GenAl-DrawlO-Creator: A Framework for Automated Diagram
Generation

Jinze Yu, Dayuan Jiang, Guanghui Wang, Xuefeng Liu

AWS Generative Al Innovation Center

File Edit View Arrange Extras Help
D 70%v @« « -~ + B8

Search Shapes Q

v Scratchpad @ + Z X

@] = oY)
@ gkeion
i) ymYeA
A5t D
D00 03
R

[R

AWS Bedrock Pipeline Architecture

S3 Bucket
(Data Storage)

» Misc
» Advanced

» Basic

+ More Shapes
- g

GenAl-DrawlO-Creator

Save D] Al Model O

Diagram Style Claude 3.7 Sonnet v

Vi PR
v draw a bedrock pipeline with aws 2025 icons
Grid 10pt o Vi
Page View
I'd be happy to create a diagram of a Bedrock pipeline
Background Change...

using AWS 2025 icons. I'll design a comprehensive
pipeline showing how AWS Bedrock integrates with
other AWS services for an Al/ML workflow.

(O Background Color
(O shadow

Options

Tool: display_diagram Show Args

Connection Arrows
Connection Points
Guides

Diagram generated

Paper Size
US-Letter (8,5" x 11" i
¢) # AWS Bedrock Pipeline Architecture
@ portrait O Landscape
I've created a comprehensive AWS Bedrock pipeline
diagram using AWS 2025-style icons. This architecture
shows how AWS Bedrock integrates with various AWS
services to create an end-to-end Al/ML workflow.

Edit Data...
Clear Default Style

Key Components in the Pipeline

Nata Sources

Describe what changes you want to make to the diagram or
upload(paste) an image to replicate a diagram. (Press Cmd/Ctrl + Enter
to send)

-

Figure 1: Overview of GenAI-DrawlO-Creator: A system that transforms natural language descriptions into fully editable

diagrams using Claude 3.7 to generate draw.io compatible XML.

Abstract

Diagrams are crucial for communicating complex information, yet
creating and modifying them remains a labor-intensive task. We
present GenAI-DrawlO-Creator, a novel framework that leverages
Large Language Models (LLMs) to automate diagram generation
and manipulation in the structured XML format used by draw.io.
Our system integrates Claude 3.7 to reason about structured visual
data and produce valid diagram representations. Key contributions
include a high-level system design enabling real-time diagram up-
dates, specialized prompt engineering and error-checking to ensure
well-formed XML outputs. We demonstrate a working prototype
capable of generating accurate diagrams (such as network archi-
tectures and flowcharts) from natural language or code, and even
replicating diagrams from images. Simulated evaluations show that
our approach significantly reduces diagram creation time and pro-
duces outputs with high structural fidelity. Our results highlight
the promise of Claude 3.7 in handling structured visual reasoning
tasks and lay the groundwork for future research in Al-assisted
diagramming applications.

1 Introduction

Diagrams (e.g., flowcharts, architectural schematics) play a vital role
in knowledge representation, allowing complex relationships to be

understood at a glance. However, creating these diagrams typically
requires manual effort and proficiency with specialized tools. This

poses challenges in fast-paced or collaborative environments where
rapid iteration and easy updates are needed.

Existing automatic diagram-generation solutions are limited:
many infrastructure-as-code tools can output architecture diagrams,
but often only as static images (PDF/PNG) that are difficult to edit or
extend. The ideal solution would allow users to describe a diagram
in natural language (or provide structured input like code) and
receive an editable diagram that can be refined as needed.

Recent advances in generative Al suggest that Large Language
Models (LLMs) could bridge this gap. LLMs have shown the ability
to interpret complex instructions and generate structured outputs
such as code or JSON [3, 6, 10]. This opens up the possibility of
LLM-driven diagram creation: a user could simply describe the
desired diagram, and an LLM could generate the corresponding
diagram file.

