align with our analysis in the main text. Due to differences in model implementations,
the datasets, metrics, and attention module may vary across models. However, our primary focus is
on comparing the performance of different attention types within the same scenario, making these
variations negligible. The error bars in the following tables are the standard deviation and are ob-
tained by taking different seeds during training. 'RAW’, ’EYE’, "’ZERO’ and "MEAN’ in the tables
below represents the types of attention.
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Table 8: PatchTST attention replacement. Prediction length = 96.

| DATASET | METRIC | RAwW | EYE | ZERO | MEAN
ETTH1 MSE 0.404 £0.003 | 0.381 £ 0.000 | 0.384 +0.001 | 0.392 4+ 0.001
ETTHI MAE 0.418 £0.001 | 0.403 £0.000 | 0.405 £ 0.000 | 0.412 £ 0.002
ETTH1 MDA 0.579 £0.004 | 0.588 £0.002 | 0.582 4+ 0.001 | 0.585 4 0.001
ETTH2 MSE 0.306 £0.003 | 0.290 £0.002 | 0.291 £0.001 | 0.295 £ 0.007
ETTH2 MAE 0.361 £0.003 | 0.350+0.002 | 0.351 £0.001 | 0.355 £ 0.005
ETTH2 MDA 0.412 £0.002 | 0.418 £0.000 | 0.417 +£0.001 | 0.414 4+ 0.001
ETTMm1 MSE 0.304 £0.004 | 0.294 +£0.002 | 0.294 £ 0.002 | 0.300 £ 0.001
ETTMm1 MAE 0.358 £0.003 | 0.347 £0.002 | 0.348 +0.002 | 0.354 + 0.001
ETTMm1 MDA 0.495 +£0.000 | 0.500 = 0.000 | 0.499 £ 0.000 | 0.498 £ 0.000
ETTMm2 MSE 0.174 £0.003 | 0.174 £0.001 | 0.174 £0.000 | 0.175 £ 0.000
ETTM2 MAE 0.265 +£0.001 | 0.264 +0.000 | 0.264 £ 0.000 | 0.265 £ 0.000
ETTMm2 MDA 0.322 £0.001 | 0.342 4+ 0.000 | 0.342 4+0.000 | 0.325 4 0.001
WEATHER | MSE 0.162 £0.005 | 0.152+0.003 | 0.152 £0.003 | 0.154 £ 0.001
WEATHER | MAE 0.211 £0.005 | 0.201 +£0.004 | 0.201 +0.002 | 0.204 £+ 0.001
WEATHER | MDA 0.424 £0.001 | 0.469 +0.004 | 0.468 £0.002 | 0.427 £ 0.001
Table 9: PatchTST attention replacement. Prediction length = 192.
| DATASET | METRIC | Raw | EYE | ZERO | MEAN
ETTHI MSE 0.451 £0.007 | 0.416 +0.002 | 0.419 £0.002 | 0.437 £ 0.002
ETTHI MAE 0.448 £0.004 | 0.426 +£0.002 | 0.428 +0.002 | 0.443 + 0.001
ETTH1 MDA 0.571 +£0.001 | 0.580+0.003 | 0.573 £0.003 | 0.575 4 0.003
ETTH2 MSE 0.391 £0.002 | 0.356 £0.002 | 0.358 £0.002 | 0.361 £ 0.002
ETTH2 MAE 0.412£0.001 | 0.391£0.001 | 0.392 £0.001 | 0.396 + 0.001
ETTH2 MDA 0.410 £0.000 | 0.416 £0.001 | 0.414 £0.001 | 0.410 £ 0.002
ETTMm1 MSE 0.345£0.000 | 0.333 £0.000 | 0.333 £0.000 | 0.339 £ 0.001
ETTMm1 MAE 0.382 £0.001 | 0.371 £0.000 | 0.371 £0.000 | 0.377 £ 0.000
ETTMm1 MDA 0.497 £0.000 | 0.502 £0.000 | 0.500 £=0.000 | 0.499 £ 0.000
ETTMm2 MSE 0.248 £0.003 | 0.237 £0.002 | 0.238 £0.002 | 0.236 £ 0.000
ETTMm2 MAE 0.315£0.000 | 0.307 £0.003 | 0.307 £0.004 | 0.309 £+ 0.001
ETTMm2 MDA 0.318 £0.000 | 0.338 £0.001 | 0.338 £0.001 | 0.320 £ 0.000
WEATHER | MSE 0.204 £0.002 | 0.194 £0.000 | 0.194 £ 0.000 | 0.199 + 0.001
WEATHER | MAE 0.251 £0.002 | 0.242 £0.001 | 0.242 £0.001 | 0.245 £ 0.000
WEATHER | MDA 0.424 £0.003 | 0.468 £0.001 | 0.468 +0.000 | 0.429 £+ 0.001

