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Abstract—In this work, we introduce PianoMime, a framework
for training a piano-playing agent using internet demonstrations.
The internet is a promising source of large-scale demonstrations
for training our robot agents. In particular, for the case of
piano-playing, Youtube is full of videos of professional pianists
playing a wide myriad of songs. In our work, we leverage these
demonstrations to learn a generalist piano-playing agent capable
of playing any arbitrary song. Our framework is divided into
three parts: a data preparation phase to extract the informative
features from the Youtube videos, a policy learning phase to train
song-specific expert policies from the demonstrations and a policy
distillation phase to distil the policies into a single generalist
agent. We explore different policy designs to represent the agent
and evaluate the influence of the amount of training data on
the generalization capability of the agent to novel songs not
available in the dataset. We show that we are able to learn a
policy with up to 56% F1 score on unseen songs. Project website:
https://pianomime.github.io/

I. INTRODUCTION

The Internet is a promising source of large-scale data for
training generalist robot agents. If properly exploited, it is
full of demonstrations (video, text, audio) of humans solving
an infinite amount of tasks [23, 3, 5] that could inform
our robot agents on how to behave. However, learning from
these databases is challenging for several reasons. First, unlike
teleoperation demonstrations, video data does not specify the
actions applied by the robot, usually requiring the use of
reinforcement learning to induce the robot actions [22, 3, 13].
Second, videos typically show a human performing the task,
while the learned policy is deployed on a robot. This often
requires to re-target the human motion to the robot body [13,
4, 14]. Finally, as pointed in [3], if we aim to learn a generalist
agent, we must select a task for which large-scale databases are
available and that allows an unlimited variety of open-ended
goals.

From opening doors [4] to rope manipulation [12] or pick
and place tasks [20, 11], previous works have successfully
taught robot manipulation skills through observations. How-
ever, these approaches have been limited to low dexterity in
the robots or to a small variety of goals.

In this work, we focus on the task of learning a generalist
piano player from Internet demonstrations. Piano-playing is
a highly dexterous open-ended task [24]. Given two dexterous
robot hands and a desired song, the goal of a piano-playing
agent is to press the correct keys and only the correct keys
at the proper timing. Moreover, the task can be conditioned

on arbitrary songs, allowing for a large, and high-dimensional
goal conditioning.

To learn a generalist piano-playing agent from internet
data, we introduce PianoMime, a framework to train a single
policy capable of playing any song (See Figure 1). In its
essence, the PianoMime agent is a goal-conditioned policy
that generates configuration space actions given the song to
be played. At each timestep, the agent receives as goal input a
trajectory of the keys to be pressed. Then, the policy generates
a trajectory of actions and executes them in chunk. To learn
the agent, we combine both reinforcement learning with
imitation learning. We train individual song-specific expert
policies by using reinforcement learning in conjunction with
Youtube demonstrations and we distill all the expert policies
into a single generalist behavioral cloning policy. To represent
the agent, we perform ablations of different architectural
design strategies to model the behavioral cloning policy. We
investigate the benefit of incorporating representation learning
to enhance the geometric information of the goal input.
Additionally, we explore the effectiveness of a hierarchical
policy that combines a high-level policy generating fingertip
trajectories with a learned cross-domain inverse dynamics
model generating joint-space actions. We show that the learned
agent is able to play arbitrary songs not included in the training
dataset with an average 56% F1-score.

In summary, the main contribution of this work is a
framework for training a generalist piano-playing agent using
Internet demonstration data. To achieve this goal, we:

• Introduce a method to learn policies from the internet
demonstrations by decoupling the human motion infor-
mation from the task-related information.

• Present a reinforcement learning approach that combines
residual policy learning [21, 9] with style rewards [13].

• Explore different policy designs, introducing novel strate-
gies to learn geometrically consistent latent goal repre-
sentations and conducting ablations on different designs
and dataset sizes.

Finally, we are releasing the dataset and the trained models as
a benchmark for testing internet-data-driven dexterous manip-
ulation.