Implementing LLM-based diagram generation introduces several
technical challenges:

The model must output well-structured diagram data (e.g., XML)
without errors; free-form text generation easily leads to syntax
mistakes or hallucinated content that breaks the diagram [7, 13].

Controlling the content of the diagram requires the LLM to
reason about the spatial and relational arrangement of elements de-
scribed in text. Ensuring the reliability and consistency of structured

outputs from an LLM requires careful prompting and validation
techniques [2, 12].

In this paper, we introduce GenAI-DrawlO-Creator, an LLM
framework designed to automatically generate and manipulate
diagrams through natural language interactions. Our system is built
with a high-level architecture that integrates Anthropic’s Claude
3.7 and a web-based diagramming interface. The core idea is to
use Claude to translate user intents into the structured format of a
draw.io diagram, while maintaining an interactive loop where the
user can refine the diagram through dialogue.

The contributions of this work are summarized as follows:

e We propose a novel LLM-driven system for automated dia-
gram generation, detailing an architecture that combines
front-end visual embedding with back-end Al integration
for structured data output.

e We develop specialized techniques for prompting and XML
post-processing that substantially improve the correctness
and reliability of LLM-generated diagrams.

e We introduce a working prototype leveraging Claude 3.7,
and report an evaluation on structured diagram generation
tasks.

2 Related Work

2.1 Large Language Models for Structured
Output

LLMs have demonstrated capabilities in producing structured out-
puts like code [6], SQL [7], and markup languages [13]. Unlike
free-form text, diagramming formats like DrawlO’s XML require
strict adherence to schema constraints, where even small errors
can render outputs unusable. XML generation remains challeng-
ing as models must maintain consistency across long sequences of
nested elements [2][12]. Our work builds upon these findings by
developing specialized techniques for XML diagram generation.

2.2 Diagram Generation Approaches

Text-to-diagram generation spans multiple approaches. Earlier sys-
tems like NLDB [8] and AutoMeKin [11] used rule-based parsing
for domain-specific diagrams. More recent systems leverage deep
learning: DiagrammerGPT [15] converts natural language to UML
diagrams using fine-tuned models, while other approaches [4] em-
ploy specialized transformers. Our work takes a different approach
by using existing LLMs without fine-tuning, instead developing
prompting techniques and validation frameworks to guide general-
purpose models.

2.3 Multimodal and Interactive Approaches

Several systems leverage multimodality in diagramming. Sneak-
Peak [5] and DataToon [1] allow users to create data visualizations
through sketching interfaces. The Penrose system [3] uses domain-
specific languages to create mathematical diagrams with a focus
on interpretability. Commercial offerings like GitHub Copilot and
Mermaid integrate code-based diagram generation into develop-
ment workflows. DiagrammerGPT [15] and ULCA [14] provide
multimodal capabilities for technical diagrams. Our system extends
these approaches with bidirectional interaction, allowing users to

Jinze Yu, Dayuan Jiang, Guanghui Wang, Xuefeng Liu

refine diagrams through natural language while maintaining visual
consistency and structural validity.

Recent work in interactive editing [9, 10] enables iterative re-
finement but lacks diagram-specific optimizations. Our approach
integrates prompting strategies with validation pipelines specif-
ically for diagram generation, effectively creating an intelligent
diagramming assistant that combines LLM capabilities with struc-
tured drawing tools.

3 Methodology
3.1 System Architecture

The GenAl-DrawlO-Creator framework is implemented as a web-
based application that integrates Claude 3.7 with an interactive
front-end for diagram display. The design consists of three main
layers: a Next.js front-end (user interface and state management),
a back-end integration layer (API routes and model connectivity),
and external services (Claude 3.7 via Amazon Bedrock and utility
modules for processing).

The user interacts with the system through a chat-based interface
on the front-end. The main UI elements are: the ChatPanel which
encapsulates the conversation view and controls; the ChatInput
where the user enters queries or commands (e.g., "Add a database
server to the diagram"); the ChatMessageDisplay which shows the
dialogue history; and the ModelSelector for configuring Claude 3.7
parameters. Additionally, a HistoryDialog component enables users
to browse and manage previous diagram versions.