Table 10: PatchTST attention replacement. Prediction length = 336.

| DATASET | METRIC | RAw | EYE | ZERO | MEAN
ETTHI1 MSE 0.471 £ 0.002 | 0.440 £ 0.002 | 0.445 £ 0.000 | 0.464 4+ 0.005
ETTHI MAE 0.465 +0.003 | 0.444 +0.003 | 0.447 +£0.001 | 0.462 £ 0.001
ETTHI1 MDA 0.563 £+ 0.001 | 0.569 £+ 0.001 | 0.560 £ 0.001 | 0.564 £ 0.001
ETTH2 MSE 0.422 +0.007 | 0.381 = 0.001 | 0.383 £+ 0.001 | 0.384 + 0.002
ETTH2 MAE 0.435 + 0.005 | 0.413 +£0.001 | 0.414 £+0.001 | 0.416 4+ 0.001
ETTH2 MDA 0.411 +£0.001 | 0.418 +=0.000 | 0.415+0.000 | 0.412 + 0.002
ETTM1 MSE 0.379 £ 0.000 | 0.368 & 0.000 | 0.368 £ 0.000 | 0.374 £ 0.002
ETTMI1 MAE 0.403 = 0.001 | 0.391 +£0.000 | 0.391 £ 0.000 | 0.398 £+ 0.001
ETTM1 MDA 0.496 + 0.001 | 0.501 +0.000 | 0.500 £ 0.000 | 0.498 + 0.000
ETTM2 MSE 0.291 +0.005 | 0.286 = 0.001 | 0.287 £+ 0.002 | 0.292 + 0.002
ETTM2 MAE 0.343 +£0.003 | 0.338 £0.001 | 0.338 £0.001 | 0.344 £ 0.001
ETTM2 MDA 0.318 = 0.000 | 0.336 = 0.000 | 0.337 £ 0.000 | 0.319 £ 0.002
WEATHER | MSE 0.259 & 0.006 | 0.246 £+ 0.000 | 0.246 £ 0.001 | 0.251 4+ 0.002
WEATHER | MAE 0.291 = 0.005 | 0.283 +£0.000 | 0.283 +£0.001 | 0.285 =+ 0.001
WEATHER | MDA 0.425 +0.001 | 0.469 £ 0.001 | 0.469 £ 0.000 | 0.431 4+ 0.005
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Table 11: PatchTST attention replacement. Prediction length = 720.