II. METHOD

The PianoMime framework is composed of three phases:
data preparation, policy learning, and policy distillation. In
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Fig. 1: The goal of this work is to train a generalist piano-playing agent (PianoMime) from Youtube videos. We collect a
set of videos and accompanying MIDI files and train a single agent to play any song, combining reinforcement learning and
behavioral cloning.
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Fig. 2: Proposed distillation policy architecture. Given a L steps window of a target song τ tˇ “( : ( ˇ
“( t:t+L) at time t, a latent

representation τ tz is computed given a pre-trained observation encoder. Then, the policy is decoupled between a high-level
fingertip predictor that generates a trajectory of fingertip positions τ tx and a low-level inverse dynamics model that generates
a trajectory of target joint position τ tq .

data preparation phase, given the raw video demonstration,
we extract the informative signals needed to train the policies.
In policy learning phase, we train song-specific policies via
Reinforcement Learning (RL). This step is essential for gener-
ating the robot actions that are missing in the demonstrations.
The policy is trained with two reward functions: a style reward
and a task reward. In policy distillation phase, we train a
single behavioral cloning policy to mimic all song-specific
policies. The goal of this phase is to train a single generalist
policy capable of playing any song.

A. Data preparation: From raw data to human and piano state
trajectories

We generate the training dataset by web scraping YouTube
videos of professional piano artists playing various songs. We
select YouTube channels that also upload MIDI files of the
played songs, which represent trajectories of the piano keys
state throughout the song. We use the video to extract the
motion of human pianists and the MIDI file to inform about
the goal state of piano during performance.

We focus on the fingertip position as the signal for the robot
hand to mimic. Although some tasks might require using the
palm (e.g., grasping), we find that mimicking fingertip motion
is sufficient for playing the piano. This also reduces constraints
on the robot, allowing for more adaptable movements.

We use MediaPipe [10] to extract fingertip motion from
videos. MediaPipe outputs the hand skeleton from each video

frame. We found that the typical top-view recording in piano-
playing YouTube videos is particularly useful for accurately
estimating fingertip positions. Notice that given the videos
are RGB, we lack depth signal. Therefore, we predict the
3D fingertip positions based on the piano state. The detailed
procedure is explained in Appendix A.

B. Policy learning: generating robot actions from observa-
tions

Through the data preparation phase, we extract two trajec-
tories: a human fingertip trajectory τx and a piano state tra-
jectory τ ˇ “( . The human fingertip trajectory τx : (x1, . . . , xT )
is a T -step trajectory of two hands’ 3D fingertip positions
x ∈ R3×10 (10 fingers). The piano state trajectory τ ˇ “( :

( ˇ “( 1, . . . , ˇ “( T ) is a T -step trajectory of piano states ˇ “( ∈ B88,
represented with an 88-dimensional binary variable represent-
ing which keys should be pressed.

Given the ROBOPIANIST [24] environment, our goal is to
learn a goal-conditioned policy πθ that plays the song defined
by τ ˇ “( while matching the fingertip motion given by τx as
much as possible.

Similarly to [24], we formulate the piano playing as an
Markov Decision Process (MDP). The state observation
includes the robot’s proprioception s and the goal state gt.
The goal state gt at time t informs the desired piano key
configurations ˇ “( in the future gt = ( ˇ “( t+1, . . . , ˇ “( t+L), with
L being the lookahead horizon. The action a is defined as the



desired configuration for both hands q ∈ R23×2+1, each with
23 joint angles and one dimension for the sustain pedal.

We propose solving the reinforcement learning problem
by combining residual policy learning [21, 9, 4] and style
mimicking rewards [13, 15].

Residual policy architecture. Given the fingertip trajectory
τx, we solve an Inverse Kinematics (IK) [1] problem to obtain
a trajectory of desired joint angles τ ik

q : (qik
0 , . . . , q

ik
T ) for

the robot hands. Then, we represent the policy πθ(a|s, gt) =
πrθ(a|s, gt) + qik

t+1 as a combination of a nominal behavior
(given by the IK solution) and a residual policy πrθ. Given the
goal state at time t, the nominal behavior is defined as the
next desired joint angle qik

t+1. We then only learn the residual
term around the nominal behavior.