To render the diagrams, the front-end incorporates a draw.io
viewer/editor in embedded mode, which allows the application to
display the diagram defined by an XML string in real-time as the
Al generates it.

The front-end components are connected via React context providers:
DiagramContext maintains the current diagram’s state and handles
updates, while ModelProviderContext stores information about the
Al model configuration.

The back-end APT handles communication with Claude 3.7 through
Amazon Bedrock. This architecture follows similar patterns to those
used in other Al-powered web applications that integrate LLMs
with interactive interfaces [14]. When a user prompt arrives, the
API route constructs a query to the LLM with appropriate system
instructions and context. The system supports streaming responses,
allowing users to see the model’s output as it is generated rather
than waiting for the complete response. Here’s a description and
figure environment for the system architecture in Figure.2:

3.2 Optimized XML Generation and Validation

One of the core technical hurdles is getting Claude to output well-
formatted draw.io diagram XML reliably. The draw.io diagram for-
mat (an XML structure for a <mxGraphModel> within a <mxfile>)
has specific requirements: all tags must be closed, elements like
shapes have required attributes (position, dimensions, etc.), and
certain structural hierarchy must be maintained.

We tackled this with a two-pronged approach: (1) a specialized
system prompt and (2) a post-generation validation and correction
pipeline. This approach builds on recent work in structured output
validation for LLMs [12], adapting these techniques specifically for
diagram XML generation.

GenAl-DrawlO-Creator: A Framework for Automated Diagram Generation

Nextjs Application

Frontend Components React-DrawlO Integration

Display Diagram

| S E— {XML) D
ChatPanel = i (Embed Mode)
‘ Export Diagram
[Z)
__ Userinput Storeoad
(Text, I) Chatlnput Diagram History
API Rogquest |:» HistoryDiakog Context Provider
User
Al Respon: - S ‘
‘ DiagramContext ‘

—

AP| Routes

fapilchat
(Al Model Integration)

Al SDK Integration

l XML Processing

External Al Services

‘Amazon Bedrock Utility Functions
(Claude) (XML Processing)

Figure 2: System Architecture of GenAI-DrawlO-Creator:
Three-layer design with (1) Front-end Layer (Next.js com-
ponents for Ul), (2) Integration Layer (API routes and XML
validation), and (3) External Services Layer (Claude 3.7 and
draw.io engine). User inputs flow to Claude 3.7, which gen-
erates diagram XML that is validated and rendered, with
version history supporting iterative refinement.

For the system prompt, we supply Claude with clear instructions
and an example of the XML format:

"You are an assistant that generates draw.io diagram XML. The
user will describe a diagram, and you will output an XML represent-
ing the diagram with proper structure. Do not include explanations
or additional text—only output the XML."

We also give a simple example in the prompt, such as a minimal
diagram with one shape and one connector, to anchor Claude’s
output style. By providing a template, the model is more likely to
conform to the XML syntax.

Even with prompt optimization, Claude occasionally produces
errors. To mitigate this, we implemented an XML validation module
in the back-end. After receiving Claude’s output, we run it through
an XML parser. If the parser reports a well-formed document, we
consider the generation step successful. If not, we attempt automatic
correction. Common errors include unescaped special characters
and mismatched tags. Our correction routine handles these either
through simple string replacements or by leveraging Claude again
in a self-correction mode.

3.3 Real-Time Streaming and User Experience

Maintaining a responsive user experience is essential for an inter-
active tool. Recent advances in speculative decoding [9] have made
real-time streaming of LLM outputs more feasible, enabling inter-
active applications like ours. We implemented real-time streaming
of Claude’s outputs, which required innovation to handle partial
structured data.