| DATASET | METRIC | RAwW | EYE | ZERO | MEAN
ETTH1 MSE 0.559 +0.069 | 0.459 +0.003 | 0.467 £+ 0.005 | 0.521 £ 0.016
ETTHI1 MAE 0.534 +£0.039 | 0.476 +0.002 | 0.480 +0.004 | 0.514 £ 0.010
ETTH1 MDA 0.553 +£0.001 | 0.559 +0.000 | 0.554 £ 0.000 | 0.557 £+ 0.000
ETTH2 MSE 0.416 +0.001 | 0.410 4+ 0.001 | 0.411 £0.001 | 0.419 £ 0.003
ETTH2 MAE 0.443 +0.002 | 0.440 = 0.001 | 0.441 £+ 0.001 | 0.446 £ 0.002
ETTH2 MDA 0.411 +£0.001 | 0.417 £ 0.000 | 0.414 +0.000 | 0.412 + 0.000
ETTM1 MSE 0.442 £+ 0.006 | 0.427 +0.002 | 0.426 £+ 0.002 | 0.435 %+ 0.000
ETTM1 MAE 0.438 +=0.002 | 0.425+0.002 | 0.424 +0.001 | 0.433 £ 0.001
ETTM1 MDA 0.492 £+ 0.004 | 0.498 +0.001 | 0.497 £ 0.002 | 0.497 & 0.000
ETTMm2 MSE 0.377 £0.004 | 0.369 +0.002 | 0.369 £+ 0.002 | 0.375 £ 0.002
ETTM2 MAE 0.395 £ 0.002 | 0.390 & 0.000 | 0.390 & 0.000 | 0.395 %+ 0.001
ETTMm2 MDA 0.320 +0.003 | 0.336 +£0.000 | 0.336 +0.001 | 0.321 £ 0.001
WEATHER | MSE 0.326 £0.004 | 0.322 +0.001 | 0.323 £0.000 | 0.323 & 0.003
WEATHER | MAE 0.338 = 0.001 | 0.337 £0.000 | 0.337 £ 0.000 | 0.334 £ 0.001
WEATHER | MDA 0.427 £0.002 | 0.472 +0.000 | 0.472 £ 0.000 | 0.434 + 0.006

Table 12: iTransformer attention replacement. Prediction length = 96.

| DATASET | METRIC | RAW EYE | ZERO | MEAN
ETTH1 MSE 0.404 £0.003 | 0.381£0.000 | 0.3844+0.001 | 0.392 4 0.001
ETTH1 MAE 0.418 £0.001 | 0.403 £0.000 | 0.40540.000 | 0.41240.002
ETTH1 MDA 0.579 £0.004 | 0.588 4 0.002 | 0.582 £ 0.001 | 0.585 £ 0.001
ETTH2 MSE 0.306 £0.003 | 0.290£0.002 | 0.291 40.001 | 0.295 4 0.007
ETTH2 MAE 0.361 £0.003 | 0.350£0.002 | 0.351+0.001 | 0.355 =+ 0.005
ETTH2 MDA 0.4124+0.002 | 0.418 £0.000 | 0.417+0.001 | 0.414 £ 0.001
ETTM1 MSE 0.304 = 0.004 | 0.294 £ 0.002 | 0.294 +0.002 | 0.300 % 0.001
ETTwMm1 MAE 0.358 £0.003 | 0.347£0.002 | 0.348 +0.002 | 0.354 4= 0.001
ETTMm1 MDA 0.495 £ 0.000 | 0.500 £ 0.000 | 0.499 +0.000 | 0.498 = 0.000
ETTMm2 MSE 0.174+0.003 | 0.174 £0.001 | 0.174 £ 0.000 | 0.175 £ 0.000
ETTMm2 MAE 0.265 +0.001 | 0.264 & 0.000 | 0.264 =+ 0.000 | 0.265 & 0.000
ETTMm2 MDA 0.3224+0.001 | 0.342£0.000 | 0.342+0.000 | 0.325 £ 0.001
WEATHER | MSE 0.162 +0.005 | 0.152£0.003 | 0.15240.003 | 0.154 & 0.001
WEATHER | MAE 0.211 +£0.005 | 0.201 £0.004 | 0.201 +£0.002 | 0.204 £ 0.001
WEATHER | MDA 0.424 +0.001 | 0.469 £ 0.004 | 0.468 +0.002 | 0.427 & 0.001

Table 13: iTransformer attention replacement

. Prediction length = 192.