Style-mimicking reward. We integrate a style-mimicking
reward to preserve the human style in the trained robot actions.
The reward function r = r ˇ “( +rx is composed of a task reward
r ˇ “( and a style-mimicking reward rx. While the task reward r ˇ “(
encourages the agent to press the correct keys, the style reward
rx encourages the agent to move its fingertips similar to the
demonstration τx. We provide further details in Appendix C.

C. Policy distillation: learning a generalist piano-playing
agent

Through the policy learning phase, we train song-specific
policies from which we roll out state and action trajectories
τs : (s0, . . . , sT ) and τq : (q0, . . . , qT ). Then, we generate
a dataset D : (τ is, τ

i
q, τ

i
x, τ

i
ˇ “( )
N
i=1 with N being the number

of learned songs. Given the dataset D, we apply Behavioral
Cloning (BC) to learn a single generalist piano-playing agent
πθ(qt:t+L, xt:t+L|st, ˇ “( t:t+L) that outputs configuration-space
actions qt:t+L conditioned on the current state st and the future
desired piano state ˇ “( t:t+L. We explore different strategies to
represent and learn the behavioral cloning policy and improve
its generalization capabilities.

Representation Learning. We pre-train an observation en-
coder over the piano state ˇ “( to learn spatially consistent latent
features. We hypothesize that two piano states that are spatially
close should lead to latent features that are close. Using these
latent features as goal should induce better generalization. To
obtain the observation encoder, we train an autoencoder with a
reconstruction loss over a Signed Distance Field (SDF) defined
on the piano state. Specifically, the encoder compresses the
binary vector of the goal into a latent space, while the decoder
predicts the SDF function value of a randomly sampled query
point (the Euclidean distance between the query point and
the closest ”on” piano key). We provide further details in
Appendix E.

Hierarchical Policy. We represent the piano-playing agent
with a hierarchical policy. The high-level policy receives
a sequence of desired future piano states ˇ “( and outputs a
trajectory of human fingertip positions x. Then, a low-level
policy takes the fingertip and piano state trajectories as input
and outputs a trajectory of desired joint angles q. On one
hand, while fingertip trajectory data is easily available from
the Internet, obtaining low-level joint trajectories requires

solving a computationally expensive RL problem. On the other
hand, while the high-level mapping ( ˇ “( 7→ x) is complex,
which involves fingerings, the low-level mapping (x 7→ q)
is relatively simpler, which addresses a cross-embodiment
inverse dynamics problem. This decoupling allows us to train
the more complex high-level mapping on large cheap datasets
and the simpler low-level mapping on smaller expensive ones.
We visualize the policy in Figure 2.

Expressive Generative Models. Considering that the hu-
man demonstration data of piano playing is highly multi-
modal, we explore using expressive generative models to better
represent this multi-modality. We compare the performance of
different deep generative models based policies, e.g., Diffusion
Policies [2] and Behavioral Transformer [19], as well as a
deterministic policy.

III. EXPERIMENTAL RESULTS

All experiments are conducted on our collected dataset,
which contains the notes, the corresponding demonstration
videos and fingertip trajectories of 60 piano songs from a
Youtube channel PianoX 1. To standardize the length of
each task, each song is divided into several clips, each with
a duration of 30 seconds (The dataset contains totally 431
clips, 258K state-action pairs). Furthermore, we choose 12
unseen clips to investigate the generalization capability of the
generalist policy. We use the same evaluation metrics from
RoboPianist [24], i.e., precision, recall, and F1 score.

Our experiment setup utilizes ROBOPIANIST simulation
environment [24]. The agent predicts target joint angles at
20Hz and the targets are converted to torques using PD
controllers running at 500Hz.