Our solution was to stream in two phases: textual and visual.
In the textual phase, as Claude’s tokens arrive, we display them
in a monospaced, color-coded text box. This gives the user insight

into what Claude is producing and a sense of progress. We do not
attempt to parse or render the diagram until a well-formed end-of-
response is detected. At that point, we transition to the visual phase:
we parse the accumulated tokens as XML and load the diagram into
the draw.io canvas.

Users reported that this streaming feedback made the system
feel faster and more trustworthy, as they were not staring at a blank
screen—some even noticed errors in the partial output and could
pre-emptively stop the generation.

3.4 Image-Based Diagram Replication

A unique capability of our framework is taking a diagram image
and reconstructing it into an editable format. This capability builds
on recent advances in multimodal LLMs that can interpret visual
information and generate structured outputs [14]. This feature
addresses scenarios where a user might have a diagram saved as an
image and wants to import it into draw.io for editing or extension.

Our approach uses Claude 3.7’s multimodal capabilities by giving
it the image and prompting for a description of the diagram content:

"Analyze the given diagram image and describe all the compo-
nents (with their labels) and connections between them."

Claude’s output is expected to be a textual description enumer-
ating the elements. We then feed that description into our diagram
generation pipeline to produce the XML. Essentially, we break the
problem into two steps: vision understanding and structured gen-
eration.

Once we have a draft XML from the image, we often need to
adjust positioning. Claude might not yield coordinates; it only lists
relationships. We therefore place elements in a default layout or
use a simple graph layout algorithm to arrange nodes and then
connect them as described.

While not perfect, this image-to-diagram pipeline demonstrates
a form of multi-modal reasoning: Claude effectively converts visual
structured data into a textual structured representation, which is
then turned into another structured modality (XML).

3.5 System Prompt Design and Few-Shot

Guidance

At the heart of our methodology is the careful crafting of prompts
given to Claude 3.7. Our approach to prompt engineering draws
on principles established in recent work that frames prompting as
a form of programming [2]. We distinguish between the system
prompt (a persistent instruction that sets the role and rules through-
out the session) and the user prompt (the actual query or command
by the user at each turn).

In our system prompt, we include: (1) the role definition (e.g.,
"You are an expert diagramming assistant that outputs diagrams
in draw.io XML format.), (2) the ground rules (e.g., "Always out-
put valid XML. Do not include any explanatory text or unrelated
content."), and (3) an example or schema outline.

Few-shot prompting further enhances reliability. Before a user
even provides input, our system can insert a Q&A example into the
context: a dummy user request and a correct XML answer. We have
curated examples like a simple flowchart ("User: Draw a flowchart
with A -> B -> C. Assistant: [XML for three nodes and arrows]"). By
seeing these in-context examples, Claude is more likely to produce
similar well-structured outputs for analogous requests.

We also balance creativity and constraint. While we empha-
size not to hallucinate, we allow Claude some latitude in layout
or embellishment if the prompt is underspecified. We encourage
consistency by instructing Claude to follow certain conventions
(like align nodes horizontally unless told otherwise), which acts as
an inductive bias for generation.

3.6 Output Verification and Diagram History

Beyond basic XML well-formedness, we also verify semantic cor-
rectness. For example, if the user prompt listed five distinct items
to include in the diagram, we verify that the XML contains five cor-
responding shape elements. If any are missing, we can re-prompt
or alert the user.

Another semantic check ensures connectors link to valid targets.
A frequent minor error is when Claude might produce a connector
pointing to an ID that doesn’t exist. We scan all <mxCell> elements
representing edges and confirm their source and target attributes
match the IDs of existing vertices.

Each iteration in our dialogue creates a state transition in the
diagram. By saving states and allowing comparison, we create a
feedback mechanism. For instance, if the user says "Remove the
cache from the diagram" but later says "I meant remove the queue,
not the cache," we can recover the version before the mistaken
removal.

This history also serves user education. By showing a list of
changes, we expose a log of what Claude did at each step, building
trust as users see a traceable progression. Test users appreciated
being able to refer to previous versions, especially if the latest
output was unsatisfactory.