| DATASET | METRIC | RAw EYE | ZERO | MEAN
ETTHI1 MSE 0.451 +0.007 | 0.416 +£0.002 | 0.419 £0.002 | 0.437 4 0.002
ETTHI1 MAE 0.448 +0.004 | 0.426 +=0.002 | 0.428 +0.002 | 0.443 £+ 0.001
ETTHI1 MDA 0.571 £ 0.001 | 0.580 &= 0.003 | 0.573 £ 0.003 | 0.575 4+ 0.003
ETTH2 MSE 0.391 +0.002 | 0.356 +=0.002 | 0.358 +£0.002 | 0.361 £+ 0.002
ETTH2 MAE 0.412 +0.001 | 0.391 £0.001 | 0.392 £ 0.001 | 0.396 £ 0.001
ETTH2 MDA 0.410 +0.000 | 0.416 +=0.001 | 0.414 +0.001 | 0.410 £+ 0.002
ETTM1 MSE 0.345 4+ 0.000 | 0.333 £ 0.000 | 0.333 £ 0.000 | 0.339 £+ 0.001
ETTM1 MAE 0.382 +0.001 | 0.371 +=0.000 | 0.371 & 0.000 | 0.377 = 0.000
ETTM1 MDA 0.497 4 0.000 | 0.502 4 0.000 | 0.500 4+ 0.000 | 0.499 4+ 0.000
ETTM2 MSE 0.248 +0.003 | 0.237 +0.002 | 0.238 +0.002 | 0.236 =+ 0.000
ETTM2 MAE 0.315 4+ 0.000 | 0.307 +0.003 | 0.307 £0.004 | 0.309 £ 0.001
ETTM2 MDA 0.318 = 0.000 | 0.338 &= 0.001 | 0.338 & 0.001 | 0.320 = 0.000
WEATHER | MSE 0.204 +0.002 | 0.194 £+ 0.000 | 0.194 £ 0.000 | 0.199 £ 0.001
WEATHER | MAE 0.251 +0.002 | 0.242 +0.001 | 0.242 +0.001 | 0.245 + 0.000
WEATHER | MDA 0.424 +0.003 | 0.468 = 0.001 | 0.468 £ 0.000 | 0.429 £ 0.001
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Table 14: iTransformer attention replacement

. Prediction length = 336.

| DATASET | METRIC | RAW | EYE | ZERO | MEAN
ETTHI1 MSE 0.471 +0.002 | 0.440 +=0.002 | 0.445 +0.000 | 0.464 + 0.005
ETTHI1 MAE 0.465 4+ 0.003 | 0.444 +0.003 | 0.447 +£0.001 | 0.462 + 0.001
ETTHI1 MDA 0.563 &= 0.001 | 0.569 = 0.001 | 0.560 £ 0.001 | 0.564 + 0.001
ETTH2 MSE 0.422 +0.007 | 0.381 +0.001 | 0.383 £0.001 | 0.384 + 0.002
ETTH2 MAE 0.435 4+ 0.005 | 0.413 +0.001 | 0.414 +0.001 | 0.416 £+ 0.001
ETTH2 MDA 0.411 +0.001 | 0.418 =0.000 | 0.415+0.000 | 0.412 + 0.002
ETTM1 MSE 0.379 &+ 0.000 | 0.368 +0.000 | 0.368 & 0.000 | 0.374 4+ 0.002
ETTM1 MAE 0.403 +0.001 | 0.391 +0.000 | 0.391 £ 0.000 | 0.398 £ 0.001
ETTM1 MDA 0.496 + 0.001 | 0.501 +0.000 | 0.500 4 0.000 | 0.498 4+ 0.000
ETTM2 MSE 0.291 +0.005 | 0.286 & 0.001 | 0.287 £ 0.002 | 0.292 + 0.002
ETTm2 MAE 0.343 +0.003 | 0.338 = 0.001 | 0.338 = 0.001 | 0.344 + 0.001
ETTM2 MDA 0.318 +0.000 | 0.336 & 0.000 | 0.337 £ 0.000 | 0.319 £ 0.002
WEATHER | MSE 0.259 + 0.006 | 0.246 +0.000 | 0.246 +0.001 | 0.251 4 0.002
WEATHER | MAE 0.291 +0.005 | 0.283 &= 0.000 | 0.283 £+ 0.001 | 0.285 £ 0.001
WEATHER | MDA 0.425 +0.001 | 0.469 +0.001 | 0.469 4+ 0.000 | 0.431 4+ 0.005

Table 15: iTransformer attention replacement

. Prediction length = 720.