A. Evaluation on learning song-specific policies from demon-
strations

In this section, we compare our method for training song-
specific policies against two baselines: Robopianist [24]
We use the RL method introduced in [24]. We manually
label the fingering from the demonstrations videos to provide
the fingering reward. Inverse Kinematics (IK) [1] Given a
demonstration fingertip trajectory τx, an IK solver [1] is used
to compute a target joint position trajectory and execute it
open-loop. We provide the details of IK solver implementation
in Appendix B. We select 10 clips with diverse levels of
difficulty from the collected dataset. We train song-specific
policies for each clip using both the baseline and our methods.
We then compare their performance based on the F1 scores.

Results. As shown in Figure 3, our method consistently out-
performs the Robopianist baseline for all 10 clips, achieving
an average F1 score of 0.94 compared to the baseline’s 0.75.
We attribute this improvement to the incorporation of human
priors, which narrows the RL search space to a favorable
subspace, guiding the policy towards more optimal ones.
Additionally, the IK method achieves an average F1 score of
0.72, only slightly lower than the baseline. This demonstrates

1https://www.youtube.com/channel/UCsR6ZEA0AbBhrF-NCeET6vQ



Fig. 3: The F1 score achieved by three methods for 10 clips

the effectiveness of incorporating human priors, providing a
robust starting point for RL. Remarkably, we observe poor
performance from the baseline, particularly in clips demanding
rapid key presses across long distances.

B. Evaluation of model design strategies for policy distillation

This section focuses on evaluating policy distillation for
playing different songs. We perform ablations on different pol-
icy designs. We propose a Base policy (Two-stage Diffusion)
that incorporates both hierarchical design and goal representa-
tion learning, as described in Section II-C. Both high- and low-
level policies are trained with conditional Denoising Diffusion
Probabilistic Models (DDPM) [8]. The high-level policy is
trained to predict the fingertip trajectory for 4 timesteps given
the SDF embedding of goals over 10 timesteps, while the low-
level policy predicts the robot actions for 4 timesteps given
the fingertip trajectory. Note that the entire dataset is used for
training the high-level policy, while only around 40 % of the
collected clips (110K state-action pairs) are trained with RL
and further used for training the low-level policy. The detailed
network implementation is described in Appendix F.

To analyze the impact of each variable, we design four
variants of the Two-stage Diffusion policy. To evaluate (1)
the impact of integrating a pre-trained observation encoder,
we train a model without the SDF embedding representation
for the goal (w/o SDF). To evaluate (2) the impact of the hi-
erarchical architecture, we train a One-stage Diffusion policy
that directly predict the robot actions. Finally, to evaluate (3)
the influence of using different generative models, we train a
Two-stage BeT, that replaces Diffusion models with Behavior-
Transformers [19]. We also consider as baselines a Multi-task
RL policy and a BC policy with MSE Loss. We provide
further details of the models in Appendix G.

Results As shown in Table I, despite that Multi-task RL
has the highest precision on the test dataset (this is because
it barely presses any keys), our base policy outperforms the
others in all metrics on both training and test datasets. We
also observe that the incorporation of SDF embedding for
goal representation leads to better performance, especially
on the test dataset, which demonstrates the impact of goal
representation on policy generalization.

RL BC Base w/o SDF One-Stage BeT

Tr
ai

n P 0.85 0.56 0.87 0.86 0.53 0.63

R 0.20 0.29 0.78 0.76 0.34 0.42

F1 0.12 0.30 0.81 0.78 0.35 0.49

Te
st

P 0.95 0.54 0.69 0.66 0.58 0.53

R 0.18 0.22 0.54 0.49 0.27 0.30

F1 0.13 0.21 0.56 0.51 0.26 0.31

TABLE I: Quantitative results evaluated on Training and Test
Datasets. Test datasets consist of 12 clips unseen in the training
dataset. We report Precision (P), Recall (R) and F1-score (F1).

Fig. 4: F1 scores of the base policies trained with different
proportions of high-level and low-level datasets. The x-axis
represents the percentage of the low-level dataset utilized,
while HL % indicates the percentage of the high-level dataset
used.