4 Experiments
4.1 Experimental Setup

We designed a set of benchmark tasks inspired by real-world dia-
gramming needs:

e Infrastructure diagrams — Given a description of a web
application with load balancer, app servers, databases, etc.,
generate the corresponding AWS architecture diagram

e Process flowcharts — Given a stepwise process description,
produce a flowchart with decisions and loops

e Org charts — Given a hierarchy of roles, draw an organiza-
tional chart

o UI wireframes — Given a description of a UI layout, create
a schematic diagram to test spatial arrangement capability

Our evaluation methodology is inspired by recent work assessing
generative Al capabilities in modeling tasks [4].

In total, we curated 10 distinct tasks (4 infrastructure, 3 flowcharts,
2 org charts, 1 wireframe) varying in complexity (from 3 to 15 ele-
ments). For each task, we prepared an ideal reference diagram to
serve as ground truth for comparison.

We evaluated Claude 3.7 (via Amazon Bedrock) in our framework,
using our prompt methodology and examples. This resulted in a
dataset of Al-generated diagrams for analysis.

We evaluated outputs with the following metrics:

e Semantic accuracy: Does the generated diagram include all
the components and relationships described in the prompt?

Jinze Yu, Dayuan Jiang, Guanghui Wang, Xuefeng Liu

e Structural validity: Is the output a valid diagram file (XML)
that loads without errors in draw.io?

e Layout clarity: A subjective rating on a 5-point scale of how
well-organized the diagram appears

e Response time: Time from user prompt to diagram dis-
played

e Token usage: Number of tokens in prompt+response

o Correction iterations: In cases where the initial output was
flawed, how many additional prompts were needed to get
a satisfactory result

4.2 Performance Results

On semantic accuracy, we tested 10 examples and Claude 3.7 achieved
impressive results. On first attempt (without user corrections), it
succeeded in covering on average 94% of the required components
and relations in the diagram. After one user feedback turn (e.g.,
"you missed X, please add it"), Claude reached 100% inclusion of
specified elements in most cases.

The structural validity of outputs was near-perfect: Claude pro-
duced valid XML in 9 out of 10 scenarios on the first try. The
one invalid output was automatically corrected by our validation
pipeline. This aligns with observations that Anthropic’s models
excel at structured output consistency.

For layout clarity, 5 human evaluators gave an average score of
4.34 out of 5 for Claude’s diagrams. Claude’s outputs were praised
for closely mimicking typical diagram styles (for instance, using
appropriate AWS icons and arranging layers logically). In one in-
frastructure scenario, Claude’s diagram was almost identical to the
reference solution, correctly using AWS icons for EC2, RDS, etc.

Claude 3.7 demonstrated strong response times, with an average
generation time of 7.4 seconds per diagram. This includes network
latency and API communications. The most impressive metric was
Claude’s first-pass accuracy. In 90% of cases, it produced a valid,
well-structured diagram on the first attempt without requiring cor-
rections. The remaining 10% needed only one correction iteration.
This high reliability suggests that Claude 3.7 has strong capabilities
for structured data generation and visual reasoning.

5 Discussion and Conclusion

GenAI-DrawlO-Creator demonstrates that LLMs can effectively
transform natural language into structured technical diagrams,
removing translation burden and allowing experts to focus on con-
tent. The XML format ensures diagrams remain editable, enabling
version control and collaborative workflows. Despite promising
results, limitations exist: Claude occasionally misinterprets spatial
relationships, struggles with specialized diagram types, and shows
diminishing accuracy with diagrams exceeding 20 components. The
image-to-diagram feature works for simple cases but lacks precision
with complex visualizations, and output quality depends on prompt
clarity. Our experiments confirm Claude 3.7 reliably generates ac-
curate diagrams across multiple domains, creating them 4-5 times
faster than manual methods. The system architecture provides a
template for applications requiring structured output from natural
language, suggesting that as LLMs advance, text-to-diagram tools
could become standard components of technical documentation
workflows, improving communication in software development
and system architecture.