| DATASET | METRIC | RAw | EYE | ZERO | MEAN
ETTHI1 MSE 0.559 £ 0.069 | 0.459 +0.003 | 0.467 & 0.005 | 0.521 +0.016
ETTHI1 MAE 0.534 +0.039 | 0.476 & 0.002 | 0.480 4+ 0.004 | 0.514 +0.010
ETTHI1 MDA 0.553 & 0.001 | 0.559 +0.000 | 0.554 4+ 0.000 | 0.557 4+ 0.000
ETTH2 MSE 0.416 & 0.001 | 0.41040.001 | 0.411 +0.001 | 0.419 = 0.003
ETTH2 MAE 0.443 +0.002 | 0.440 +£0.001 | 0.441 £0.001 | 0.446 £ 0.002
ETTH2 MDA 0.411 +0.001 | 0.417 +0.000 | 0.414 +0.000 | 0.412 % 0.000
ETTM1 MSE 0.442 4+ 0.006 | 0.427 +£0.002 | 0.426 £ 0.002 | 0.435 4 0.000
ETTM1 MAE 0.438 +0.002 | 0.425+0.002 | 0.424 +0.001 | 0.433 £+ 0.001
ETTM1 MDA 0.492 +0.004 | 0.498 +0.001 | 0.497 £0.002 | 0.497 4 0.000
ETTM2 MSE 0.377 £ 0.004 | 0.369 +0.002 | 0.369 & 0.002 | 0.375 4 0.002
ETTM2 MAE 0.395 4+ 0.002 | 0.390 & 0.000 | 0.390 £ 0.000 | 0.395 + 0.001
ETTM2 MDA 0.320 + 0.003 | 0.336 & 0.000 | 0.336 & 0.001 | 0.321 £ 0.001
WEATHER | MSE 0.326 +0.004 | 0.322 +0.001 | 0.323 & 0.000 | 0.323 + 0.003
WEATHER | MAE 0.338 = 0.001 | 0.337 £ 0.000 | 0.337 & 0.000 | 0.334 £ 0.001
WEATHER | MDA 0.427 +0.002 | 0.472 4+ 0.000 | 0.472 4+ 0.000 | 0.434 + 0.006

Table 16: Pathformer attention replacement. Prediction length = 96.

| DATASET | METRIC | RAwW | EYE | ZERO |
ETTHI1 MSE 0.384 +0.001 | 0.383 +£0.001 | 0.384 + 0.002
ETTHI1 MAE 0.390 +0.002 | 0.388 £0.001 | 0.389 £ 0.002
ETTHI1 MDA 0.600 + 0.003 | 0.600 &+ 0.005 | 0.600 % 0.004
ETTH2 MSE 0.294 +0.003 | 0.283 & 0.001 | 0.285 4+ 0.000
ETTH2 MAE 0.339 +0.002 | 0.333 = 0.001 | 0.334 + 0.000
ETTH2 MDA 0.434 +0.000 | 0.433 & 0.000 | 0.436 + 0.003
ETTM1 MSE 0.315+0.003 | 0.314 +0.003 | 0.314 + 0.003
ETTM1 MAE 0.345 +0.001 | 0.344 +£0.002 | 0.343 £ 0.001
ETTM1 MDA 0.498 + 0.000 | 0.498 + 0.000 | 0.499 + 0.000
ETTM2 MSE 0.168 = 0.001 | 0.174 £0.000 | 0.173 £ 0.002
ETTM2 MAE 0.248 +0.001 | 0.252 +0.000 | 0.252 + 0.002
ETTM2 MDA 0.328 +0.004 | 0.330 £0.001 | 0.335 £ 0.002
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Table 17: Pathformer attention replacement. Prediction length = 192.