C. Evaluations on the impact of the data in the generalization

In this section, we investigate the impact of scaling training
data for high-level and low-level policies on the generalization
capabilities of the agent. We employ different combinations
of the high-level and low-level policies of the base policy
trained with different proportions of the dataset and assess
their performance. In addition, we introduce an oracle high-
level policy, which outputs the ground-truth fingertip position
from human demonstration videos.

Results The results (see Figure 4) demonstrate that the
overall performance of policy is significantly influenced by the
quality of the high-level policy. Low-level policies paired with
Oracle high-level policies consistently outperform the ones
paired with other high-level policies. Besides, we observe early
performance convergence with increasing training data when
paired with a low-quality high-level policy. Specifically, with
the HL 1% policy and HL 50%, performance almost converged
with around 10% and 50% low-level data, respectively.

IV. CONCLUSION

In this work, we present PianoMime, a framework for train-
ing a generalist robotic pianist using internet video sources.
We start by training song-specific policies with residual RL,
enabling the robot to master individual songs by mimicking



human pianists. Subsequently, we train a single behavioral
cloning policy that mimics these song-specific policies to
play unseen songs. We show that goal representation learning,
policy hierarchy, and expressive generative models are key
factors to enhance the policy generalization. The resulting
policy achieces an average F1-score of 56% on unseen songs.
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APPENDIX

A. Retargeting: From human hand to robot hand

To retarget from the human hand to robot hand, we follow
a structured process.
Step 1: Homography Matrix Computation Given a top-
view piano demonstration video, we firstly choose n different
feature points on the piano. These points could be center
points of specific keys, edges, or other identifiable parts of
the keys that are easily recognizable (See Figure 5). Due
to the uniform design of pianos, these points represent the
same physical positions in both the video and Mujoco. Given
the chosen points, we follow the Eight-point Algorithm to
compute the Homography Matrix H that transforms the pixel
coordinate in videos to the x-y coordinate in Mujoco (z-axis
is the vertical axis).

Step 2: Transformation of Fingertip Trajectory We
then obtain the human fingertip trajectory with MediaPipe
[10]. We collect the fingertips positions every 0.05 seconds.
Then we transform the human fingertip trajectory within
pixel coordinate into the Mujoco x-y 2D coordinate using the
computed homography matrix H .

Step 3: Heuristic Adjustment for Physical Alignment
We found that the transformed fingertip trajectory might not
physically align with the notes, which means there might
be no detected fingertip that physically locates at the keys
to be pressed or the detected fingertip might locate at the
border of the key (normally human presses the middle point
of the horizontal axis of the key). This misalignment could
be due to the inaccuracy of the hand-tracking algorithm and
the homography matrix. Therefore, we perform a simple
heuristic adjustment on the trajectory to improve the physical
alignment. Specifically, at each timestep of the video, we
check whether there is any fingertip that physically locates at
the key to be pressed. If there is, we adjust its y-axis value
to the middle point of the corresponding key. Otherwise, we
search within a small range, specifically the neighboring two
keys, to find the nearest fingertip. If no fingertip is found in

the range or the found fingertip has been assigned to another
key to be pressed, we then leave it. Otherwise, we adjust its
y-axis value to the center of the corresponding key to ensure
proper physical alignment.

Step 4: Z-axis Value Assignment Lastly, we assign
the z-axis value for the fingertips. For the fingertips that press
keys, we set their z-axis values to 0. For other fingertips, we
set their z-axis value to 2 · hkey , where hkey is the height of
the keys in Mujoco.

B. Implementation of Inverse Kinematics Solver

The implementation of the IK solver is based on the
approach of [1]. The solver addresses multiple tasks simulta-
neously by formulating an optimization problem and find the
optimal joint velocities that minimize the objective function.
The optimization problem is given by:

min
q̇

∑
i

wi∥Jiq̇ −Kivi∥2, (1)

where wi is the weight of each task, Ki is the proportional
gain and vi is the velocity residual. We define a set of 10
tasks, each specifying the desired position of one of the robot
fingertips. We do not specify the desired quaternions. All the
weights wi are set to be equal. We use quadprog 2 to solve the
optimization problem with quadratic programming. The other
parameters are listed in Table II.