GenAl-DrawlO-Creator: A Framework for Automated Diagram Generation

References

—_

8] Munima Jahan, Zahra Shakeri Hossein Abad, and Behrouz H. Far. Generating
sequence diagram from natural language requirements. In 29th IEEE International
Requirements Engineering Conference Workshops (REW), pages 39-48, 2021.

9] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transform-
ers via speculative decoding. In Proceedings of the 40th International Conference
on Machine Learning (ICML), 2023.

[1] Chetan Arora, John Grundy, and Mohamed Abdelrazek. Advancing requirements
engineering through generative Al: Assessing the role of LLMs. arXiv preprint
arXiv:2310.13976, 2023.

[2] Luca Beurer-Kellner, Marc Fischer, and Martin Vechev. Prompting is program-
ming: A query language for large language models. Proc. ACM Program. Lang.,

—

PLDI): 19461969, 202 [10] OpenAl GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
7T():1946-1969, .0 3 M ick Ryd d L L del [11] Rahul Saini, Gursimran Singh Walia, Anurag Goswami, and Monika Gupta.
(3] Tom B. Brown, Benjamin ar}n, Nick Ryder, an. etal é_mguage models are Automated, interactive, and traceable domain modelling empowered by artificial
few-shot learners. In Advances in Neural Information Processing Systems (NeurIPS) intelligence. Software and Systems Modeling, 21(4):1469-1494, 2022
33 pages 1877-1901, 2020. [12] Shreya Shankar, Haotian Li, Parth Asawa, Madelon Hulsebos, Yiming Lin, J. D.

[4] Javier Camara, Javier Troya, Lola Burguefio, and Antonio Vallecillo. On the as-
sessment of generative Al in modeling tasks: An experience report with ChatGPT
and UML. Software and Systems Modeling, 22(3):781-793, 2023.

[5] Bogqi Chen, Kua Chen, Shabnam Hassani, Yujing Yang, Daniel Amyot, Lysanne [13
Lessard, Gunter Mussbacher, Mehrdad Sabetzadeh, and Daniel Varr6. On the use
of GPT-4 for creating goal models: An exploratory study. In 31st IEEE International

Zamfirescu-Pereira, Harrison Chase, Will Fu-Hinthorn, Aditya G. Parameswaran,
and Eugene Wu. spade: Synthesizing data quality assertions for large language
model pipelines. Proceedings of the VLDB Endowment, 17(12):4173-4186, 2024.
Jiaye Wang. Guiding large language models to generate computer-parsable
content. arXiv preprint arXiv:2404.05499, 2024.

N . A [14] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and
Requirements Engineering Conference Wo}jks,}lOP s (REW), pages 2627271} 2023. Nan Duan. Visual ChatGPT: Talking, drawing and editing with visual foundation

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, and et al. Evaluating large models. arXiv preprint arXiv:2303.04671, 2023
language models trained on code. arXiv preprint arXiv:2107.03374, 2021. [15] Abhay Zala, Han Lin, Jaemin Cho, and Mohit Bansal. Diagrammergpt: Gener-

Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-
constrained decoding for structured NLP tasks without finetuning. arXiv preprint
arXiv:2305.13971, 2024.

ating open-domain, open-platform diagrams via LLM planning. arXiv preprint
arXiv:2310.12128, 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Large Language Models for Structured Output
	2.2 Diagram Generation Approaches
	2.3 Multimodal and Interactive Approaches

	3 Methodology
	3.1 System Architecture
	3.2 Optimized XML Generation and Validation
	3.3 Real-Time Streaming and User Experience
	3.4 Image-Based Diagram Replication
	3.5 System Prompt Design and Few-Shot Guidance
	3.6 Output Verification and Diagram History

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Results

	5 Discussion and Conclusion
	References