| DATASET | METRIC | RAwW | EYE ZERO |
ETTHI1 MSE 0.442 +0.000 | 0.442 +0.004 | 0.441 + 0.005
ETTHI1 MAE 0.419 +0.001 | 0.418 £0.001 | 0.418 £ 0.001
ETTHI1 MDA 0.593 = 0.002 | 0.595 + 0.005 | 0.595 =+ 0.004
ETTH2 MSE 0.367 & 0.006 | 0.358 +£0.003 | 0.361 £ 0.001
ETTH2 MAE 0.386 == 0.004 | 0.380 £+ 0.003 | 0.382 + 0.001
ETTH2 MDA 0.432 +0.006 | 0.435 4+ 0.006 | 0.434 + 0.004
ETTM1 MSE 0.364 £+ 0.004 | 0.365 £ 0.002 | 0.366 £ 0.005
ETTM1 MAE 0.368 &= 0.002 | 0.368 £ 0.002 | 0.368 £ 0.002
ETTM1 MDA 0.500 £ 0.001 | 0.501 £0.001 | 0.501 £ 0.002
ETTM2 MSE 0.233 = 0.001 | 0.236 & 0.001 | 0.237 + 0.000
ETTM2 MAE 0.292 £+ 0.002 | 0.293 £ 0.000 | 0.294 + 0.001
ETTM2 MDA 0.326 & 0.004 | 0.329 +0.001 | 0.333 + 0.004

Table 18: Pathformer attention replacement. Prediction length = 336.

| DATASET | METRIC | RAW | EYE ZERO |
ETTHI1 MSE 0.461 +0.007 | 0.455 4+ 0.007 | 0.455 4+ 0.004
ETTHI1 MAE 0.431 =0.003 | 0.425 +0.003 | 0.425 + 0.001
ETTHI1 MDA 0.579 +0.013 | 0.583 & 0.006 | 0.584 + 0.006
ETTH2 MSE 0.382 +0.017 | 0.345+0.001 | 0.347 = 0.003
ETTH2 MAE 0.406 & 0.012 | 0.381 £0.001 | 0.383 £+ 0.002
ETTH2 MDA 0.419 +0.018 | 0.429 +0.000 | 0.427 + 0.009
ETTMI MSE 0.386 & 0.000 | 0.386 & 0.002 | 0.390 %+ 0.006
ETTM1 MAE 0.389 + 0.001 | 0.388 £0.001 | 0.390 £ 0.002
ETTMI MDA 0.498 + 0.001 | 0.498 +0.001 | 0.499 + 0.002
ETTM2 MSE 0.292 +0.000 | 0.298 +0.001 | 0.297 £+ 0.002
ETTM2 MAE 0.329 +0.001 | 0.332 +0.000 | 0.333 + 0.000
ETTM2 MDA 0.328 = 0.001 | 0.329 +£0.000 | 0.334 £+ 0.001

Table 19: Pathformer attention replacement. Prediction length = 720.

| DATASET | METRIC | RAW | EYE ZERO |
ETTHI MSE 0.492 £0.008 | 0.484 £0.004 | 0.485 £ 0.004
ETTHI MAE 0.464 £ 0.003 | 0.455£0.003 | 0.457 £ 0.004
ETTHI1 MDA 0.569 £0.000 | 0.572£0.003 | 0.572 £ 0.002
ETTH2 MSE 0.399 £0.014 | 0.398 £0.008 | 0.415 4 0.002
ETTH2 MAE 0.423 £0.007 | 0.423 £0.004 | 0.434 £ 0.002
ETTH2 MDA 0.424 £0.003 | 0.429 £0.000 | 0.429 4+ 0.001
ETTMm1 MSE 0.456 £ 0.008 | 0.456 £0.004 | 0.443 £ 0.035
ETTMm1 MAE 0.428 £0.002 | 0.426 £0.002 | 0.442 4+ 0.032
ETTMm1 MDA 0.493 £0.002 | 0.494 £0.002 | 0.495 £ 0.003
ETTMm2 MSE 0.394 £0.018 | 0.391 £0.004 | 0.389 £ 0.003
ETTm2 MAE 0.390 £0.008 | 0.388 £0.002 | 0.389 £ 0.001
ETTMm2 MDA 0.320 £ 0.007 | 0.327 £0.001 | 0.332 4 0.002
Table 20: Lag-1lama attention replacement(CRPS).