TABLE II: The parameters of IK solver

Parameter Value

Gain 1.0

Limit Gain 0.05

Damping 1e-6

Levenberg-Marquardt Damping 1e-6

C. Detailed MDP Formulation of Song-specific Policy

Table III, Table IV and Table V show the reward function,
observation space and action space of the MDP formulation
of song-specific policies, respectively.

D. Training Details of Song-specific Policy

We use PPO [18] (implemented by StableBaseline 3 [17]) to
train the song-specific policy with residual RL(See Algorithm
1). All of the experiments are conducted using the same net-
work architecture and tested using 3 different seeds. Both actor
and critic networks are of the same architecture, containing 2
MLP hidden layers with 1024 and 256 nodes, respectively, and
GELU [7] as activation functions. The detailed hyperparame-
ters of the networks are listed in Table VII.

2https://github.com/quadprog/quadprog
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Fig. 5: Compute homography matrix given 8 correspondence feature points.

TABLE III: The detailed reward function to train the song-specific policy. The Key Press reward is the same as in [24], where
ks and kg represent the current and the goal states of the key respectively, and g is a function that transforms the distances to
rewards in the [0, 1] range. pdf and prf represent the fingertip positions of human demonstrator and robot respectively.

Reward Formula Weight Explanation

Key Press 0.5 · g(∥ks − kg∥2) + 0.5 · (1− 1false positive) 2/3 Press the right keys and only the right keys

Mimic g(∥pdf − prf∥2) 1/3 Mimic the demonstrator’s fingertip trajectory

TABLE IV: The observation space of song-specific agent.

Observation Unit Size

Hand and Forearm Joint Positions Rad 52

Hand and forearm Joint Velocities Rad/s 52

Piano Key Joint Positions Rad 88

Piano key Goal State Discrete 88

Demonstrator Forearm and Fingertips Cartesian Positions m 36

Prior control input ũ (solved by IK) Rad 52

Sustain Pedal state Discrete 1

TABLE V: The action space of song-specific agent.

Action Unit Size

Target Joint Positions Rad 46

Sustain Pedal Discrete 1

E. Representation Learning of Goal

We train an autoencoder to learn a geometrically continuous
representation of the goal (See Figure 6 and Algorithm 2). Dur-
ing the training phase, the encoder E , encodes the original 88-
dimensional binary representation of a goal piano state ˇ “( t into
a 16-dimensional latent code z. The positional encoding of a
randomly sampled 3D query coordinate x is then concatenated
with the latent code z and passed through the decoder D. We
use positional encoding here to represent the query coordinate
more expressively. The decoder is trained to predict the SDF
f(x, ˇ “( t). We define the SDF value of x with respect to ˇ “( t as
the Euclidean distance between the x and the nearest key that

TABLE VI: The Hyperparameters of PPO

Hyperparameter Value

Initial Learning Rate 3e-4

Learning Rate Scheduler Exponential Decay

Decay Rate 0.999

Actor Hidden Units 1024, 256

Actor Activation GELU

Critic Hidden Units 1024, 256

Critic Activation GELU

Discount Factor 0.99

Steps per Update 8192

GAE Lambda 0.95

Entropy Coefficient 0.0

Maximum Gradient Norm 0.5

Batch Size 1024

Number of Epochs per Iteration 10

Clip Range 0.2

Number of Iterations 2000

Optimizer Adam

is supposed to be pressed in ˇ “( t, mathematically expressed as:

SDF(x, ˇ “( t) = min
p∈{pi| ˇ “( t,i=1}

∥x− p∥, (2)

where pi represents the position of the i-th key on the piano.
The encoder and decoder are jointly optimized to minimize
the reconstruction loss:

L(x, , ˇ “( t) = (SDF(x, ˇ “( t)−D(E(v, x)))2. (3)