Dataset | Airpassengers ECL  Exchange Hospital Pedestrian Saugeenday Solar  Taxi  Traffic  Weather
RAW 0.118 0.050 0.015 0.120 0.216 0.605 0.381 0.306 0.114 0.149
MEAN 0.069 0.068 0.019 0.087 0.182 0.607 0.489 0322 0.114 0.150
EYE 0.157 0.044 0.115 0.065 0.202 0.547 0.404 0311 0.114 0.153
ZERO 0.107 0.051 0.059 0.072 0.231 0.565 0.387 0.318  0.120 0.147
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Table 21: SAMformer attention replacement(RMSE).

DATASET ‘ ETTHl ETTH2 ETTwMmI ECL  WEATHER

RAW 0.645 0.590 0.728  0.409 1.118
MEAN 0.642 0.587 0.713  0.412 1.133
EYE 0.649 0.588 0.725  0.410 1.124

ZERO 0.647 0.584 0.736  0.411 1.141

Table 22: Timer attention replacement(MSE).

DATASET ‘ ECL ETTHI TRAFFIC WEATHER

RAW 0.133 0.368 0.350 0.166
MEAN 0.135  0.365 0.358 0.172
EYE 0.155 0.382 0.397 0.174
ZERO 0.154  0.393 0.394 0.171

Table 23: Moirai attention replacement(NRMSE).

DATASET | RAW  FIX
ETTH1 ‘0.512 0.523

C.4 POSITIONAL ENCODING ZEROING OUT EXPERIMENT

We present the results of the Positional Encoding Zeroing Out Experiment in Table 24]and Table [25]
The findings are consistent with our analysis in the main text.

Table 24: iTransformer fix embedding replacement.

DATASET \ ECL ETTHl ETTH2 ETTM1 ETTM2 EXCHANGE TRAFFIC WEATHER
RAW EMB 0.153 0.385 0.300 0.345 0.187 0.092 0.400 0.177
FIXED EmB | 0.154 0.388 0.302 0.343 0.187 0.090 0.399 0.177

Table 25: PatchTST fixed embedding experiment.

METRIC ECL TrRAFFIC WEATHER ETTHlI ETTH2 ETTml ETTM2
RAWEMB  0.130 0.371 0.153 0.383 0.277 0.285 0.163
Fixep EMB  0.130 0.372 0.152 0.382 0.277 0.286 0.163

C.5 VIT AS AN EXCEPTION

Our ViT model is trained directly on CIFAR-10, with a total of 10 classes. The patch size is 4, the
hidden size is 256, and the model consists of 8 blocks, each with 8 heads. We did not pre-train it on
ImageNet.

We present the experimental results of PatchTST and iTransformer with varying numbers of blocks.
It can be observed that the performance improvement with an increasing number of blocks is not
significant and, in some cases, even leads to overfitting, such as in the case of iTransformer on the
ETT dataset.
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Figure 19: MSE performance of PatchTST
with varying block numbers on different
datasets.

Figure 20: MSE performance of iTrans-
former with varying block numbers on dif-
ferent datasets.

D INFORMAL BRIEF DISCUSSION OF POSSIBLE SOLUTIONS

As discussed in the main paper, we believe that future improvements to time series Transform-
ers should focus on learning better latent representations. Inspiration can be drawn from Latent
Diffusion Model in image generation and speech-generation models such as Qwen2.5-Omni and
LLaMA-Omni. These models typically employ an encoder-decoder architecture to extract high-
quality representations of the input (image or speech), and only then apply the Transformer module
to perform attention-based modeling in the latent space. In essence, these approaches place the
Transformer within an already meaningful and structured representation space, allowing attention to
operate more effectively.

Translating this idea to the time series domain, it suggests that building a high-quality time series
encoder-decoder could be crucial to unlocking the full potential of Transformers.

One particularly promising approach is to use VQ-VAE or RQ-VAE to map the time series into a
discrete codebook, which aligns well with the discrete token inputs and outputs that Transformers are
designed for. For forecasting tasks, a VAE encoder can produce discrete tokenized representations
as Transformer input, while the Transformer predicts a distribution over the codebook, and a VAE
decoder reconstructs the output time series from the predicted tokens.