Algorithm 1 Training of the song-specific policy with residual
RL

1: Initialize actor network πθ
2: Initialize critic network vϕ
3: for i = 1 : Niteration do
4: # Collect trajectories
5: for t = 1 : T do
6: Get human demonstrator fingertip position xt and

observation ot
7: Compute the prior control signal that tracks xt with

the IK controller ũt = ik(xt, ot)
8: Run policy to get the residual term rt = πθ(ot)
9: Compute the adapted control signal ut = ũt + rt

10: Execute ut in environment and collect st, ut, rt, st+1

11: end for
12: # Update networks
13: for n = 1 : N do
14: Sample a batch of transitions {(sj , uj , rj , sj+1)}

from the collected trajectories
15: Update the actor and critic network with PPO
16: end for
17: end for

We pre-train the autoencoder using the GiantMIDI dataset
3, which contains 10K piano MIDI files of 2,786 composers.
The pre-trained encoder maps the ˇ “( t into the 16-dimensional
latent code, which serves as the latent goal for behavioral
cloning. The encoder network is composed of four 1D-
convolutional layers, followed by a linear layer. Each suc-
cessive 1D-convolutional layer has an increasing number of
filters, specifically 2, 4, 8, and 16 filters, respectively. All
convolutional layers utilize a kernel size of 3. The linear layer
transforms the flattened output from the convolutional layers
into a 16-dimensional latent code. The decoder network is a
MLP with 2 hidden layers, each with 16 neurons. We train the
autoencoder for 100 epochs with a learning rate of 1e− 3.

F. Training Details of Diffusion Model

All the diffusion models utilized in this work, including
One-stage Diff, the high-level and low-level policies of Two-
stage Diff and Two-stage Diff w/o SDF, share the same net-
work architecture. The network architecture are the same as the
U-net diffusion policy in [2] and optimized with DDPM [8],
except that we use temporal convolutional networks (TCNs)
as the observation encoder, taking the concatenated goals
(high-level policy) or fingertip positions (low-level policy) of
several timesteps as input to extract the features on temporal
dimension. Each level of U-net is then conditioned by the
outputs of TCNs through FiLM [16]. High-level policies take
the goals over 10 timesteps and the current fingertip position
as input and predict the human fingertip positions. In addition,
we add a standard gaussian noise on the current fingertip

3https://github.com/bytedance/GiantMIDI-Piano
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Fig. 6: 1) Encoding: The encoder compresses the binary
representation of the goal into latent code. 2) Decoding: A 3D
query coordinate x is randomly sampled. A neural network
predicts the SDF value given the positional encoding of x and
the latent code.

Algorithm 2 Training of the goal autoencoder

1: Initialize encoder Eϕ
2: Initialize decoder Dψ
3: for i = 1 : Nepoch do
4: for j = 1 : Nbatch do
5: for each goal v in batch do
6: Compute the latent code z = Eψ( ˇ “( t)
7: Sample a 3D coordinate as query x =

Sample3DCoordinate()
8: Compute the positional encoding of query pe =

PositionalEncoding(x)
9: Compute the output of the decoder conditioned by

the query Dϕ(z, pe)
10: Compute the SDF value of query SDF(x, ˇ “( t)
11: Compute the reconstruction loss L
12: end for
13: Compute the sum of the loss
14: Compute the gradient
15: Update network parameter ϕ, ψ
16: end for
17: end for

position during training to facilitate generalization. We further
adjust the y-axis value of the fingertips pressing the keys in
the predicted high-level trajectories to the midpoint of the
keys. This adjustment ensures closer alignment with the data
distribution of the training dataset. Low-level policies take the
predicted fingertip positions and the goals over 4 timesteps,
the proprioception state as input predict the robot actions.
The proprioception state includes the robot joint positions and
velocities, as well as the piano joint positions. We use 100
diffusion steps during training. To achieve high-quality results
during inference, we find that at least 80 diffusion steps are
required for high-level policies and 50 steps for low-level
policies.



TABLE VII: The Hyperparameters of DDPM

Hyperparameter Value

Initial Learning Rate 1e-4

Learning Rate Scheduler Cosine

U-Net Filters Number 256, 512, 1024

U-Net Kernel Size 5

TCN Filters Number 32, 64

TCN Kernel Size 3

Diffusion Steps Number 100

Batch Size 256

Number of Iterations 800

Optimizer AdamW

EMA Exponential Factor 0.75

EMA Inverse Multiplicative Factor 1

G. Policy Distillation Experiment

Two-stage Diff w/o SDF We directly use the binary repre-
sentation of goal instead of the SDF embedding representation
to condition the high-level and low-level policies.

Two-stage BeT We train both high-level and low-level
policies with Behavior Transformer [19] instead of DDPM.
The hyperparameter of Bet is listed in Table VIII.

One-stage Diff We train a single diffusion model to predict
the robot actions given the SDF embedding representation of
goals and the proprioception state.

Multi-task RL We create a multi-task environment where
for each episode a random song is sampled from the dataset.
Consequently, we use Soft-Actor-Critic (SAC) [6] to train a
single agent within the environment. Both the actor and critic
networks are MLPs, each with 3 hidden layers, and each
hidden layer contains 256 neurons. The reward function is
the same as that in [24].

BC-MSE We train a feedforward network to predict the
robot action of next timestep conditioned on the binary repre-
sentation of goal and proprioception state with MSE loss. The
feedforward network is a MLP with 3 hidden layers, each with
1024 neurons.

TABLE VIII: The Hyperparameters of Behavior Transformer

Hyperparameter Value

Initial Learning Rate 3e-4

Learning Rate Scheduler Cosine

Number of Discretization Bins 64

Number of Transformer Heads 8

Number of Transformer Layers 8

Embedding Dimension 120

Batch Size 256

Number of Iterations 1200

Optimizer AdamW

EMA Exponential Factor 0.75

EMA Inverse Multiplicative Factor 1

Fig. 7: F1 score of all 184 trained song-specific policies
(descending order)

H. F1 Score of All Trained Song-Specific Policies

Figure 7 shows the F1 score of all song-specific policies we
trained.

I. Detailed Results on Test Dataset

In Table IX and Table X, we show the Precision, Recall
and F1 score of each song in our collected test dataset and
the Etude-12 dataset from [24], achieved by Two-stage Diff.
We observe an obvious performance degradation when testing
on Etude-12 dataset. We suspect that the reason is due to out-
of-distribution data, as the songs in the Etude-12 dataset are
all classical, whereas our training and test dataset primarily
consists of modern songs.



TABLE IX: Quantitative results of each song in the our
collected test dataset

Song Name Precision Recall F1

Forester 0.81 0.70 0.68

Wednesday 0.66 0.57 0.58

Alone 0.80 0.62 0.66

Somewhere Only We Know 0.63 0.53 0.58

Eyes Closed 0.60 0.52 0.53

Pedro 0.70 0.58 0.60

Ohne Dich 0.73 0.55 0.58

Paradise 0.66 0.42 0.43

Hope 0.74 0.55 0.57

No Time To Die 0.77 0.53 0.55

The Spectre 0.64 0.52 0.54

Numb 0.55 0.44 0.45

Mean 0.69 0.54 0.56

TABLE X: Quantitative results of each song in the Etude-12
dataset

Song Name Precision Recall F1

FrenchSuiteNo1Allemande 0.45 0.31 0.34

FrenchSuiteNo5Sarabande 0.29 0.23 0.24

PianoSonataD8451StMov 0.58 0.52 0.52

PartitaNo26 0.35 0.22 0.24

WaltzOp64No1 0.44 0.31 0.33

BagatelleOp3No4 0.45 0.30 0.33

KreislerianaOp16No8 0.43 0.34 0.36

FrenchSuiteNo5Gavotte 0.34 0.29 0.33

PianoSonataNo232NdMov 0.35 0.24 0.25

GolliwoggsCakewalk 0.60 0.43 0.45

PianoSonataNo21StMov 0.32 0.22 0.25

PianoSonataK279InCMajor1StMov 0.43 0.35 0.35

Mean 0.42 0.31 0.33
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