This approach also addresses a key limitation in PatchTST, where an additional concatenation and a
prediction linear head (which introduce significant additional parameters) are required to aggregate
all token representations and produce the final output. By adopting a discrete representation and
next-token prediction paradigm, this method brings time series forecasting closer to the standard
autoregressive framework used in mainstream Transformer architectures. A thorough and serious
discussion and evaluation of such solutions would require substantial space and careful analysis,
which is why we did not include them in the main paper.

E THE FORMAL NOTATION FOR THE TOY DATASET GENERATING PROCESS

We construct synthetic time series z(t) as the superposition of three components:

ﬂf(t) = xcarrier(t) + mevent(t) + mnoise(t) (5)
Carrier Wave : A sinusoidal base signal defined as below, with amplitude A = 1, frequency f =
0.01, phase ¢ = 0, and offset = 0.

Zearrier(t) = A - sin(27 ft + ¢) + offset (6)

Event Signal : A piecewise triangular waveform modulated by a discrete state machine. Each event
is triggered periodically (every Teyeny = 80 steps) and occupies Teyen/r = 10 steps, where r = 8.
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The triangle height is determined by the current state value s, scaled by an amplitude factor of 0.5.
The state evolves according to predefined transition rules.

Noise : Additive white Gaussian noise

xnoise(t) ~ N(O, 0'2), o =0.025 (7)

F COMPARISON WITH RESEARCH ALONG SIMILAR LINES

Several studies have put forward perspectives similar to ours, particularly (Guo et al.| (2024). How-
ever, there are fundamental differences between their work and ours, and we consider it necessary
to provide clarification and discussion here.

Guo et al.| (2024) did not identify the phenomenon of attention degradation. Their main focus
was to demonstrate that the substantial computational overhead introduced by attention yields only
marginal performance gains. However, their ablation studies do not imply that attention is ineffec-
tive: when the attention mechanism is entirely removed, the performance deteriorates across various
models and datasets ( due to the reduced parameter count and computational complexity ), as also
acknowledged in their first contribution. This only suggests that the trade-off between computational
cost and performance improvement is not ideal. Importantly, since removing attention leads to per-
formance degradation, it does not support the claim that the attention mechanism is not working,
nor does it indicate that attention has degenerated.

In addition to |Guo et al| (2024), [Zeng et al.| (2023) also put forward similar perspectives. They
observed that Transformers underperform MLPs in terms of predictive performance and that posi-
tional encodings fail to contribute effectively. However, while they explained these phenomena, they
did not conduct a more in-depth, fine-grained investigation into the attention mechanism itself, nor
did they identify the degeneration of attention. Moreover, they did not attribute issues such as the
ineffectiveness of positional encodings to shortcomings in representation learning.

In contrast, our work does not ablate the attention module directly, as this would lead to a reduction in
model parameters and computational load, leading to performance degradation and confounding the
interpretation of performance changes. Instead, we replace the original QK-based attention matrix
with alternative forms, carefully ensuring that the computational cost and parameter count remain
roughly consistent with the original model (e.g., mean and eye attention preserve the utility of the
v_proj and o_proj layers, while fix attention replaces q_proj and k_proj with new parameters ). Under
this setting, we observe that the model performance does not exhibit the consistent degradation
reported in RAM’s experiments. Instead, it remains comparable to, or in some cases even surpasses,
the original model. This experimental design reveals the degradation issue in attention mechanisms.

Moreover, our work explores the degradation phenomenon from multiple perspectives, including
latent perturbation, patch-length approximation, and position encoding. Compared to |Guo et al.
(2024)’s relatively simple ablation approach, we provide a much more systematic and multi-faceted
analysis of potential issues in attention mechanisms.

A central contribution of our paper is the in-depth explanation of why such degradation occurs :
why the computational cost of attention does not translate into proportional performance gains, why
representation learning is important for attention, and why current time series Transformers fail to
meet these expectations. These are critical aspects that|Guo et al.| (2024) does not address at all, but
which lie at the heart of our work.
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